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Abstract
Two basic problems in image interpretation are: a) de-
termining which interpretations are the most plausible
amoungst many possibilities; and b) controlling the search
for plausible interpretations. We address these issues us-
ing a Bayesian approach, with the plausibility ordering
and search pruning based on the posterior probabilities
of interpretations. However, due to the need for detailed
quantitative prior probabilities and the need to evaluate
complex integrals over various conditional distributions,
a full Bayesian approach is currently impractical except
in tightly constrained domains. To circumvent these diffi-
culties we introduce the notion of qualitative probabilistic
analysis. In particular, given spatial and contrast resolu-
tion parameters, we consider only the asymptotic order of
the posterior probability for any interpretation as these res-
olutions are made finer. We introduce this approach for a
simple card-world domain, and present computational re-
sults for blocks-world images.

1 Introduction
Two fundamental problems in image understanding are:

a) choosing a plausible interpretation from many possible
consistent interpretations for an image; and b) controlling
the search for plausible interpretations. For example, con-
sider the image segments shown in Fig. 1a. A human ob-
server might infer that the corresponding scene is proba-
bly made up of three objects, namely a triangular card, a
quadrilateral card, and a stick. Moreover, it is plausible that
there were flaws in the image edge extraction process which
caused “drop-outs” in the image data for both the stick and
the quadrilateral. This interpretation is depicted in Fig. 1b.
However, note that there are many other possible interpre-
tations within such a “card-world” domain, such as the two
depicted in Figs. 1c,d.

The standard explanation for why the interpretation in
Fig. 1b is preferred is that it is nonaccidental [2, 10, 11].
That is, any other interpretation involves a careful (i.e. ‘ac-
cidental’) alignment of either the objects within the scene,
or the viewer with respect to the scene, or both. In contrast,
the scene model in the naturally selected interpretation in-
volves only generic processes, namely a triangular card has
been placed in front of a convex quadrilateral and a stick.
Similarly, the imaging process for this interpretation is also
nonaccidental, involvingonly two relatively common flaws
(i.e. drop-out segments) in the feature extraction process.

A central contribution of this paper is that we formalize
this type of nonaccidental reasoning, extend it, and ground
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Figure 1: Multiple image interpretations in a “card-world”
domain consisting of sticks and convex, opaque polygons.
Legend: Image segments are shown as thin black lines.
Thick grey lines depict sticks. Shaded grey regions depict
(opaque) polygonal cards. Crosses depict breakpoints in
the image segments for sticks and polygon edges. (a) In-
put image consisting of image segments. (b) The preferred
interpretation consisting of a triangle in front of a quadri-
lateral and a stick. Drop-out segments arise in the image
of the stick and the quadrilateral due to an imperfect im-
age line-finder. (c) A less preferred interpretation with the
triangle behind the quadrilateral. To explain the image two
additional sticks and one more drop-out must be included in
the interpretation, as compared to that in (b). (d) A trivial
interpretation obtained by explaining every image segment
with a stick.

it in Bayesian analysis through the use of ‘qualitative prob-
abilistic reasoning’. This provides a rigorous probabilistic
framework for integrating information from nonacciden-
tal features. We present computational results on blocks-
world images. These results demonstrate that our approach
forms a convenient basis for reasoning about images of
scenes with multiple objects and occlusion. The implemen-
tation also indicates how this analysis can be used to signifi-
cantly reduce the search complexity by pruning implausible
search paths.

Our approach differs from current work in perceptual
grouping [4, 6, 14, 16], image interpretation [1, 9], and
object recognition [3, 5, 7, 10] in its use of the quali-
tative probabilistic framework. In particular, most work
in perceptual grouping and object recognition has fo-
cussed on finding salient groups of image features based on
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Figure 2: The resolution of endpoints and vertices for a
stick (a), a triangle (b), and a quadrilateral (c).

some quantitative measures such as the fraction of model
edges covered, energy functions which enforce consistency
among features, and so on. Other researchers have pre-
sented Bayesian or minimum description length formula-
tions for object recognition and scene interpretation. In
contrast to both of these approaches, qualitative probabil-
ities capture the structure available in nonaccidental fea-
tures, but abstract away most of the information required
for the quantitative prior distributions and likelihood func-
tions.

