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Abstract

We consider the estimation of local grey�level image structure in terms of a lay�

ered representation� This type of representation has recently been successfully used to

segment various objects from clutter using either optical �ow or stereo disparity infor�

mation� We argue that the same type of representation is useful for grey�level data in

that it allows for the estimation of properties for each of several di�erent components

without prior segmentation� Our emphasis in this paper is on the process used to

extract such a layered representation from a given image� In particular� we consider a

variant of the EM�algorithm for the estimation of the layered model� and consider a

novel technique for choosing the number of layers to use� We brie�y consider the use

of a simple version of this approach for image segmentation� and suggest two potential

applications to the ARK project�
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� Introduction

Layered image models have been proposed for representing a variety of image primitives�
including image intensities �see ���	
� optical �ow �see ��� ��	
� and range data �see ���	
�
In earlier ARK related work we have studied the use of a layered representation for the
estimation of optical �ow �� �	� A similar approach was developed for stereo disparity as
part of a �oor anomaly detector �FAD
 application ��	�
The general motivation for this paper is to study the process of �tting layered models

to image data� Here we consider the application of layered models to the estimation and
representation of grey�level image structure� This provides a simpler domain in which to
study the estimation process than either optical �ow or stereo disparity� We expect that some
of the techniques developed here will also be applicable to these more complex situations�
A secondary motivation is to investigate potential applications of the use of layeredmodels

for representing grey�level structure which are appropriate for the ARK project� The two
applications we consider are the segmentation of the �oor for use in a stereo FAD system�
and the segmentation of simple landmarks� Indeed� we demonstrate that a layered image
representation can facilitate these tasks�

a b

Figure ���� The sports equipment image �a
 and the range map �b
�

A particularly vivid example for the suitability of a layered representation for grey�level
images is provided by the sports equipment image pair in Figure ���� Here the left image is
an intensity image while the right provides the range for the same scene� Note that the basic
processes involved in the range image� for example� are not overly complex� In particular�
we have a piecewise smooth background being occluded by the racket� which is itself roughly
planar� However� due to the fragmented nature of the occlusion� the resulting range image
has a complex local structure�
Given this sort of image it is natural to consider a representation which allows more

than one grey�level to be represented at any pixel� That is� for the range map in Figure
���b we seek a representation in which one layer models the smooth depth variation on the
racket� while additional layers model the variation of the background� More than one layer
can exist at any individual pixel� In particular� the layer describing the racket can smoothly
interpolate across the holes without implying that the background must be occluded in these



�

regions� Finally� a mapping from pixels to layers is used to represent the detailed spatial
structure of the range map�
While it is fairly obvious that layered models are appropriate for such complex occlusion

relationships� we show that they are also useful even in simpler situations� The basic advan�
tage is that they provide a way to simultaneously estimate the parameters for each of several
simple processes� such as the range variations of the racket and the background� with only
weak constraints on the spatial layout of each process� As a result this approach simpli�es
the estimation of an interpolant in the neighbourhood of a discontinuity� which is a common
problem in vision�
In the next section we consider probabilistic mixture models� which provide the basic

form of the representation� Then in Section � we discuss techniques for �tting mixture
models to data� A process for the successive revision of a mixture model is then considered
in Section �� along with a method for determining an appropriate number of layers� Finally
in Section � we brie�y consider the application of the approach to image segmentation�

� Mixture Models

We model the image intensities within a given spatial patch in terms of the combination
of several simple random processes� To illustrate the general idea� consider the example
of an image patch consisting of a single occlusion boundary� say of a light object against
a dark background� For such a patch we seek a representation for the grey�level structure
which consists of three processes� One process is to be used to model the high intensities
of the foreground object� while the second is to be used to model the low intensities of the
background� We refer to these two processes as �layers�� Finally� there is also a ubiquitous
outlier process to model data not captured by the layers� All three processes exist over
the entire patch� and the representation includes a soft assignment of each pixel to these
processes� Thus the spatial structure of the image is represented by the appropriate mapping
of pixels to processes� As demonstrated in subsequent sections� this type of representation
is useful for determining the number of such layers present within a given image patch�
for representing complex spatial structure due to fragmented occlusion� and for estimating
properties such as the mean and variation within each layer�
The particular form of representation we use is a �mixture model�� This type of model

consists of a probabilistic mixture of simpler distributions� In our application these simpler
distributions are used to model each process individually� that is� the outliers and each of
the layers�
We represent each individual layer using a Gaussian distribution whose mean value is

provided by a parametric model� In particular� the probability of the grey�level g arising at
image position �x within one such layer is taken to be

p�gj�x��a� �
 � N�g � u��x��a
��
� ����


where N�r��
 denotes a zero�mean normal distribution with standard deviation �� Also�
u��x��a
 provides the spatial variation of the mean of the process over the image patch� and
is speci�ed by the parameters �a� Note that any remaining deviation of grey�level intensities
around the mean u��x��a
 is taken to be uncorrelated across di�erent image locations and to
have a constant variance �� over the patch�



