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• Our system can represent uncertainty to make infer-
ences from ambiguous input.Understanding observations of interacting objects requires

one to reason about qualitative scene dynamics. For example, • Finally, our system generates such inferences directly
on observing a hand lifting a can, we may infer that an ‘‘active’’ from camera input.
hand is applying an upwards force (by grasping) to lift a ‘‘pas-

We postpone a more detailed discussion of related worksive’’ can. We present an implemented computational theory
until Section 8.that derives such dynamic descriptions directly from camera

This paper makes three central contributions. First, weinput. Our approach is based on an analysis of the Newtonian
provide an ontology suitable for producing interpretationsmechanics of a simplified scene model. Interpretations are ex-

pressed in terms of assertions about the kinematic and dynamic of image sequences in terms of the kinematic and dynamic
properties of the scene. The feasibility of interpretations relative properties of observed objects. Second, we provide a com-
to Newtonian mechanics is determined by a reduction to linear putational procedure to test the feasibility of such interpre-
programming. Finally, to select plausible interpretations, multi- tations by reducing the problem to a feasibility test in linear
ple feasible solutions are compared using a preference hierar- programming. Finally, we provide a theory of preference
chy. We provide computational examples to demonstrate that ordering between multiple interpretations along with anour model is sufficiently rich to describe a wide variety of image

efficient computational procedure to determine such or-sequences.  1997 Academic Press
derings.

2. OVERVIEW1. INTRODUCTION

It is useful to first present a brief overview of the mainBoth AI and psychology researchers have argued for
components of our system. Here we emphasize the basicthe need to represent ‘‘causal’’ information about the world
intuition behind each of the components and the prerequi-in order to make inferences. In particular, understanding
sites for their use. In later sections we describe each of themotion sequences requires the observer to postulate forces
components in detail and present experimental results.on objects and force transfer between interacting objects.

We provide this overview in terms of a single illustrativeIn this paper we make these ideas precise with an imple-
example, the coke sequence, shown on the top row ofmented system that can make causal inferences directly
Fig. 1. (The sequences displayed there are used for thefrom video sequences.
computational examples in Section 7.) In particular, a handThe use of domain knowledge by a vision system has
is reaching for, grasping, and then lifting a coke can off abeen studied extensively for both static and motion do-
desk top. As mentioned in the Introduction, our eventualmains. Our work addresses a number of important limita-
goal is to have a machine vision system that, when giventions in prior work:
image sequences such as this one, can understand the basic

• Our system models kinematic and dynamic informa- force generation and force transfer relationships of the
tion about the world, in addition to static information avail- various objects in the scene. For this example sequence
able from a single frame. the system should understand that the can is initially sup-

• Our system embodies a sound inference procedure ported by the table and that the hand (and arm) is possibly
based on an explicit physical theory. an ‘‘active object.’’ Roughly speaking, an active object is

something that can generate forces other than those due
1 Correspondence should be sent to A. Jepson, Department of Com-

to gravity, friction, and acceleration. Objects that are notputer Science, University of Toronto, 6 Kings College Road, Toronto,
active, such as the table and the coke can, are said to beOntario M5S 3H5. Tel: 416/978-6488; Fax: 416/978-1455; E-mail:

jepson@cs.toronto.edu. ‘‘passive objects.’’ Later, during the lifting phase of this
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FIG. 1. The example sequences: coke, cars, hit, arch, and tip. The frame numbers are given below each image.

sequence, if the system remembers that it has determined This goal of understanding forces and dynamics given
image sequences is an ambitious one. Obviously, we dothat the hand is an active object, then it should conclude

that the hand is attached to the coke can (i.e., grasping it) not achieve it completely here. However, we do present
an implementation that takes us much of the way to ourand applying an upward force on it.
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goal, albeit in a simple domain. The critical simplifications additional properties of the various interpretations. Note
that in this example, the system is not given any furtherare: (1) objects are represented as rigid 2D polygons in a

layered 2D representation; (2) the analysis is based on information about the objects, so, in particular, the objects
are all considered equally likely to be active.only the instantaneous motion of the objects, not on the

behavior of the objects throughout the sequence. Such a To supply the scene information not included in the
configuration, we consider assertions taken from a limitedrepresentation provides a crude but useful approximation

for a variety of situations, including all the sequences de- set of possibilities. These assertions correspond to our
hypotheses about the basic force generation and forcepicted in Fig. 1. Moreover, the simplicity of the domain

serves to highlight the basic principles behind our ap- transfer relationships between objects. For brevity, we con-
strain ourselves here to only those assertions that play aproach. It is our belief that these principles can be applied

to general 3D problems and to problems involving integra- significant role in the coke sequence. The full set is pro-
vided in Section 3. In particular, here we need the followingtion of inferences through time.
three types of assertions:

2.1. An Outline of the Approach 1. CONTACT(o1 , o2 , c)—objects o1 and o2 contact in the
scene with the region of contact c;To reason about dynamic properties of the objects in

the scene, we use the equations of Newtonian mechanics. 2. ATTACH(o1 , o2 , p)—objects o1 and o2 are attached
at some set p of points in the contact region;Given a concrete hypothesis about the scene content, we

simply express the corresponding equations of Newtonian 3. BODYMOTOR(o)—object o has a ‘‘body motor.’’
mechanics in a suitable form and check to see whether
they have a feasible solution. The intuitive meanings of these assertions are: (1) objects

o1 and o2 are contacting, either in depth or abutting; (2)This physics-based approach places stringent require-
ments on the richness and the level of detail of the underly- objects o1 and o2 are attached on some set p of points in

the contact region; these attachment points are functionallying scene model. Indeed, we have the basic requirement
that the geometry of the scene must be completely specified equivalent to rivets, fastening the objects together; (3) ob-

ject o can generate an arbitrary force and torque on itself,in order to express these equations. That is, we need to
know object shape and placement, along with the surfaces as if it had several thrusters. Note that the attachment

assertion is properly understood to be a characterizationof contact between objects. In addition, we need estimates
for the velocities and accelerations of the observed objects. of the types of forces supported at the attachment points.

