
Linear Subspace Methods for

Recovering Translational Direction

Allan D� Jepson David J� Heeger

University of Toronto NASA�Ames Research Center

Abstract

The image motion �eld for an observer moving through a static environment de�

pends on the observer�s translational and rotational velocities along with the distances

to surface points� Given such a motion �eld as input we have recently introduced sub�

space methods for the recovery of the observer�s motion and the depth structure of the

scene� This class of methods involve splitting the equations describing the motion �eld

into separate equations for the observer�s translational direction� the rotational veloc�

ity� and the relative depths� The resulting equations can then be solved successively�

beginning with the equations for the translational direction� Here we concentrate on

this �rst step� In earlier work� a linear method was shown to provide a biased estimate

of the translational direction� We discuss the source of this bias and show how it can

be e�ectively removed� The consequence is that the observer�s velocity and the relative

depths to points in the scene can all be recovered by successively solving three linear

problems�
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� Introduction

The basic problem we consider is how to obtain reliable information on the motion of a
camera� along with distances to various points in its environment� from measurements of
image motion �optical �ow� alone� Here we pursue subspace methods which have been
recently introduced for solving this problem �see ��� 	
�� The general approach involves
splitting the problem into three subproblems� each of which can be solved in the following
order� First� we obtain constraints which involve only the translational direction� �T � of the
camera� These equations are independent of the camera�s angular velocity� ��� and do not
involve knowing the distances to points in the scene� Secondly� given the resulting estimate
for the translational direction� a set of linear equations can be obtained which involve only
the rotational velocity as an unknown� Finally� given estimates of both the translational
direction and rotational velocities of the camera� several methods are available for obtaining
reliable information about the �relative� distances to various scene points �see �
� �
��
Unlike many previously proposed algorithms� our approach to motion analysis applies

to the general case of arbitrary motion with respect to an arbitrary scene� There is no
assumption of smooth or planar surfaces� The results in our previous work ��� 	
 demonstrate
that our approach can be stable with respect to random errors in the �ow �eld measurements�
and that it performs quite favorably when compared with other proposed approaches� It is
simple to compute and it is highly parallel� not requiring iteration and not requiring an
initial guess� For a brief review of the existing literature see �	
�
In this paper we are primarily concerned with simplifying the �rst step of the subspace

methods in which the direction of translation is estimated independently of the rotational
velocity and depths� The input data is taken to be a discrete set of optical �ow vectors�
say �u��xk�� for k � �� � � � �K� where �xk denotes the image position for the kth sample� It is

convenient to collect these two�vectors into a single 
K�dimensional vector� �O� With this
notation� the constraints on �T take the simple form

��i��T � � �O � �� for i � �� � � � �K � �� �����

where ��� denotes the usual vector inner�product� In previous work ��� 	
 we show how
to compute the constraint vectors ��i� and show that these vectors are typically nonlinear
functions of �T � We proposed that the nonlinear problem ����� can be solved for �T simply by
sampling the constraints on a mesh distributed over a hemisphere of possible orientations
for �T � and then seeking points of least square error��� 	
�
In ��
 we introduced an alternative method for �nding the camera�s translational direc�

tion� which avoids sampling �T �space at many points� and results in a linear system for the
translational direction� The key observation to make is that it is possible to rede�ne the
constraint vectors ��i��T � in equation ����� in such a way that the �rst K�	 of them depend
linearly on �T � while the remaining three constraint vectors are typically nonlinear functions
of �T � From ����� we see that the �rst K � 	 vectors now lead to linear constraints on the
translational direction� The step in our previous method which involved sampling constraints
of the form ����� over �T �space can be replaced by the construction of these linear constraints�
followed by a standard linear least squares solver� As a result this new method represents a
huge savings in the computational resources required to obtain an estimate for �T �
There is� of course� a price to pay for this short cut� We are not using all of the available

information to obtain this estimate of �T �i�e� we are omitting the three nonlinear constraints��
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Therefore we can expect that the new approach will be more sensitive to errors in the input�
Fortunately� we can show that for general scenes containing a rich depth structure this linear
approach still does provide a robust estimate ��
� However our preliminary experiments
indicated that a straight forward implementation of the linear approach provides a biased
estimate of the translational direction� This bias was observed to be more severe for images
having smaller angular extents� In this paper we analize the cause of this bias� and discuss a
simple method for its removal� In related work Spetsakis ���
 discusses the bias observed in
a completely di�erent method for structure from motion� and comments on the possibility
of the biases having a common cause� This is an important area of research� which we do
not pursue here�

� Basic Algorithm

The basic situation we consider is an observer moving through a stationary environment� In
the observer�s coordinate frame this is equivalent to the scene undergoing a rigid motion�
which is completely characterized by a translational velocity �T and an angular velocity ���
In particular� the instantaneous velocity of the point �X�t� is

d �X

dt
� �V � �T � ��� �X� �
���

Here we take �X � �X��X��X�� to be a right�handed coordinate system �xed on the observer�
with the nodal point of the imaging system at the origin� We set the focal length to f � and
denote the image point at �X��X�� f� by image coordinates �x � �x�� x�� �� � �X��f�X��f� ��
�for vector operations later in this paper it is convenient to write �x as a ��vector�� We put
the transducer surface in front of the nodal point to avoid the need to re�ect the image
coordinates�
We assume that we are given the optical �ow �image velocity� at a set of image positions�

f�xkg� for a single frame of the image sequence� From this information we wish to compute the
direction of the translational velocity� As mentioned in the introduction� given this direction
we are left with linear problems for each of the rotational velocity and the inverse relative
depths� Here we consider only this �rst step� namely the computation of the translational
direction�
For the algorithm proposed in ��
� the optical �ow data at each point is �rst expanded

into the ��vector
�q��xk� � Q��xk��u��xk�� �
�
�

where

Q��x� �

�
B� � �
�� �
x� �x�

�
CA � �
���

Notice that this preprocessing step is local� each image velocity is transformed separately�
The sample points f�xkg are subdivided into N �usually overlapping� patches� Let the nth

image patch consist of sample points f�xkgKk��� Then for each patch we de�ne a particular co�
e�cient vector� �cn � �c�n� � � � � cKn�T � The details of the computation of a suitable coe�cient






vector are given in Appendix A� For our purposes here we only note that the coe�cients
have been normalized so that

