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Abstract
Many difficult visual perception problems, like
3D human motion estimation, can be formu-
lated in terms of inference using complex gen-
erative models, defined over high-dimensional
state spaces. Despite progress, optimizing such
models is difficult because prior knowledge can-
not be flexibly integrated in order to reshape
an initially designed representation space. Non-
linearities, inherent sparsity of high-dimensional
training sets, and lack of global continuity makes
dimensionality reduction challenging and low-
dimensional search inefficient. To address these
problems, we present a learning and inference
algorithm that restricts visual tracking to auto-
matically extracted, non-linearly embedded, low-
dimensional spaces. This formulation produces
a layered generative model with reduced state
representation, that can be estimated using effi-
cient continuous optimization methods. Our prior
flattening method allows a simple analytic treat-
ment of low-dimensional intrinsic curvature con-
straints, and allows consistent interpolation oper-
ations. We analyze reduced manifolds for human
interaction activities, and demonstrate that the al-
gorithm learns continuous generative models that
are useful for tracking and for the reconstruction
of 3D human motion in monocular video.

1. Introduction

Many successful visual tracking approaches are based on
high-dimensional, physically inspired, non-linear genera-
tive models of shape, intensity or motion [11, 6, 15, 18].
Although usually hard to construct, such models offer intu-
itive representations, counterpoint coherence to image clut-
ter and offer the analytical advantage of a global coordinate
system for continuous optimization or sampling. However,
despite good progress, inference in these frameworks re-
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mains difficult, mostly due to the lack of learning and repre-
sentation adaption beyond the initial design choice. This in-
flexibility leads to either high-dimensional, ill-conditioned
state spaces [18], or to a lack of representational power
that restricts model usage to oversimplified scenarios. The
use of priors in the original state space may alleviate this
problem [10, 6, 15] while conserving continuous represen-
tations, but still the state space dimension (and search com-
plexity) remains unchanged. Another approach is to use
forms of non-linear dimensionality reduction [4, 24, 25] but
then lose the global nature of the representation [4, 24] or
the continuity of the generative mapping [25] that makes
efficient optimization possible. In this paper, we propose
an algorithm that learns reduced generative models that are
global, continuous and consistent during inference. These
properties are motivated as follows:

(i) Learning non-linear low-dimensional global models re-
quires a dimensionality reduction method that recovers
manifolds having intrinsic curvature (e.g. holes). These
arise in many practical modeling settings, e.g. physical con-
straints of an articulated figure or occlusion [8]. To preserve
the local manifold geometry, we use a low-dimensional rep-
resentation extracted using Laplacian eigenmaps [2] ( � 2),
but other methods with similar properties e.g. [14, 7, 26]
would also apply. Estimating the intrinsic dimensionality
of the model based on the Hausdorff dimension is demon-
strated in � 4.1.

(ii) Continuous generative model. Continuous optimiza-
tion in the low-dimensional space requires not only a re-
duced global coordinate system but also a globally con-
tinuous generative mapping. Assuming the original high-
dimensional model is continuous, the one obtained by re-
ducing its dimensionality should also be. In � 2.1, we esti-
mate a smooth mapping between the learned and the origi-
nal model state space, based on kernel regression. Smooth-
ness allows the use of efficient continuous methods for
high-dimensional optimization [5, 20, 18, 19]. While we
aim at dimensionality reduction, it is likely that for many
complex processes, even reduced representations would
still have rather large dimensionality (e.g. 10–15).

(iii) Consistent estimates require not only a prior on the
probable regions of the low-dimensional manifold, as pre-



dicted by the typical training data density, but also sepa-
rating holes produced by insufficient sampling from gen-
uine intrinsic space curvature. The inherent sparsity of
high-dimensional training sets makes this disambiguation
difficult. (An analysis based on the training data distri-
bution usually requires restrictive sampling assumptions
[16]). In � 2.2 we propose an analytic solution that com-
bines a smoothing Gaussian mixture, and a prior flattening
method. This exploits the layered structure of our learned
generative model, in order to push down sharp curvature
constrains in the low-dimensional space.

(iv) Geodesics for Interpolation: To obtain a complete low-
dimensional generative model for analysis and synthesis,
interpolation is also necessary. A ‘geodesic’ cost function
for this computation is given in � 2.3.

