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Abstract
Understanding observations of interacting objects re-

quires one to reason about qualitative scene dynamics. For
example, on observing a hand lifting a can, we may in-
fer that an ‘active’ hand is applying an upwards force (by
grasping) to lift a ‘passive’ can. In previous work [6] we
presented a system that infers qualitative scene dynamics
from the instantaneous motion of objects. However, since
that analysis only considered single frames in isolation,
there were often multiple interpretations for each frame. In
this work we show how the dynamic information inferred
at each frame can be integrated over time to reduce ambi-
guity. Our approach to integrating information is to extend
our representation to describe objects by a set of proper-
ties or capabilities that are assumed to persist over time.
Given this extended representation we find interpretations
that require the smallest set(s) of properties over the whole
image sequence.

1 Introduction
We consider the perception of simple actions in video

sequences. An example of the type of the problem we are
considering is shown in Figure 1. In this sequence, a hand
reaches for, grasps, and lifts a coke can off a table top.
Given this sequence, our eventual goal is to have a com-
putational system that produces conceptual descriptions of
the observed actions, such as “the hand lifts the coke can”.
In order to perform this type of inference the system re-
quires at least three components. First, it must have some
representation of the qualitative scene dynamics. That is,
the system must be able to infer the basic generation and
transfer of forces among the participant objects. Second,
the system must have an understanding of how the object
behaviors relate to the scene dynamics. That is, it must be
able to infer (either by recognition of the objects or by ob-
servation of their behaviors over time) that the hand is an
‘active object’ that can generate forces and grasp other ob-
jects, while the can is a ‘passive object’ that is acted upon
by the hand. Finally, in order to build conceptual descrip-
tions from image sequences, we need a way to translate the
inferred physical descriptions of actions to natural event
categories such as “lift”, “push”, “drop”, etc.

�This work was performed while the first author was at the University
of Toronto.

Most previous work on motion understanding has fo-
cused on only the third problem, recognizing events from
image sequences. Unfortunately, these approaches have
not used dynamic information. Instead, they have ei-
ther relied on specific domain knowledge (such as traffic
scenes [7]), or have used some form of recognition model
based on either predefined templates [4] or hidden markov
models [9, 2].

In constrast, we focus on the first two components
above. In particular, we attempt to perform a bottom-up
inference of physical descriptions of the actions depicted
in image sequences in terms of the force-dynamic proper-
ties of objects.

2 Integrating information over time
In earlier work [6] we presented a system that made in-

ferences of scene dynamics based on the instantaneous mo-
tion taken at particular frames of an image sequence. Our
approach is based on the analysis of the Newtonian me-
chanics of a simplified scene model. In particular, objects
are modeled as 2D polygons in a layered depth model. Ob-
jects are subject to forces due to gravity and contact with
other objects. Objects can also attach to other objects in
various ways. Finally, in addition to passive behaviors,
there can be extra force and torque generators called ‘mo-
tors’ that act either on objects, or at the contact regions
between objects. At each frame of the input sequence, our
system uses a set of preference rules to find the smallest
set(s) of motors and attachments that could produce the ob-
served motion but still be consistent with Newtonian me-
chanics.

While promising, the previous approach suffers from
two fundamental limitations. First, because we consider
single frames in isolation, when objects interact there is of-
ten ambiguity as to which object (if any) is responsible for
generating the forces (‘motors’) we infer in the scene. For
example, at a single frame during the lifting phase of the
coke sequence (frames 53–63) we cannot determine which
object is responsible for generating the forces. Second,
since our analysis is based on the instantaneous motion es-
timated at each frame, anomalous interpretations will oc-
cur when there are motion discontinuities (eg at collisions
or changes in contact geometry) or sign changes in velocity
(eg at starts and stops of motion).
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Figure 1: coke sequence: A hand reaches for, grasps, and lifts a coke can off a table top. Polygonal outlines of the objects
and estimates for their linear and angular accelerations are overlayed on each frame. (The horizontal line denotes the table
top.)

2.1 Ascribing properties to objects
Our approach to integrating information is to describe

objects by a set of properties or abilities that are assumed
to persist over time. For example, given successive ob-
servations of a hand moving freely or imparting forces
on other objects in the scene, we would like to infer that
the hand has the ability to move autonomously. Similarly,
given successive observations of a hand which is lifting or
pulling other objects, we may infer that the hand has an
ability to grasp other objects.

Specifically, our representation includes the following
object properties:

� FLYER�o� — object o can generate an arbitrary force
and torque on itself;

� DRIVER�o� — object o can exert an arbitrary tangen-
tial force along any of its edges;

� ROTOR�o� — object o can exert an arbitrary torque at
any of its vertices;

� GRASPER�o� — object o can attach to any object
which contacts it in the scene.

where o refers to any object in the scene. Given this repre-
sentation, we seek interpretations that require the smallest
set(s) of properties over the whole sequence. As in [6],
we assign priorities to minimization of the various proper-
ties. Specifically, we minimize flyer properties at the high-
est priority, followed by driver and rotor properties at the
next priority, followed by grasper properties at the lowest
priority.
2.2 Discontinuity detection

As described above, our system assumes that objects
are in continuous motion, and does not model collisions
or force impulses. Therefore, in addition to integrating in-
formation over time, we need a way to select only those
frames where the motion is continuous.

