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Abstract

We consider the estimation of local grey-level image structure in terms of a lay-
ered representation. This type of representation has recently been successfully used to
segment various objects from clutter using either optical flow or stereo disparity infor-
mation. We argue that the same type of representation is useful for grey-level data in
that it allows for the estimation of properties for each of several different components
without prior segmentation. QOur emphasis in this paper is on the process used to
extract such a layered representation from a given image. In particular, we consider a
variant of the EM-algorithm for the estimation of the layered model, and consider a
novel technique for choosing the number of layers to use. We briefly consider the use
of a simple version of this approach for image segmentation, and suggest two potential
applications to the ARK project.
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1 Introduction

Layered image models have been proposed for representing a variety of image primitives,
including image intensities (see [13]), optical flow (see [4, 14]), and range data (see [11]).
In earlier ARK related work we have studied the use of a layered representation for the
estimation of optical flow [6, 7]. A similar approach was developed for stereo disparity as
part of a floor anomaly detector (FAD) application [5].

The general motivation for this paper is to study the process of fitting layered models
to image data. Here we consider the application of layered models to the estimation and
representation of grey-level image structure. This provides a simpler domain in which to
study the estimation process than either optical flow or stereo disparity. We expect that some
of the techniques developed here will also be applicable to these more complex situations.

A secondary motivation is to investigate potential applications of the use of layered models
for representing grey-level structure which are appropriate for the ARK project. The two
applications we consider are the segmentation of the floor for use in a stereo FAD system,
and the segmentation of simple landmarks. Indeed, we demonstrate that a layered image
representation can facilitate these tasks.

Figure 1.1: The sports equipment image (a) and the range map (b).

A particularly vivid example for the suitability of a layered representation for grey-level
images is provided by the sports equipment image pair in Figure 1.1. Here the left image is
an intensity image while the right provides the range for the same scene. Note that the basic
processes involved in the range image, for example, are not overly complex. In particular,
we have a piecewise smooth background being occluded by the racket, which is itself roughly
planar. However, due to the fragmented nature of the occlusion, the resulting range image
has a complex local structure.

Given this sort of image it is natural to consider a representation which allows more
than one grey-level to be represented at any pixel. That is, for the range map in Figure
1.1b we seek a representation in which one layer models the smooth depth variation on the
racket, while additional layers model the variation of the background. More than one layer
can exist at any individual pixel. In particular, the layer describing the racket can smoothly
interpolate across the holes without implying that the background must be occluded in these



regions. Finally, a mapping from pixels to layers is used to represent the detailed spatial
structure of the range map.

While it is fairly obvious that layered models are appropriate for such complex occlusion
relationships, we show that they are also useful even in simpler situations. The basic advan-
tage is that they provide a way to simultaneously estimate the parameters for each of several
simple processes, such as the range variations of the racket and the background, with only
weak constraints on the spatial layout of each process. As a result this approach simplifies
the estimation of an interpolant in the neighbourhood of a discontinuity, which is a common
problem in vision.

In the next section we consider probabilistic mixture models, which provide the basic
form of the representation. Then in Section 3 we discuss techniques for fitting mixture
models to data. A process for the successive revision of a mixture model is then considered
in Section 4, along with a method for determining an appropriate number of layers. Finally
in Section 5 we briefly consider the application of the approach to image segmentation.

2 Mixture Models

We model the image intensities within a given spatial patch in terms of the combination
of several simple random processes. To illustrate the general idea, consider the example
of an image patch consisting of a single occlusion boundary, say of a light object against
a dark background. For such a patch we seek a representation for the grey-level structure
which consists of three processes. One process is to be used to model the high intensities
of the foreground object, while the second is to be used to model the low intensities of the
background. We refer to these two processes as ‘layers.” Finally, there is also a ubiquitous
outlier process to model data not captured by the layers. All three processes exist over
the entire patch, and the representation includes a soft assignment of each pixel to these
processes. Thus the spatial structure of the image is represented by the appropriate mapping
of pixels to processes. As demonstrated in subsequent sections, this type of representation
is useful for determining the number of such layers present within a given image patch,
for representing complex spatial structure due to fragmented occlusion, and for estimating
properties such as the mean and variation within each layer.

The particular form of representation we use is a “mixture model.” This type of model
consists of a probabilistic mixture of simpler distributions. In our application these simpler
distributions are used to model each process individually, that is, the outliers and each of
the layers.

We represent each individual layer using a Gaussian distribution whose mean value is
provided by a parametric model. In particular, the probability of the grey-level ¢ arising at
image position 7 within one such layer is taken to be

p(g|$,5,0‘) :N(g—u(f;ﬁ);a), (2'1)

where N(r;o) denotes a zero-mean normal distribution with standard deviation o. Also,
u(Z; d) provides the spatial variation of the mean of the process over the image patch, and
is specified by the parameters @. Note that any remaining deviation of grey-level intensities
around the mean u(¥;d) is taken to be uncorrelated across different image locations and to
have a constant variance o2 over the patch.