Attached objects can be pulled, pushed, and sheared with-We also need to assume something about the distribution
of mass within each object. For our purposes here, we out coming apart. Without attachment, contacting objects

may separate or slide on each other, depending on thesimply take an object’s center of mass to be its centroid,
as if it had a uniform mass distribution. The total mass applied forces and on the coefficient of friction. The precise

choice of these kinematic and dynamic assertions is notand the inertial tensor are treated as constrained unknowns
when the system checks for a feasible solution. In summary, critical for the purpose of this paper. What is important is

that they are sufficiently rich to describe a wide varietya strong prerequisite on the hypothesis-generation mecha-
nism is that a rather detailed description of the scene is of phenomena.

Note that, given the hand and can polygons in Fig. 2,needed before the physics-based modeling can be applied.
It is convenient to define a configuration to be the there is no evidence that any of these assertions are individ-

ually true or false. It is for this reason that neither they, norset of scene properties that are necessarily present, given
the image data and any restrictions inherent in the their negations, belong to the configuration. Furthermore,

notice that some sets of assertions are not admissible inontology. For example, in the current system, the posi-
tions, velocities, and accelerations of the objects are that they violate basic constraints for their application. For

example, two objects cannot be both attached and notprovided by the image observations, and the positions
of the centers of mass are fixed, by our ontology, to be contacting. Moreover, some sets of assertions are not com-

plete in that they leave some properties unspecified. Weat the object centroids.
For a concrete example, consider the lifting phase in the define an interpretation to be a combination of a configura-

tion along with an admissible and complete set of assertionscoke sequence. Through the use of a tracking algorithm,
we obtain the 2D positions, velocities, and accelerations that fully specify the scene.

Given any interpretation, we can check the feasibilityof polygons that roughly describe the shapes of the scene
objects. This information, along with a line denoting the according to whether or not a ‘‘force balance’’ exists in

our physics-based model. This feasibility test can, to atable surface, constitutes the configuration. The hand and
can polygons provided by the tracker are displayed in Fig. good approximation, be reduced to a linear programming

problem (see Section 5).2, along with other symbols, discussed below, which denote
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FIG. 2. The preference ordering for the five feasible interpretations of a single frame during the lifting phase of the coke sequence. The arrows
indicate a preference relation between two interpretations while the tilde indicates that two interpretations are equally preferred. A large open
circle at the object center denotes a BODYMOTOR; the large disks at the vertices of the polygons denote ATTACHed objects; the small disks at the
vertices of the polygons denote CONTACTing objects. A textual form of the assertions appears adjacent to each interpretation. The three levels of
priority are represented by each line of text. Note that the absence of an assertion denotes its negation.

For the lifting phase of the coke sequence, there 2.2. Preferred Explanations
are five feasible interpretations within our ontology, as

Up to this point we have discussed the nature of andisplayed in Fig. 2. Note that each interpretation has a
interpretation in terms of a scene configuration along withfeasible force balance, given that we can adjust both the
assertions that specify further dynamic and kinematicmasses and the forces generated by the body motors.
properties. We pointed out that the feasibility of such anIn contrast, any interpretation without a body motor
interpretation can be checked using a physics-based modelis infeasible since the vertical acceleration cannot be
for the forces involved along with the admissibility of the‘‘explained’’ (i.e., balanced with a corresponding force).
assertions. However, given a fairly rich ontology, it is com-Similarly, the active hand in the top left interpretation
mon for there to be multiple feasible interpretations for ain Fig. 2 must be attached to the can since, in our
given scene configuration (see Fig. 2).ontology, we do not model forces in depth. This means,

Indeed, given that a body motor is capable of generat-in turn, that the physics-based model cannot generate a
ing an arbitrary force and torque on the object possessingfrictional force between the hand and the can. So, without
it, it follows that for any scene configuration there isattachment, the observed vertical acceleration of the can
always at least one trivial interpretation in which everycannot be balanced with a vertical force. While this sort
object has a body motor. The bottom three interpretationsof ‘‘reasoning’’ seems sophisticated, it simply relies on
in Fig. 2 are examples of such trivial solutions. Theythe feasibility of linear programming problems that the
are guaranteed to pass the force-balance feasibility crite-system can pose for itself.
rion and, as such, are not very informative interpretationsA naive system would generate all feasible interpreta-
on their own. Rather, we seek interpretations that require,tions thereby producing all (and only) the interpretations
in some specified sense, the weakest properties of thedepicted in Fig. 2. Our algorithm, however, does not gener-
various objects.ate all such feasible interpretations since, as we discuss

Model preference relations, as discussed by Richards,next, many of these interpretations are not of interest. It
turns out that the algorithm need not evaluate all interpre- Jepson, and Feldman [27], can be used to express suitable

preference orderings. The basic idea is simple, namely totations in order to find the interesting ones.



PERCEPTION OF SCENE DYNAMICS 117

compare two different interpretations in terms of a priori- This approach to preference ordering will not always
yield a unique preferred interpretation. Therefore, multi-tized set of elementary preference relations. Our current

ontology includes the elementary preference for the ab- ple percepts are possible. For example, in the coke se-
quence there are two maximally preferred interpretations:sence of the assertion BODYMOTOR(o) for each object o.