In this work we assume that all force impulses (step
changes in velocities) are due to collisions. Furthermore,
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Figure 2: Collision detection process. Collisions are de-
tected when an impending penetration is followed by either
an abutting contact (a), or a separation (b). The arrows de-
pict the object velocities. The dashed box depicts the con-
tact tolerance between the objects.

we assume that all such collisions occur among visible
(non-occluded) objects. To detect collisions, we imple-
ment the simple test shown in Figure 2. Specifically, our
system looks for any impending penetration (negative rel-
ative velocity normal to the contact region) between two
abutting objects. As shown in Figure 2, the collisions can
be of two sorts. The first collision type (a “push”) occurs
when the objects remain in contact after the collision. The
second collision type (a “bounce”) occurs when the objects
separate immediately after collision. Note that a disconti-
nuity is not detected when two objects in different depth
layers move smoothly past each other. �

The tests are implemented by comparing contact re-
gions in adjacent frames of the sequence. Upon detection
of a collision, the two adjacent frames are removed. In ad-
dition, because the motion estimates are unreliable in the
neighborhood of a collision, we removed one preceding
and two subsequent frames.

In addition to removing discontinuities due to colli-
sions, we also need to remove frames at which there is a

�Note that the contact test must also consider cases where the contact
is maintained, but changes geometry. This occurs, for example, when an
object tips towards or away from a surface (see Figure 7). The full details
of the implementation are described in [5].
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Figure 3: Sliding objects. (a) depicts an object that is de-
celerating to rest (stopping), while (b) depicts an object
that is accelerating from rest (starting). Stopping can usu-
ally be explained by sliding friction (a tangential force op-
posing the direction of motion), while starting requires the
presence of a motor to generate a forward force. When the
velocity becomes small, so that the actual sign is uncertain,
then we cannot distinguish between cases (a) and (b) given
data at a single frame.

significant tangential acceleration, but the sign of the tan-
gential velocity cannot be resolved. The reason is that,
when dealing with just the instantaneous motion, the rel-
ative signs of the tangential velocity and acceleration dic-
tate whether the motion corresponds to a stop or a start (see
Figure 3). In situations where the velocity is too small to
be able to reliably infer the sign, we therefore can easily
confuse stops and starts. Confusing a stop with a start may
cause our system to infer the anomalous presence of a mo-
tor. To avoid this, we simply remove all frames containing
such starts and stops.

Once the offending frames are removed from the se-
quence, we find minimal sets of object properties suffi-
cient to explain the motion in each frame. Intuitively, we
can view the temporal integration process as an incremen-
tal search that starts with the assumption that none of the
objects have any special properties, and gradually increases
the set of object properties as more behaviors are observed.
Note that, unlike the earlier system that performed the
search on single frames, for each set of properties chosen,
all valid frames of the sequence are tested.

3 Results
We tested the system given tracking data from several

sequences (cf [6]). Figure 4 shows the results for the coke
sequence. Below each frame of the sequence we show
the minimal set(s) of object properties (FLYERs, DRIVERs,
ROTORs, and GRASPERs) sufficient to explain the instan-
taneous motion in that frame. At the bottom of the figure
we show the minimal set(s) of object properties sufficient
to explain the entire sequence. Note that while the system
has inferred that the hand is a flyer, there are multiple in-

terpretations since it cannot determine whether the hand or
the can is a grasper object.

Figure 5 shows the results for the cars sequence. In
this sequence a hand releases a wind up car that acceler-
ates, hits, and then pushes a second car. In this case, while
there is still ambiguity at some individual frames (eg frame
36), temporal integration results in a single interpretation
in which the left car is a driver object. � As described
in x2.2, our system removed the frames around frame 20
(start of the left car) and frame 28 (the collision) before
integrating the results over time. Note that removal of the
collision was necessary to avoid anomalous interpretations
for this sequence.

Figure 6 shows results for the hit sequence. Here a hand
hits a box that is sitting on the table top. The box slides
and then comes to a stop. Again, a unique interpretation
is found since the motion can be explained by an active
hand. As expected, the deceleration of the box is explained
by sliding friction on the table top. Removal of the frames
around both the collision (frame 30) and the stop (frame
40) were necessary to obtain a unique interpretation for this
sequence.

