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Abstract

We segment the trajectory of a moving object into piece-
wise smooth motion intervals separated bymotion bound-
aries. Motion boundaries are classified into various types,
including starts, stops, pauses, and discontinuous changes of
motion due to force impulses. We localize and classify mo-
tion boundaries by fitting a mixture of two polynomials near
the boundary. Given a classification of motion boundaries,
we use naive physical rules to infer a set of changing con-
tact relationships which explain the observed motion. We
show segmentation and classification results for several im-
age sequences of a basketball undergoing gravitational and
nongravitational motion.

Introduction
Given the trajectory of a moving object, what physically
meaningful aspects of the motion can be recovered? Here
we segment the trajectory of a moving object into piece-
wise smooth motion intervals separated bymotion bound-
aries. We consider the motion of a single passive object,
such as a basketball, undergoing gravitational and nongravi-
tational motion. (See Fig. 1.) The ball may roll on a surface,
fall, or bounce off the floor or walls. In addition an active
object, such as a hand, may act on the object by carrying,
lifting, hitting, etc. A sample sequence is shown in the first
row of Fig. 2. Here a hand pushes a ball along a table top.
The ball rolls on the table, falls, and bounces several times
on the ground.

Our eventual goal is to characterize events based onqual-
itative scene dynamics. For example, given the sequence
in Fig. 3 we should infer that an “active” hand is moving a
“passive” ball by applying a force. Once released, the ball is
undergoing passive motion as it rolls and falls off the table.
In (Mann, Jepson, & Siskind 1997) a system was presented
that infers scene dynamics based on the Newtonian mechan-
ics of a simplified scene model. However, that system was
limited to the instantaneous analysis of continuous motion.
Sequences were processed on a frame by frame basis, and
discontinuous motions (due to contact changes, collisions,
or starts and stops of motion) were explicitly removed.

To apply dynamics analysis to extended sequences, we
require a way to identify the motion boundaries, and to de-
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Figure 1: A composite of the tracking results for a sequence
where a subject throws a basketball.

termine the allowable motion at such boundaries. Here we
present a simplified system that considers the trajectory of a
single object (the ball) and extracts motion boundaries cor-
responding to contact changes, application or removal of
forces, starts and stops of motion, etc. In particular, we
show that from the trajectory of the ball, and possibly the
proximity of the hand, we can infer motion boundaries, as
well as changes in hand and surface contact. This informa-
tion should provide suitable input for event description and
recognition (Siskind 2000).

This paper makes three contributions. First, we present a
characterization of motion boundaries, based on the veloc-
ity and acceleration changes around a discontinuity. Sec-
ond, given an initial segmentation into piecewise quadratic
segments, we present an algorithm that classifies the mo-
tion boundaries into various categories. Our classification
is based on a novel fitting process that fits a mixture of
two polynomials within the neighborhood of the disconti-
nuity. Finally, we show how physical knowledge of plausi-
ble motion boundaries can be used to infer surface contact,
even though this is not directly observed in the input. We
show segmentation and fitting results for several image se-
quences of a basketball undergoing gravitational and non-
gravitational motion.



offtable: 2242 2251 2262 2270 2275

rollhit: 205 220 235 250 265

toss: 1022 1027 1031 1035 1039

Figure 2: Video sequences used for tracking and segmentation experiments. The ball and forearm are modeled by an circle and
an (elongated) octagon, respectively. See text for details.

2230 2240 2250 2260 2270 2280 2290 2300 2310 2320
frame

X
(t

),Y
(t

)

X(t)

Y(t)

C
0 C

0 C
0

C
0C

0

G G M,C G G GM,CM,CH

D2
0

H
0

D1
0D1

0
D1

0
D1

0
D1

0

Figure 3: Segmentation of the basketball’s motion in the
“offtable” sequence (first row of Fig. 2) into piecewise
smooth motion intervals separated by motion boundaries.
The bar shows frames where the hand and ball overlap in
the image. Intervals are labeled, H: hand contact, G: grav-
itational motion, M: nongravitational motion.D1

0 andD2
0

denote velocity and acceleration discontinuities.C denotes
contact interval,C0 denotes instantaneous contact.