In this paper we take the mean u for any particular layer to be a linear function of the
parameter vector @, namely
u(d;d) = ci) - d. (2.2)
Moreover, we consider only constant and linear variations with respect to Z. In the first
case @ = ag, ¢ = 1, while for linear spatial variation we have ¢(¥) = (1,z1,22)7 and @ =
(ap,ay,az)?. Higher order polynomial or spline models could be represented in a similar way.
The remaining process is the outlier process, which is included in the model for every
image patch. The outlier process is taken to have the uniform distribution

po(g) = Uniform(g), (2.3)

with ¢ ranging over the possible grey-levels (eg. po(g) = 1/256 for an 8-bit image). This
model states that outliers are equally probable to appear anywhere within the range of
possible grey-levels.

These simple processes for individual layers, along with the outlier process, are combined
in a probabilistic mixture model, namely

K
p(g|fv mv 617 cee C_l)](, 0_:) = Z mkpk(g|fv C_ikv Uk)- (24)

k=0
For k& > 0 the component distributions py are taken to have the form given in (2.1), each
with their own individual parameters @), and o;. The remaining case, k& = 0, is the outlier
distribution provided in (2.3). These component processes are combined in (2.4) according

to the mixture probabilities {my} .

Intuitively, the mixture model (2.4) represents the following random process. For each

pixel, first select a particular component process by randomly choosing k& € {0,... K}
according to the mixture probabilities {m},. Here my, is the probability of selecting
process k, with my € [0,1] and b mi = 1. Once a k is selected, we then randomly

select a grey-level g according to the component distribution pi(g). Together this provides
a generative model for the image patch in terms of a mixture of simple processes.

While the resulting generative model captures some properties of images, such as the fact
that the grey-levels of pixels within local image patches are often clustered, it ignores others.
In particular, the spatial correlation of the assignment of pixels to layers is not modelled.
Similarly, the correlation of the individual processes themselves across neighbouring image
patches is ignored. These properties can be included in an elaborated model (see, for exam-
ple, [15] and [8]). However, for our purposes here we choose to keep the generative model
simple.

3 Fitting Mixture Models to Data

Given a set of grey-levels obtained within an image patch , say {g(7,)}"_,, we seek parameter

- ,, n=1"
values {@y, o4} | and mixture probabilities {m}~_ , which provide a mazimum likelihood
fit to the data set. In particular, the log likelihood of generating this set of observations

from a specific model is

e

N
log L(1t, a1, ..., 0K, 01,...,0x) = »_log p(¢(Zn)|Zn, 0, a1, ..., dK, 01, .., OK). (3.1)
n=1



At a local extrema, it can be shown that the parameters m, along with @, and oy for
k=1,..., K, must satisfy

N

n=1

N 0
n=1 ay
N 0
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Here the quantities ¢, represent the “ownership probabilities”, that is, the probability that
the n'" pixel belongs to the k" layer. These ownership probabilities are defined by

_ mypr(9(Z,)| 7, dx, o)
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(3.3)

These equations for a maximum likelihood fit have been derived by a number of authors; for
further details see [12]. The first equation, (3.2a), comes from the condition that the partial
derivative of log I, with respect to the mixture proportion myj must be equal to the Lagrange
multiplier A. This Lagrange multiplier arises by imposing the constraint that the mixture
proportions must sum to one. The second equation is obtained simply by requiring that the
partial derivative of log L with respect to the parameters @, must vanish. While the third
equation is obtained from the variation of log I with respect to oy.

3.1 The EM Algorithm

Equations (3.2) and (3.3) suggest an iterative algorithm, known as the EM-algorithm [12],
for obtaining a maximum likelihood fit for the parameters my, £ = 0,..., K, and also for
dy, o for k= 1,..., K. Given an initial guess for these parameters we first estimate the
ownership probabilities, ¢x,, for each pairing of a pixel, ¥,, with a component, k. This is
the expectation, or “E”-step, and it simply involves the evaluation of the right hand side of
(3.3).

Next, with these ownership probabilities ¢z, held fixed, we seek new parameter values my,
dy and o which maximize the likelihood. This is the “M”-step. A necessary condition for a
local maximum is given by equations (3.2a,b,c). As we see below, for Gaussian distributions
these equations can be easily solved. The overall result of both the E-step and the M-step is
an update of the parameters my, dy and o), which is guaranteed to increase the log likelihood
[12]. These two steps are then iterated until convergence.

For the details of the M-step, first consider the update for the mixture probabilities
{my}£ . The appropriate choice for my, given the ownerships gz, is obtained from (3.2a).
It follows that, in order to ensure that the mixture probabilities {m;}E , sum to one, we
require the Lagrange multiplier A in (3.2a) to be N. Therefore we have

1 N
= =3 i, 3.4
e Nn:lqk ( )



for k=0,..., K.

Before we consider the corresponding updates for @, and oy, we note that the special
case of normal component distributions p; provide a simplification. In particular, the log
probability for a normally distributed component takes the form

- 1 -
lo py(917, @1 01) = — [loa(2r0d) + (g — u(Z,; @)/t (3.5)

Use of this expression in (3.2b,c) gives simple expressions for the updates of d@j and oy.
The update for @y can now be derived by substituting (3.5) into the maximum likelihood
condition (3.2b). This provides a linear equation for dj, namely

From equation (2.2), we find Ay and by are given by

N

Ap =3 quadl@)E7 (7)), (3.7a)
n=1
N

by, = Z QenC(T,)g(2,). (3.7b)
n=1

Note that Ay is simply a weighted sum of the outer product of the coefficient vectors ¢(7)
used in the definition of the mean u(#; @) and by is a weighted sum of the product of ¢(¥)
with the observed grey-levels. Furthermore, the weights ¢z, are just the ownership weights
estimated in the E-step.