Finally, figure 7 shows the results for the tip sequence.
In this sequence a hand raises a box onto its corner and al-
lows it to tip to an upright position. The system removed
frames around frame 30 (hand starting to slide against the
table) and frame 38 (collision between the box and table).
In this case the temporal integration process is only par-
tially correct: While the dynamics analysis has recognized
the passive motion of the tipping box, it has not been able
to detect the ‘active’ hand. The problem is that while the
displacement of the hand near frame 30 changes over time,
the velocity is too small to reliably detect the direction of
motion, so this frame is removed.

4 Discussion and Conclusions
We have shown that to extend our previous system [6]

to integrate information over time we need to: 1. Remove
frames where the instantaneous motion is either discontin-
uous, or contains insufficient information to reliably iden-
tify the object properties. 2. Ascribe properties to objects
and minimize these properties over the entire sequence.

Our approach to continuous sequence processing by
choosing minimal sets of properties over time is similar
to [8], except that instead of using qualitative physics, our
system uses an explicit theory based Newtonian mechan-
ics. Our approach to discontinuity detection is similar to
that described in [1] except rather than detecting and clas-
sifying isolated frames containing discontinuities, we at-
tempt to infer object properties over the entire sequence.

There are a number of natural extensions to this work.
�Note that we have disallowed DRIVERs (or any other properties) for

the table top.
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Sequence Interpretation(s): �FLYER�hand�� GRASPER�hand��, �FLYER�hand�� GRASPER�can��.

Figure 4: Object properties and temporal integration results for the sequence in Figure 1. Minimal set(s) of object properties
are shown for each frame of the sequence. A large open circle at the object center denotes a FLYER object while a small
open circle denotes a GRASPER object. Minimal set(s) of object properties that explain the entire sequence are shown at the
bottom of the figure. Note that since neither object is moving in frame 45, no FLYER assertions are required in that frame.

First, rather than throwing away frames where the in-
stantaneous dynamic model breaks down, we should at-
tempt to exploit this information. In particular, it should
be possible to extend our sequence processing by looking
at frames in the neighborhood of motion discontinuities to
determine the category from amongst several possibilities
(collisions, starts and stops). Such a set of motion cate-
gories is presented in [3], however, these categories would
have to be expanded to deal with polygons contacting in
various ways. To handle these cases would also require ex-
tending our dynamic model to deal with collisions by look-
ing at the velocities immediately before and after a colli-
sion and analyzing the transfer of momentum between the
objects.

Second, our representation of object properties is still
simplistic. In particular, in our representation, the ob-
ject properties are taken to be independent. Because of
this, there will be multiple interpretations whenever ob-
jects share attachment or motor assertions (eg the coke

sequence). In addition, because our system considers the
minimal set of properties for the entire sequence, there is
no provision for object properties that change with time,
or for the creation, deletion, or merging of objects in the
scene. To deal with these cases will likely require either
additional structure within the representations, or the ob-
servation of objects over a wider range of behaviors. In
particular, such structure should allow the representation
of various internal states, intentions, and goals for the par-
ticipant objects.

Finally, as described in the Introduction, we need a way
to translate the inferred force-dynamic descriptions into
natural event categories. (See [8] for such a proposal based
on recognizing specific sequences of force-dynamic de-
scriptions.)

In summary, while the results reported here are prelim-
inary, they indicate that the integration of information over
time can significantly reduce ambiguity in sequence inter-
pretation. However, much work remains to be done to de-
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Sequence Interpretation(s): �DRIVER�left��.

Figure 5: Object properties and temporal integration results for the cars sequence. Minimal set(s) of object properties are
shown for each frame of the sequence. A left–right arrow is used to denote a DRIVER object while a small open circle is
used to denote a GRASPER object. The minimal set(s) of object properties that explain the entire sequence are shown at
the bottom of the figure. Frame 20 (start of the left car) and frame 28 (the collision) have been removed by the temporal
integration procedure (removed frames are shown in grey). Note that the interpretation at frame 28 is anomalous because
of unreliable estimates for the accelerations at the collision.

velop this into a complete event recognition system.
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Sequence Interpretation(s): �FLYER�hand��.

Figure 6: Temporal integration results for the hit sequence. A single interpretation is found: all motion can be explained by
an active hand. Frames 30 (a collision) and 40 (a stop) were removed by the temporal integration procedure. Note that the
interpretation at frame 30 is anomalous because of unreliable estimates for the accelerations at the collision.

25 30 34 36 48

Sequence Interpretation(s): ��.

Figure 7: Temporal integration results for the tip sequence. In this case a single (incorrect) interpretation is found for the
sequence: all objects are passive. See text for details. Frame 30 was removed due to the start of motion between the hand
and the table. Frame 36 was removed due to the collision between the box and the table. The curved arrow at the object
center denotes a ROTOR object. Note that only two of the five possible interpretations for frame 30 are shown here. (The
three additional interpretations are obtained by allowing either the hand or the box to be a GRASPER object and by allowing
the hand to be a ROTOR object.)