KX
k��

c�kn � �� �
���

Given the transformed optical �ow vectors �q��xk�� and the coe�cient vector �cn for the nth

image patch� we next build the translation constraint vector

��n �
�
B� �cn � �q���x��� � � � � q���xK��T
�cn � �q���x��� � � � � q���xK��T
�cn � �q���x��� � � � � q���xK��T

�
CA � �
���

That is� the ith component of ��n is obtained by taking the inner�product of the coe�cient
vector �cn with the vector formed from the ith component of �q��x� sampled over the image
patch� The particular construction of the coe�cient vectors �cn ensures that the resulting
translation constraint vector� ��n� is perpendicular to the true translational direction �see
Appendix A��
Taken over all N image patches� each with its own ��n� we now �nd that the translational

direction �T of the observer must satisfy the linear equation

�
BBBB�
�� T
�

�� T
�

���
�� T
N

�
CCCCA �T � ��� �
�	�

We can solve this in a least squares sense by accumulating the following � � � symmetric
matrix

D �
NX
n��

wn��n��
T
n � �
���

Here we have included a weight� wn� for each �� vector� the choice of which is discussed
further below� The least squares estimate for the translational direction is then given by
the eigenvector for the smallest eigenvalue of this �� � matrix D� We have found it is also
useful to look at the separation between the various eigenvalues of D� to detect situations
for which one or more components of the translational direction are poorly determined by
the linear constraints�
An important special case for the above computation is when the optical �ow is sampled

on a regularly spaced grid� and the image patches are all taken to have the same sampling
pattern �eg� a l� l square grid�� In such a case the coe�cient vectors �cn can be precomputed
and taken to be the same for each patch �see Appendix A�� For a regular sampling pattern�
then� the overall algorithm for the computation of the translational direction simpli�es to the
following� First the optical �ow data �u��x� at each sample point is transformed to a ��vector�
�q��x�� through a multiplication by the � � 
 matrix Q��x�� Three images� qi��x�� are formed
from each component of this vector� Each of these images is then convolved with the same
precomputed mask made up of the coe�cients of �cn� and the three resulting images together
provide an image of translation constraint vectors� That is� for each spatial position there is
a translation constraint vector ��n known to be perpendicular to the observer�s translational
direction� These constraint vectors are �nally compiled into the �� � matrix D� from which
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Figure ���� �Left� Graphics image of an o�ce ��
���
� pixels�� �Right� Image formed from
the norm of the recovered ����x�� with larger norms depicted by darker grey levels� Here the
motion �eld is as in Figure ��
 �left��

the translational direction can easily be obtained� It is also possible� of course� to avoid
explicitly forming any of these intermediate images� and instead directly build the matrix
D from the results of an equivalent linear transformation applied to the optical �ow for
each image patch� We choose to present the algorithm in the expanded form primarily to
emphasize the simplicity of the computations involved�

� Direct Implementation�

In this section we examine the performance of the basic algorithm on a simple test problem�
Our previous work showed that the algorithm appears to be fairly robust� but su�ers from
a bias in the recovered translational direction� We review the observation of a bias here
through a straight forward implementation� In subsequent sections we use these results for
comparison with approaches designed to reduce or remove the bias�
Due to the ease in which we can obtain well controlled test data� we consider only com�

puter generated data in this paper� Clearly for the results on such sequences to generalize
to real sequences we need to model the noise properties of optical �ow measurement tech�
niques� Fleet and Jepson ��
� for example� report optical �ow measurements with roughly
Gaussianly distributed errors having a magnitude about � of the length of the optical �ow
vector� These error results were also obtained from simulated scenes� and therefore should
be taken as a lower bound on the sorts of errors we can expect in practice �see also ��� �
��
The optical �ow data we use is generated from the depth map for the computer generated

scene shown in Figure ���� The range of projected distances along the optical axis �i�e� the
range of values in the �Z�bu�er�� is roughly a factor of two for this scene� Since we expect the
accuracy of the results to depend on the visual angle� we allow the focal distance to vary and
keep the Z�bu�er �xed� In Figure ��
 we show a motion �eld generated using this Z�bu�er�

�



Figure ��
� �Left� Flow �eld for the o�ce scene� with translational velocity �T � ������ 
�
�towards and up�� and with a �xation point at the center of image� �Right� The component
of the �ow �eld due to only the translational motion� Note the focus of expansion� which is
located at the true direction of translation�

a 	� degree �eld of view� and a translational velocity of ������ 
� �image coordinate x� is
to the right� x� is down� and the third component is forward along the optical axis�� The
rotational velocity was chosen so that the camera was �xating at the center of the image�
Figure ��
 �left� shows the �ow �eld� while only the translational component is presented in
Figure ��
 �right�� Note that there is a very signi�cant contribution to the motion �eld from
the rotational component� This is important since the algorithm is designed to project out
the e�ects of the rotational motion�
The optical �ow data was obtained by adding isotropic� Gaussianly distributed noise to

the motion �eld� We used a noise amplitude such that each component of the error has
a standard deviation equal to �� of the length of the motion �eld vector �so the norm
of the error is a factor of