Characterizing motion boundaries
We characterize motion by piecewise smooth intervals sep-
arated by boundaries (motion “transitions”) where there are
changes in velocity, acceleration, or contact relations with
other objects.

Motion boundaries are defined by two consecutive open
time intervals separated by an instantt0. We describe motion

boundaries using a set offluents(time varying propositions)
P (t). Let P−(t0) be the truth value ofP (t) on an open
interval immediately precedingt0 andP+(t0) be the value
of P immediately followingt0. P0 is the value ofP at the
transitiont0 (if it is defined).

The motion transition is an idealized model. For exam-
ple, during a collision a large force is exerted over a nonva-
nishing temporal duration while the colliding objects are in
contact. In our model, this will be represented as an instan-
taneous event, due to limits on the temporal resolution. A
related issue is that, since we measure position only at dis-
crete times, we can never say conclusively whether a motion
discontinuity has occurred. For any sequence ofn sample
points, we can always fit the data exactly with a continuous
polynomial of ordern − 1. In practice, however, velocity
and acceleration changes can be inferred by fitting low or-
der polynomials to both sides of a discontinuity and looking
for large changes in the slope and/or curvature of the data fit.

We now provide event definitions based on changes of
motion and/or contact fluents at motion boundaries.

Motion transitions

Let p(t) denote the position of the object along a trajectory,
which we assume to be continuous and piecewise differen-
tiable. LetM(t) indicate that the object is moving at time
t. We haveM(t) ≡ v(t) = dp(t)/dt 6= 0.1 Let M−(t0)
denote that the object is moving on an open interval imme-
diately precedingt0 andM+(t0) indicate that the object is

1Here we consider only thespeedof the object. A similar repre-
sentation may be constructed to describe direction discontinuities.



moving immediately aftert0. The conditions are:

M−(t0) ≡ ∃ε > 0, s.t. ∀t, t0 − ε < t < t0, v(t) 6= 0 (1)

M+(t0) ≡ ∃ε > 0, s.t. ∀t, t0 < t < t0 + ε, v(t) 6= 0 (2)

Note that if the velocityv(t) has a zero crossing att = t0
we still haveM−(t0) andM+(t0), but no motion at time
t0. This corresponds to an (instantaneous)pauseat timet0.2

Finally, we have

M0(t0) ≡ v(t0) 6= 0 (3)

Let Dn
0 (t0), n > 0 denote a discontinuity of ordern at

t = t0. We have:

Dn
0 (t0) ≡ lim

t↑t0

dnp(t)
dtn

6= lim
t↓t0

dnp(t)
dtn

(4)

D2
0 andD1

0 denote acceleration and velocity discontinuities,
respectively. Acceleration discontinuities result from the ap-
plication or removal of forces (eg., due to contact changes
or starts and stops of motion) while velocity discontinuities
result from force impulses (eg., collisions). We useD0 to
represent a general discontinuity, either in velocity or accel-
eration. In general, we may have a motion discontinuity of
any order. For example,D3

0 indicates a discontinuity in the
rate of changeof acceleration. Furthermore, several orders
of discontinuity may occur simultaneously, such as when a
force and an impulse are applied to an object simultaneously.
For the purpose of distinguishing collisions and gravitational
and nongravitational motion, however, it is sufficient to con-
sider only first (D1

0) and second (D2
0) order discontinuities.3

In the next section we will use Eqn. (4) to classify motion
boundaries based on the derivatives of low-order polynomi-
als fit to either side of the transition.