Finally, to complete the M-step, we also need to update o) according to (3.2¢c). Using
the expression (3.5) it is easy to show that the appropriate oy is given by

2 _ Lzt Gen(9(Fn) — ulFn; @))?

(3.8)

In words, this expression is simply the variance of the observed pixel intensities g(x,,) rel-
ative to the mean u(#,;dy), with each observation weighted by ¢, (i.e. by the ownership
probability for the k' process at pixel 7,).

Together the E-step and the M-step provide one iteration of the EM algorithm. These
EM iterations are repeated until the change in the parameters is sufficiently small.

3.2 Anomalous Solutions

The log likelihood function in (3.1) is nonlinear. It should therefore come as no surprise that
multiple local maximum can exist, and that techniques are required to avoid undesirable
local maxima.

An example with multiple local maxima is provided by a simple bright/dark occlusion
boundary. The histogram of an image patch containing such a boundary has two peaks
corresponding to the different regions. Suppose we initialize the mixture model to consist of
a uniform outlier process and a single layer in which we use the spatially constant model. If
we don’t have prior information about what the grey-levels in the patch might be, we could



simply initialize the constant model with a mean near the middle of the grey-level range, and
set the corresponding variance, o7, to be large. In this relatively common situation we have
observed that EM can converge to one of three solutions. The first two solutions involve
the layer providing a model of one of the two peaks in the grey-level histogram, with the
remaining peak treated as outliers. These are satisfactory results, given the constraint that
only one layer is to be used, since the derived mixture models accurately represent some
intuitive component of the structure in the data set (namely the grey-level distribution for
one of the two surfaces imaged within this patch). However the remaining solution, described
next, is not so desirable.

The third solution the algorithm can often arrive at consists of a constant model which
has a mean grey-level somewhere between those for the light and dark regions, and with a
sufficiently large variance so that the model can account for both peaks in the histogram. For
well separated peaks, this solution has a lower likelihood than the previous two. Moreover,
this is a less desirable solution in that the model does not reflect any individual component
within the data set, but rather it represents a weighted combination of two such components.
The failure here is that this third model has not resolved the two separate components, even
though there is sufficient data for it to do so.

We see basically two ways of attempting to deal with such unwanted solutions. One
way is to explore the data set further, by attempting to fit additional models perhaps with
more layers and/or from different initial guesses. We can then compare the various solutions
obtained and try to settle on a single model. A second approach is to examine statistical
properties of the derived representation in an attempt to identify further unmodelled ‘struc-
ture’ in the data set. This can be viewed as a way to predict which models are appropriate
for further exploration. We pursue both of these approaches in subsequent sections.

3.3 Deterministic Annealing

A simple yet effective way to explore a data set further is to use the EM-algorithm coupled
with deterministic annealing. Here the idea is to begin with a large variance for the initial
guess of any particular model. The variance should be large enough to cover the range of
uncertainty in the initial guess, since data more than a few standard deviations away from
this guess will have little or no initial ownership and will therefore have only a weak influence
on the EM updates. The problem, as mentioned above, is that when given such a broad
initial guess the EM algorithm can converge to a broad anomalous solution.

The idea behind annealing is to systematically reduce the standard deviation o of the
model during the EM updates. This forces smaller variance solutions to be considered, and
allows the model parameters dj, to be refined during the process. In the computational results
presented in subsequent sections we use the following annealing approach. Each EM-step
is modified so that the standard deviation estimate, say o} where v denotes the iteration
number, is not directly updated according to equation (3.8). Instead let 571" be equal to
the right hand side of equation (3.8), that is the standard M-step estimate for o;. Then we
set the new value o™ to be

oyt = max[min[6} ™, pot], o] if of > 04. (3.9a)
Here p < 1 is the factor o} must be reduced by in one iteration. We use p = 0.975 in the
computations. Note that if the estimate &*" provided by the M-step is smaller than po?



then it can be accepted as an update. The 0., in (3.9a) provides a lower bound on the
ok, which is used to avoid the singular point at o = 0. We use 0,,;,, to be 2.5 (grey-levels).
Finally note that this annealing approach is only used when oy is larger than the threshold
o4, which we take to be 5 (grey-levels) in the example computations. Below this threshold
we use

oyt = max[6yt!, 0 in] if 0f < 04 (3.9b)

This is essentially the update from the M-step, except we still impose the constraint that
or 2 Omin-

The approach described by (3.9) is a reliable way to explore a data set for peaks in
the grey-level histograms having a standard deviation down to about o4. For the simple
occlusion boundary example considered above, the approach avoids the anomalous solution,
typically converging to a model of one of the two peaks.

However, this annealing approach is clearly a heuristic, and as such it does have some
short-comings. In particular, it can occasionally fail by converging instead to another anoma-
lous solution. For the occlusion boundary example discussed above, this anomalous solution
treats both peaks as outliers, modelling some other minor structure instead. This type of
problem is alleviated by using a value of p closer to one in the annealing. A second problem
is that, when given a data set which has a component with a standard deviation larger than
o4, then the model derived using this annealing approach will give an underestimate for it’s
variance. In such a situation a better estimate of o, could be obtained by using the annealed
solution as an initial guess for the standard EM-algorithm. We refer to such a process as
an “anneal-release” schedule for o, since o is first annealed down to a particular value and
then released to find a local maximum according to the EM updates. This anneal-release
schedule was not used for any of the figures, for reasons we discuss later.