p

 larger than this�� The actual amplitude of the noise is not

particularly important� Indeed we have done some tests using up to �� noise and observed
a graceful degradation in performance� However� to deal with computed optical �ow data we
need to contend with noise that is correlated across nearby image locations� and with noise
distributions which have longer tails signifying a higher probability of outliers� We do not
deal with these issues here� although in Section 	 we do show the results of our algorithm
given computed optical �ow data�
Figure ��� �right� shows the norm of �� generated by the algorithm� Here the patches for

the optical �ow data were chosen to be square �� � �� sampling patterns� with the samples
each separated by a distance of two pixels� The coe�cient vector was chosen to be the
modi�ed DOG mask discussed in Appendix A� The same mask was used for all patches
and the translation constraint vectors ����x� were generated using the convolution algorithm
described above� �Here we �nd it convenient to refer to the �� generated for a particular
patch as �� ��x�� where �x is the image coordinates for the center of the patch�� The norm
of the resulting translation constraint vectors� ����x�� is essentially the absolute value of the
response of the DOG mask when applied to the inverse depth data with a general modulation
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Error T� �deg� ��� � ��� ��
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 ����� ����
Error T� �deg� 	�� � ��	 ����� ��� ���	� ��
 
��	� ��� 
���� ����

Table ���� Results from the basic algorithm

by the length of �x � �T �see ��
�� �No value was computed around the border of the image
where the convolution mask would have extended beyond the edge of the image�� As we
discussed in ��
� the translation constraint vector �� ��x� has a large amplitude only where
there is signi�cant nonplanar variation in the depth structure� The amplitude response
could clearly be useful for other operations such as image segmentation�
For a 	� degree �eld of view �measured along the horizontal center line�� and �� input

error� the recovered translational direction was �������� ����
�� ������� The exact direction
�after scaling� is ����� ������� ������� The computed solution represents an error of about
�� in the recovered translational direction� or about � degrees of visual angle� Note that
the vertical component of �T �i�e� T�� has the largest error� while the component of the
error in the horizontal direction T� is only ��� degrees of visual angle� Thus the recovered
translational direction is skewed about � degrees towards the optical axis� Twenty separate
runs were done �each taking less than a minute on a Silicon Graphics �D!���VGX�� and
the standard deviation of the error measure �in degrees� was found to be less than a degree
�see Table ����� In particular� we found that the method has a signi�cant bias �roughly �
degrees� in the recovered translational direction towards the orientation of the optical axis�
The same Z�bu�er and �D motion parameters were used for various other angular extents�

The results of 
� runs for each extent are summarised in Table ���� For example� for a 
�
degree �eld of view the recovered translational direction is strongly skewed towards the
optical axis� with the average recovered translational direction having a a �� degree error�
The standard deviation in the radial direction �T�� was only about ��
 degrees of visual
angle� which is negligible with respect to the mean error of ���	 degrees in this component�
As a result we can safely conclude that the error in the mean represents represents a strong
bias in the method rather than random �uctuations� From Table ��� it is clear that the bias
increases as the angular extent is reduced� A second important point is that the horizontal
component of the translational direction �i�e� T�� is recovered quite accurately even for a 
�
degree angular extent� For signi�cantly smaller extents� such as the �� degree and � degree
cases reported in Table ���� the recovered translational direction is skewed to within a few
degrees of the optical axis� and thus an accurate horizontal component �nearly zero� may
not be signi�cant here�

� Source of the Bias

We have seen that the variance of the estimates for the direction of translation is small�
but the basic method is seriously �awed by a signi�cant bias� Note that in the absence
of noise our method is exact� the various constraint vectors �� ��x� provide linear constraints
on the translational direction� �Indeed� given the motion �eld to single precision �oating
point accuracy our program returns an estimate of the translational direction accurate to

	



six digits�� The bias is clearly not a consequence of analytical errors� Moreover� only linear
operations are used to construct the constraint vectors� Therefore we should expect that the
bias can be understood through a simple linear analysis of the e�ects of noise in the optical
�ow on the resulting constraint vectors�
For our simulated optical �ow it is relatively straight forward to compute the covariance

of the constraint vectors ����x�� In particular� since we are assuming the noise at di�erent
pixels is independent�

E���� � E��� 
���� � E��� 
�T 
 �
KX
i��

c�iE���qi � E��qi
���qi � E��qi
�
T 
�

Here E��� 
 and E��qi
 represent the expected values of the vectors �� and �qi� The last term
in the above expression is the covariance of �qi� By equation �
�
� this covariance can be
rewritten in terms of the � � 
 matrix Q��xi� and the covariance of the noise for the optical
�ow� Since the optical �ow noise is assumed to be isotropic� its covariance is simply a
constant� ��jju��xi�jj�� times the 
� 
 identity matrix� �For �� noise in each component of
the optical �ow we use � � ������ As a result� we can now rewrite the above equation as

E���� � E��� 
���� � E��� 
�T 
 � ��
KX
i��

jju��xi�jj�c�iQ��xi�QT ��xi��

For our purposes here it is convenient to approximate this covariance matrix using the
assumption that the norm of the optical �ow is roughly constant over the sample points �xi
used in any single patch� In particular� we replace the term jj�u��xi�jj� in the above sum with
the weighted average

��u �
KX
i��

c�i jju��xi�jj� �����

�recall �
��� which requires the coe�cients ci to be normalized such that the sum of their
squares is one�� This provides the approximate covariance matrix

Cn � ����u

KX
i��

c�iQ��xi�Q
T ��xi�� ���
�

The sum in equation ���
� is over terms which only depend on the particular sample points
�xi� and not on the optical �ow�
Using equation �
���� the sum in ���
� can be shown to be