Related Work: There is important work involving track-
ing using constrained generative models [11, 4, 24], but
we are not aware of algorithms that allow continuous op-
timization over a learned non-linear manifold. Bregler
& Omohundo [4] track 2D lip contours using a high-
dimensional Gaussian Mixture prior (GMM) learned from
training data and gradient descent. They optimize in the
original high-dimensional space, and regularize the esti-
mates using GMM projection. Toyama & Blake [24] track
2D exemplars over a GMM index and Euclidean similari-
ties using a discrete method and a set of local-coordinate
system charts. Globally post-coordinating a local mixture
representation of the manifold [21] would not be appli-
cable for continuous optimization because the coordinates
are uniquely defined only w.r.t. the considered training set.
Thus, the coordinates of new configurations sampled dur-
ing optimization may not be unique. Wang et al [25] use
isometric embeddings [22] to restrict variations of high-
dimensional 2D shape coordinate sets to low-dimensions
(2d in their case) and compute local non-parametric, not
necessarily continuous mappings, between their intrinsic
and embedding spaces.

2. Learning a Non-Linearly Embedded
Continuous Generative Model

Consider a generative model (fig. 1a)
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representing smooth non-linear transformations
���

that re-
produce the variability, but also the strong correlations, en-
countered in some observation domain � . The model is
defined over an original state space ����� � , subject to
prior  � � � � � , and has additional parameters ! .1

1For example, consider a possible articulated generative hu-
man modeling: "$# are the rotational state parameters for skeleton
articulations, % are various internal body, shape and surface color
parameters, &(' are transformations that construct the body limbs,
position them through the skeletal kinematic chains and project

A common difficulty with many intuitive, physically in-
spired generative models like

�)�
, is that they usually have

too general, high-dimensional state spaces, that are diffi-
cult to estimate and prior knowledge cannot be flexibly
used during the model state inference. An additional dif-
ficulty (in many vision problems) is caused by the non-
linearity and non-convexity of the original representation
space. This may be produced, e.g. by (physical) domain
constraints, present in the model.

To learn a consistent reduced model, we use Laplacian
Eigenmaps [2], a non-linear embedding method that can,
in principle reconstruct low-dimensional manifolds * 	��+

( ,.-0/ ), having intrinsic curvature (methods like
[14, 7, 26] could also be used). These algorithms recover
embeddings that minimally distort the local geometry of a
typical distribution from

�1	2� 
. The geometry is ap-

proximated based on a training set 3��54768�9�):<;>=@? ;>A�BDCEC F ,
and the resulting embedded set of coordinates is 3 468� :<;>= ? ;>A�BGCEC F

	H� +
. If the reduced manifold were convex,

alternative embeddings that preserve the global geometry
would also apply [22]. An advantage of spectral embed-
dings [22, 14, 2] is their good generalization [3].

A continuous embedded generative model (fig. 1a)

I
:KJML
�
=
� *ONQP�R� � �1SUT�V� ��� (2)

can be obtained by learning the parameters W of a global
smooth mapping X J between 3 and 3)� and by construct-
ing a prior  � � �ZY �[��* on the embedded manifold (fig. 1a).
For consistent inference in * , the prior  � � � has to reflect
the data density in the training set 3 , but also intrinsic cur-
vature induced by existing priors at other layers in the gen-
erative model (

�
and beyond). Details are given in the fol-

lowing sections.

2.1. Globally Smooth Generative Mappings

The construction of the learned generative model requires
the estimation of a forward mapping X J

� * �
	\�]+^� ����
	_�  �
between the embedded and embedding spaces

based on points in the training set 3�� in
�

(stored
column-wise in a matrix ` ) and corresponding points 3
in the embedded space (stored in a matrix a ). Consider
a row operator :Kbc= that extracts the d -th row of a matrix
and :KbK= the corresponding column operator. We employ
a sparse kernel regressor and estimate / mappings from��+ � �

. Sparsity and good generalization are impor-
tant for efficient low-dimensional generative models. Con-
sider e representatives fhg[� �]+

, ij4lkMmKmcm e , and kernelsn � � Y fog � at these points.2 The constraint that the vec-

the resulting body into the image space, p . Also, q #sr "$#ut could
be ‘physical’ priors that penalize states that are implausible ac-
cording to anatomical constraints, e.g. limbs penetrating the body.

2Here, we use Gaussian kernels with means vow and diagonal
covariances x�w�y_z${G| . As representatives, we subsample and
cross-validate the means obtained from clustering } ( ~ 2.2).