3.4 How Many Layers?

An example of using this annealing procedure on an 8-bit image taken within the AECL bay
is given in Figure 3.1. The original image is given later in Figure 4.3a, but here we can use
the bottom left image in Figure 3.1 as a good approximation of the original for the purposes
of comparison.

The top row of Figure 3.1 shows the results of using the annealing procedure with just
one spatially constant model within each 16 x 16 patch of the image. In addition, we have
an outlier distribution within each patch, so K = 1 in (2.4). On the top left we display
the grey-level for the constant model recovered within each patch, while on the top right we
display an image of the outlier ownership, namely ¢o(%,,) = qon as provided by the equation
(3.3) in the last E-step. The ownership images show outliers (i.e. ¢o(Z) near one) in black.
The results demonstrate that the annealing procedure is capable of selecting an appropriate
single layer model despite the possible presence of a large number of outliers.

In the three subsequent rows in Figure 3.1 we show the results when the mixture model is
limited to K’ = 2,4, and 10 layers, respectively. Again spatially constant models within each
image patch are used. In order to estimate these multi-layer models we used a procedure,
described in Section 4, which builds on previous solutions by adding a single layer at a time
and then re-running the annealing procedure. In order to display the results, at each pixel
¥ we show the grey-level for the layer which has the maximum ownership, that is, layer j



Figure 3.1: Reconstructed images and outliers (black) for constant layer models using at
most (top to bottom) one, two, four and ten layers. Here the light grey in the outlier maps
indicates an ownership probability of about 0.02. The original image appears in Figure 4.3a.



where
J = argmax{q(Z)|k=1,..., K}.

The one exception to this rule is for pixels with a very high outlier ownership, namely
qo(Z) > 0.99. For these outlier pixels we display the closest grey-level to the original image
from amongst the values provided by all the layers £ = 1,..., K.

Except for some artifacts caused by using constant models within each patch, the re-
constructed images on the bottom two rows of Figure 3.1 are good approximations of the
original image. Note that the outliers are reduced and the detail in the reconstructed image
is improved as we add more layers. However, the improvement obtained with each additional
layer diminishes. Clearly the appropriate number of layers depends on the complexity of the
image structure within a given patch and on the desired fidelity. In the next section we
consider one simple approach for evaluating a given model and for deciding when to consider
an additional layer.

4 Model Evaluation and Revision

In order to build a mixture model for a particular image patch we consider a process in which
the current mixture model is incrementally revised. Each revision step consists of either: (i)
adding one new layer; or (ii) switching some constant models to linear models. To specify
such an incremental revision process we need to consider several basic steps. In particular,
given a current model we need to decide if it is a candidate for revision. Moreover, we need
to decide whether or not a new layer should be added, or additional parameters should be
considered in any particular layer. Once a decision to revise a model has been made, we need
to select an initial guess for the subsequent execution of the EM algorithm. Finally, given
the results of the EM algorithm (with annealing) using this initial guess, we need to decide
whether or not to accept the revised model over the previous one. We refer to these basic
steps as, respectively, identifying a revision candidate, generating an initial guess, fitting a
model, and comparing two models.

In our implementation each of these steps is based on the use of the log likelihood (3.1)
as a gold standard. For example, recall that the EM algorithm for fitting a model seeks a
local maximum for log(L). As described below, we use the same measure to identify revision
candidates, to generate initial guesses, and to compare two models. It is convenient to begin
the discussion with model comparison, since it is the most direct.

4.1 Model Comparison

To compare different mixture models for the same data set, say having different numbers of
layers and/or different order parameterizations for the mean functions u(&;dy), we use the
difference of the log likelihood of generating the data set. Roughly speaking, we consider a
model to be better if the model more accurately predicts the frequency of the observed data.
Such a model has a larger likelihood.

In revising a model we seek one which captures an additional significant component in
the data set, with a corresponding step up in log(L). However, due to the EM algorithm
settling into a local maximum, it is possible that the likelihood of the revised model is lower
than for the original model. This behaviour has been observed in the example computations,
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however it is not typical. A more commonly observed result is that the likelihood for the
revised model roughly remains the same as for the original model.

It is easy to see why this latter result commonly occurs. If the data set is well ap-
proximated by the current model, then there is no new component for the revised model to
capture. Instead, the EM algorithm often converges to a solution in which one of the previous
components is duplicated, say components k and &’ are duplicates. That is, the parameters
dy and dj are essentially the same, as are o and op. In such a case, the dominant effect of
the revision is simply to split the previous mixture probability between m; and my in the
revised model. Such a split has no effect on the likelihood of the data, as can easily be seen
from (3.1). Thus, we see that the revised model will have the same log L if any component
is duplicated in this fashion. Note that this type of duplication can also occur even though
the current model does not adequately capture the data set, as it depends on the initial
guess provided for the revision. Therefore a failure to achieve a significant increase in log(L)
should not necessarily be viewed as a reliable indicator that an adequate model of the data
has been found.