Our approach is similar in spirit to �-semantics [12] in
knowledge representation, and to other approaches using
defaults [4], but differs in that here the quantitative tools of
probability theory are applied to weakly specified priors. In
particular, the interaction of various defaults is cleanly and
completely specified with our current approach.

2 Qualitative Probabilities
To begin, consider the prior probability for the occur-

rence of a single line segment in an image, as depicted in
Fig. 2a. Let p�L��x�� �x��� denote the prior probability den-
sity for any particular line segment, L��x�� �x��, having end-
point positions �x� and �x�. Instead of selecting a particular
quantitative prior, p�L�, here we consider a wide equiva-
lence class of such prior densities. The critical condition
we impose on p�L��x�� �x��� is that

� � d� � p�L��x�� �x��� � d� (1)

for some constants d� and d�. That is, the prior probability
density is bounded both from above and from below, away
from zero.

To make use of this weak prior information, we con-
sider an asymptotic analysis as a spatial resolution param-
eter becomes increasingly finer. In particular, suppose that
the endpoints of a line segment can be resolved to within
a radius of r pixels, and that the whole image is L pixels
in either direction. Let � � r�L denote the spatial resolu-
tion parameter. Consider the prior probability that one end-
point, say �x�, of the line segment occurs within some disk
of radius � (see Fig. 2a). From equation (1) it follows that
the prior probability of such an event is of order ����� as
� � �.� Similarly the prior probability of observing both

�Throughout this paper we use ���k� to denote the sharp order es-
timate, that is, f��� � ���k� if and only if there exists constants
K�� K� � � such that K��

k � jf���j � K��
k , as � � �.

endpoints to be within a radius of � of the predetermined
points �x� and �x� is �����. Both of these asymptotic results
follow directly from equation (1) by integrating the density
over the set of possible endpoint positions for a given res-
olution parameter �.

Clearly such an asymptotic analysis can be extended to
more general objects. For example, consider the prior den-
sity for any particular convex n-gonCn, which can be taken
to be a function of the n vertex positionsf�xigni��. The crit-
ical condition on this prior density is again that it is both
bounded above, and bounded away from zero from below.
A similar asymptotic analysis now shows that the occur-
rence of any given n-gon, up to a resolution of � for each
of the �n degrees of freedom in Cn, has prior probability
p�Cn� �����n�. In particular, the prior for the triangle de-
picted in Fig. 2b is of order �����, while the quadrilateral
in Fig. 2c is of order �����.

We also need to consider the arrangements of several ob-
jects within the scene. For card-world we take scene mod-
els to consist of 2D layered arrangement of sticks and con-
vex, polygonal, opaque cards. Since the objects are opaque,
the depth layering dictates the visibility of each point on
any object. For example, the interpretation depicted in
Fig. 1b involves a scene model consisting of a stick, a tri-
angular card, and a quadrilateral card. The triangular card
is in front of both the stick and the quadrilateral. For ob-
jects which do not intersect in the image, such as the stick
and the quadrilateral, the depth relation is taken to be unde-
fined (see [15] for a more general 2D layered scene model).