Figure 1. (a) (left) Learned generative model allows continuous optimization in the low-dimensional embedded space. Enclosing solid
boxes label functions and circles label variables. The embedded model state " (or the original model state " # ) is inferred based on input
observations (data) � . (b) (right) Prior flattening mechanism allows consistent optimization over manifolds with intrinsic curvature.

tors in * map to the dimension
�

in
�

is �jW��� 42` � : � = ,where W � 4�� � B� Y mKmcm Y �
	��� map into dimension
�

and � 4
� n � a :cbK= � Y fog � � , d�4 khmcmKm  , i 4 khmcmKm e is the kernel ma-
trix of size �  x e � , where  is the dimension of the train-
ing set. The parameter vector is thus W 4 � W B

Y m8m m Y W  � .
Consequently, W � � 4 ���]` � : � = and the mapping can

be derived as: X J
� � � 4 � ���^W B �

Y m m8m Y ����W  � � 4
� ����� � ` � : B =

Y m m8m Y ����� � ` � :  = � where � � is the damped
pseudo-inverse of � , computed once for all / mappings
and ��� 4�� n � � Y f B

�ZY m m8m Y n � � Y f 	 � � .3 Differentiation of
the generative mapping

I
:KJoL
�
= to second order for continu-

ous optimization can be obtained using the chain rule and
the derivation of the Jacobian of X J : � N P

� � � 4�� N P : � =� � .

2.2. Embedded and Layered Generative Priors

Consistent inference in the embedded space
�u+

requires
a prior over the probable regions of the low-dimensional
manifold * , determined by the training data density. Here
we use a mixture prior  �� � � � 4����� A�B

� � � � � Y"! � Y$# � � ,
where � are Gaussian functions with parameters obtained
by % -means clustering the embedded training set [12]. 4

Sampling artifacts and problem domain constraints may in-
teract in a way that is difficult to separate in * . In particular,
the constraints may generate unfeasible regions having in-
trinsic curvature. Geometrically these will be holes, in both�

and in * . For human kinematic representations based on
joint angles � � , the intrinsic curvature is produced by the
limits of articulations and by the body non-self intersection
constraints. These exclude certain state variable combina-
tions (see also � 4). While for many domain models, ana-
lytic characterizations of unfeasible regions may be avail-
able (in

�
), directly separating sampling artifacts from in-

3We also experimented with a sparse ‘lasso cost’ based on indi-
vidual & components [23, 13]: ' r &�t�y�({

)+*,.- (
/0/ 1 &32,5476 2 8 ,"9 /0/ {

with constraint
):*,"- (

)+;w - (
/ < w, />=@? rBA t , and full-dimensional1

, & . In our tests, we found that this is comparable with subset
selection having the same kernel set for all dimensions, in a cross-
validation loop. It tends to be more predictable, but it requires iter-
ative optimization, which is more expensive than sampling kernel
subsets. The latter can select among a larger number of models.

4The mixture centers will also be used in ~ 2.3 for off-line esti-
mation of a roadmap for initializing geodesic calculations.

trinsic curvature in * is nearly impossible, under general,
unrestrictive, sampling assumptions. The reason is that one
cannot assume that e.g. the training data available in

�
has

been sampled uniformly and / or densely from the unknown* [16], and the prior  � is simply blind to such effects (i.e.
it smooths them). In fact, it may assign unfeasible regions
a moderately high probability, especially if these are sur-
rounded by densely sampled zones.

Because the learned model
I
:KJoL
�
= is layered, sharper curva-

ture constraints may be induced in the embedded space by
existing priors in the original representation space, where
these may be available in simple analytic form. For a lay-
ered continuous generative model

I
:KJhL
�
= , one can exploit

the modular structure of its forward transformation chain.
Since evaluation and differentiation of

I
:KJML
�
= with respect

to its state variables is the main computational machinery
of the model, analytic forms for intermediate function val-
ues and derivatives on the generative transformation chain
are available. For a two-layer embedded-embedding model

slice * NQP� � � �
with � ��* , �U� � 4 X J

� � � � � � and pri-
ors  C� � � � and  � � �9� � respectively, we combine the dis-
tribution over probable regions in * with flattened priors
from the embedding space