Fig. 4 shows the eight possible motion transitions (Jep-
son & Feldman 1996). The transitions are determined by
combining the motion fluents subject to the following con-
straints: 1) the trajectory is continuous (but the velocity may
not be); 2) the velocity at a discontinuity is not defined. Note
that of the eight possible transitions, only six of them cor-
respond to motion changes. The remaining two are “non-
events” corresponding to smooth motion and no motion, re-
spectively. We specify the above constraints as follows:

Axiom 1 (Disjoint motion labels) Exactly one of the labels
in each of the sets{M−,M−}, {M0,M0, D0}, {M+,M+}
must hold for the motion before, at, and after the transition.

Axiom 2 (Motion value (zeros)) (M−∨M+)∧D0 ⊃M0.
If there is zero motion on the open intervalt < t0 or t > t0,
and there is no discontinuity att0 there must be zero motion
at the boundaryt0.

Axiom 3 (Motion discontinuities) D0 ⊃ ¬(M− ∧ M+).
Discontinuities change the motion value (from non-motion
to motion).

2Another type of pause will occur over a nonzero interval. Such
a pause can be decomposed into a “stop” transition att1 followed
by a “start” att2 > t1.

3(Rubin 1986) observes that humans typically perceive only the
lowest order discontinuity, and that we have trouble distinguishing
second order from higher order discontinuities.

v(t) v(t) v(t)

M−M0M+ M−D0M+ M−M0M+

pause discontinuous motion smooth motion

v(t) v(t) v(t)

M−M0M+ M−D0M+ M−M0M+

smooth start abrupt start rest (no motion)

v(t) v(t)

M−M0M+ M−D0M+

smooth stop abrupt stop

Figure 4: The eight possible motion transitions.M−, M0,
M+ denote motion before, at, and after the transition, re-
spectively.M denotes rest (absence of motion).D0 denotes
a velocity discontinuity at the transition. See text for details.

Transition Event

C−C0C+ continuous contact
C−C0C+ onset of contact
C−C0C+ removal of contact
C−C0C+ instantaneous contact

Table 1: Consistent contact transitions.C denotes surface
contact. Similar conditions apply forH (hand contact).

Contact transitions
In addition to motion changes, we consider contact with an
active object, such as a hand, and contact with a surface,
such as a ground plane, a table, or a wall. Lett = t0 be a
place where motion and/or contact changes.H−, H0, H+

andC−, C0, C+ denote hand and surface contact, respec-
tively.

Table 1 shows the allowable motion transitions for con-
tact. These are the same as that in Fig. 4 except that since
contact is a spatial variable, it must be piecewise continuous:

Axiom 4 (Continuity of spatial fluents) C− ∨ C+ ⊃ C0.
Contact in the preceding or following interval implies con-
tact at the transition.4

Note that hand and surface contact are not directly ob-
served; they must be inferred from the image information,
and from the motion discontinuities. Hand contact can be

4C andM correspond to special values (zeros) of fluents. (Gal-
ton 1990) refers to these asfluents of position.



inferred from the overlap of the hand and the ball in the im-
age. Surface contact must be inferred from support informa-
tion and motion changes, such as collisions, and starts and
stops of motion.

Plausible motion boundaries

Using motion boundaries we may describe a wide variety
of natural events. Table 2 shows a partial list of transitions,
along with their typical physical events.

We begin by distinguishing gravitational and nongravita-
tional motions. This gives four possible transitions:G− →
G+, G− → G+, G− → G+, G− → G+. Transitions of
gravitational motion must satisfy:

Axiom 5 (Motion value (gravity)) G− ∧G+ ⊃ D2
0,G− ∧

G+ ⊃ D2
0, G− ∧ G+ ⊃ D

2

0. Gravitational motion cor-
responds to a specific value of acceleration. Acceleration
changes occur iffD2

0.

Within each transition we consider the onset and/or re-
moval of hand and surface contact. We arrive at the events
in Table 2 by considering a few simple constraints based on
our naive physical knowledge of the scene:

Constraint 1 (Support) G ⊃ H ∨ C. An object that is
not falling must be “supported”, either by hand or surface
contact.