In the computations we have used the simple criteria that the log likelihood of the revised
model, say log(L,), is significantly larger than that for the current model, say log(L.). That
18, wWe require

log(L,) —log(L.) > 6, (4.1)

where 6 = 2.5 in the computations reported in Figures 4.1 through 4.5.

The use of such a threshold is related to a minimum description length criteria [2], in
which the ¢ is chosen with regards to the extra cost of coding the more elaborate revised
model. Another approach for limiting the number of layers is to use the Bayesian estimation
approach of [9], which essentially penalizes both for model complexity and model parameters
which are not well specified. Here we use the simple threshold (4.1), which appears to be
roughly sufficient in practice and avoids the need for additional machinery such as specifying
coding cost or detailed priors on the space of possible models.!

4.2 Identifying Candidates for Revision

Given a current mixture model of the data set, we wish to identify whether any component
process within this model should be replaced by two or more processes. As discussed in the
above, such a revised model will be successful if it’s log likelihood is sufficiently larger than
that of the current model. Therefore, it is natural to consider what the potential increase in
log(L) is for any given component.

An important fact which is useful for determining an appropriate revision is the relation
between the expected log likelihood of samples from a distribution and the entropy of that
distribution. In particular, given a model which provides the grey-level distribution p(g),
the expected value of log(L) is

— NS(p) = N [ plg)log(p(g))dy. (4.2)

where N is the number of (independent) observations and S(p) is the entropy of the model
distribution p(g).

!'We thank Richard Mann for suggesting the use of (4.1) rather than more complex methods.
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Figure 4.1: The floor image (a), the number of layers (b) with black denoting 1 and white
denoting 11 layers, the reconstructed image (¢), and the outliers (d).

To use this fact, we first estimate the entropy of the portion of the data set owned by
each process. For a given process, say the k', this is done by constructing an ownership
histogram. Instead of accumulating the number of data items in each bin, as for a standard
histogram, the ownership histogram is formed by accumulating the ownerships, g, , for each
data item ¢(x,) which lands in a particular bin. That is, a given data item g(x,) contributes
a partial vote to all processes for which the ownership is nonzero, and the total of these
contributions sums to one. The ownership histograms are then estimates of the component
distributions, px(g), for each process k. From the ownership histogram for the k™ process,
say {H;}l,, we estimate the entropy of the observations for this process using

Sy == (Hix/Hy)log(H;x/Hy),

=1

where Hj, is the total ownership for the k" process,
h

Hp = Z Hi,k-
=1

Note that if the ownership histogram reflects the true component distribution then, according
o (4.2), the expected log probability of Hj observations from this process is just —HS}. In
a sense, this is the expected log probability of an ideal model of this component of the data.
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Figure 4.2: The hall image (a), the number of layers (b) with black denoting 1 and white
denoting 9 layers, the reconstructed image (c), and the outliers (d).

We need to compare this estimate for an ideal model with what the current model actually
predicts. Following the above approach, the expected log probability of H; data items se-
lected independently from the model’s component distribution pg(g|d, k) can be computed
according to (4.2). In particular, the current model accounts for an expected log probability
of —HS[", where S is the entropy for the component distribution py(g). While S{* can be
computed in closed form, we find it more convenient to estimate it using a histogram with
the same bins that were used for the ownership histogram. This allows quantization effects
to be comparable in the estimation of the two entropies S7* and S7.

Therefore we have the estimate —H S}, for the expected log probability given an ideal
model for the data owned by the k" process, along with —H}S7*, which is the expected log
probability according to the current component distribution, px(g), in our model. The differ-
ence, namely —Hy Sy + Hy.S}', therefore reflects the potential increase in the (expected) log
probability if this component distribution py(g) was revised. This motivates the requirement
that

—HkSZ—I-HkSZL > A (43)

in order for process k to be considered suitable for revision. In the reported computations
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Figure 4.3: The forklift image (a), the number of layers (b) with black denoting 1 and
white denoting 12 layers, the reconstructed image (c), and the outliers (d).

we used A = 5.

4.3 Generating an Initial Guess for a Revised Model

Given that the k™ component process has been identified as a candidate for revision, ac-
cording to (4.3), we need to generate an initial guess for a new model. The new model is
formed using the same components as the current model, except for the k' component. The
k" component, and it’s mixture proportion my, is split into two components. These two
components are determined using a histogram parsing technique to determine the dominant
peaks in the ownership histogram {H;;}",. This determines the initial guess for the EM
algorithm. If the histogram parsing technique obtains more than two peaks, then a sequence
of different initial guesses is generated, pairing the largest peak with each of the remaining
ones.

4.4 Hypothesize and Test

The overall incremental algorithm for building a mixture model can now be described. The
initial guess for the model is the outlier model po(g). We then iterate the following procedure.

We identify the set of processes that are candidates for splitting according to (4.3) and, if
there is more than one such process, we order them according to the potential differences in
log likelihood (i.e. the value on the left hand side of (4.3)). For each process, we determine



14

Figure 4.4: The sports equipment range image (a), the number of layers (b) with black
denoting 1 and white denoting 8 layers, the reconstructed image (c), and the outliers (d).
The patch size is still 16 x 16 but the range image is only 125 x 130.

a sequence of initial guesses according to the splitting procedure described in Section 4.3.
Taken together, this generates an ordered set of initial guesses. In addition, at the beginning
of this sequence of initial guesses, we consider a revision which does not add a layer but rather
simply changes any constant model, u(; ag), to a linear model, u(; (ag, a1, as)), within any
layer k& which has a sufficient total ownership Hy.