In other words, we prefer to see a particular object as either the hand is lifting the can, or vice versa. Given that
our ontology includes nothing about hands or cans, thata passive object, if feasible, given that other elementary

preference relations do not contradict this preference. In is, we just have moving polygons and notions of mass and
force, arriving at these two interpretations for this singleaddition, we prefer the absence of a kinematic constraint

of attachment between two objects over the presence of frame is intuitively the right thing to do. Indeed, Jepson
and Richards [16] and Richards, Jepson, and Feldman [27]such a constraint. Finally, we are indifferent as to whether

we assert that two objects are contacting or not (always propose that such maximal interpretations provide a com-
putational model for a ‘‘percept.’’ Moreover, Richards,assuming admissibility and feasibility).

These three elementary preference relations are taken Jepson, and Feldman [27] explore the relationship between
such preference orderings and qualitative probabilisticto be stratified in terms of priority. In particular, the prefer-

ence for the absence of a body motor is taken to have models (see also Jepson, Richards, and Knill [17]).
a higher priority than the preference for no attachment.
Finally, we have no elementary preference relation for

2.3. Implementation and Limitations
contact over no contact—these two situations are consid-
ered to be equally preferable. This priority ordering is Our current implementation has a number of limitations.

One limitation is that our system uses a 2D layered repre-indicated in Fig. 2 by listing the assertions adjacent to each
interpretation. Assertions are placed on different lines to sentation. Given this limited representation, we can pro-

cess only fronto-parallel scenes and cannot reason aboutindicate their priority. It is convenient to place contact
assertions on the bottom row even though there is no occlusion or motion in depth. This is a reasonable approxi-

mation if we assume that objects move in planes roughlypreference between different contact assertions.
Given these three elementary preference relations along fronto-parallel to the camera. Furthermore, we believe that

this limitation is not fundamental to our general approach.with the priority ordering, the induced ordering on our five
feasible interpretations for the coke example is provided In particular, our current system is able to reason about

3D scenes given suitable 3D input. We are currently in-simply by a prioritized subset ordering. In particular, sup-
pose one is given two feasible interpretations along with vestigating approaches for tracking 3D deforming objects

such as the methods described by Black and Jepson [3].their corresponding assertion sets. If, at the highest level
of priorty, one interpretation’s assertion set is a strict subset Another limitation is that our system does not currently

integrate information over time or reason about objectof the other’s, then that interpretation is preferred. For
example, the top left interpretation in Fig. 2 is preferred properties. For example, consider the coke sequence once

again. During the reaching phase of this sequence, theover the three lower interpretations because it does not
assert a body motor on the can. In a sense, not needing a hand is seen to be above the table and moving horizontally.

Our system concludes that the hand must be an activebody motor is considered to be major simplification in
what the various objects are asserted to be capable of object while the coke can could be passive and at rest on

the table. This is the unique maximally preferred solutiondoing. Thus the preference against body motors is placed
at a high priority. for this frame. As we have just shown, however, there are

multiple interpretations of the scene during the subsequentAlternatively, if the assertion sets at the highest priority
do not satisfy a subset relation, the interpretations are lifting phase; either the hand or the coke can could be

active, but not both. Since our system lacks prior knowl-considered to be unordered. For example, the top two
interpretations in Fig. 2 are considered unordered since edge of object capabilities (such as the fact that hands are

typically active, and coke cans are typically passive) andthe body motor is on different objects. If the sets at the
highest priority are the same, we check the assertions at does not integrate conclusions over time (such as noticing

that it previously concluded the hand must be active), thethe next lower priority. For example, the three lower inter-
pretations in Fig. 2 all contain the same motor assertions, system is left with multiple interpretations for the lifting

phase.but they can be further ordered, based on minimizing the
attachment. Finally, if interpretations agree on both motor Finally, our system is limited in that object velocities

and accelerations are taken to be continuous functions ofand attachment assertions, we are indifferent as to the
preference relation. This occurs in Fig. 2 for the middle time. In particular, we do not consider force impulses that

give rise to step discontinuities in the velocities.two interpretations, since these differ only in terms of their
contact relations. (Indifference between the two interpre- Despite these limitations, we are left with a surprisingly

rich domain, as is indicated by the variety of computationaltations is denoted by the tilde in Fig. 2.)
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examples displayed in Fig. 1. We return to these limitations are left as free parameters (constrained to be positive) that
can be adjusted by the physics-based model in order toand ways to overcome them in Section 9.
find a feasible solution.

We also need estimates of the inertial tensors for objects.3. ONTOLOGY
For the case of two-dimensional motion considered in this
paper, the inertial tensor I is a scalar. In order to reflectIn this section, we discuss the details of the representa-
the uncertainty of the actual mass distribution, we allowtion used in the implementation and motivate some of the
a range for I. An upper bound for I is provided by consider-choices made. As discussed above, our current implemen-
ing an extreme case, where all of the mass is placed at thetation uses a layered 2D representation of the scene. In
furthest point from the center. A lower bound is providedaddition, we assume that we are given estimates for the
by considering an alternate case where all of the mass isobject velocities and accelerations at some point in time
distributed uniformly inside a disk inscribed in the object.where the motion is continuous.
Together, these provide the constraintGiven this simplified domain, we now describe the ontol-

ogy necessary to represent interpretations. We begin with
a description of the kinematic and dynamic properties of AsMr2

min # I # Mr2
max , (1)

the configuration, followed by a description of the asser-
tions. where M is the object mass and rmin and rmax are the mini-

mum and maximum radii of the object, respectively.
3.1. Kinematic Model An object is subject to gravitational and inertial forces

and to forces and torques resulting from contact with otherThe basic primitive for an object part is a rigid two-
objects. The dynamics of the object under these forces isdimensional convex polygon. A single object is a rigid union
obtained from the physics-based model described in detailof convex polygons. To represent the spatial relationships
in Section 5.between objects in the scene we use a layered scene model.