A full determination of support requires an analysis of dy-
namics (the forces among objects) (Mann, Jepson, & Siskind
1997) and/or the kinematics (allowable motion of objects
under a gravitational field) (Siskind 2000). Here we simply
allow support whenever there is hand or surface contact.

Constraint 2 (Gravitational motion implies no contact)
G ⊃ C ∧H.

This is the converse of Constraint 1. While it is possible
for falling objects to have contact, eg., against a wall, we
consider such motions unlikely.5

Constraint 3 (Discontinuities require contact)
D0 ⊃ C0 ∨ H0. Velocity and acceleration disconti-
nuities can only result from surface or hand contact (eg.
hitting, bouncing, etc).

Note that these constraints are very weak. In particu-
lar, they allow arbitrary events, such as launching, starting,
stopping, etc. as long as there is a corresponding contact.
Nonetheless, we can infer surface contact over intervals of
nongravitational motion (ie., support by a surface), and at in-
stants where there are velocity discontinuities (ie., collisions
with a surface). Note that these inferences are only valid
when there is no hand contact. In the case of hand contact
we are indifferent about surface contact. We return to this
issue in the Conclusion.

5See (Jepson, Richards, & Knill 1996) for a discussion of how
to specify possible motion states usingqualitative probabilities.

Transition Event

G− → G+

G−D0C0G+ bounce
G−D0H0G+ hit

G− → G+

G−D0C0G+C+ splat
G−D0H0G+H+ catch

G− → G+

G−C−D0C0G+ launch
G−H−D0H0G+ drop/throw

G− → G+

G−C−D0C0G+C+ bounce (on surface)
G−C−D0C0H0G+C+ hit (on surface)
G−C−H−D0C0H0G+C+ release (on surface)
G−C−D0C0H0G+C+H+ catch (on surface)

Table 2: Some natural events expressed as transitions be-
tween gravitational (G) and nongravitational (G) motion.
See text for details.

Temporal consistency
Given two adjacent motion boundaries at timetn andtn+1

we require that: 1) the fluents aftertn are consistent with the
fluents beforetn+1; 2) there are no intervening times where
the fluents change value.

Preference 1 (Consistency of adjacent boundaries)
∀n, P+(tn) ≡ P−(tn+1)

Preference 2 (No unobserved changes within intervals)
∀n,∀t, t′, s.t. tn < t, t′ < tn+1.P (t) ≡ P (t′)

We write these conditions as preferences, since it is pos-
sible that our segmentation algorithm missed some tran-
sitions, or that our boundary classification algorithm mis-
classified some of the motion boundaries. Assuming a seg-
mentation algorithm that finds all motion boundaries, we
can enforce consistency by fitting intervals between adjacent
breakpoints. (See Experiments section.)

Classification of motion boundaries
Suppose we are given a trajectoryX(t) = [X(t), Y (t)]T
and a potential transition pointt0. We classify the motion
transition by fitting polynomials to the trajectory immedi-
ately before and immediately aftert0. In practice, however,
we may have: 1) poor localization of transitions, 2) trajec-
tory noise, eg., due to tracker error, 3) false breakpoints,
where there is no discontinuity.

We address these problems by fitting a mixture of two
low-order polynomials within a narrow window surround-
ing the discontinuity. This approach was first used in (Mann
1998) to estimate instantaneous velocity and acceleration
from trajectory data. However, no attempt was made to
detect whether a discontinuity was present. Furthermore,
since there was no constraint on assignments of data points



to the two competing polynomials, polynomials sometimes
fit non-contiguous parts of the trajectory.