Qualitative priors can be derived for such scene mod-
els consisting of multiple objects. For the current paper we
take the shape and position of any object to be independent
of the shape and position of other objects. For example, the
scene model depicted in Fig. 1b is a particular layered 2D
arrangement of a triangle, a quadrilateral, and a stick, with
the position of each endpoint and vertex resolved to within
a disk of radius �. Let Mb���� denote this scene model,
where the ‘b’ refers to panel b in Fig. 1, and the parameter
vector �� denotes the 18 parameters needed to specify the
locations of the endpoints and vertices of the three objects.
By the independence assumption, the prior for Mb���� is
then simply the product of the prior for generating the trian-
gle (which is�����), the quadrilateral (�����), and the stick
(�����). Note that, since the arrangement in depth layers
only involves binary choices of which object of an overlap-
ping pair is in front, there is no contribution to the order of
the prior for arranging these objects in depth. As a result,
we find the prior probability for the scene model depicted
in Fig. 1b is p�Mb� � ������.
2.1 Posterior Probabilities

An interpretation of a set of image features, say I, in-
volves a scene model and an imaging model which together
account for I. Given the image data I, we wish to com-
pute the posteriorprobabilityof any particular scene model,
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Figure 3: Possible image data for a scene model consist-
ing of one stick. Here dotted lines denote line-finder drop-
outs, and X’s mark interior breakpoints. (a) Scene model.
(b) Missing edge, ����. (c) Missing end segment, �����.
(d) Missing interior and end segments, �������

M. According to Bayes theorem, the posterior probability
ofM satisfies,

p�MjI� �
p�IjM�p�M�

p�I�
� (2)

Here p�IjM� is the likelihoodof observing the data I given
the scene modelM, and p�M� is the prior forM. We refer
to their product as the unnormalized posterior.

The likelihood term depends on the probability of the
imaging model, which relates the scene model M to the
observed image data I. To keep things simple in this in-
troductory example, we take the imaging process to be al-
most veridical. We assume that the only error is that various
subsegments (or all) of a visible scene edge may be missed
by the image line-finder (see Fig. 3). The imaging model,
then, must specify the occurrence and the endpoints of each
of these ‘drop-outs’.

The likelihood can now be defined in a similar way to
the prior probability for a scene model. The occurrence of a
drop-out is taken to appear with probability proportional to
�, where � represents the resolution in image contrast nec-
essary for the line-finder to detect an image edge. More-
over, the imaging model needs to account for the spatial po-
sitions of the endpoints of the drop-outs, which are deter-
mined to a spatial resolution of � along the corresponding
image segments.

In particular, consider the various ways that the single
stick in Fig. 3a might be imaged. The likelihood of missing
the stick entirely, as in Fig. 3b, is ����, which depends only
on the image contrast resolution �. Similarly, a drop-out at
one end of the stick (see Fig. 3c), requires one additional
spatial parameter, and therefore has a likelihood of �����.
(The other end of the drop-out in this case is dictated by the
end of the stick, and is attributed to the scene model, not
the imaging model). For Fig. 3d we require three drop-out
endpoint parameters and there are two segments at which
there is a loss of contrast. We take these separate drop-out
segments to be independent, and therefore the likelihood is
taken to be �������.

We can combine these likelihood computations with the
previous asymptotic results for the priors to obtain expres-
sions for the unnormalized posterior probability of various
interpretations. For example, one interpretation for Fig. 1a
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Figure 4: (a) Image edges. (b) Part of an example polygon
in the setCn��x�� �x�� �x��. (c) Part of a polygon covering e�,
e�, e� and the subsegment �e� of e�. The remaining ‘tail’ t�
has a free endpoint denoted by the circle on �e�.

is given by the scene model Mb����, discussed above, to-
gether with an imaging model which accounts for the drop-
outs on the quadrilateral and the stick. These drop-outs
have likelihoods of ����� and ������, respectively. There-
fore we find the likelihood of generating the image I in
Fig. 1a from the scene model Mb����, is p�IjMb���� �
�������. Since the prior for the scene model, p�Mb�����,
was shown above to be ������, the unnormalized posterior
for this interpretation is then ������������� � ��������.