KX
i��

c�iQ��xi�Q
T ��xi� �

�
B� � � �xn�

� � �xn�
�xn

�
�xn

�
� � 	

�
CA � �����

Here xn� and x
n
� are the �rst and second components of the center �x

n of the nth patch� which
is de�ned in general by

�x n �
KX
i��

c�in�xi�

�



�For the symmetric modi�ed DOG masks used in this paper� �x n is just the position of the
center pixel of the mask when applied to the nth patch�� Also � � �xn

�
�� � �xn

�
�� and the

term 	 in ����� is given by

	 �
KX
i��

c�i ��x�i � xn��
� � �x�i � xn��

�
�

We see 	 is simply a measure of the variance of the sample points weighted by the coe�cients
ci� For the case in which the �� vectors are computed using convolution with the same set of
coe�cients� the value of 	 is simply a constant independent of �x n�
The structure of the approximate covariance matrix Cn is best illustrated by its eigenval�

ues and eigenvectors� which provide the variances and principle directions� The eigenvalues
for Cn are just ���u�� times the eigenvalues of the matrix given in ������ and the eigenvectors
of the two matrices are identical� The eigenvalues of the matrix in ����� are easily found to
be 
� � �� and


� � �� � �� 	���


�

� 	���� � �� 	����
�����

Here

� �
�




�
� �

q
� � �	��� � �� 	��

�
�

The eigenvectors associated with these three eigenvalues are given �respectively� by the
columns of the matrix

U �

�
B�

xn
�

xn
�

xn
�

�xn
�

xn
�

xn
�

� �� �
�

�
CA � �����

For simplicity� we have ignored the normalization factors for these column vectors� The
constant �� is given by � � 
�� and the second constant �� satis�es � � ������
The signi�cance of these equations is most easily seen by considering sampling patterns

having a small angular extent� In this case 	� a weighted variance of the sampling pattern�
is much smaller than one� To be speci�c� for the sampling pattern used here based on a
�� � �� array of taps applied at every other pixel� 	 is ��� � ���� for the 	� degree �eld of
view� This decreases to 	��� ���� for the �� degree �eld of view� and to only ���� ���� for
the �� degree �eld of view� As a consequence� we �nd �� is roughly given by ��� and �� is
roughly �� In particular� from ����� we see that the eigendirections can be simply determined
from the position of the center of the image sampling pattern� �x n� The eigenvalues for these
three directions are �� 
� � ����O�	�� and 
� � 	�������O�	��� For an image having
an angular extent of 	� degrees �side to side� � ranges from zero to a maximum of 
!�� so
the �rst two eigenvalues of Cn are roughly the same size� However� the third eigenvalue�
corresponding to the sampling direction �x n� is much smaller� The one standard deviation
surface for the errors in �� are ellipsoids having the shape of mildly elliptical �pancake�� with
the diameter along the minor axis of the ellipsoid much smaller than along the other two
principal directions� �In fact the ratio of diameters is at least ��

p
	� which is 
	 for a 	�

degree �eld of view and ��� for �� degrees�� In summary� we see the noise for the computed
�� vectors is far from isotropic� and the minor axis of each pancake is oriented along the
direction of the center of the optical �ow sampling pattern� �x n�

�



Figure ���� Translational constraint lines for �T � plotted in a 	� degree window centered on the
optical axis �i�e� the same image coordinates as used for Figure ��
�� The true translational
direction is indicated by the white �X�� In order to accentuate the bias we used only a ��
degree �eld of view �grey box�� and the recovered translational direction is indicated by the
grey ����

To illustrate one e�ect of this non�isotropic error distribution we plot a large sample of
the resulting constraints in Figure ���� Here the �� vectors were computed given a �� degree
�eld of view �depicted by the grey box in Figure ����� and �� image noise added to the
�ow �eld generated using the same �D motion parameters as in Figure ��
 �left�� For each

sampled �� vector we plot the set of translational directions �T which are perpendicular to
�� � as projected onto an image having the same optical axis as the original but with a 	�
degree angular extent� The set of translational directions perpendicular to a particular ��
forms a straight line in this image� One other property of the constraint vectors is needed
to understand the distribution shown in Figure ���� namely that the exact �� vectors tend to
be nearly perpendicular to the mean sampling direction� In particular� the exact constraint
lines tend to pass close to the sampling direction ��
� Since the covariance of �� is small in
this direction� the noise does not perturb the position of the constraint lines very much near
the sampling direction� As a result� in Figure ��� we see that almost all of the constraint
lines pass through the ten degree �eld of view from which the optical �ow data was sampled�
The recovered direction is �roughly� the point that minimizes the sum of squared distances

to all of these straight lines� with each distance weighted by the squared length of the
particular �� � For this case the recovered direction is about 
� degrees away from the true
translational direction� As can be seen from Figure ���� one source of this bias may be
the signi�cant portion of constraint lines that are extremely noisy� These arise from cases
where the length of �� is not much longer than the expected length of the noise� Due to the
non�isotropic nature of the noise even these constraint line will also typically pass close to
the sampling direction� and the result is a radial pattern of noisy constraints as depicted
in Figure ���� For such a radial pattern� points near the center of the pattern will tend to
have a smaller square distance to all of the lines� and hence these noisy constraints can be

�



Figure ��
� Translational constraint lines for the same case as in Figure ���� but for only
those constraints having a signal noise ratio larger than � �left� or �� �right�� White �X��s
mark the true translational direction� A dot is used to indicate the result from each of ��
di�erent noise samples� and they all lie on the vertical bars of the the grey ����s marking
the mean recovered translational directions�

expected to provide some contribution to the bias�
Given the above estimate for the noise in a particular �� vector it is a simple matter to

implement a constraint on the signal to noise ratio of the constraint vectors used to estimate
�� � For example� we use the standard deviation ��u associated with the �rst eigenvalue of
Cn� to de�ne