�

In this paper we take the mean u for any particular layer to be a linear function of the
parameter vector �a� namely

u��x��a
 � �c��x
 � �a� ����


Moreover� we consider only constant and linear variations with respect to �x� In the �rst
case �a � a�� �c � �� while for linear spatial variation we have �c��x
 � ��� x�� x�
T and �a �
�a�� a�� a�
T � Higher order polynomial or spline models could be represented in a similar way�
The remaining process is the outlier process� which is included in the model for every

image patch� The outlier process is taken to have the uniform distribution

p��g
 � Uniform�g
� ����


with g ranging over the possible grey�levels �eg� p��g
 � ���� for an ��bit image
� This
model states that outliers are equally probable to appear anywhere within the range of
possible grey�levels�
These simple processes for individual layers� along with the outlier process� are combined

in a probabilistic mixture model� namely

p�gj�x� �m��a�� � � � ��aK� ��
 �
KX
k��

mkpk�gj�x��ak� �k
� ����


For k � � the component distributions pk are taken to have the form given in ����
� each
with their own individual parameters �ak and �k� The remaining case� k � �� is the outlier
distribution provided in ����
� These component processes are combined in ����
 according
to the mixture probabilities fmkg

K
k���

Intuitively� the mixture model ����
 represents the following random process� For each
pixel� �rst select a particular component process by randomly choosing k � f�� � � � �Kg
according to the mixture probabilities fmkg

K
k��� Here mk is the probability of selecting

process k� with mk � ��� �	 and
PK

k��mk � �� Once a k is selected� we then randomly
select a grey�level g according to the component distribution pk�g
� Together this provides
a generative model for the image patch in terms of a mixture of simple processes�
While the resulting generative model captures some properties of images� such as the fact

that the grey�levels of pixels within local image patches are often clustered� it ignores others�
In particular� the spatial correlation of the assignment of pixels to layers is not modelled�
Similarly� the correlation of the individual processes themselves across neighbouring image
patches is ignored� These properties can be included in an elaborated model �see� for exam�
ple� ���	 and ��	
� However� for our purposes here we choose to keep the generative model
simple�

� Fitting Mixture Models to Data

Given a set of grey�levels obtained within an image patch � say fg��xn
gNn��� we seek parameter
values f�ak� �kgKk�� and mixture probabilities fmkg

K
k�� which provide a maximum likelihood

�t to the data set� In particular� the log likelihood of generating this set of observations
from a speci�c model is

logL��m��a�� � � � ��aK� ��� � � � � �K
 �
NX
n��

log p�g��xn
j�xn� �m��a�� � � � ��aK� ��� � � � � �K
� ����




�

At a local extrema� it can be shown that the parameters �m� along with �ak and �k for
k � �� � � � �K� must satisfy

NX
n��

qkn � �mk� ����a


NX
n��

qkn
	

	�ak
log pk�g��xn
j�xn��ak� �k
 � �� ����b


NX
n��

qkn
	

	�k
log pk�g��xn
j�xn��ak� �k
 � �� ����c


Here the quantities qkn represent the �ownership probabilities�� that is� the probability that
the nth pixel belongs to the kth layer� These ownership probabilities are de�ned by

qkn �
mkpk�g��xn
j�xn��ak� �k
PK
j��mjpj�g��xn
j�xn��aj� �j


� ����


These equations for a maximum likelihood �t have been derived by a number of authors� for
further details see ���	� The �rst equation� ����a
� comes from the condition that the partial
derivative of logL with respect to the mixture proportion mk must be equal to the Lagrange
multiplier �� This Lagrange multiplier arises by imposing the constraint that the mixture
proportions must sum to one� The second equation is obtained simply by requiring that the
partial derivative of logL with respect to the parameters �ak must vanish� While the third
equation is obtained from the variation of logL with respect to �k�

��� The EM Algorithm

Equations ����
 and ����
 suggest an iterative algorithm� known as the EM�algorithm ���	�
for obtaining a maximum likelihood �t for the parameters mk� k � �� � � � �K� and also for
�ak� �k for k � �� � � � �K� Given an initial guess for these parameters we �rst estimate the
ownership probabilities� qkn� for each pairing of a pixel� �xn� with a component� k� This is
the expectation� or �E��step� and it simply involves the evaluation of the right hand side of
����
�
Next� with these ownership probabilities qkn held �xed� we seek new parameter valuesmk�

�ak and �k which maximize the likelihood� This is the �M��step� A necessary condition for a
local maximum is given by equations ����a�b�c
� As we see below� for Gaussian distributions
these equations can be easily solved� The overall result of both the E�step and the M�step is
an update of the parameters mk� �ak and �k which is guaranteed to increase the log likelihood
���	� These two steps are then iterated until convergence�
For the details of the M�step� �rst consider the update for the mixture probabilities

fmkg
K
k��� The appropriate choice for mk given the ownerships qkn is obtained from ����a
�

It follows that� in order to ensure that the mixture probabilities fmkg
K
k�� sum to one� we

require the Lagrange multiplier � in ����a
 to be N � Therefore we have

mk �
�

N

NX
n��

qkn� ����




�

for k � �� � � � �K�
Before we consider the corresponding updates for �ak and �k� we note that the special

case of normal component distributions pk provide a simpli�cation� In particular� the log
probability for a normally distributed component takes the form

log pk�gj�xn��ak� �k
 � �
�

�

h
log��
��k
 � �g � u��xn��ak



����k
i
� ����


Use of this expression in ����b�c
 gives simple expressions for the updates of �ak and �k�
The update for �ak can now be derived by substituting ����
 into the maximum likelihood