Here we extend the mixture model by adding a temporal
support window to each component. The data likelihood is
given by:

P (X|θ1, µt1 , σt1 , θ2, µt2 , σt2 , σ) =
∏t0+W

2

t=t0−W2 +1[
π1N (t;µt1 , σt1)N (X(t); X̂1(t; θ1), σ)

+ π2N (t;µt2 , σt2)N (X(t); X̂2(t; θ2), σ) + π0p0

]
(5)

X̂1(t; θ1) andX̂2(t; θ2) are the polynomials intended to fit
the left and right portion of the boundary.N (t;µt1 , σt1) and
N (t;µt2 , σt2) are (Gaussian) windows that weight the data
fit on either side of the transition.π1 andπ2 are the mixing
proportions for the two polynomials (π1 +π2 +π0 = 1.). p0

is a (uniform) “outlier” process.σ is the standard deviation
of the tracker noise.

Fig. 5 shows the data fit using quadratic polynomials. The
model was initialized using temporal windows centered at
the left and right side of the proposed boundary. The poly-
nomial coefficients and the temporal support windows were
updated using anEM algorithm. σ began at16 and was
gradually reduced to1. A last step was performed to es-
timateσ from the data. BothX(t) andY (t) were fit in-
dependently, but shared the same mixing proportions and
temporal weighting. To determine whether a discontinuity
is present, we compare the log likelihood of the data with
a model that has only one mixture component. We use a
penalized likelihoodcriterion (a penalty of−10 in log like-
lihood for the two component mixture) to decide if a discon-
tinuity is present.6 Penalized likelihood correctly chooses a
two component model when there is a discontinuity (Fig. 5)
and a one component model when there is no discontinuity
(Fig. 6).

Experiments
We consider the segmentation of the motion trajectory of an
object, such as a basketball, undergoing gravitational and
nongravitational motion (see Fig. 2). In each sequence the
forearm and the ball were tracked by an adaptive view-based
tracker described in (El-Maraghi In Preparation).

In general, we should apply the model fitting at every
possible breakpoint. Instead, we use a heuristic procedure,
based on dynamic programming, to identify possible break-
points (Mann, Jepson, & El-Maraghi 2002). The algorithm
separates the trajectory into hand segments (whenever the
hand overlaps the ball in the image), in which the ball may
have arbitrary motion, and piecewise quadratic segments, in
which the ball is under free motion. At each breakpoint we
apply the fitting algorithm described in the previous section
to determine if a motion discontinuity is present, and if so,
to classify the boundary.

Our eventual goal is to find a consistent labeling into mo-
tion, hand, and contact fluents. In general this may require

6We could apply a Bayesian criterion (MacKay 1992), but this
was not necessary here due to the large difference in log likelihood
between the two models.
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Figure 5: Robust mixture model fit at a motion discontinu-
ity. Dotted lines show the temporal support window(s). (a,b)
Initialization for the one and two component models. (c,d)
Final fit for the one and two component models.+ and×
show the ownership for the first and second model, respec-
tively. The squares show the ownership for the outlier pro-
cess. Note the rejection of noisy track points at frames1715,
1716 in (c). In (d) many points are rejected as outliers.
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Figure 6: Robust mixture model fit where there is no discon-
tinuity. (a) Fit with two component model. (b) Fit with one
component model.

top-down information and filling in of undetected or miss-
ing breakpoints (DeCoste 1990). Here we assume that the
segmentation algorithm has provided all breakpoints (or a
superset of the breakpoints) for places where the ball is un-
der free motion. We begin with the initial set of breakpoints
and perform a local fit using the mixture model.7 This allows
us to reject spurious breakpoints and to localize the motion
boundaries. Motion boundaries were detected and classified
by using the boundary conditions (velocity and acceleration)
at each interval.8 For intervals that had inconsistent motion

7We used a classification window of nine samples on either side
of the discontinuity, or the distance to the neighboring transition,
whichever was smaller. To avoid brief contact intervals, we merged
intervals shorter than five samples before processing.

8The thresholds for discontinuities were∆V = 5.0 pix-
els/frame and∆A = 1.0 pixels/frame2. An acceleration was con-
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labels (eg.M− andG+), we fit a global (quadratic) poly-
nomial to determine the motion type. Surface contact was
inferred whenever there was nongravitational motion on an
interval. Surface contact at transitions was inferred when-
ever there was either: 1) surface contact at a neighboring
interval, or 2) a velocity discontinuity without the presence
of hand contact.