SNR��� ��x�
 � jj����x�jj����u
� ���	�

This estimate is used in two ways� First� we implement a simple threshold on the estimated
SNR of each �� � if the estimate does not exceed a critical value then �� is not used in the least
squares problem� �In terms of equation �
��� the weight wn is set to zero�� For translation
constraint vectors which exceed this threshold� we use the weight wn � ���u����

The rationale for this choice of weight is that� for a general translational velocity �T � the
minimum distance between �T and the plane perpendicular to �� is j�� � �T j�jj�� jj� The product
of the square of this distance and the square of the SNR for �� gives ��� ��x n� � �T ������u���
This is precisely the contribution we obtain from the least squares objective function �T TD�T
de�ned in Section 
� given that the weight wn is chosen as above� Thus� we are weighting
the distance between �T and the plane perpendicular to �� by the signal to noise ratio de�ned
in ���	��
The results of using this weighting scheme are shown in Figure ��
� The input data

were the same as for Figure ���� The threshold has successfully eliminated the wildly incor�
rect constraints� and clearly larger values of the threshold provide a tighter distribution of
constraint lines near the true translational direction� However� the use of a threshold has
reduced but not removed the bias� Indeed� the results of �� runs are shown in each half of
Figure ��
� The scatter of the individual results is signi�cantly less than the mean error �its
about the size of the vertical bar of the ��� marking the mean recovered direction�� Table

��
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Error T� �deg� ���� � ��� ���� � ��� ���� � ���� ���� ���� ���� ����
Error T� �deg� ��� � ��� ��� � ��� �� � ��� �� � ��� 
�� ���
Table ���� Results of using a threshold of ��� on the signal to noise ratio SNR��� 
� and using
the scalar weights wn�

��� provides similar results from 
� runs using di�erent random noise samples� for each of
several given focal lengths� While there is a signi�cant improvement in the performance over
the basic algorithm �compare Table ����� the bias is still severe for smaller angular extents�

� Removing the Bias

In the previous section we noted the pancake shaped distribution for noise in the �� vectors�
and the property that the exact constraint vectors are nearly perpendicular to the sample
direction� As we discussed above� these two properties contribute to the bias in the recovered
translational direction� in part through the behaviour of the constraint vectors having a low
signal to noise ratio� However� even for relatively high signal to noise ratios the bias was
still observed� In this section we brie�y discuss the reason for this remaining bias� and
demonstrate a simple method for its removal�
Consider a single constraint vector �� ��x n� having a large signal to noise ratio� and assume

it is nearly perpendicular to the sampling direction �x n� as is typical� The plane perpendic�
ular to this constraint vector forms the set of all translational velocities that are perfectly
consistent with �� ��x n�� As discussed in the previous section� we are minimizing the objective

function �T TD�T � which is simply the sum of squared distances between the translational ve�
locity �T and the planes perpendicular to �� ��x n�� for n � �� � � � � N � with each squared distance
weighted by the square of the SNR for �� ��x n�� The important point is that this term depends

only on the relative angle between �T and �� ��x n�� and not on the orientation of �T around the
axis aligned with ����x n�� The contribution of the nth patch to the overall objective function
is therefore rotationally symmetric about the translation constraint vector �� ��x n�� As we
show below� it is precisely this symmetry which causes the signi�cant bias�
Note that the rotational symmetry does not model the non�isotropic character of the

noise in the recovered constraint vectors� In particular� the variance of �� ��x n� was seen to
be much smaller in the direction of the mean sample point of the nth patch than in the
perpendicular directions� The plane of translational directions �T that are perpendicular to
this constraint vector� therefore� will not wobble very much across the sampling direction
for di�erent noise samples� Instead the dominant e�ect of the noise will be to rotate the
plane of translational velocities around the sampling direction� Roughly speaking we should
expect the rotation around the sampling direction to have a variance that is ��	 times the
variance across the viewing direction �i�e� the ratio of the eigenvalues of Cn�� Recall that
	 is ��� � ���� for the 	� degree �eld of view and smaller for narrower �elds� Thus an
appropriate objective function should weight perturbations in �T from the constraint plane
much more heavily for translational directions nearly parallel to the sampling direction than
for directions nearly perpendicular both the sampling direction and �� ��x n�� The ratio of the

��



Figure ���� Translational constraint lines for the same case as in Figure ���� with a signal to
noise threshold of � �left� and �� �right�� The dithering method was used on ten di�erent
runs for each threshold �dots�� and the mean recovered translational direction is given by
the grey ����

weights on the same size error occurring at these two extremes should be ��
p
	� which for

our current application increases from 
	 for the 	� degree �eld of view� to ��� for the �
degree �eld of view"
In terms of plots such as Figures ��� and ��
� the appropriate cost function can be thought

of in terms of the displacement between the translational direction �T �in the image plane�
and the depicted constraint line� The same perpendicular displacement should cost much
more when it occurs near the sampling direction than when it occurs further away� By using
a rotationally symmetric cost function we are in e�ect under�weighting perturbations near
the sampling direction� Given a narrow aperture image we are consistently under�weighting
the perturbations near the optical axis and� considering the magnitude of the appropriate
weighting� we should expect a strongly biased estimate�
In order to correct this problem we need to use the non�isotropic character of the covari�

ance matrix for the constraint vectors� A standard approach is to use the covariance matrix
to generate a cost function in the following manner� Consider the space of all constraint
vectors that are consistent with a given candidate translational direction �T � This is just
the plane perpendicular to �T � If this was the true translational direction� then the exact ��
must be in this plane� A natural choice for the cost of such translational direction is the
minimum squared distance between the measured constraint vector ����x n� and this plane�
where the distance metric is based on the covariance matrix Cn� That is� the cost is given
by the minimum value

min��� � �� ��x n��TC��n ��� � �� ��x n��� for �� � �T � ��
This problem is easily solved� and we �nd the minimum value corresponds to