Finally, particular objects may be denoted as ground.In our layered model there is no depth ordering. Instead,
We typically use this for the table top. Forces need not bewe represent only whether two objects are in the same
balanced for objects designated as ground.layer, in adjacent layers, or in layers separated in depth.

Objects can contact either within the same layer or between 3.3. Assertions and Interpretations
adjacent layers. The first type of contact, called abutting

We denote an interpretation constructed from a config-contact, occurs when two objects in the same layer contact
uration C and an assertion set A as i 5 (C, A). For ourat a point or at an edge along their boundary. The second
system, C consists of the object positions, velocities, accel-type of contact, called overlapping contact, occurs when
erations, polygonal shapes, and centroids. The assertionstwo objects in adjacent depth layers contact over part of
A describe additional kinematic and dynamic constraintstheir surfaces and the region of overlap has a nonzero area.
on the objects.We denote both types of contact by CONTACT(o1 , o2 , c),

Currently, our implementation uses the two types ofwhere o1 and o2 are the objects and c is a contact region
kinematic assertions defined in Section 2, CONTACT(o1 , o2 ,between the two objects.
c) and ATTACH(o1 , o2 , p), along with their negations. TheIn addition to position information, the relative motion
admissibility constraints for contact are discussed in Sec-of objects constrains their allowable contact and layer
tion 3.1 above. The admissibility constraints for attachmentrelations. In the case of abutting contacts, contact is
require that, in addition to contact, two objects do notadmissible only when the relative velocity of the con-
exhibit relative motion and that the set p of attachmenttacting objects is tangential to the contact region (i.e.,
points is contained within the intersection of the objectobjects can slide along their contact region, but they
polygons.cannot penetrate or separate). In the case of overlapping

In addition to kinematic assertions, we have the follow-contacts, the objects must be in different layers. Finally,
ing three types of dynamic assertions, along with their ne-the relative depth of objects that do not overlap or abut
gations:is left unspecified.

• BODYMOTOR(o)—object o has a ‘‘body motor’’ that
3.2. Dynamic Model

can generate an arbitrary force and torque on itself;
• LINEARMOTOR(o1 , o2 , c)—a linear motor exists be-In order to perform force balancing we need each ob-

ject’s center of mass, total mass, and moment of inertia. tween the abutting objects o1 and o2 . This motor can gener-
ate an arbitrary tangential shear force across the motorTo determine these properties from image data, we assume

that the center of mass of each object is taken to be at region c. This region must be contained within the contact
region between the objects;that object’s geometric center. Object masses, however,
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• ANGULARMOTOR(o1 , o2 , p)—an angular motor exists lation procedure (see [22] for details). Specifically, at each
point in time, we robustly fit a cubic polynomial to theat a single point p that can generate an arbitrary torque

about that point. p must be within the contact region be- data over a sliding temporal window that is seven frames
wide. We then differentiate these polynomials to obtaintween the objects.
estimates for the velocity, acceleration, angular velocity,

The notion of a body motor was introduced in Section 2. and angular acceleration of each object. Often, a single
Linear motors are used to generate a shear force across polynomial will not fit the pose data. For example, if there
an abutment (providing an abstraction for the tread on a is a step change in velocity or acceleration (e.g., due to a
bulldozer). Angular motors are used to generate torques collision or a change in contact between objects), a single
at joints. polynomial will provide inaccurate estimates near the dis-

We apply the following admissibility constraints to sets continuity. Our system avoids this problem by fitting two
of motor assertions. Body motors are admissible on all or more polynomials to the data within each temporal
objects. Linear motors are admissible only at contacts window. In addition, we allow outliers to be excluded from
where the direction for application of tangential force can the fitting process. Note that while this approach will elimi-
be defined. Thus linear motors are admissible only at point- nate biased estimates of velocity and acceleration near a
to-edge and edge-to-edge abutments but not at point-to- discontinuity, the velocities and accelerations at the discon-
point abutments or overlapping contacts. Angular motors tinuities themselves are not defined. As described in Sec-
are admissible only at a single point within the contact tion 2, since our system assumes continuous motion, the
region between two objects and the objects must be interpretations formed at motion discontinuities will often
attached at this point. be anomalous. We return to this issue when we show exper-

imental results in Section 7.
4. GENERATING HYPOTHESES As discussed in the previous section, this position, veloc-

ity, acceleration, and shape data constitute the configura-
In order to demonstrate the applicability of our approach tion component C of any interpretation. In order to hy-

to camera input we have developed a complete implemen- pothesize an interpretation, we therefore need to select an
tation for the simplified domain described in Section 3. admissible and complete set of assertions A.
We describe the various components of our implementa-
tion below.

4.2. Assertions

4.1. Configuration In order to explore the space of possible interpretations,
we must first construct a set of admissible assertions. GivenTo acquire the position and orientation of the object
that the allowable forces between objects depend on thepolygons for each frame we use a view-based tracking algo-
contact geometry and the relative motion of the objectsrithm similar to the optical flow and stereo disparity algo-
[8, 2], an analysis of the scene kinematics is necessary.rithms described in [15, 14]. (The full details of the tracking
Since we do not have exact shape or motion information,algorithm are described in [22].) In particular, a template
however, we need a way to determine which contact rela-image is provided for each object, along with information
tions are possible. In general, to determine the possibleabout where the object is located within the template.
contact relations we must consider interactions among allGiven an initial guess for the positions of the objects in
the objects. For the purposes of this paper, however, wethe first frame, the tracking algorithm then estimates the
implement a partial test in which we consider only pairwisetwo-dimensional position and orientation of these initial
constraints between objects. (We will see some examples oftemplates throughout the image sequence by matching the
the limitations of this test in the experiments in Section 7.)templates to each successive frame. The position of the