�
:  � � �ED  �� � � �GF  � � X J

� � � �HFI � N P
� � � � � N P

� � � I BKJ.L (see fig. 1b). Notice that the resulting
prior is not normalized and it requires a state-dependent Ja-
cobian scaling factor. Analytically differentiating  � � � is
possible, given  � , and the parametric form of the mappingX J , from � 2.1. The mechanism allows consistent inference
in the embedded space * (see � 3). Priors at subsequent
layers can be discarded, being already absorbed in  � � � .
2.3. Geodesics for Interpolation

The construction of geodesics can be framed as optimal
inference where we synthesize a trajectory that is smooth
and consistent with the prior  on the manifold * . As-
sume a trajectory with endpoints �NM Y �PO � B � * , and its
discretization with Q knots R�\4S� � B Y m m m Y � O � . The en-
ergy function for geodesics can be written as: TCU � R� � 4� � ObKA�B

VXWZY  � � b �\[ R�\] � ]^R� � , where ] is a first order dif-
ference operator square matrix of dimension [ Q x , ] con-
sisting of Q band-diagonal blocks of , -dimensional iden-
tity matrices �<mcmcm �`_ + _ + mcmcm � . Priors encoding higher degree



of smoothness can be obtained by self-multiplication, e.g.
for second order as ] � ] � ] ] , etc. The function T U is
differentiable and can be sampled or optimized for a lo-
cal MAP solution from a trivial initialization (e.g. points� b uniformly distributed on a straight line between �NM and�PO � B ). To avoid unrepresentative local optima, we initial-
ize using Floyd’s dynamic programming algorithm (DP).
This is run off-line to find all shortest paths on the set of
mixture centers

!
b obtained from clustering * (see � 2.2).

This roadmap can be effectively used at geodesic query
time: given known endpoints, link to the closest mixture
component at each end and use the precomputed road (see
fig. 2(d) for an oriented bounded box decomposition used in
nearest neighbor queries). The DP trajectory is then refined
using the consistent geodesic function TCU .

3. Temporal Inference

We apply Bayes rule to compute the ‘static’ total poste-
rior probability over the learned manifold space * given
(data) observation � :  � � I � � D  � � I � � F  � � � . Here, � � � is the prior on the model state space and  � � I � � is
the observation likelihood, that can be computed in terms
of  � � I � � � � 4 �)��� X J

� � � �V� , the probability of observa-
tion � as predicted by the generative model feature

�
at

configuration � (see fig. 1a). For tracking using dynamic
observations, the prior at time � combines the previous pos-
terior  � � ;�� B

I �
;�� B
�

and the dynamics  � � ;
I � ;�� B

�
, where

we have collected the observations at time � into vector� ; and defined
�
; 4 6 � B

Y m8m m Y � ; ? . The posterior at �
becomes:  � � ;

I �
;
� D  � � ;

I � ;
�5F  � � ;

I �
;�� B
�
, where � � ;

I �
;��9B
� 4 � �	��
�  � � ;

I � ;��9B
�  � � ;��9B

I �
;�� B
�
.5 To-

gether,  � � ;
I � ;�� B

�
and  � � ;�� B

I �
;�� B
�

form the time � prior � � ;
I �
;��9B
�

for the static Bayes equation. To approximate
the propagating density, we use Covariance Scaled Sam-
pling (CSS) [18]. This probabilistic method represents the
posterior distribution of hypotheses in state space  � � ;

I �
;
�
,

as a Gaussian mixture, whose weights, centers and covari-
ances are obtained as follows. Random samples are gener-
ated from the temporal prior  � � ;

I �
;��9B
�
, and each is opti-

mized by nonlinear local optimization (respecting any prior
constraints, etc.) to maximize the local posterior likelihood
encoded by  � � ;

I � ;
�
. The optimized likelihood value and

position gives the weight and center of a new component,
and the inverse Hessian of the log-likelihood gives a scale
matrix that is well adapted to the contours of the cost func-
tion, even for very ill-conditioned problems like monocular
human tracking. The likelihood and temporal prior distribu-
tions are then composed and pruned to a maximum number
of mixture components, in order to produce the posterior � � ;

I �
;
�

for the current timestep (see [18] for details).

5Here q r " � / " ��� ( t��2q � r " � tcq�� r " � / " ��� ( t will encode both
simple dynamic rules q � and a prior q � in order to ensure the dy-
namics remains inside the feasible manifold region. We use the
prior q on the manifold ( ~ 2.2) as q � .