For each initial guess, taken in the above sequence, we run the EM algorithm with
annealing for fitting the mixture model. Given the result, the revised model is checked for a
significant increase in log(L) (i.e. the condition (4.1) is used). We accept the first instance
(4.1) is satisfied, and repeat this revision process.

The revision process stops when: (i) no candidates for revision are identified; (ii) none
of the revised models provide a significant increase in log(L); or (iii) the maximum number
of layers is reached.

4.5 Computational Examples

In Figures 4.1 through 4.5 we show results from this algorithm. The maximum number of
layers allowed was taken to be large enough so that the revision process would stop when it
was unable to find a better model, rather than when it bumped up against the constraint
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Figure 4.5: The sports equipment image (a), the number of layers (b) with black denoting
1 and white denoting 12 layers, the reconstructed image (c), and the outliers (d) for 6 = 2.5.
When ¢ is reduced to 1.5 up to 16 layers are used and several image patches are resolved
further (e), with the remaining outliers shown in (f).
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on the maximum number of layers. In our experiments we used the maximum number of
layers to be 20, which was more than sufficient. The same control parameters p, 04, G, 0,
and A were used in each case, with the values mentioned previously. The patch sizes were
16 x 16 except for the last patch on a row or in a column, these were adjusted to fit within
the boundaries of the image.

In almost all cases the reconstructed images are close approximations to the original,
although smoother. There are a few places that are not captured by the derived layers, as
indicated by the outlier images. These typically involve a small number of pixels and/or a
wide range of grey levels (so the addition of one more layer does not raise the log likelihood
very much). A clear example of this is provided in Figure 4.5¢, where several image patches
containing the strings of the racket are not accurately modelled. The actual grey-levels here
are scattered, due to highlights on the strings and structure in the background. Nevertheless,
when the threshold on the step in log likelihood required for accepting a revision is lowered
from 6 = 2.5 to 1.5, this image structure is then resolved (see Figure 4.5e,f).

Note that the results indicate that in image patches with more complex structure the
number of layers is correspondingly larger. However the number of layers chosen can be
surprisingly large in places. In the examples shown in Figures 4.1 through 4.5 the maximum
number of layers selected was between 8 and 12 (for 6 = 2.5), which seems high, especially
relative to the quality of reconstruction a four layer model is seen to given in Figure 3.1.
Indeed, in patches for which a large number of layers are selected, many of these layers have
relatively low mixture probabilities.

In an attempt to control the number of layers we investigated the effect of varying 6,
that is the increment of log(L) required for a revision to be accepted. As ¢ was increased we
observed the expected result that the number of layers used by the model steadily decreased.
Unfortunately, a particular setting of 6 could eliminate all but one layer in some image
patches but still allow a surprisingly large number of layers in another. One reason for this
is that the particular value of 6 for which a layer appears or disappears depends on many
factors, including the number of data items supporting the layer, their variance, the overall
scatter of other grey-levels within the patch, and so on. Indeed, in hindsight, this behaviour
should be expected from our method since all these factors influence the likelihood.

We also briefly tried the ‘anneal-release’ schedule for o mentioned at the end of Section
3.3. By releasing the o;’s after the annealing, and letting them settle into a local maximum
of the likelihood function, we expected the number of layers to be reduced. The reason is
that if there are any broad peaks in the grey-level histogram then, with annealing, these will
be modelled by a collection of small variance layers. On the other hand, if the variances were
not constrained, we might be able to model the same peak with a single layer having large
variance. This idea was tested and the number of layers used was seen to be reduced with
the anneal-release schedule. But in spatial patches having a complex local structure, the
model revision approach then often failed to extract the appropriate structure. For example,
when the model revision approach along with the anneal-release schedule was used on the
floor image in Figure 4.1a, some of the patches containing the grating in the floor were
modelled by a single high variance layer and were not subsequently revised. Our conclusion
is that the annealing is an important component of our model revision process, and that this
process benefits from having prior knowledge about the scale of the noise in the signal (in
terms of setting the annealing limit o4 in equation (3.9a)).

In summary, the results indicate that our model revision approach can reliably derive
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multi-layer models of local image structure. However, the number of layers selected can
be large, and is not conveniently controlled using the log likelihood threshold ¢é. If only a
crude approximation of the original image is desired, we recommend using the current model
revision process, with a relatively low ¢ and a strict bound on the maximum number of
layers (as used to generate Figure 3.1). More flexible methods for limiting the number of
layers, such as pruning layers which have sufficiently small mixture probabilities, can also be
considered in post-processing the derived representation.

5 Connected Components

As a simple application of this approach we considered deriving large connected components
from a given image. The motivation from the ARK robot is two-fold. One application is to
segment out a large portion of the floor. This would be useful to determine “floor anomalies,”
especially when used in conjunction with stereo disparity [5], or motion information [10]. A
second motivation is to segment fairly large uniform objects which may serve as landmarks,
such as the door in the hall image in Figure 4.2. Such a process may provide a fast and
reliable means of roughly locating a landmark.