condition ����b
� This provides a linear equation for �ak� namely

Ak�ak � bk� ���


From equation ����
� we �nd Ak and bk are given by

Ak �
NX
n��

qkn�c��xn
�c
T ��xn
� ����a


bk �
NX
n��

qkn�c��xn
g��xn
� ����b


Note that Ak is simply a weighted sum of the outer product of the coe�cient vectors �c��x

used in the de�nition of the mean u��x��a
 and bk is a weighted sum of the product of �c��x

with the observed grey�levels� Furthermore� the weights qkn are just the ownership weights
estimated in the E�step�
Finally� to complete the M�step� we also need to update �k according to ����c
� Using

the expression ����
 it is easy to show that the appropriate �k is given by

��k �

PN
n�� qkn�g��xn
� u��xn��ak

�PN

n�� qkn
� ����


In words� this expression is simply the variance of the observed pixel intensities g�xn
 rel�
ative to the mean u��xn��ak
� with each observation weighted by qkn �i�e� by the ownership
probability for the kth process at pixel �xn
�
Together the E�step and the M�step provide one iteration of the EM algorithm� These

EM iterations are repeated until the change in the parameters is su�ciently small�

��� Anomalous Solutions

The log likelihood function in ����
 is nonlinear� It should therefore come as no surprise that
multiple local maximum can exist� and that techniques are required to avoid undesirable
local maxima�
An example with multiple local maxima is provided by a simple bright�dark occlusion

boundary� The histogram of an image patch containing such a boundary has two peaks
corresponding to the di�erent regions� Suppose we initialize the mixture model to consist of
a uniform outlier process and a single layer in which we use the spatially constant model� If
we don�t have prior information about what the grey�levels in the patch might be� we could





simply initialize the constant model with a mean near the middle of the grey�level range� and
set the corresponding variance� ��

�
� to be large� In this relatively common situation we have

observed that EM can converge to one of three solutions� The �rst two solutions involve
the layer providing a model of one of the two peaks in the grey�level histogram� with the
remaining peak treated as outliers� These are satisfactory results� given the constraint that
only one layer is to be used� since the derived mixture models accurately represent some
intuitive component of the structure in the data set �namely the grey�level distribution for
one of the two surfaces imaged within this patch
� However the remaining solution� described
next� is not so desirable�
The third solution the algorithm can often arrive at consists of a constant model which

has a mean grey�level somewhere between those for the light and dark regions� and with a
su�ciently large variance so that the model can account for both peaks in the histogram� For
well separated peaks� this solution has a lower likelihood than the previous two� Moreover�
this is a less desirable solution in that the model does not re�ect any individual component
within the data set� but rather it represents a weighted combination of two such components�
The failure here is that this third model has not resolved the two separate components� even
though there is su�cient data for it to do so�
We see basically two ways of attempting to deal with such unwanted solutions� One

way is to explore the data set further� by attempting to �t additional models perhaps with
more layers and�or from di�erent initial guesses� We can then compare the various solutions
obtained and try to settle on a single model� A second approach is to examine statistical
properties of the derived representation in an attempt to identify further unmodelled �struc�
ture� in the data set� This can be viewed as a way to predict which models are appropriate
for further exploration� We pursue both of these approaches in subsequent sections�

��� Deterministic Annealing

A simple yet e�ective way to explore a data set further is to use the EM�algorithm coupled
with deterministic annealing� Here the idea is to begin with a large variance for the initial
guess of any particular model� The variance should be large enough to cover the range of
uncertainty in the initial guess� since data more than a few standard deviations away from
this guess will have little or no initial ownership and will therefore have only a weak in�uence
on the EM updates� The problem� as mentioned above� is that when given such a broad
initial guess the EM algorithm can converge to a broad anomalous solution�
The idea behind annealing is to systematically reduce the standard deviation �k of the

model during the EM updates� This forces smaller variance solutions to be considered� and
allows the model parameters �ak to be re�ned during the process� In the computational results
presented in subsequent sections we use the following annealing approach� Each EM�step
is modi�ed so that the standard deviation estimate� say ��k where � denotes the iteration
number� is not directly updated according to equation ����
� Instead let �����k be equal to
the right hand side of equation ����
� that is the standard M�step estimate for �k� Then we
set the new value ����k to be

����k � max�min������k � ���k 	� �min	 if �
�
k � �A� ����a


Here �  � is the factor ��k must be reduced by in one iteration� We use � � ����� in the
computations� Note that if the estimate �����k provided by the M�step is smaller than ���k



�

then it can be accepted as an update� The �min in ����a
 provides a lower bound on the
�k� which is used to avoid the singular point at � � �� We use �min to be ��� �grey�levels
�
Finally note that this annealing approach is only used when ��k is larger than the threshold
�A� which we take to be � �grey�levels
 in the example computations� Below this threshold
we use

����k � max������k � �min	 if �
�
k � �A� ����b


This is essentially the update from the M�step� except we still impose the constraint that
��k � �min�
The approach described by ����
 is a reliable way to explore a data set for peaks in

the grey�level histograms having a standard deviation down to about �A� For the simple
occlusion boundary example considered above� the approach avoids the anomalous solution�
typically converging to a model of one of the two peaks�
However� this annealing approach is clearly a heuristic� and as such it does have some

short�comings� In particular� it can occasionally fail by converging instead to another anoma�
lous solution� For the occlusion boundary example discussed above� this anomalous solution
treats both peaks as outliers� modelling some other minor structure instead� This type of
problem is alleviated by using a value of � closer to one in the annealing� A second problem
is that� when given a data set which has a component with a standard deviation larger than
�A� then the model derived using this annealing approach will give an underestimate for it�s
variance� In such a situation a better estimate of �k could be obtained by using the annealed
solution as an initial guess for the standard EM�algorithm� We refer to such a process as
an �anneal�release� schedule for �� since � is �rst annealed down to a particular value and
then released to �nd a local maximum according to the EM updates� This anneal�release
schedule was not used for any of the �gures� for reasons we discuss later�

��� How Many Layers�

An example of using this annealing procedure on an ��bit image taken within the AECL bay
is given in Figure ���� The original image is given later in Figure ���a� but here we can use
the bottom left image in Figure ��� as a good approximation of the original for the purposes
of comparison�
The top row of Figure ��� shows the results of using the annealing procedure with just

one spatially constant model within each � � � patch of the image� In addition� we have
an outlier distribution within each patch� so K � � in ����
� On the top left we display
the grey�level for the constant model recovered within each patch� while on the top right we
display an image of the outlier ownership� namely q���xn
 � q�n as provided by the equation
����
 in the last E�step� The ownership images show outliers �i�e� q���x
 near one
 in black�
The results demonstrate that the annealing procedure is capable of selecting an appropriate
single layer model despite the possible presence of a large number of outliers�
In the three subsequent rows in Figure ��� we show the results when the mixture model is

limited to K � �� �� and �� layers� respectively� Again spatially constant models within each
image patch are used� In order to estimate these multi�layer models we used a procedure�
described in Section �� which builds on previous solutions by adding a single layer at a time
and then re�running the annealing procedure� In order to display the results� at each pixel
�x we show the grey�level for the layer which has the maximum ownership� that is� layer j



�

Figure ���� Reconstructed images and outliers �black
 for constant layer models using at
most �top to bottom
 one� two� four and ten layers� Here the light grey in the outlier maps
indicates an ownership probability of about ����� The original image appears in Figure ���a�



�

where
j � argmaxfqk��x
jk � �� � � � �Kg�

The one exception to this rule is for pixels with a very high outlier ownership� namely
q���x
 � ����� For these outlier pixels we display the closest grey�level to the original image
from amongst the values provided by all the layers k � �� � � � �K�
Except for some artifacts caused by using constant models within each patch� the re�

constructed images on the bottom two rows of Figure ��� are good approximations of the
original image� Note that the outliers are reduced and the detail in the reconstructed image
is improved as we add more layers� However� the improvement obtained with each additional
layer diminishes� Clearly the appropriate number of layers depends on the complexity of the
image structure within a given patch and on the desired �delity� In the next section we
consider one simple approach for evaluating a given model and for deciding when to consider
an additional layer�

� Model Evaluation and Revision

In order to build a mixture model for a particular image patch we consider a process in which
the current mixture model is incrementally revised� Each revision step consists of either� �i

adding one new layer� or �ii
 switching some constant models to linear models� To specify
such an incremental revision process we need to consider several basic steps� In particular�
given a current model we need to decide if it is a candidate for revision� Moreover� we need
to decide whether or not a new layer should be added� or additional parameters should be
considered in any particular layer� Once a decision to revise a model has been made� we need
to select an initial guess for the subsequent execution of the EM algorithm� Finally� given
the results of the EM algorithm �with annealing
 using this initial guess� we need to decide
whether or not to accept the revised model over the previous one� We refer to these basic
steps as� respectively� identifying a revision candidate� generating an initial guess� �tting a
model� and comparing two models�
In our implementation each of these steps is based on the use of the log likelihood ����


as a gold standard� For example� recall that the EM algorithm for �tting a model seeks a
local maximum for log�L
� As described below� we use the same measure to identify revision
candidates� to generate initial guesses� and to compare two models� It is convenient to begin
the discussion with model comparison� since it is the most direct�

��� Model Comparison

To compare di�erent mixture models for the same data set� say having di�erent numbers of
layers and�or di�erent order parameterizations for the mean functions u��x��ak
� we use the
di�erence of the log likelihood of generating the data set� Roughly speaking� we consider a
model to be better if the model more accurately predicts the frequency of the observed data�
Such a model has a larger likelihood�
In revising a model we seek one which captures an additional signi�cant component in

the data set� with a corresponding step up in log�L
� However� due to the EM algorithm
settling into a local maximum� it is possible that the likelihood of the revised model is lower
than for the original model� This behaviour has been observed in the example computations�



��

however it is not typical� A more commonly observed result is that the likelihood for the
revised model roughly remains the same as for the original model�
It is easy to see why this latter result commonly occurs� If the data set is well ap�

proximated by the current model� then there is no new component for the revised model to
capture� Instead� the EM algorithm often converges to a solution in which one of the previous
components is duplicated� say components k and k� are duplicates� That is� the parameters
�ak and �ak� are essentially the same� as are �k and �k�� In such a case� the dominant e�ect of
the revision is simply to split the previous mixture probability between mk and mk� in the
revised model� Such a split has no e�ect on the likelihood of the data� as can easily be seen
from ����
� Thus� we see that the revised model will have the same logL if any component
is duplicated in this fashion� Note that this type of duplication can also occur even though
the current model does not adequately capture the data set� as it depends on the initial
guess provided for the revision� Therefore a failure to achieve a signi�cant increase in log�L