According to our ontology, contacting objects must ei-object polygons is then obtained by mapping the original
ther abut or overlap. We can classify the contact type byoutlines according to these estimated positions.
examining the region of intersection between objects. If theThe process of matching the template to each frame is
width of the intersection region is greater than a specifiedrobust. That is, poorly matching pixels, called outliers, are
tolerance the contact type must be overlap.2 If the widthrejected so they do not affect the estimation. For this rea-
of the intersection region is less than that tolerance, weson, the shape of the template is not critical so long as it
assume the contact type to be abutment. Overlapping con-contains a significant portion of the object to be tracked.
tact is always admissible. Abutting contact, however, mustNote that robustness also allows the tracker to deal with
satisfy the additional constraint that the relative motionobjects that have changing occlusion relationships. (We

show such examples in Section 7.)
Given the pose (that is, x(t), y(t), and u(t)) of the objects 2 For each of the experiments reported in Section 7 we selected a single

intersection tolerance. The value used was between 4 and 8 pixels.in each frame, we estimate the motion by a robust interpo-
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of the two objects be tangential to the boundary between balance. In particular, we show how the test for consistency
within the physical theory can be expressed as a set ofthose objects.3 Abutting contacts that do not satisfy this

constraint are inadmissible. Furthermore, abutment is not algebraic constraints that, when provided with an admissi-
ble interpretation, can be tested with linear programming.admissible for objects in point-to-point contact, except

when the objects are attached at the contact point. We use a ‘‘force balancing’’ approach similar to that pro-
posed by Blum et al. [4]. Our approach, however, modelsAn attachment relation between two objects is admissi-

ble only when those two objects are in contact and their dynamics as well as static force balancing.
In this section, we present a theory for the general three-relative velocities and accelerations at the attachment

points are less than a specified tolerance. Given contact dimensional case. The experimental results we describe
later were produced using a two-dimensional variant ofbetween two objects, our ontology allows attachment at

any set of points in the contact region. To reduce the this theory.
For rigid bodies under continuous motion, the dynamicsnumber of hypotheses that we need to consider, however,

we restrict attachment to the vertices of the perimeter of are described by the Newton–Euler equations of motion
[12]. For rigid bodies of nonvarying mass, the appropriatethe contact region. Furthermore, in the system described

here we consider only those hypotheses where all such equations are
vertices are attached.

Given the contact and attachment relations, the admissi- F 5 ṗ
bility of the dynamic assertions is determined as follows. 5 Mv̇ (2)
BODYMOTOR(o) is always admissible for any object o.

N 5 L̇LINEARMOTOR(o1 , o2 , c) is admissible for any pair of abut-
5 Iġ 1 g 3 Ig (3)ting objects o1 and o2 and c is the contact region. Finally,

ANGULARMOTOR(o1 , o2 , p) is admissible at any pair of
The first equation relates the total applied force F to theattached objects o1 and o2 , where p is the attachment point.
rate of change of linear momentum ṗ. For bodies withOur current implementation allows angular motors only
nonvarying mass, this reduces to Mv̇, where M is the objectwhen the contact region is a single point, that is, when the
mass and v̇ is the acceleration. The second equation relatescontact type is either point-to-point or point-to-edge. In
the total applied torque N to the rate of change of angularthis case, the point p is uniquely determined.
momentum L̇. For rigid bodies, the rate of change of angu-Given this specification, it is now possible to generate
lar momentum is given by Iġ 1 g 3 Ig, where I is theall admissible interpretations for a given frame of the image
inertial tensor, g is the angular velocity, and ġ is the angu-sequence. These are obtained from the configuration pro-
lar acceleration.vided by the tracker combined with every admissible and

Given a scene with convex polygonal objects, we cancomplete set of assertions.
represent the forces between contacting objects by a setAmong all possible interpretations we must select those
of forces acting on the vertices of the convex hull of theirthat are feasible, namely those that satisfy our physical
contact region [8]. Under this simplification, the equationstheory. Nominally we would have to consider preference
of motion for each object can be written asrelations between all feasible interpretations. In practice,

however, we avoid generating this full set of feasible inter-
pretations by exploiting the structure of our domain to Mv̇ 5 Mg 1 Fb 1 O

c[G

dc O
p[c

Fp (4)
reduce the search space. Before we discuss the search algo-
rithm, however, we first describe the mechanism for check-
ing the feasibility of an interpretation. Iġ 1 g 3 Ig 5 Nb 1 O

c[G

dc SO
p[c

Np 1 (rp 2 r) 3 FpD , (5)

5. FEASIBLE INTERPRETATIONS
where g is the acceleration due to gravity, r is the center
of gravity of the object, rp is the position of point p, andGiven a configuration of the scene objects along with a
Fb and Nb are unknown body forces and torques that mayset of assertions about the kinematic and dynamic proper-
act upon the object. We use the body forces and torquesties of the scene, we can use a theory of dynamics to
to implement the BODYMOTOR assertion in our ontology.determine whether the interpretation has a feasible force
G denotes the set of contact regions involving the object.
For each contact region c [ G we add the forces Fp at each

3 To enforce tangential motion, the magnitude of the normal compo- contact point p [ c. In addition, we allow terms Np at each
nent of the velocity and acceleration must be below a specified tolerance.

contact point. These are used to implement the ANGU-For each of the experiments reported in Section 7 a single tolerance
LARMOTOR assertions in our ontology. Finally, the torquesvalue was chosen. The velocity tolerance was between 1.0 and 2.0 pixels/

frame. The acceleration tolerance was between 0.5 and 1.0 pixels/frame.2 dc [ h21, 1j encode the direction of the contact forces.
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The signs of dc are arbitrary as long as they are consistent respectively. Note that the use of tolerances is necessary
since the observed motion will never be exactly zero.between contacting objects.