Similarly, for the interpretations depicted in Figs. 1c,d,
we find the unnormalized posteriors are of orders ��������
and ������, respectively. Equation (2) then ensures that
the posterior probabilities for these three interpretations are
just the common factor ��p�I� times these unnormalized
posteriors.
2.2 Preferred Interpretations

In order to compare two unnormalized posteriors we
may require information about the relative sizes of � and
�. A simple form for this is to suppose that

� � ���q�� (3)

as � � � for some constant q � �. In the computational
examples we find that the selection of the preferred inter-
pretations are not sensitive to the precise choice of q. For
convenience here we treat � � � (i.e. q � �). This cor-
responds to the assumption that missing features are much
more likely to occur than accidental alignments. As a re-
sult, an unnormalized posterior of order ���n��m�� is pre-
ferred over one with order ���n��m�� if and only if either
n� � m�, or n� � n� and m� � m�.

This provides an intuitively plausible ordering for the
three interpretations depicted in Fig. 1. In particular the
posterior distribution for the interpretations depicted in
Fig. 1b (with an unnormalized posterior of ��������) is
asymptotically much larger than that of Fig. 1c (��������),
which in turn is much larger than that of Fig. 1d (������).
In fact, this same ordering remains valid so long as q 	 ��	
in (3).

3 Hypothesis Generation and Search
It is critical that our qualitative probabilisticanalysis can

form the foundation for effective search heuristics. Even in



the simple card-world domain the search space grows expo-
nentially with the number of edges, so a brute-force search
is impractical.

Here we show how qualitative probabilities can be
used to determine the plausibility of partial interpretations,
which can then be used to prune the search. For exam-
ple, consider the image data in Fig. 4a along with the hy-
pothesis depicted in Fig. 4b. In particular, the hypothesis
is that the two image edges e� and e� are covered by con-
secutive edges of some convex n-gon for some n � 	. Let
Cn��x�� �x�� �x�� denote the set of all convex n-gons which
have the points �x�, �x�, and �x� as three consecutive vertices
(as shown in Fig. 4b). Since the three specified vertices are
given to a spatial resolution of �, the prior probability for
the hypothesis Cn��x�� �x�� �x�� is �����.

Moreover, since there are two drop-outs each with a free
endpoint (see Fig. 4b), the likelihood of generating e� and
e� as a subset of the image data is �������, Thus the unnor-
malized posterior for Cn��x�� �x�� �x�� is of order �������,
for all n � 	.�

To determine the level of evidence for such a hypothesis,
we use the odds of this hypothesis in comparison to one in
which the same subset of image data is explained only by
sticks. These odds are given by the ratio of posterior prob-
abilities for the two hypotheses which, by Bayes rule (2),
is just the ratio of the two unnormalized posteriors. Thus
the odds for Cn��x�� �x�� �x�� are ������������� � �����
(the denominator here is the unnormalized posterior for the
hypothesis that e� and e� arise from two sticks). We see
that, for sufficiently small �, the odds actually favor the two
sticks hypothesis. Similar calculations show that the odds
for �e�� e�� being covered by consecutive edges of an n-gon
are �������, and the odds for edges �e�� e�� are ������.

Finally, consider the hypothesis, sayHv�e�� e��, that the
pair of edges �e�� e�� arise from consecutive edges of an n-
gon, such as the one depicted in Fig. 4c. This implies an
under-segmentation error has occurred to form image edge
e�, and some other (independent) process must explain the
‘tail’ of edge e� extending outside of this polygon. Let �e�
denote the subsegment of e� covered by the n-gon, and t�
the tail segment, where t� can overlap �e�, as long as its right
endpoint (the open circle in Fig. 4c) is within �e�.