�

��T TCn
�T �
��� ��x n� � �T ���

�
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Table ���� Results of the dithering method using a threshold of ��� on the signal to noise
ratio� and the scalar weight wn�

That is� the appropriate cost function can be viewed in the same general form �T TD��T ��T �

but for D��T � de�ned by

D��T � �
NX
n��

wn��T �����x
n��� ��x n� T � �����

with the weights

wn��T � �
�

��T TCn
�T �

���
�

Notice the weights depend on the translational velocity �T itself� and thus in general the
objective function �T TD��T ��T is no longer quadratic� We note in passing that by changing
the sign of this objective function we obtain an approximation to the log likelihood of the
translational direction �T � given all the constraint vectors �� ��x n� which pass the condition on
the signal to noise ratio� Thus we can view this approach as a maximum likelihood method�
as has been suggested in ��

�
There are� of course� techniques for �nding locally optimal values of non�quadratic ob�

jective functions� However� they require initial guesses and iterations� or alternatively� we
might consider directly sampling the unit sphere of possible translational directions on a
mesh to locate the minimum� The latter approach is similar to our earlier non�linear ap�
proach for �nding the translational direction ��
� and its use would largely eliminate the
bene�t of having linear constraints on the translational direction�
We would therefore like a quadratic objective function which e�ectively implements the

one above� At �rst glance this seems like an impossibility� However� the key idea is that
we are free to add noise to the constraint vectors �� ��x n� in order to alter their covariance
matrices� such a process is called dithering� If we can alter the covariance matrices Cn such
that they are all scalar multiples of the same matrix� say C�� then a simple �non�isotropic�

rescaling of �T will allow the nonquadratic objective function �T TD��T ��T to be written in an
equivalent quadratic form� Note that we cannot do this rescaling trick with the original
covariance matrices Cn since they are not all scalar multiples of each other� In particular�
their one standard deviation surfaces were shown to be pancake shaped� with the minor
axis of the pancake oriented along the mean sampling direction� As the mean sampling
direction changes� the minor axis changes� and the various covariance matrices cannot be
scalar multiples of each other� However� by dithering� we can pad the various pancakes so
they all have the same shape�
In this paper we simply dither the constraint vectors to ensure that the resulting one

standard deviation surfaces are all nearly spherical� For small angular extents this is rather
crude� in that the minor axes of the various ellipsoids are nearly aligned to begin with� and
a signi�cantly smaller amount of dithering would su�ce� However� for �� degree �elds of

��



view we would be faced with dithering to spherical surfaces� as implemented here�
In particular� consider a computed constraint vector �� ��x n� and the estimated covariance

matrix Cn of the form described in Section �� Two eigenvalues of Cn were shown to be
roughly ����u� while the third eigenvalue was a factor of 
� smaller� The third eigendirection
was shown to be roughly the mean sampling direction �x n for the nth patch� The dithering
we use is simply to add a random component to each constraint vector� �� ��x n�� in the mean
sampling direction �x n� with an amplitude given by a mean zero Gaussian process having
variance of ��dith � ����u���� � 


�

�� That is�

�dn � �� ��x n� �N�����dith��x
n�jj�xnjj� �����

The result of this dithering is that the covariance matrix of �dn has the minimum eigenvalue
of ���u��� which occurs twice� while the remaining eigenvalue is a factor of ����� larger �see
equation ������� Since � is between � and 
!� for all of the cases we are interested in here�

we conclude that the covariance matrices of �dn are roughly isotropic� �We could of course
dither in two directions to make the covariance perfectly isotropic� but remember that Cn

is only an approximation of the true covariance� Also� our results below indicate that this
extra dithering in not necessary in practice��

Each constraint vector is used to generate a dithered vector �dn� and these dithered con�
straint vectors are then used to generate

D �
NX
n��

wn
�dn�d

T
n �

Here the weights are chosen exactly as in Section �� namely wn is zero if the signal to noise
ratio of �� ��x n� is below a threshold� and otherwise wn � ���u���� Finally� the eigenvalues
of D are found� and the eigenvector corresponding to the minimum eigenvalue provides the
estimate for the translational direction� �We also check the ratio of the eigenvalues to detect
cases in which only partial information on the translational direction is recovered��
The results of this process are shown in Figure ��� and Table ���� For all practical

purposes� the bias is gone� The results in Table ��� show that the translation direction
can be recovered quite accurately even down to a �� degree angular extent� The standard
deviation of the estimate in the radial direction increases as the angular extent is reduced�
as is expected since the constraint lines become more parallel� However� the mean error in
the method is consistently less than the standard deviation of the responses� indicating that
the bias has virtually been eliminated� �There should be some bias left� since the dithered
constraints do not have perfectly isotropic covariances� but it now appears to be negligible��
The horizontal component of the translational direction was recovered to within a fraction
of a degree for all cases�
For the angular extent of � degrees we are approaching� or within� the domain of appli�

cability of techniques which rely on an orthographic approximation� such as the factoring
approach discussed in ���
� At this extreme we �nd that the eigenvalues values of the matrix
D are in the proportion �������
���� The fact that the last two eigenvalues have nearly the
same magnitude indicates that the translational direction is only weakly constrained within
the plane spanned by the last two eigendirections� The �rst eigendirection of D provides a
robust constraint that the true translational direction lies somewhere on the plane perpen�
dicular to it� which is accurate to about a tenth of a degree� The separation of the smallest