The classification results forofftable were shown in
Fig. 3. Once the hand segment is removed, we are left with
rolling motion (frames2241–2263), falling (frames2264–
2276), and bouncing (frames2277, etc.). Note the bounce
off the wall (frame2294). The system correctly infers dis-
continuities (D2

0 when falling begins, andD1
0 at bounces).

Note that, due to tracker errors, there is an extra discontinu-
ity at frame2246 and that the segment after frame2293 is
mis-classified (M,C instead ofG).

Fig. 7 shows the results forrollhit. Here a hand rolls
the ball against the wall. The ball hits the wall (frame
250), bounces upwards briefly (due to spin), hits the ground
(frame256), and continues to roll. The hand hits the ball at
frames307–310. The spurious breakpoint at frame280 was
removed by the classifier. Note that the small bounces after
frames250 and324 are not large enough to be detected as
gravitational motion, therefore the system incorrectly infers
surface contact during these intervals.

Fig 8 shows the results fortoss. Here the hand throws the
ball against the wall, and catches it after one bounce on the
floor. Discontinuities are detected at both bounces, and at
the catch.

Conclusion
We showed how to detect and classify motion boundaries
for an object undergoing gravitational and nongravitational
motion.

While successful, there are a number of outstanding is-
sues. First, rather than processing in a bottom-up fashion,
multiple event models should be incorporated into the track-
ing process (Isard & Blake 1998). Second, since hand con-
tact alone is sufficient to explain nongravitational motion,
we require a more elaborate model of hand motion if we are

sidered to be gravitational ifA ∈ [1, 2] pixels/frame2
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Figure 8: Segmentation and motion labeling for “toss”.

to infer surface contact in intervals containing hand contact.
Finally, we require additional physical constraints on events,
such as forces among objects (Mann, Jepson, & Siskind
1997), energy conservation at collisions, transfer of angular
momentum (eg., spin), etc.

References
DeCoste, D. 1990. Dynamic across-time measurement
interpretation. InProceedings of AAAI-90.
El-Maraghi, T. F. In Preparation.Robust Online Appear-
ance Models for Visual Tracking. Ph.D. Diss., Dept. of
Computer Science, Univ. of Toronto.
Galton, A. 1990. A critical examination of allen’s theory
of action and time.Artificial Intelligence42:159–188.
Isard, M., and Blake, A. 1998. A mixed-state condensation
tracker with automatic model-switching. InInternational
Conference on Computer Vision (ICCV-98).
Jepson, A. D., and Feldman, J. 1996. A biased view of
perceivers. In Knill, D., and Richards, W., eds.,Perception
as Bayesian Inference. Cambridge University Press.
Jepson, A. D., Richards, W., and Knill, D. 1996. Modal
structure and reliable inference. InPerception as Bayesian
Inference.
MacKay, D. J. C. 1992. Bayesian interpolation.Neural
Computation4:415–447.
Mann, R., Jepson, A., and El-Maraghi, T. 2002. Trajectory
segmentation by dynamic programming. InInternational
Conference on Pattern Recognition (ICPR-02).
Mann, R., Jepson, A., and Siskind, J. M. 1997. The com-
putational perception of scene dynamics.Computer Vision
and Image Understanding65(2):113–128.
Mann, R. 1998.Computational Perception of Scene Dy-
namics. Ph.D. Diss., Dept. of Computer Science, Univ. of
Toronto.
Rubin, J. 1986.Categories of Visual Motion. Ph.D. Diss.,
M.I.T. Dept. Brain and Cognitive Sciences.
Siskind, J. M. 2000. Grounding the lexical semantics of
verbs in visual perception using force dynamics and event
logic. Journal of Artificial Intelligence Research15:31–90.