The unnormalized posterior for Hv�e�� e�� is then the
product of the unnormalized posterior for the ‘V’ formed
by ��e�� e��, namely �����, and the unnormalized posterior
for the tail t�. In the worst case, this latter term could be
�����, corresponding to the hypothesis that t� arose from
a stick with an uncertain right endpoint. Alternatively, in
the best case, the tail could be explained by a part of some
other polygon. For a perfectly imaged n-gon the unnormal-
ized posterior is ����n�, and therefore the prorated value
for each of the n edges is �����. Using this best case, the

�Similar interpretations which have drop-outs on both ends of edges
e� and/or e� are possible, but give smaller unnormalized posteriors.

��n
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Figure 5: (a) Multiple scene edges (thin lines) can map to
single image segment (thick line), as in abutment. Scene
edges are merged whenever they project to nearly collinear
image segments. We also predict the location of potential
breakpoints (denoted “X”) whenever there is a change in
the surface on either side of an edge. (b) One visible scene
edge, 
�x�� �x�� (thick line), can account for multiple image
segments (thin lines). We use a fixed tolerance for perpen-
dicular distance (
n) and angular error (
�) between the ob-
served image segments and the ideal edge. Unexplained
parts of the scene edge (“drop outs”) are shown as thick dot-
ted lines. A scene edge may account for only a subsegment
of an image edge, as for the rightmost image segment.

hypothesisHv�e�� e�� has an unnormalized posterior of or-
der ���������� � �����. And the odds for Hv�e�� e�� are
simply O���, in other words, there is no asymptotic evi-
dence in favor of this hypothesis.

A detailed discussion of search using information pro-
vided by qualitative probabilities is beyond the scope of the
current paper. Here we use a simple search heuristic based
on the log of the odds for each hypothesis. These odds are
compared to the maximal odds that can be obtained for any
hypothesis in whichm edges of an n-gon are partially cov-
ered by image edges (i.e. at least a subsegment of each of
these scene edges is accounted for by an image edge, see
Fig. 4b). For convex n-gons with m � n, we find that
the maximal odds are ����m	�������m� � �����m	��,
as attained for convex open chains of m edges. We define

 �m� to be the log of these maximal odds, namely 
 �m� �
��m� ��j log���j for m � n.

The ‘plausible garden path’ search heuristic involves
pruning any hypothesis which consists of an n-gon with
m partially covered scene edges and has log odds smaller
than �
 �m� (for simplicity we ignore terms in �). Here
we use � � ���. From the odds computations above,
we find that the only unpruned hypotheses involving pairs
of edges from Fig. 4a are the ones which cover �e�� e��
and �e�� e�� with consecutive edges. Similarly, the only
3- and 4-edge plausible convex groups are �e�� e�� e��,
�e�� e�� e��, or �e�� e�� e�� e��, which are intuitively reason-
able. In Sec. 6.1 we discuss the results of applying this
pruning heuristic to image data.

4 Detailed Imaging Model
To apply our system to real images it is critical that the

imaging model accounts for typical imperfections in the



feature extraction process. Here the only features we con-
sider are image segments, as extracted by a typical line-
finder. Therefore we need to model the different types of
imperfections in the line-finder results, namely: 1) drop-
outs; 2) false-targets; 3) over- and under-segmentation er-
rors; 4) limited resolution; and 5) errors in the position and
orientation estimates.

The first three of these types of imperfections can be
dealt with using the approach described in Sec. 2.1. In par-
ticular, drop-out segments are explicitly accounted for by
the imaging model within an interpretation. We use sticks
in the scene model to represent false targets, which arise
from unmodeled scene structure such as shadows, texture,
or image noise. Over and under segmentation errors are
dealt with by allowing several image segments to account
for a single scene edge, and also several visible scene edges
to account for a single image segment (see Fig. 5). The last
two types of imperfections are discussed below.
4.1 Visible and Resolvable Edges

Visible scene edges are defined to be the set of visible
points on the edges of the polygonal cards or sticks. (A
point is visible if and only if that point is not within any
other object which is deemed to be in front.) However, for
a scene model in which two objects nearly abut, there can
be two visible edges which are nearly colinear in the im-
age (see Fig. 5a). The image line-finder will be unable to
resolve such a pair if the perpendicular distance between
them is too small.