4. Human Representation Learning for Visual
Tracking

Representation Learning is based on a physically in-
spired 3D body model that consists of a kinematic ‘skele-
ton’ of articulated joints controlled by angular joint vari-
ables, covered by a ‘flesh’ built from superquadric ellip-
soids with deformations. The model has internal propor-
tions, shape and surface color parameters ! . The state space
consists of 29 joint angle variables (for shoulder, elbow, hip,
knee joints, etc.) and 6d global rigid motion variables ��� ,
encoded in the state � � . We learn a low-dimensional rep-
resentation ���[* for training vector slices of ��� , that do
not include the rigid components ��� , using manifold em-
bedding on a set of body joint angle training data, obtained
with a motion capture system (courtesy of the motion cap-
ture database at the CMU graphics laboratory [1]). We es-
timate a mixture model for * by % -means clustering the
embedded eigenvectors, to build the prior  � � � � . We also
learn the parameters W of a forward mapping X J into the
original joint angle space using Gaussian kernel regression.
In use, model superquadric surfaces are discretized into 2D
meshes and the mesh nodes (and their colors, updated after
each tracked image, e.g. by texture mapping) are mapped to
3D points using knowledge of the kinematic state variables
predicted at configuration �U� by X J

� � � . These map to each
body kinematic chain and then predict image positions and
pixel colors, using perspective image projection, transfor-
mations that are all encoded in

�)��� �9� � 6. The Observa-
tion Model is based on sums of predicted-to-image match-
ing likelihoods (and their gradient and Hessian metrics)
evaluated for each model feature prediction

�
. As image

features, we use a robust combination of intensity-based
alignment metrics, silhouettes and robustified normalized
edge distances [18]. Flattened Embedded Priors consist
of soft joint angle limits and body non self-intersection con-
straints [18]. For the experiments here, we work with the
negative log-likelihood energy function in � 3 and the prior
is not normalized and not scaled. For temporal state infer-
ence (tracking), we use CSS [18], as explained in � 3.

4.1. Experiments

The experiments we show include image-based visual
tracking of human activities in monocular video. This un-
derlines the importance of using prior knowledge because

6The 6d global rigid state representation "�� is not learned us-
ing embedding because people can move in any directions and
can be seen from any viewpoint, so it is restrictive to learn prefer-
ential subspaces for global translation or rotation. This implies
that this slice of variables, although part of the inferred state,
is mapped by & ' , and not by � 8���� ' 9 . This is simply a techni-
cality and we avoided making it explicit for notational simplic-
ity. In practice, we do inference over an augmented hidden state

r "�� " � t (embedded coordinate + global rigid motion) and there-
fore need to add a trivial identity component to  � for the map! y#" ' r " #[y r  � r "$t$� "%� t t .



often the motion of subsets of body limbs is unobserved for
long periods, e.g. when a tracked subject is sideways or not
facing the camera. However, information about unobserved
variables is present indirectly in the observed ones and this
constrains their probability distribution. Learning a global,
non-linear, low-dimensional representation, produces a
model that couples the state variables. We derive models
based on various training datasets, including walking,
running and human interaction (gestures in conversations).

Analysis of the walking manifold involves a corpus of
2500 frames coming from 5 subjects, and thus contains
significant variability. Fig. 2 shows walking data analysis
and various structures necessary for optimization. Fig. 2(a)
(left) gives estimates of the data intrinsic dimensionality
based on the Hausdorff dimension , 4 V����

	�� M
� ��� F : 	 =� ��� : B"J 	 = ,where e is the radius of a sphere centered at each point,

and  � e � are the number of points in that neighborhood
(the plot is averaged over many nearby points). The slope
of the curve in the linear domain 	�m 	�k � k corresponds
roughly to a 1d hypothesis. Fig. 2(b) plots the embedding
distortion, computed as the normalized Euclidean SSE over
each neighborhood in the training set graph. Notice its sta-
bility across different neighborhood sizes, and contrast it
with the larger distortion of more variate training sets, in
fig. 5(c). Fig. 2(c) and fig. 2(d) show embeddings into 2d
and 3d. The latter representation is more flexible, and al-
lows more variability. The results correspond to spherical
neighborhood sizes of e�4
	�m �� and Gaussian standard de-
viation ��4 khm���� . The figures show the embedded manifold
as defined by the GMM prior  � � � � (3 stdev). Notice the
shape has similarities with the position-velocity plot of a
harmonic oscillator. Fig. 2(d) shows the spatial decomposi-
tion of the data based on oriented bounding boxes OBB [9].
This is used for fast nearest-neighbor queries in geodesic
calculations ( � 2.3). The embedded generative model used
for tracking is based on a forward mapping X J ( � 2.1) that
has 500 kernels.