Since all of the above equations and inequalities are
5.1. Contact Conditions linear, dynamic feasibility can be reduced to a feasibility

test using linear programming [21].Assuming that there are no degenerate contacts we can
represent each contact region c by a set of one or more

6. PREFERENCEScontact points and a vector nc normal to the contact region.
Contact points that are not asserted to be ATTACHed must As described in Section 3, we have a fixed set of elemen-
obey the normal force constraint tary preference relations, namely

• Pbodymotor(o) : ¬ BODYMOTOR(o) s BODYMOTOR(o);Fp ? nc $ 0, (6)
• Plinearmotor(c) : ¬ LINEARMOTOR(o1 , o2 , c) s LIN-

EARMOTOR(o1 , o2 , c);where Fp is the contact force at each point p [ c.
• Pangularmotor(c) : ¬ ANGULARMOTOR(o1 , o2 , p) s ANGU-In addition, contact points that are not part of a

LARMOTOR(o1 , o2 , p).LINEARMOTOR will have tangential forces limited by fric-
tion. When the relative velocity at the contact point is Here ¬ denotes the negation of the predicate that follows
zero we constrain the tangential forces by a Coloumbic and s denotes the preference relation. These elementary
friction model preference relations all encode the specification that it is

preferable not to resort to the use of a motor, all else being
equal. These elementary preference relations appear atiFt

pi # erFn
p , (7)

the highest priority (recall Fig. 2).
At the next level of priority we havewhere Ft

p is the tangential component and Fn
p is the normal

component of the contact force. The coefficient er is the • Pattach(o1 , o2 , p) : ¬ ATTACH(o1 , o2 , p) s ATTACH(o1 ,
coefficient of resting friction. In the case of objects with o2 , p),
relative motion, we limit the tangential forces as above,

so the absence of an attachment assertion is also preferred.but use a different coefficient es , the coefficient of sliding
Finally, at the lowest level of priority, we have the indif-friction. In general we will have es , er . In addition to the

ference relationmagnitude constraint, we also need to limit the direction of
sliding friction to be opposing the direction of motion. This • Pcontact(o1 , o2 , c) : ¬ CONTACT(o1 , o2 , c) p CON-
is achieved by the additional constraint TACT(o1 , o2 , c),

so the system is indifferent to the presence or absence ofFp ? vp # 0, (8)
contact, all else being equal.

We wish to find interpretations that are maximally-pre-
where vp is the relative velocity of the contact point, p, ferred subject to these preference relations. In this paper
within the contact plane. we consider a special case of the more general orderings

described by Richards, Jepson, and Feldman [27], where
5.2. Testing Feasibility

the elementary preference relations can be of the form
P(x) s Q(x) for predicates P and Q. In addition, we adoptAn interpretation is feasible if the motion equations can

be satisfied subject to the contact conditions and the the convection that the absence of an assertion indicates
its negation. Thus all of the above preferences, except forbounds on the mass and inertia described in Section 3.2.

We can approximate these constraints by a set of linear the indifference to contact, have a particularly simple form:
a preference for the negation of an assertion over theequalities and inequalities as follows. We write the normal

force and sliding friction constraints directly. The motion assertion itself.
When the elementary preferences can be written in thisequations can be written as a set of linear equalities by

taking the x, y, and z components separately. We can simple form, the induced preference relation on interpreta-
tions is given by prioritized subset ordering on the set ofapproximate the bounds on the magnitude of the tangential

component of the frictional forces by restricting the magni- assertions made in the various feasible interpretations. As
described in Section 2, we can determine the preferencetude in a set of two or more component directions.

Finally, we add conditions on the body forces and tor- order for any two interpretations by first comparing the
assertions made at the highest priority. If the highest prior-ques based on the assertions in A. For passive objects, we

constrain each of the component directions of the body ity assertions in one interpretation are a subset of the
highest priority assertions in a second interpretation, theforces and torques to be zero, within tolerances F0 and N0 ,
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first interpretation is preferred. Otherwise, if the two sets plane is not critical, so long as it can be provided to the
system in the first frame. Given this input, the trackerof assertions at this priority are not ordered by the subset

relation, that is neither set contains the other, then the two provides estimates for the object poses and motions in
each frame of the sequence. These estimates, along withinterpretations are considered to be unordered. Finally, in

the case that the assertions at the highest priority are the the polygonal shapes, are used by the interpretation-
construction module.same in both interpretations, then we check the assertions

at the next lower priority, and so on. This approach, based Figures 3 and 4 show the output of the tracker for the
coke and tip sequences, respectively. (Tracking data forupon prioritized ordering of elementary preference rela-

tions, is similar to prioritized circumscription [23]. all sequences is given in [22].) In each figure, the upper
left graph shows the estimates for the x and y componentTo find maximally preferred interpretations, we search

the space of possible interpretations. We perform a velocities of the object polygons, while the upper right
graph shows the estimates for the angular velocities. Thebreadth-first search, starting with the empty set of asser-

tions, incrementally adding new assertions to this set. Each lower graphs show the corresponding estimates for the
linear and angular accelerations. Note that while the esti-branch of the search terminates upon finding a minimal

set of assertions required for feasible force balancing. Note mates are somewhat noisy, we can clearly interpret the
event structure from the graphs. In Fig. 3, for example, wethat because we are indifferent to contacts, we explore

every admissible set of contact assertions at each stage of can distinguish the two distinct phases (reaching and lift-
ing) by examining the velocity and acceleration of the handthe search. In theory, this search could require the testing

of every possible interpretation. In practice, however, we and the can. Figure 4 shows an example that demonstrates
the necessity for the robust interpolation algorithm de-often examine only a fraction of the interpretations since

the search terminates upon finding minimal assertion sets. scribed in Section 4.1. Even though there are sharp changes
in the velocities and accelerations, our interpolation algo-Furthermore, when the assertions are stratified by a set

of priorities, we can achieve significant computational sav- rithm was able to obtain reasonable estimates of the
motion.ings by performing the search over each priority level sepa-

rately. For example, under our preference ordering, we can Figure 6 shows some of the preferred interpretations
found for selected frames from each sequence. (Note thatsearch for minimal sets of motors using only interpretations

that contain all admissible attachments. It is critical to note the selected frames do not necessarily match those shown
in Fig. 1.) For each sequence we show frames ordered fromthat this algorithm is correct only because of the special

structure of the assertions and the domain. The critical left to right. A legend of symbols used to indicate assertions
is shown in Fig. 5. To simplify the presentation, exceptproperty is that if there is a feasible interpretation i 5 (C,