To account for this limit in resolution we merge nearby
visible scene edges into single visible edges. In addition,
in order to predict the location of potential defects (such
as drop-outs) in the observed image segments, we partition
visible edges into collections of subedges that share com-
mon object boundaries (see Fig. 5a).
4.2 Position and Orientation Errors

The imaging model is conveniently described in terms
of covering relationships between an image segment and
a visible scene edge (see Fig. 5b). A visible scene edge
can “cover” all or part of an image segment, and thereby
provide an appropriate explanation for how that image seg-
ment (or part thereof) could have arisen. Conversely, an im-
age segment can cover all or part of a visible scene edge,
and thus provide data supporting the hypothesis of that
scene edge’s existence. We use a fixed perpendicular and
angular tolerance to model the error in image segments (see
Fig. 5b). In addition, we specify a minimum length for any
drop-outs and false-targets.

5 Application to Blocks-World Scenes
We demonstrate our approach on blocks-world scenes

(see Fig. 7). For simplicity we restrict the viewing condi-
tions such that the image of any individual block is well-
approximated by an orthographic view. The key to model-
ing blocks-world using layered arrangements of 2D cards
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Figure 6: The card-world representation of a block is the or-
thographic projection of a block, depicted here in grey. The
arrows on the edges within the card indicate the orientation
convention used.

is to depict the orthographic view of some 3D rectangular
block on the cards themselves (see Fig. 6). Each of the vis-
ible edges of the corresponding 3D block is represented by
an edge on this card, and the interior region of the card is
considered to be opaque. The length of the sides can be
varied, along with the particular viewpoint depicted on the
card.

An orthographic view of a general 3D block is fully
specified by four points in the image plane, as shown in
Fig. 6. The coordinates of the three arrow junctions (�x�, �x�,
and �x�) and that of the Y-junction (�x�) uniquely determine
a block. Roberts [13] showed that a necessary and suffi-
cient condition for such a parameterized 2D model to cor-
respond to some orthographic view of a rectangular block
is that each of the three interior edges (labelled 1, 4, and 7)
must form an obtuse or right angle with both of the other
two interior edges.

We use a qualitative prior for the scene models and a
qualitative likelihood for the imaging models. Since the or-
thographic projection of a rectangular block is described by
eight parameters, we take any particular block (up to a spa-
tial resolution of �) to have a prior probability of ��� ��.
The likelihood of drop-outs are determined exactly as in
Sec. 2.1. For example, the interpretation depicted Fig. 7c
for image E involves 4 blocks, 2 sticks, and 10 drop-outs
(four of which correspond to entirely missed edges) with
a total of 7 free endpoints (marked by X’s in the figure).
The unnormalized posterior is then �����������
���� �
����
����, as given by the ‘score’ in Fig. 7c.

6 Experiments
For our experiments we consider image data from im-

ages of simple blocks-world scenes. We used the line-
finder in the Khoros 1.2 package to generate the image data
in Fig. 7a. Note that, even for human observers given this



Image “9”: 34 Segments Individual blocks: 5 Score:����� (next best �����)
Search (secs): 6, 10, 17, 20
Nodes: 29, 44, 69, 81

Image “5”: 26 Segments Individual blocks: 7 Score �
��
�
� (next best �����)

Search (secs): 12, 17, 31, 57
Nodes: 53, 67, 115, 188

Image “E”: 34 Segments Individual blocks: 12
(Best 8 shown)

Score �
��
�
�� (1 other within �

�)
Search (secs): 56, 72, 192, 257
Nodes: 150, 210, 493, 671

Image “D”: 34 Segments Individual blocks: 11
(Best 8 shown)

Score:����� (1 other within �
�)

Search (secs): 20, 37, 67, 142
Nodes: 80, 143, 241, 475

Image “7”: 32 Segments Individual blocks: 10
(Best 8 shown)

Score:����	 (1 other within �
�)

Search (secs): 21*, 66, 132, 228
Nodes: 72*, 182, 351, 578



Continued from previous page.