To do the segmentation we implemented connected components on the layers in the
representation rather than on image pixels. The connected components algorithm depends
on the specification of the neighbours of any given layer in any given spatial patch and also
on the criteria for when two such neighbours are considered connected. In particular, let
Agn, Okn, and my, be the parameters for the mean, the standard deviation, and the mixture
probability, respectively, for the k' layer in the n'* image patch. Similarly, we denote
the same parameters for the j layer in the I'" patch by @;;, o;, and mj;, respectively.
These two layers are considered neighbours if the [** image patch is within the 3 x 3 spatial
neighbourhood of the n'* patch, and if the ownership probabilities my, and m;; are both
larger than a threshold m,,;,. This threshold m,,;, was used to help avoid low probability
components forming connections between relatively disparate items. We used m,,;, = 0.1.
Note that in a one-layer model patches can have no more than eight neighbours, while for
multi-layer models they can have many more.

Given two such neighbours, say with the parameters listed in the previous paragraph, we
consider them to be connected only if the corresponding layer models are sufficiently close.
In particular, let * be the midpoint between the centers of the n'* and the ['" image patch.
Then the squared distance between the two models is taken to be

D¥(kyn; 1) = (u(@5 @) — w(@*5@3))2 /(min(on, 050) + [V tten — Vil /020 (5.1)

Here ﬁu;m represents the spatial gradient of the k%" layer in the n'* patch, that is, the
vector formed from the last two components of @y,. The first term on the right side of
(5.1) measures the squared distance between the two layers at the midpoint ¥ *, relative to
the minimum standard deviation of the two layers. The second term measures the squared
difference in the gradients, relative to a constant o,.,4. This constant is used to provide a
relative weight between the two contributions to D(k,n;j,[) and was set to oyqq = 30 on
the intensity images. Finally, given this distance function, the two neighbours are considered
connected if

D(k,n;j,1) < B, (5.2)
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Figure 5.1: The model obtained using just one layer, the outliers, and the four largest
connected components for the floor image (run time 5.5 secs).
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Figure 5.2: The model obtained using just one layer, the outliers, and the four largest
connected components for the hall image (run time 3.2 secs).
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for some threshold . We used § = 1.75 in all the reported computations except for those
in Figure 5.5. A variety of other connectivity measures were also tried and they produced
roughly comparable results.

This definition for pairwise connected layers is then used to determine the various con-
nected components within a given image representation. A two-pass algorithm, which is a
simple modification of a standard 2D connected components algorithm, can rapidly deter-
mine all the components.

A given connected component in the layered model was then viewed by displaying the
individual pixels which were maximally owned by each layer in that component. As a result,
the image of the components displayed in Figures 5.1 through 5.4 may not actually be
connected in the image. This occurs, for example, in the floor components for the floor
image (see the middle right panel in Figure 5.1).

This behaviour illustrates one of the benefits of considering connectivity within the layers,
as opposed to individual pixels. In particular, small disruptions of a particular layer, such
as the gaps between the grating and the floor do not disrupt the overall component when it
is determined using sufficiently large patches.

A second benefit of this approach is that it can alleviate some of the difficulties with the
non-robustness of connected component algorithms. In particular, in standard connected
components a single errant pixel can lead to a bridge between two image regions that might
otherwise be considered to be separate components. While this can and does occur when
considering the connectivity for models with several layers, we can control it to some extent
by limiting the number of layers and/or by setting the minimum mixture probability to
be used in considering the connected layers. Indeed, the most reliable components for the
images tested turned out to be those for the simplest types of layered models, namely one
layer of constant or linear models (plus outliers), such as those on top row in Figure 3.1.

For the examples in Figures 5.1, 5.2, and 5.3 we used the original image subsampled
two times. In each case the resulting images were around 150 x 100. We ran the fitting
procedure described in the previous section, with the same parameters other than the patch
size, which was also halved to 8 by 8. We restricted the number of layers to one. The overall
process of fitting a constant or affine one-layer model to these subsampled images, running
connected components on the layers, and producing the images of the resulting components
took between 3 seconds (for the hall image) and 7 seconds (for the forklift image) on an
SGI Indy workstation?. The results indicate that the approach can rapidly segment some
useful regions, such as the floor regions in the AECL industrial bay, and the walls and
doorway in the hall image. Note that highlights and reflections off of the floor, present in
the hall image, cause the floor to be over segmented.

One potential application of this result is to the stereo FAD system. In particular,
the large segments can provide a rough guess for where to fit planar floor models to the
stereo disparity. The requirements here are fairly loose in that a precise segmentation is not
needed since the stereo FAD approach described in [5] is also tolerant of outliers. Secondly,
this stereo FAD system has no spatial integration. As a result, spots on the floor with little
or no texture (such as within the piece of paper in Figure 5.1) are considered to have an
undetermined depth. However, the regions derived from a segmentation procedure such as
ours can provide a means for spatially integrating the stereo FAD results. (For similar work

2Roughly similar results can also be obtained using constant models, instead of linear models, resulting
in some speed-up (2.5 to b seconds run time) and some degradation in segmentation.
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Figure 5.3: The model obtained using just one layer, the outliers, and the four largest
connected components for the forklift image (run time 6.7 secs).



22

done with optical flow, see [3].)