A) and if A9 is the set obtained by adding all of the admissi- for the cars sequence, we show only the interpretations
involving body motors. For the cars sequence we showble attachments to A, then the interpretation i 5 (C, A9)

is also feasible. This property justifies the algorithm above, only those interpretations using linear motors. While the
preferred interpretations are often unique, at times therewhere we set all of the lower priority assertions to the

most permissive settings during each stage of the minimiza- are multiple interpretations, particularly when objects in-
teract. We highlight frames with multiple preferred inter-tion. In general we refer to this property as monotonicity.

(Details of the search algorithm and a proof of correctness pretations by grey shading.
Our machine interpretations are surprisingly intuitive.are given in [22].)

For example, the difference between interpretations 1 and
2 in frame 63 of the coke sequence can be interpreted as7. EXPERIMENTAL RESULTS
the hand ‘‘lifting’’ the can versus the can ‘‘lifting’’ the hand.
Similarly, the difference between interpretations 1 and 2We have applied our system to several image sequences

taken from a desktop environment (see Fig. 1). The se- in frame 34 of the cars sequence can be interpreted as
the rear car ‘‘pushing’’ the front car versus the front carquences were taken from a video camera attached to a

SunVideo imaging system. MPEG image sequences were ‘‘pulling’’ the rear car. Note that the system correctly hy-
pothesizes an attachment between the front and rear carsacquired at a rate of 30 frames per second and a resolution

of 320 3 240 pixels. The 24-bit color image sequences were in the ‘‘pulling’’ interpretation, but it does not do so in
the ‘‘pushing’’ interpretation. Note that without interframeconverted to 8-bit grey-scale images used by the tracker.

The input to our system consists of an image sequence, analysis or prior information about the objects, all of these
interpretations are reasonable.a set of object template images, a polygonal outline of each

object, and an estimate for the positions of the objects In addition to making inferences about which objects
have motors and which objects are attached, our system canwithin the first frame. In addition, we provide an estimate

for the ground plane, which is designated as a ground object also make inferences about the contact relations between
objects in the scene. For example, during the reachingin our ontology. Note that the exact shape of the ground
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FIG. 3. Tracking results for the coke sequence using the view-based tracker followed by the robust interpolation algorithm. The top row shows
the estimates for velocity and angular velocity. The bottom row shows the estimates for acceleration and angular acceleration.

phase of the coke sequence (frame 32), the system can set.) Second, finding the feasible solutions with the maxi-
mal contact set is sufficient to determine the minimal setsinfer that the can must be contacting (i.e., sitting on) the

table. In the remaining examples, however, we do not ex- of motors and attachments. The reason for this is that
for any feasible interpretation, there will always exist aplicitly consider variations in the contact geometry. Instead

we use only the maximal set of contacts in each frame.4 corresponding interpretation with the same set of motors
and attachments, but with the maximal contact set.The reason for this is twofold. First, using the maximal

contact set significantly reduces the search space. (At each A physics-based ontology that includes dynamics allows
a richer set of descriptions than one based purely on staticstage of the search we only need to consider a single contact
scenes. This is illustrated by the arch example in the fourth
row of Fig. 6. In the sequence the top block of the arch4 Note that because the individual contact assertions are independent
changes from being ‘‘supported’’ in frame 45 to ‘‘tipping’’(they depend only on the configuration C), there will always exist a

unique maximal admissible set of contacts. in frame 52 when the supporting block is removed. Even
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FIG. 4. Tracking results for the tip sequence using the view-based tracker followed by the robust interpolation algorithm.

FIG. 5. In the presentation of results to follow, we use: (a) small circles to depict sliding contact; (b) small disks for nonsliding contact; (c) large
disks for attachment; while (d), (e), and (f) depict LINEARMOTOR(o1 , o2 , c), ANGULARMOTOR(o1 , o2 , p), and BODYMOTOR(o), respectively. For
the first two motors, the closed curve surrounds the contact region over which the motors operate, while for body motors the large circle is placed
at the object center.
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FIG. 6. Some preferred interpretations for: coke, cars, hit, arch, and tip. Frames with a nonunique maximally preferred interpretation are
shown with a grey background. Unique interpretations are shown on white.
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FIG. 7. How many ways are there to tip a box? The velocity and acceleration estimates for frame 30 of the tip sequence are depicted on the
top row. (The line segments at the object centers indicate the linear velocity and linear acceleration. The arcs at the object centers indicate the
angular velocity and angular acceleration.) All five maximally preferred interpretations are given below. Note that only the first two interpretations
are plausible—the last three have a force balance, but are not consistent with rigid body motion. See the text for details.

though the left block is moving in frame 45, it is still par- the images we show all of the preferred interpretations
found by our system. The first two interpretations corre-tially supporting the top block. After the support is re-

moved, the top block begins to move. Since the motion spond to an active hand ‘‘pushing’’ the box while the last
three correspond to an active box ‘‘pulling’’ the hand. Notecan be explained by gravity alone, however, the top block

is still seen as a ‘‘passive’’ object. (Note that, as with the that while all interpretations in Fig. 7 have a force balance,
the last three are not consistent with rigid body motion.previous examples, the interpretations are ambiguous as

to whether the hand is ‘‘pulling’’ the left block or whether In particular, it is not kinematically feasible for the hand
to be both attached to the box and in edge-to-edge slidingthe left block is ‘‘carrying’’ the hand.)