Image “4”: 30 Segments Individual blocks: 18
(Best 8 shown)

Score:����
 (7+ others within �
�)

Search (secs): 65*, 160*, 419, 518
Nodes: 221*, 479*, 1247, 1602

(a) (b) (c)

Figure 7: Experimental results for several blocks-world images. (a) Line-finder results. (b) The fully-instantiated blocks
with the highest individual odds. For clarity, the individual blocks are shown with a slight random “jitter”, and lighter greys
indicate blocks with lower odds. (c) Preferred interpretation. Legend: Image segments are shown as thin black lines. Object
edges are shown as thick grey lines. Breaks are denoted by crosses. Sticks are shown as thin grey boxes outlining one or
more image segments. The unnormalized posterior (i.e. score) is shown below each preferred interpretation. The ambiguity
of the preferred interpretation is indicated by either the score of the next best interpretation found, or by the number of other
interpretations found with scores within �� of this best one. The execution times (on a Pentium II 300MHz processor) and the
number of unique interpretations visited for the band search algorithm are reported for N � �� �� 
� �, respectively (here *
denotes the search at this bandwidth failed to find the preferred interpretation). Note the preferred interpretations for images
E and 4 involve individual blocks that are ranked ��th and ��th, respectively, and are therefore not displayed in column (b).

data, there are some minor ambiguities in the interpreta-
tions (eg. the bottom-left block in image “7”, and the left-
most block in image “4” are not completely resolved).
6.1 Individual Blocks

We first implemented a brute-force search similar to the
IT search in [5]. The significant differences are that our
imaging model is less restrictive (allowing subsegments of
image edges to be matched to scene edges) and our scene
model has more (i.e. 8) parameters. This search finds all
maximal subsets of the image data that are consistent with
the orthographic image of one block. In agreement with [5]
this search proved to be impractical, taking 4 to 6 hours on a
Pentium 133MHz processor. For the simple image data sets
in Fig. 7a several thousand different individual block hy-
potheses were found. The majority of these were partially-
instantiated blocks, that is, blocks for which the parameters
are not completely specified by the covering set of image
edges.

The odds for each block hypothesis, versus the hypoth-
esis that the same subset of image edges come from sticks
(see Sec. 3), was used as a plausibility measure to sort the
list of blocks. The true blocks typically appeared in the top
one percent of this sorted list. The only cases this failed was
for the left block in image “4” and the bottom-left block
in “7”. Here the line-finder failed to detect enough edges
to fully instantiate the block, and therefore the true block
could not be found. Instead, in both of these cases the
search algorithm grouped additional edges together with
those from the true block (see Fig. 7b).

An order of magnitude speed-up in the search was ob-
tained by using the plausible garden path heuristic dis-

cussed in Sec. 3. That is, we pruned any block hypoth-
esis whose log odds fell below half the maximum possi-
ble log odds for any block hypothesis with the same num-
ber of covered edges. Another order of magnitude speed-
up was obtained by first finding plausible local block frag-
ments, and then grouping these fragments using the same
odds measure to prune implausible hypotheses. The result-
ing search ran in under a minute on each of the examples in
Fig. 7. The resulting search found every true block except
for the two blocks missed by the full search.
6.2 Complete Interpretations

Here we consider the full 2D layered interpretations for
the blocks-world image data in Fig. 7a. To simplify the im-
plementation, we restrict our consideration to fully instan-
tiated blocks. This restriction means the overlap between
pairs of blocks is fully specified, which significantlysimpli-
fies the algorithm for determining the feasible depth layer-
ings. A second simplification is that we restrict any sticks to
be in front of all the blocks. The search space, then, consists
of all subsets of the fully instantiatedblocks (see Fig. 7b) ar-
ranged in all possible layered depth relations, plus zero or
more sticks in the foreground.