The image based tracking of walking is based on 2s of
video of a subject moving against a cluttered background in
a monocular sequence (fig. 3). We use a 9d state model con-
sisting of a 3d embedded coordinate (for the 2500 walking
dataset above) ( � ) + 6d rigid motion ( ��� ). and track using
CSS with 5 hypotheses. Aside from clutter, the sequence is
difficult due to the self-occlusion of the left side of the body.
This occasionally makes the state variables associated to the
invisible limbs close to singular. While singularity can be
artificially resolved with stabilization priors, the more se-
rious problem is that without prior knowledge, the related
state variables would be mistracked, thus making recovery
from failure extremely unlikely. Also notice the elimination
of timescale dependence present in classical dynamic pre-
dictive models. The manifold is traversed at a speed driven
by image evidence, as opposed to a prespecified one.

Embedded vs. original model comparison for walking
in fig. 4 is based on 60 frames of left out test motion capture
data, synthesized using the articulated 3D model. We se-
lect 15 (3D) joint positions (shoulders, hips, elbows, etc.),
perturb them with 1cm spherical noise to simulate model-
ing errors and project them onto a virtual monocular cam-
era image plane (440x358 pixels). This input data is used
to define a SSD reprojection error (Gaussian likelihood),
for body joints. We track with 2 hypotheses, using both
the 35d original model (having joint angle limit and body
non self-intersection priors) and the 9d embedded walking
model. The left and middle figures 4(a), (b) show the aver-
age pixel reprojection error per joint, whereas fig. 4(c) gives
the average joint angle error with respect to ground truth
(for the embedded model we plot the estimated 	�m 	�k�� radi-
ans � k�� , average range of uncertainty of the kernel regres-
sor X J with errorbars). Both models maintain track, but
the original one overfits the data, leading to low reprojec-
tion errors, but larger variance in joint angle estimates. This
is caused by tracks that follow equivalent class (monocular
reflective) neighboring minima w.r.t. ground truth, more
clearly noticeable at the beginning and the end of the se-
quence. The region between the frames 40-60 corresponds
to moments where the model puppet is situated sideways
in straight-stand positions with respect to the camera ray of
sight. The accuracy of the original model improves during
this period, perhaps because some of the depth ambiguities
are eliminated due to physical constraints. The embedded
model is biased for walking and has thus larger reprojec-
tion error but significantly smaller 3D variance, having the
error rather uniformly distributed among its joint angles.
The average error in fig. 4(c) is about kMm ��� , and the maxi-
mum error during tracking was � m ��� in one left hip joint an-
gle. The original model tends to have large localized errors
caused by reflective ambiguities at particular limbs. The av-
erage error in fig. 4(c) is about ��� , but the maximum error
was ���^m �� in one right shoulder joint angle. For the limited
computational resources used, and for the limited walking
task, the learned embedded model is clearly more accurate.

Analysis of the running, walking and human interaction
manifold is illustrated in fig. 5 where we show a 600 point
training set consisting of samples drawn from an activity
set consisting of walks, runs and conversations. Left plots
in fig. 5(a),(b) show 3d projections of neighborhood graphs
( e�4�	�m �� ) for 6d and 5d embeddings onto their 3 lead-
ing Laplacian eigenvectors. Note that the the submanifolds
of these activities mix, therefore pathways between these
are probable (this can be also qualitatively checked by con-
nected component analysis in the training set graph). Cir-
cular structures related to periodic walks and runs are less
observable for 5d embeddings but are more clearly visible
for 6d ones. The plot in fig. 5(c) confirms that the embed-
ded neighborhood distortion decreases monotonically with
increasing dimension. In practice, the stability of optimiza-
tion in the embedded space becomes satisfactory beginning
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Figure 2. Analysis of walking data. (a) estimates intrinsic dimensionality based on the Hausdorff dimension. (b) plots average local
geometric embedding distortion vs. neighborhood size (notice its stability). Figures (c) and (d) show embeddings of a large 2500
walking data set in 2d and 3d and the manifold mixture prior q�� . (d) shows the spatial decomposition of the data used for nearest-
neighbor queries in geodesic calculations (see text).