Finally, the tip sequence in the last row of Fig. 6 high- contact with the table. As discussed in Section 4.2, since
our system considers only pairwise constraints betweenlights the richness of our dynamic domain. In this sequence,

a hand raises a box onto its corner and allows it to tip to objects, it does not check for global kinematic consistency.
Further tests would be required to rule out these interpre-an upright position. Precisely at frame 30, the box changes

from a state of being supported by the hand to a state of tations.
While encouraging, our system exhibits a number oftipping. There are two interpretations for frame 30 that

involve only body motors: one where the hand ‘‘tips’’ the anomalies. These anomalies generally fall into two classes.
In the first type of anomaly, slowly accelerating activebox and the other where the box ‘‘tips’’ itself and ‘‘drags’’

the hand. As with the previous examples, the latter inter- objects are sometimes mistaken for passive objects. This
results in interpretations in which objects with distinct mo-pretation requires an attachment between the box and

the hand while the former does not. Frame 34 shows the tions are attached in order to reduce the number of active
objects. Examples of this are shown in frame 45 of thesituation shortly after the box is tipped. Note that since

the center of gravity of the box is ahead of the support coke sequence, where the hand attaches to the can, and
in frame 33 of the hit sequence, where the hand attachespoint there is significant angular acceleration. Our system

correctly infers that this angular acceleration is due to to the box. Such anomalies are to be expected, given that
our system only examines single frames in isolation.gravity rather than some type of motor.

Figure 7 shows a more detailed analysis of frame 30 in A second problem concerns the detection of changing
contact relations between objects. In particular, whenwhich we allow all types of motors. The two images show

the object polygons with their velocities and accelerations objects collide, the estimates for the velocity and accelera-
tion at their contact points differ, resulting in the contactoverlayed on the images. Note that the center of gravity

of the box is directly above the pivot point, yet there is relation being deemed inadmissible. An example of this
is shown in frame 28 of the cars sequence, where, duringsignificant angular acceleration caused by the hand. Below
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a brief interval, the first car is decelerating while the Finally, it is worth noting that there is evidence that
humans generate qualitative physical descriptions ofsecond car is accelerating. While the two cars are actually

in contact, this abutment is deemed to be inadmissible scenes. In particular, there is evidence that humans per-
ceive the force-dynamic relationships among objects indue to a large difference in the estimated accelerations.

Note that the acceleration of the cars should be equal static and dynamic scenes [9, 20]. However, it also appears
that humans have a limited understanding of some dynamicsince they remain in contact after the collision. In our

system, however, the interpolator has smoothed over events, such as those involving angular motion [25] and
collisions between objects [11].this discontinuity and given unreliable estimates of the

acceleration. Further examples of missed collisions are
9. CONCLUSIONshown in frame 31 of the hit sequence and frame 36 of

the tip sequence. Again, these anomalies are to be
In this paper we have presented an implemented compu-expected, since our ontology is restricted to continuous

tational theory that can derive force-dynamic representa-velocity and acceleration and is not designed to handle
tions directly from camera input. Our system embodies aimpulses and abrupt changes in contact.
rich ontology that includes both kinematic and dynamic
properties of the observed objects. Finally, the system pro-8. RELATED WORK
vides a representation of uncertainty, along with a theory
of preferences between multiple interpretations.The use of domain knowledge by a vision system has

While encouraging, this work could be extended in sev-been studied extensively for both static and motion do-
eral ways. First, in order to work in a general environment,mains. Most work in motion understanding has focussed
3D representations are required. As described in Sectionon extracting event descriptions from image sequences
2.3, our system is currently able to represent 3D scenesbased on the spatio-temporal features of the input (see
when provided with suitable input about 3D shape andBadler [1], Tsotsos et al. [32], Neumann and Novak [24],
motion. Further work will be required to determine whatBorchardt [5], and Kuniyoshi and Inoue [19] for examples).
type of 3D representation is suitable and how accurate theIn contrast to these approaches, our work attempts to form
shape and motion information will have to be.descriptions based on a general physical model of the dy-

Second, in order to deal with changing contact relations,namics of the scene.
a theory of transitions is required. Such a theory wouldA number of systems have attempted to represent physi-
require a treatment of the transfer of momentum, as wellcal knowledge in static and dynamic scenes using qualita-
as forces, between objects. In addition, we need a way totive physical models or rule-based systems (see Fahlman
determine the conditions under which the assumption of[7], Funt [10], Joskowicz and Sacks [18], Siskind [29, 31],
continuous motion holds. As described in Section 4.1, toand Brand et al. [6]). In contrast to these approaches, our
determine changing contact relations we will require asystem uses an explicit, quantitative, representation of the
representation of kinematics as well as dynamics.dynamics based on Newtonian mechanics.

Finally, as described in Section 2.3, to represent theA number of other systems have used physics-based
causal structure of time-varying scenes we require a repre-representations for scenes in terms of forces in static scenes
sentation of object capabilities and how they are expected(see Blum et al. [4]) and changing kinematic relations in
to change over time. We believe our current system pro-time-varying scenes (see Ikeuchi and Suehiro [13] and Sis-
vides the building blocks for such a representation, butkind [30]). Our system extends these approaches to con-
additional work will be required to show how our ontologysider both kinematic and dynamic relations in time-varying
can be built into a more complex system. (See [22] forscenes containing rigid objects. Shavit and Jepson [28] pre-
preliminary work on time-varying scenes.)sent a different approach to classifying motion based on

the dynamic properties of nonrigid objects.
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