��



Figure 	��� Results for frame � of the Yosemite sequence� The dithering method was used
on ten di�erent runs �dots�� The error in the mean recovered translational direction is ���
degrees�

two eigenvalues increases as the angular extent increases� indicating that the translational
direction becomes more strongly constrained in this plane� In particular� the proportions
of the eigenvalues of D for the �� degree extent are typically �������	���� for 
� degrees we
have �
�������� and �nally for the 	� degree case the proportions are �
�������� Thus� the
proportions appear to be useful diagnostic of the nature of the information provided about
the translational direction� We note in passing that the ratios of the eigenvalues of D� gener�
ated by the basic method and the weighted method discussed above� does not provide such
a useful diagnostic� For example� in the � degree �eld of view the basic method produces
the proportions ��� ����
������ while the simple weighting produces ���
� ���������� Both
results indicate that the methods strongly constrain the translational direction to a unique
line� as is veri�ed by the small standard deviations of the observed responses �see Tables
��� and ����� The trouble is that a large part of this constraint is due entirely to the bias
in the method� Therefore situations in which the true constraints are nearly defective are
not identi�ed by the eigenvalues of the matrix D generated by the biased methods� By
destroying the bias� the dithering method avoids this problem�

� Yosemite Revisted

While the results of the dithering algorithm are an impressive improvement over the other
methods reported here� they are based on the use of simulated optical �ow data� As discussed
above� there are several additional di�culties we might expect to be confronted with given
real data� The two primary concerns are� �� optical �ow measurements are typically sparse�
and 
� given an environment with occlusion boundaries the optical �ow measurements will
typically have numerous outliers �see ��
��
There are two possible approaches to dealing with sparse data� In particular� the data

��



values might be interpolated on a uniform grid� In this case we can apply our approach
directly to the interpolated values� but we need to be concerned about correlations and
structure introduced in the errors through the interpolation process itself� Alternatively� we
might consider using only the sparse set of image points at which reliable estimates of optical
�ow can be obtained� In this case the coe�cient vector �cn cannot be precomputed since it
depends on the particular locations of the sample points� These coe�cients must satisfy six
linear equations �see Appendix A�� and an e�cient method for solving these equations is an
important area for further research�
There are also several possible approaches for dealing with the second problem� namely

that optical �ow methods must be expected to generate the occasional outlier� For example�
given that some information about the �D motion can be obtained with a crude method� we
might consider using this information to identify outliers in the data� Methods from robust
statistics could have an important application here�
For the purposes of this paper we simply demonstrate the existing algorithm on an optical

�ow �eld computed for the �synthetic� Yosemite image sequence� This sequence has been
used with our non�linear algorithm� which produced an error in the translational direction of
about � degrees ��
� Here we use a di�erent optical �ow �eld� namely one provided by Eero
Simoncelli generated using the method described in ���
� The �eld has been interpolated and
sampled on a regular grid� so the convolution method can be directly applied� Due to errors
in the interpolant near the borders of the image and near the horizon� we found it necessary
to crop the �ow �eld� In Figure 	�� the outside frame represents our usual 	� degree �eld of
view� the next largest rectangle represents the frame of the original Yosemite sequence� and
the inside rectangle represents the �eld of view in which we kept the optical �ow data�
The results of using �� di�erent noise samples in the dithering are shown in Figure 	���

To get this quality of result we needed to use a large convolution mask� In particular we
used a �� � �� square array formed by modifying a DOG mask with a center standard
deviation of � pixels and 	 for the surround �see Appendix A�� Successive taps for this mask
were separated by � pixels� since it was found that smaller masks generated only a planar
constraint on the translational direction� An additional 
� runs were performed �each run
took �� seconds on a SGI �D!���VGX and computed about ����� translation constraint
vectors�� and they generated a mean translational direction with an error of ��� degrees�
The standard deviation over these twenty runs was ��� degrees in the vertical direction and
��� degrees horizontally� These results compare favourably to those of our previous nonlinear
method�
In summary� we have identi�ed the cause of the bias in the basic linear subspace algo�

rithm for the recovery of the translational direction� Moreover� we have demonstrated a
simple method for its removal� The new method appears to be fairly robust and capable
of generating useful diagnostics of its performance� Further work needs to be done before
it can be generally applied to computed optical �ow �elds� However� the simplicity of the
underlying approach� the absence of extraneous local minima� and no need for an initial
guess or iterations� all provide strong motivating factors for pursuing this approach further�
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Appendix A�

Here we discuss the conditions on the coe�cient vector �c needed to ensure that the resulting
translation constraint vectors �� are orthogonal to the true translational direction� To do
this we �rst need the basic equations for the motion �eld induced by a rigid motion� Image
velocity� �u��x�� is de�ned as the derivatives� with respect to time� of the image coordinates

of the projection of a scene point �X�t�� Using the rigid motion equation �
���� and the
perspective projection equation

�x�t� �
�

X��t�
�X�t��

we �nd that the image velocity is given by �see �	
�

�u��x� � p��x�A��x��T �B��x���� �A���

Here p��x� � ��X� is inverse depth� �T is the translational velocity and �� is the rotational
velocity� Also� the matrices A and B are given by

A��x� �

�
� � �x�
� � �x�

�

B��x� �

� ��x�x�� �� � x�
�
� �x�

��� � x��� �x�x�� x�

�
�

The A��x� and B��x� matrices depend only on the image position �x� not on any of the un�
knowns� �Note that the image position �x is measured per unit focal length� so there is an
implicit dependence on f ��
The �rst step of our algorithm involves the premultiplication of the image velocity samples

by the matrix Q��x� de�ned in �
���� Using �A��� above� the resulting vector �q��x� is given by

�q��x� � p��x�Q��x�A��x��T �Q��x�B��x���� �A�
�

Here the product Q��x�A��x��T is easily seen to be

Q��x�A��x��T �

�
B�
� � �x�
�� � x�
x� �x� �

�
CA �T � �T � �x� �A��a�

where�� � denotes the usual vector cross product� Similarly� a straight forward calculation
shows that