should not necessarily be viewed as a reliable indicator that an adequate model of the data
has been found�
In the computations we have used the simple criteria that the log likelihood of the revised

model� say log�Lr
� is signi�cantly larger than that for the current model� say log�Lc
� That
is� we require

log�Lr
� log�Lc
 � �� ����


where � � ��� in the computations reported in Figures ��� through ����
The use of such a threshold is related to a minimum description length criteria ��	� in

which the � is chosen with regards to the extra cost of coding the more elaborate revised
model� Another approach for limiting the number of layers is to use the Bayesian estimation
approach of ��	� which essentially penalizes both for model complexity and model parameters
which are not well speci�ed� Here we use the simple threshold ����
� which appears to be
roughly su�cient in practice and avoids the need for additional machinery such as specifying
coding cost or detailed priors on the space of possible models��

��� Identifying Candidates for Revision

Given a current mixture model of the data set� we wish to identify whether any component
process within this model should be replaced by two or more processes� As discussed in the
above� such a revised model will be successful if it�s log likelihood is su�ciently larger than
that of the current model� Therefore� it is natural to consider what the potential increase in
log�L
 is for any given component�
An important fact which is useful for determining an appropriate revision is the relation

between the expected log likelihood of samples from a distribution and the entropy of that
distribution� In particular� given a model which provides the grey�level distribution p�g
�
the expected value of log�L
 is

�NS�p
 � N
Z
p�g
 log�p�g

dg� ����


where N is the number of �independent
 observations and S�p
 is the entropy of the model
distribution p�g
�

�We thank Richard Mann for suggesting the use of ����� rather than more complex methods�
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a b

c d

Figure ���� The floor image �a
� the number of layers �b
 with black denoting � and white
denoting �� layers� the reconstructed image �c
� and the outliers �d
�

To use this fact� we �rst estimate the entropy of the portion of the data set owned by
each process� For a given process� say the kth� this is done by constructing an ownership
histogram� Instead of accumulating the number of data items in each bin� as for a standard
histogram� the ownership histogram is formed by accumulating the ownerships� qkn� for each
data item g�xn
 which lands in a particular bin� That is� a given data item g�xn
 contributes
a partial vote to all processes for which the ownership is nonzero� and the total of these
contributions sums to one� The ownership histograms are then estimates of the component
distributions� pk�g
� for each process k� From the ownership histogram for the kth process�
say fHi�kg

h
i��� we estimate the entropy of the observations for this process using

So
k � �

hX
i��

�Hi�k�Hk
log�Hi�k�Hk
�

where Hk is the total ownership for the kth process�

Hk �
hX

i��

Hi�k�

Note that if the ownership histogram re�ects the true component distribution then� according
to ����
� the expected log probability of Hk observations from this process is just �HkS

o
k� In

a sense� this is the expected log probability of an ideal model of this component of the data�
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a b

c d

Figure ���� The hall image �a
� the number of layers �b
 with black denoting � and white
denoting � layers� the reconstructed image �c
� and the outliers �d
�

We need to compare this estimate for an ideal model with what the current model actually
predicts� Following the above approach� the expected log probability of Hk data items se�
lected independently from the model�s component distribution pk�gj�ak� �k
 can be computed
according to ����
� In particular� the current model accounts for an expected log probability
of �HkS

m
k � where S

m
k is the entropy for the component distribution pk�g
� While S

m
k can be

computed in closed form� we �nd it more convenient to estimate it using a histogram with
the same bins that were used for the ownership histogram� This allows quantization e�ects
to be comparable in the estimation of the two entropies Sm

k and S
o
k�

Therefore we have the estimate �HkS
o
k� for the expected log probability given an ideal

model for the data owned by the kth process� along with �HkS
m
k � which is the expected log

probability according to the current component distribution� pk�g
� in our model� The di�er�
ence� namely �HkS

o
k �HkS

m
k � therefore re�ects the potential increase in the �expected
 log

probability if this component distribution pk�g
 was revised� This motivates the requirement
that

�HkS
o
k �HkS

m
k �  ����


in order for process k to be considered suitable for revision� In the reported computations
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a b

c d

Figure ���� The forklift image �a
� the number of layers �b
 with black denoting � and
white denoting �� layers� the reconstructed image �c
� and the outliers �d
�

we used  � ��

��� Generating an Initial Guess for a Revised Model

Given that the kth component process has been identi�ed as a candidate for revision� ac�
cording to ����
� we need to generate an initial guess for a new model� The new model is
formed using the same components as the current model� except for the kth component� The
kth component� and it�s mixture proportion mk� is split into two components� These two
components are determined using a histogram parsing technique to determine the dominant
peaks in the ownership histogram fHi�kg

h
i��� This determines the initial guess for the EM

algorithm� If the histogram parsing technique obtains more than two peaks� then a sequence
of di�erent initial guesses is generated� pairing the largest peak with each of the remaining
ones�

��� Hypothesize and Test

The overall incremental algorithm for building a mixture model can now be described� The
initial guess for the model is the outlier model p��g
� We then iterate the following procedure�
We identify the set of processes that are candidates for splitting according to ����
 and� if

there is more than one such process� we order them according to the potential di�erences in
log likelihood �i�e� the value on the left hand side of ����

� For each process� we determine
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a b

c d

Figure ���� The sports equipment range image �a
� the number of layers �b
 with black
denoting � and white denoting � layers� the reconstructed image �c
� and the outliers �d
�
The patch size is still � � � but the range image is only ��� � ����

a sequence of initial guesses according to the splitting procedure described in Section ����
Taken together� this generates an ordered set of initial guesses� In addition� at the beginning
of this sequence of initial guesses� we consider a revision which does not add a layer but rather
simply changes any constant model� u��x� a�
� to a linear model� u��x� �a�� a�� a�

� within any
layer k which has a su�cient total ownership Hk�
For each initial guess� taken in the above sequence� we run the EM algorithm with

annealing for �tting the mixture model� Given the result� the revised model is checked for a
signi�cant increase in log�L
 �i�e� the condition ����
 is used
� We accept the �rst instance
����
 is satis�ed� and repeat this revision process�
The revision process stops when� �i
 no candidates for revision are identi�ed� �ii
 none

of the revised models provide a signi�cant increase in log�L
� or �iii
 the maximum number
of layers is reached�

��� Computational Examples

In Figures ��� through ��� we show results from this algorithm� The maximum number of
layers allowed was taken to be large enough so that the revision process would stop when it
was unable to �nd a better model� rather than when it bumped up against the constraint
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a b

c d

e f

Figure ���� The sports equipment image �a
� the number of layers �b
 with black denoting
� and white denoting �� layers� the reconstructed image �c
� and the outliers �d
 for � � ����
When � is reduced to ��� up to � layers are used and several image patches are resolved
further �e
� with the remaining outliers shown in �f
�
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on the maximum number of layers� In our experiments we used the maximum number of
layers to be ��� which was more than su�cient� The same control parameters �� �A� �min� ��
and  were used in each case� with the values mentioned previously� The patch sizes were
� � � except for the last patch on a row or in a column� these were adjusted to �t within
the boundaries of the image�
In almost all cases the reconstructed images are close approximations to the original�

although smoother� There are a few places that are not captured by the derived layers� as
indicated by the outlier images� These typically involve a small number of pixels and�or a
wide range of grey levels �so the addition of one more layer does not raise the log likelihood
very much
� A clear example of this is provided in Figure ���c� where several image patches
containing the strings of the racket are not accurately modelled� The actual grey�levels here
are scattered� due to highlights on the strings and structure in the background� Nevertheless�
when the threshold on the step in log likelihood required for accepting a revision is lowered
from � � ��� to ���� this image structure is then resolved �see Figure ���e�f
�
Note that the results indicate that in image patches with more complex structure the

number of layers is correspondingly larger� However the number of layers chosen can be
surprisingly large in places� In the examples shown in Figures ��� through ��� the maximum
number of layers selected was between � and �� �for � � ���
� which seems high� especially
relative to the quality of reconstruction a four layer model is seen to given in Figure ����
Indeed� in patches for which a large number of layers are selected� many of these layers have
relatively low mixture probabilities�
In an attempt to control the number of layers we investigated the e�ect of varying ��

that is the increment of log�L
 required for a revision to be accepted� As � was increased we
observed the expected result that the number of layers used by the model steadily decreased�
Unfortunately� a particular setting of � could eliminate all but one layer in some image
patches but still allow a surprisingly large number of layers in another� One reason for this
is that the particular value of � for which a layer appears or disappears depends on many
factors� including the number of data items supporting the layer� their variance� the overall
scatter of other grey�levels within the patch� and so on� Indeed� in hindsight� this behaviour
should be expected from our method since all these factors in�uence the likelihood�
We also brie�y tried the �anneal�release� schedule for � mentioned at the end of Section

���� By releasing the �k�s after the annealing� and letting them settle into a local maximum
of the likelihood function� we expected the number of layers to be reduced� The reason is
that if there are any broad peaks in the grey�level histogram then� with annealing� these will
be modelled by a collection of small variance layers� On the other hand� if the variances were
not constrained� we might be able to model the same peak with a single layer having large
variance� This idea was tested and the number of layers used was seen to be reduced with
the anneal�release schedule� But in spatial patches having a complex local structure� the
model revision approach then often failed to extract the appropriate structure� For example�
when the model revision approach along with the anneal�release schedule was used on the
floor image in Figure ���a� some of the patches containing the grating in the �oor were
modelled by a single high variance layer and were not subsequently revised� Our conclusion
is that the annealing is an important component of our model revision process� and that this
process bene�ts from having prior knowledge about the scale of the noise in the signal �in
terms of setting the annealing limit �A in equation ����a

�
In summary� the results indicate that our model revision approach can reliably derive
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multi�layer models of local image structure� However� the number of layers selected can
be large� and is not conveniently controlled using the log likelihood threshold �� If only a
crude approximation of the original image is desired� we recommend using the current model
revision process� with a relatively low � and a strict bound on the maximum number of
layers �as used to generate Figure ���
� More �exible methods for limiting the number of
layers� such as pruning layers which have su�ciently small mixture probabilities� can also be
considered in post�processing the derived representation�

� Connected Components

As a simple application of this approach we considered deriving large connected components
from a given image� The motivation from the ARK robot is two�fold� One application is to
segment out a large portion of the �oor� This would be useful to determine ��oor anomalies��
especially when used in conjunction with stereo disparity ��	� or motion information ���	� A
second motivation is to segment fairly large uniform objects which may serve as landmarks�
such as the door in the hall image in Figure ���� Such a process may provide a fast and
reliable means of roughly locating a landmark�
To do the segmentation we implemented connected components on the layers in the

representation rather than on image pixels� The connected components algorithm depends
on the speci�cation of the neighbours of any given layer in any given spatial patch and also
on the criteria for when two such neighbours are considered connected� In particular� let
�akn� �kn� and mkn be the parameters for the mean� the standard deviation� and the mixture
probability� respectively� for the kth layer in the nth image patch� Similarly� we denote
the same parameters for the jth layer in the lth patch by �ajl� �jl� and mjl� respectively�
These two layers are considered neighbours if the lth image patch is within the �� � spatial
neighbourhood of the nth patch� and if the ownership probabilities mkn and mjl are both
larger than a threshold mmin� This threshold mmin was used to help avoid low probability
components forming connections between relatively disparate items� We used mmin � ����
Note that in a one�layer model patches can have no more than eight neighbours� while for
multi�layer models they can have many more�
Given two such neighbours� say with the parameters listed in the previous paragraph� we

consider them to be connected only if the corresponding layer models are su�ciently close�
In particular� let �x � be the midpoint between the centers of the nth and the lth image patch�
Then the squared distance between the two models is taken to be

D��k� n� j� l
 � �u��x ���akn
� u��x ���ajl


���min��kn� �jl



� � jj�	ukn � �	ujljj
����grad� ����


Here �	ukn represents the spatial gradient of the kth layer in the nth patch� that is� the
vector formed from the last two components of �akn� The �rst term on the right side of
����
 measures the squared distance between the two layers at the midpoint �x �� relative to
the minimum standard deviation of the two layers� The second term measures the squared
di�erence in the gradients� relative to a constant �grad� This constant is used to provide a
relative weight between the two contributions to D�k� n� j� l
 and was set to �grad � �� on
the intensity images� Finally� given this distance function� the two neighbours are considered
connected if

D�k� n� j� l
  �� ����
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Figure ���� The model obtained using just one layer� the outliers� and the four largest
connected components for the floor image �run time ��� secs
�



��

Figure ���� The model obtained using just one layer� the outliers� and the four largest
connected components for the hall image �run time ��� secs
�
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for some threshold �� We used � � ���� in all the reported computations except for those
in Figure ���� A variety of other connectivity measures were also tried and they produced
roughly comparable results�
This de�nition for pairwise connected layers is then used to determine the various con�

nected components within a given image representation� A two�pass algorithm� which is a
simple modi�cation of a standard �D connected components algorithm� can rapidly deter�
mine all the components�
A given connected component in the layered model was then viewed by displaying the

individual pixels which were maximally owned by each layer in that component� As a result�
the image of the components displayed in Figures ��� through ��� may not actually be
connected in the image� This occurs� for example� in the �oor components for the floor
image �see the middle right panel in Figure ���
�
This behaviour illustrates one of the bene�ts of considering connectivity within the layers�

as opposed to individual pixels� In particular� small disruptions of a particular layer� such
as the gaps between the grating and the �oor do not disrupt the overall component when it
is determined using su�ciently large patches�
A second bene�t of this approach is that it can alleviate some of the di�culties with the

non�robustness of connected component algorithms� In particular� in standard connected
components a single errant pixel can lead to a bridge between two image regions that might
otherwise be considered to be separate components� While this can and does occur when
considering the connectivity for models with several layers� we can control it to some extent
by limiting the number of layers and�or by setting the minimum mixture probability to
be used in considering the connected layers� Indeed� the most reliable components for the
images tested turned out to be those for the simplest types of layered models� namely one
layer of constant or linear models �plus outliers
� such as those on top row in Figure ����
For the examples in Figures ���� ���� and ��� we used the original image subsampled

two times� In each case the resulting images were around ��� � ���� We ran the �tting
procedure described in the previous section� with the same parameters other than the patch
size� which was also halved to � by �� We restricted the number of layers to one� The overall
process of �tting a constant or a�ne one�layer model to these subsampled images� running
connected components on the layers� and producing the images of the resulting components
took between � seconds �for the hall image
 and � seconds �for the forklift image
 on an
SGI Indy workstation�� The results indicate that the approach can rapidly segment some
useful regions� such as the �oor regions in the AECL industrial bay� and the walls and
doorway in the hall image� Note that highlights and re�ections o� of the �oor� present in
the hall image� cause the �oor to be over segmented�
One potential application of this result is to the stereo FAD system� In particular�

the large segments can provide a rough guess for where to �t planar �oor models to the
stereo disparity� The requirements here are fairly loose in that a precise segmentation is not
needed since the stereo FAD approach described in ��	 is also tolerant of outliers� Secondly�
this stereo FAD system has no spatial integration� As a result� spots on the �oor with little
or no texture �such as within the piece of paper in Figure ���
 are considered to have an
undetermined depth� However� the regions derived from a segmentation procedure such as
ours can provide a means for spatially integrating the stereo FAD results� �For similar work

�Roughly similar results can also be obtained using constant models� instead of linear models� resulting
in some speed�up ���	 to 	 seconds run time� and some degradation in segmentation�
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Figure ���� The model obtained using just one layer� the outliers� and the four largest
connected components for the forklift image �run time �� secs
�



��

done with optical �ow� see ��	�

A second application is in determining the location of landmarks in an image� For

example� the majority of the large door in the hall image can be segmented� despite some
highlights on it� This segmented region could instantiate a process for verifying the landmark�
perhaps through the use of edges or an image template�

��� Range Images

Consider the range image that we used as a motivating example in the introduction �i�e�
Figure ���b
� This image is only ��� � ���� which is roughly equivalent to the subsampled
images in Figures ��� through ���� so we did not subsample it further� Also� to be consistent
with the results in Figures ��� through ��� we used � � � patches� In order to resolve the
complex depth structure we allowed the revision process to use up to � layers� Otherwise
the control parameters for �tting the model are the same as before� The result� shown in
Figure ���a� is a good approximation of the original range image� We then ran the connected
components algorithm on the layered representation� with the control parameters � and mmin

the same as before �i�e� ���� and ���� respectively
� but with the scale parameter for the
gradient terms �grad roughly half the size as before� The reason for this last change is that
the results indicated that the local gradient estimates were less noisy for this range image
than for the previous intensity images� The results of the connected components algorithm
displayed in Figure ��� show an excellent separation of the racket from the background� and
of several other components in the background itself�
A second example is provided by the wires image pair shown in Figure ���a�b� The

wires in this example provide a challenge in that they are only � pixels wide and they
can have a large depth variation along their length� In Figure ���c�e we show the results
of �tting a mixture model limited to � layers using the same control parameters as above
with �� � spatial patches� Again we see we get a good approximation of the original range
image� The control parameters for the connected components algorithm used in the intensity
images� namely � � ����� �grad � �� and mmin � ���� were found to oversegment the wires�
Instead� in order to accommodate the depth variation along the wires� we used � � ����
Also� to allow for the thinness of the wires we set mmin � ����� �The exact settings are not
critical� a reasonable range of values produced essentially the same results�
 The four largest
connected components given these parameters are shown in Figure ���f�i� The segmentation
of the background� the outlet box� and several of the wires provides another example of the
usefulness of layered models in situations of fragmented occlusion�

� Conclusion

We approach the problem of �nding a suitable layered representation for a grey�level image
from the point of view of data exploration� That is� the process of building a model involves
seeking out and discovering various structures within the data� The exploration is based
on the use of the likelihood of the data as the appropriate �gure of merit for a given image
representation� Revised models are considered whenever the data set is considered to exhibit
unmodelled structure� and these revised models are �t using a modi�ed EM algorithm with
deterministic annealing� Finally� the result of such a �tting procedure is accepted if it
provides a signi�cant increase in the likelihood of the original data� The number of layers
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Figure ���� The layered model limited to at most four layers �a
� the outliers �b
� the number
of components �c
� and �d�i
 the six largest connected components are shown for the sports
equipment range map �run time �� secs
�
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Figure ���� The wires intensity image �a
 and the associated range image �b
� The layered
model for the range image limited to at most four layers �c
� the number of layers �d
� the
outliers �e
 and the four largest connected components �f�i
 �run time �� secs
�
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can be automatically selected in this way� The proposed incremental algorithm for building
a layered representation of grey�level images has been successfully tested on a variety of
images�
One shortcoming we have noted is that the number of layers can be unnecessarily large�

especially if only a rough approximation of the original image is desired� Perhaps the number
of layers chosen can be reduced using an MDL or Bayesian approach �see ��	 and ��	
� or by
using spatial correlations in the generative model �see ���	
� For the present we recommend
that the current algorithm is used with a strict upper limit on the number of layers� and
possibly with pruning in a post�processing step� As demonstrated here� the results then
appear to be su�cient for many practical purposes�
Our current approach treats each separate image patch as a new data set� so in a sense

the data exploration is restarted from scratch in each patch� This is appropriate for our
present purpose of studying the process of �tting layered models� However� for a practical
system it would be of interest to consider spatial interactions between neighbouring patches
during the �tting process� perhaps along the lines described in ��	�
Several other extensions are also of interest� The application to colour data� for example�

is a straight forward extension� This involves replacing the scalar grey�level with a colour
vector and the variance estimates with a � � � covariance matrix� We already have promis�
ing results with a colour version of the same algorithm� Also� recall one of the primary
motivations for this work was derived from using layered models for the estimation of vector
�elds describing either optical �ow or stereo disparity� We expect that much of the approach
developed here� possibly including the above mentioned extensions� will be useful for these
vector �eld estimation problems�
Finally� the applications we considered for a robot such as ARK were based on running

connected components within the layered representation itself� There are several advantages
of doing this� In general the connected components algorithm depends on local estimates
of the mean and the variance of the grey�levels within each component� as is standard for
region based grouping� But the di�erence here is that by �tting a mixture model to the data
set we are e�ectively estimating the required layer parameters simultaneously with a soft
segmentation of the image patch� The use of a layered representation also allows for spatially
complex images generated by fragmented occlusion to be relatively easily segmented� as
demonstrated in Figures ��� and ���� In addition� gaps which are smaller than the size of the
patches are e�ectively ignored by computing the connected components within the layered
representation and not at the pixel level� Finally� by choosing a model which is restricted
to only a small number of layers we can alleviate some of the problems with the well known
sensitivity of connected components to the precise choice of thresholds� However� this use
of a connected components algorithm is de�nitely the weak link in the two ARK speci�c
applications presented� More robust grouping techniques� perhaps along the lines suggested
by Amir and Lindenbaum ��	� should be considered�
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