To find plausible interpretations, we perform a greedy
band-search. This is an iterative process which maintains
a “band” of the best interpretations found so far. The or-
dering is prescribed by the power of � in the unnormalized
posterior; the term in � is ignored. During the search the
band is pruned by deleting all interpretations whose unnor-
malized posterior is asymptotically smaller than that of the
N th ranked interpretation. (Note that, in the case of ties for
the N th position, the band can contain more than N inter-



pretations.) We refer to N as the search bandwidth.
The search proceeds by iteratively updating the interpre-

tations in the band. Initially the band is set to contain only
the trivial interpretation consisting of all sticks. To update
the band at each iteration, new candidate interpretations are
generated by adding one block to each interpretation in the
band. These additional blocks are inserted at each feasible
depth. Since the addition of a block could occlude much of
an existing block, or even several blocks, single blocks are
then greedily deleted from the candidate interpretations so
long as the scores are increased by doing so. The union of
current band and this resulting set of candidate interpreta-
tions is pruned at theN th ranked score to form the band for
the next iteration of the search. This process continues un-
til the band does not change from one iteration to the next.
Note that just one block can be added to any interpretation
within the band during each iteration, and thus we again re-
quire a “garden path” to the preferred solution.

The results of this algorithm are presented in Fig. 7c,
where the most preferred interpretations are displayed
along with their unnormalized posteriors. The run-times
for bandwidths N � �� �� 
� and � are observed to grow
roughly linearly with N , as do the the number of unique
interpretations visited. The search algorithm arrived at the
most preferred solution in all cases except for Image 7 with
bandwidth �, and for Image 4 with bandwidths � and �.
Note that images 4 and 7 exhibit various accidental align-
ments which allow for edges from different blocks to be in-
correctly grouped into larger blocks. These larger blocks
are selected early in the search process and, for small band-
widths, cause it to be misled.

The ambiguity in the interpretation of the images is also
represented in Fig. 7c. Images 5 and 9 are found to be
strongly unambiguous, with the second best unnormalized
posteriors 8 or 9 orders of � smaller than the preferred one.
For image E two interpretations differing only in a depth
reversal of the rightmost block were found with the same
maximal score. For Image D the ambiguity is between
which of the top two blocks occludes a small part of the
other. Finally, the ambiguities for images 7 and 4 arise be-
cause the image data is insufficient to resolve one of the
blocks in each case, and several plausible choices exist. All
these ambiguities seem natural given the image data.

Note that for imaging systems with finer resolution pa-
rameters (i.e. a finer image resolution and/or a better fea-
ture extraction process) one can expect that the odds used
in the search will become more extreme. Thus the various
decisions the search algorithm needs to make will be more
clear cut and, if the representation is appropriate, we can
expect the search to become easier for the same scenes. In
comparison, note that the resolution of the images used for
Fig. 7 was about the equivalent of the resolution the human
fovea achieves on your thumbnail held at arms length (i.e.
2 degrees of arc).

7 Conclusion
Our results indicate that the qualitative probabilistic

analysis provides a natural preference ordering on inter-
pretations for simple card-world and blocks-world scenes.
Moreover the analysis motivated the choice of effective
search heuristics.

The same style of analysis can be applied to other do-
mains, such as model-based object recognition [3, 5, 7, 10],
curve and surface grouping [4, 14, 15], and simple mo-
tion interpretation [8]. These are important areas for further
study.

An open question concerns how our approach based on
qualitative probabilities performs compared to quantitative
approaches for scene interpretation (eg., [1, 3, 7, 9]), and
further if we can exploit quantitative probability informa-
tion (such as the relative frequency of various types of ob-
jects) to obtain a stronger ordering on our interpretations
and/or better search heuristics.
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