A second application is in determining the location of landmarks in an image. For
example, the majority of the large door in the hall image can be segmented, despite some
highlights on it. This segmented region could instantiate a process for verifying the landmark,
perhaps through the use of edges or an image template.

5.1 Range Images

Consider the range image that we used as a motivating example in the introduction (i.e.
Figure 1.1b). This image is only 125 x 130, which is roughly equivalent to the subsampled
images in Figures 5.1 through 5.3, so we did not subsample it further. Also, to be consistent
with the results in Figures 5.1 through 5.3 we used 8 x 8 patches. In order to resolve the
complex depth structure we allowed the revision process to use up to 4 layers. Otherwise
the control parameters for fitting the model are the same as before. The result, shown in
Figure 5.4a, is a good approximation of the original range image. We then ran the connected
components algorithm on the layered representation, with the control parameters 5 and m,,;,
the same as before (i.e. 1.75 and 0.1, respectively), but with the scale parameter for the
gradient terms o, roughly half the size as before. The reason for this last change is that
the results indicated that the local gradient estimates were less noisy for this range image
than for the previous intensity images. The results of the connected components algorithm
displayed in Figure 5.4 show an excellent separation of the racket from the background, and
of several other components in the background itself.

A second example is provided by the wires image pair shown in Figure 5.5a,b. The
wires in this example provide a challenge in that they are only 3 pixels wide and they
can have a large depth variation along their length. In Figure 5.5c-e we show the results
of fitting a mixture model limited to 4 layers using the same control parameters as above
with 8 x 8 spatial patches. Again we see we get a good approximation of the original range
image. The control parameters for the connected components algorithm used in the intensity
images, namely 8 = 1.75, 04,44 = 30 and m,,;,, = 0.1, were found to oversegment the wires.
Instead, in order to accommodate the depth variation along the wires, we used § = 2.5.
Also, to allow for the thinness of the wires we set my,;, = 0.01. (The exact settings are not
critical, a reasonable range of values produced essentially the same results.) The four largest
connected components given these parameters are shown in Figure 5.5f-i. The segmentation
of the background, the outlet box, and several of the wires provides another example of the
usefulness of layered models in situations of fragmented occlusion.

6 Conclusion

We approach the problem of finding a suitable layered representation for a grey-level image
from the point of view of data exploration. That is, the process of building a model involves
seeking out and discovering various structures within the data. The exploration is based
on the use of the likelihood of the data as the appropriate figure of merit for a given image
representation. Revised models are considered whenever the data set is considered to exhibit
unmodelled structure, and these revised models are fit using a modified EM algorithm with
deterministic annealing. Finally, the result of such a fitting procedure is accepted if it
provides a significant increase in the likelihood of the original data. The number of layers
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Figure 5.5: The wires intensity image (a) and the associated range image (b). The layered
model for the range image limited to at most four layers (c), the number of layers (d), the
outliers (e) and the four largest connected components (f-i) (run time 21 secs).
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can be automatically selected in this way. The proposed incremental algorithm for building
a layered representation of grey-level images has been successfully tested on a variety of
images.

One shortcoming we have noted is that the number of layers can be unnecessarily large,
especially if only a rough approximation of the original image is desired. Perhaps the number
of layers chosen can be reduced using an MDL or Bayesian approach (see [2] and [9]), or by
using spatial correlations in the generative model (see [15]). For the present we recommend
that the current algorithm is used with a strict upper limit on the number of layers, and
possibly with pruning in a post-processing step. As demonstrated here, the results then
appear to be sufficient for many practical purposes.

Our current approach treats each separate image patch as a new data set, so in a sense
the data exploration is restarted from scratch in each patch. This is appropriate for our
present purpose of studying the process of fitting layered models. However, for a practical
system it would be of interest to consider spatial interactions between neighbouring patches
during the fitting process, perhaps along the lines described in [8].

Several other extensions are also of interest. The application to colour data, for example,
is a straight forward extension. This involves replacing the scalar grey-level with a colour
vector and the variance estimates with a 3 X 3 covariance matrix. We already have promis-
ing results with a colour version of the same algorithm. Also, recall one of the primary
motivations for this work was derived from using layered models for the estimation of vector
fields describing either optical flow or stereo disparity. We expect that much of the approach
developed here, possibly including the above mentioned extensions, will be useful for these
vector field estimation problems.

Finally, the applications we considered for a robot such as ARK were based on running
connected components within the layered representation itself. There are several advantages
of doing this. In general the connected components algorithm depends on local estimates
of the mean and the variance of the grey-levels within each component, as is standard for
region based grouping. But the difference here is that by fitting a mixture model to the data
set we are effectively estimating the required layer parameters simultaneously with a soft
segmentation of the image patch. The use of a layered representation also allows for spatially
complex images generated by fragmented occlusion to be relatively easily segmented, as
demonstrated in Figures 5.4 and 5.5. In addition, gaps which are smaller than the size of the
patches are effectively ignored by computing the connected components within the layered
representation and not at the pixel level. Finally, by choosing a model which is restricted
to only a small number of layers we can alleviate some of the problems with the well known
sensitivity of connected components to the precise choice of thresholds. However, this use
of a connected components algorithm is definitely the weak link in the two ARK specific
applications presented. More robust grouping techniques, perhaps along the lines suggested
by Amir and Lindenbaum [1], should be considered.
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