Figure 3. Tracking a 2s monocular video sequence of a walking subject using optimization over a mixed 9d state space r "�� " � t consisting
of embedded 3d coordinate (from 29d walking data) + 6d (rigid motion). In this way the search complexity is significantly reduced and
can tolerate missing observations (e.g. an occluded limb in a monocular side view).
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Figure 4. Embedded (9d) vs. original (35d) model comparison for walking. (a) and (b) show the average joint reprojection error (in
pixels). (c) plots joint angle angle error vs.ground truth (within 0.014 radians � ���

, average uncertainty range for the map  � ). The
original model overfits the data (low reprojection errors, larger 3D variance estimates). The embedded model has higher bias (larger
reprojection error) but also superior 3D accuracy. The original model has about � � average error, but the maximum error was �	��
 � � in
one of the right shoulder joints. The embedded one has about

� 
  � average error, but the maximum was �
 � � in one of the left hip joints.

at about 5-6d, ruling out the use of very low-dimensional
2-4d models. The performance of the optimizer is based on
both the latent space structure, and the accuracy of the map-
ping X J . Indeed, we found that the constrained topology
of low-dimensional spaces (2-4d) collapses data from em-
bedded runs and walks into nearly overlapping cycles (not
shown), and this leads to estimation instability. In fig. 5(d)
we show the good accuracy of a mapping X J (based on
100 kernels) from the 6d embedded data in fig. 5(a) into the
original 29d training set.

Tracking of human activities is exemplified in fig. 6 where
we analyze a 5s video using a 12d model consisting of

6d rigid state + 6d embedded coordinate obtained from a
9000 element training set consisting of 2000 walking, 2000
running and 5000 human interaction samples. The 6d-29d
mapping X J is based on 900 kernels. Fig. 6 shows snap-
shots from the original sequence together with image-based
tracking and monocular 3D reconstructions of the most
probable configurations rendered from a synthetic scene
viewpoint. The algorithm tracks and reconstructs 3D mo-
tion with good accuracy using 7 hypotheses. Missing data
resulting from frequent occlusion / disocclusion of limbs
would make monocular tracking with quasi-global cost sen-
sitive search [18] or optima enumeration methods [19],
alone difficult without prior-knowledge, or at least a sophis-
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Figure 5. Analysis for a 600 sample dataset consisting of mixed walking, running and conversation samples, best viewed in color (light
red, green and blue local graph neighborhood connections originate at points in each set respectively). Left (a) and (b) show 3d projec-
tions of 6d and 5d embeddings respectively. (c) shows the neighborhood distortion plot for dimension range 2-6 and (d) plots the good
average joint angle accuracy of a 6d-29d map  � , in radians (maximum � � 
 � � ) (see text).

ticated image-based limb detector. On the other hand, the
presence of multiple activities and complex scenarios of hu-
man interaction demands a flexible learned representation,
and makes dedicated dynamic predictors (e.g. walking, run-
ning) [6, 15] difficult to apply. In fig. 7 we show various
components failure modes. Fig. 7(a),(b) shows the behavior
of the system in a run that does not use the flattened embed-
ded priors for physical constraints. Indeed, these are useful
– notice unfeasible configurations of the right hand inside
the back and right upper-arm inside the torso. The effects
of missing training data on tracking behavior are explored
in fig. 7(c)-(f) where an embedded model computed with-
out conversation training data is used to track the sequence.
The model tracks the first part of the sequence and the be-
ginning of the conversation, but eventually looses lock of
the arms when the gestures deviate significantly from the
training set.

5. Conclusion

We have presented a learning and inference framework that
reduces visual tracking to low-dimensional spaces com-
puted using non-linear embedding. Because existing ap-
proaches to optimization over learned, constrained gener-
ative representations are based on only locally valid mod-
els, they can’t easily exploit both the convenience of low-
dimensional modeling and the one of efficient continuous
search. Therefore they may operate either discretely or
in hybrid non-convergent regimes. To address these dif-
ficulties, we introduce a layered generative model having
learned, embedded representation, that can be estimated us-
ing efficient continuous optimization methods. We analyze
the structure of reduced manifold representations for a va-
riety of human walking, running and conversational activi-
ties, and demonstrate the algorithm by providing quantita-
tive and qualitative results of human tracking and 3D mo-
tion reconstruction based on learned low-dimensional mod-
els, in monocular video.
Future and ongoing work will explore the construction of
flexible dynamic predictors for tracking, low-dimensional
shape representations, and activity recognition.
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