Q��x�B��x��� �

�
B� ��� � x��� x�x� x�

x�x� ��� � x��� x�
x� x� ��x�� � x���

�
CA �� � �x� ��x� ���� �A��b�

��



Taken together� we �nd the simple expression for �q��x�

�q��x� � ��T � �x�p��x� � �x� ��x� ���� �A���

This form is su�cient to motivate the constraints on the coe�cient vector �c�
In particular we seek coe�cients which ensure that �� � �T vanishes�� for the translation

constraint vector de�ned by

�� �
KX
i��

ci�q��xi�� �A���

It is useful to �rst consider only the component of �q due to the translational velocity �i�e the
�rst term on the right hand side of �A����� Notice that the inner product of this term with
�T must vanish� for all image positions �xi� since the cross product �T � �xi is perpendicular to
�T � Thus� only the second term in �A��� contributes� and we �nd

�� � �T �
KX
i��

ci�T � ��xi � ��xi � ��

� �A�	�

Here �T � ��xi � ��xi � ��

� is simply a quadratic polynomial in terms of the image coordinates�

whose coe�cients depend on the particular values of �T and �� �compare equation �A��b���
In fact� it can be shown that any quadratic polynomial can be represented by a particular
choice of �T and ��� Therefore a su�cient condition for �� � �T to vanish is that the coe�cients
�c must be orthogonal to the samples of any quadratic polynomial�
We can write this condition on the coe�cients using a basis for the quadratic polynomials

on the image plane� say f�� x�� x�� x��� x�x�� x��g� This basis is evaluated at each image sample
point� �xi for i � �� � � � � N � and the results are collected into the ith column of a 	�N matrix
F � The condition that �c is perpendicular to the samples of any quadratic polynomial is
then equivalent to the condition that it is perpendicular to the samples of each of the basis
polynomials� that is

F�c � ��� �A���

Moreover� for generic sampling patterns� F is of full rank� so we can expect equation �A��� to
have a K �	 dimensional space of solutions� Note that the 	�dimensional space of quadratic
polynomials is invariant under a�ne deformations� Therefore the solution vectors of �A����
namely �c� can also be taken to be invariant of a�ne deformations of the sampling pattern�
As mentioned in Section 
� this invariance is important for the convolution form of our
algorithm�
A couple of other methods can be understood from this formulation� In particular� the

original nonlinear method described in ��� 	
 is equivalent to choosing the coe�cients �c such

that they annihilate the samples of all polynomials of the same general form �T � ��x� ��x� ��

�

The di�erence is that we treated �T as �xed �our candidate translational direction�� and

only varied the rotational velocity ��� As a result� we required only three conditions on
the coe�cients instead of six� However the extra three conditions depend on the particular
choice of �T � and thus the coe�cients �c also turn out� in general� to be functions of �T � In the
notation of this paper� the consequence of this is that the translation constraint vectors ��
themselves depend on �T � and we obtain nonlinear constraints of the form �� ��T � � �T � � on the
translational direction� In general we note that a priori constraints on the translational or

��



rotational velocities can be used to restrict the space of polynomials that the coe�cients must
be orthogonal to� thereby increasing the number of independent choices for the coe�cients�
A second variant is due to da Vitorio Lobo and Tsotsos ��
� They consider only sampling

patterns for which the sample points all lie on a line in the image plane passing through the
projection of the true translational direction� That is� �xi � �x�si� where

�x�s� � ��T � s�x��� �A���

and the vector �x� is assumed to have a zero third component� Substitution of this expression
for the sample points into �A�	� provides a polynomial that is quadratic in s� with the
constant term

�T � ��T � ��T � �

 � ��
Therefore� in this special case �A�	� takes the form

�� � �T �
KX
i��

cisi
h
a���T � ��� � a���T� ���si

i
�

for some coe�cients a� and a�� In particular the product cisi must be perpendicular to the
samples of any linear polynomial in s �i�e� the above expression for �� � �T should vanish for
any a� and a��� This constraint can be satis�ed given three or more distinct points f�x�si�g�i��
that are colinear and have the true translational direction on the same line� In such a case�
constant values for cisi� i � �� � � � �K can be computed for a particular sampling geometry�
Finally� in order to eliminate the �unknown� terms si� it is convenient to �rst expand the Q
matrix into the form

Q��x�s�� � Q��T � � s

�
B� � �

� �
�x��� x���

�
CA �

Upon substitution of this expansion into �� � �T we �nd the terms depending on Q��T � do not
contribute to the inner product� Moreover� the remaining terms involve only the product cisi�
which are in fact the constant coe�cients computed above� Therefore� we see the method of
da Vitorio Lobo and Tsotsos reduces to a constant coe�cient case in a novel way�
Returning to the method studied in this paper� we consider the constraint �A��� on

the coe�cient vector� As we mentioned above this constraint is independent of any a�ne
transformation of the sampling points� and depends only on the particular pattern of sample
points in the patch� Therefore in situations where the patches are all chosen to be the
same� such as the square l � l patches used in this paper� the same coe�cient vector �c can
be precomputed and used for all the patches� Here we use a coe�cient vector constructed
by modifying a DOG �Di�erence of Gaussians� mask so that it satis�es �A���� The center
standard deviation of the original DOG was ��� pixels� and the surround was set to � pixels�
A �� � �� set of �lter taps was used� These DOG coe�cients were modi�ed by adding
a quadratic polynomial which was windowed by the surround Gaussian �i�e� a Hermite
function�� The particular Hermite function added was uniquely determined by the constraint
�A���� The original DOG required only a small modi�cation� In addition� the result was
normalized so that

KX
k��

c�kn � �� �A���

��



Finally� in Section 	 we used an DOG operator of twice the size ��� � ���� with twice the
center and surround standard deviations listed above� This mask was modi�ed in a similar
way to satisfy �A����
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