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Abstract

This paper examines the use of the EM algorithm to perform motion
segmentation on image sequences that contain independent object mo�
tion� The input data are linear constraints on ��D translational motion
and bilinear constraints on ��D translation and rotation� derived from
computed optical �ow using subspace methods� The problems of out�
lier detection� deciding how many processes� and the initial guesses
for the EM algorithm are considered� Results obtained from an image
sequence are presented�

� Introduction

In order for an observer to navigate in its environment� it is important that the
observer can detect other independently moving objects and avoid collisions� The
motion of the observer complicates this task� For the purpose of this paper we di�
vide image motion into two categories� egomotion and motion due to independent

moving objects� Egomotion is de�ned as the image motion induced by an observer
moving through a static environment� Motion due to independently moving objects

is de�ned as the image motion induced by the movement of an object relative to
the observer when that object is not stationary with respect to the environment
at�large� It is possible to recover both the observer	s motion relative to its envi�
ronment and a relative depth map for the environment from the captured images

�� �� The recovery of correct ��D motion parameters relies on segmenting the
optic �ow into distinct regions that correspond to unique ��D motions� An image
sequence containing independent object motion allows proper recovery of relative
motion parameters only if the image can be segmented into regions� each of which
corresponds to a distinct relative motion�

Some work has already been done on the problem of motion segmentation�
We �rst consider work done on the problem of ��D segmentation� Darell � Pent�
land 
� used a method that assigned ��D constraints to di�erent regions using
a competitive and iterative algorithm� but only for the case of translational mo�
tion� Jepson � Black 
�� used a mixture�model approach to cluster component
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Figure �� This is a frame from a sequence �of �� frames� collected by a robot�
observer translating roughly along the optical axis in an industrial environment�
The forklift and its driver are translating to the right� The boxes indicate image
regions for which a�ne or rational models for optic �ow have been �tted� The
focus�of�expansion �FOE� of the background motion for each frame in the sequence
have been indicated by a 	�	 �see Section ��

velocities� and hence achieve improved optic �ow estimates� Their method allows
shared ownership of constraints amongst regions� Wang � Adelson 
�� segmented
image regions into patches whose optic �ow at any point could be modelled as an
a�ne transformation of the image coordinates of that point� The segmentation
was achieved using a K�means approach� These methods do segmentation in ��D�
and attempt to solve the problem of proper integration of constraints�

There have also been attempts at segmentation based on ��D motion� Adiv 
�
identi�ed regions in the image whose motion was consistent with the movement
of a planar surface� and grouped these according to their mutual consistency for
various ��D motions� Sinclair 
�� segments images by recovering the ��D angular
velocity �eld for the image� and using a simple clustering algorithm for identify�
ing planes in angular velocity space� This method also requires identifying planar
surfaces in the image� Both of these methods require the existence �and identi�ca�
tion� of planar surfaces in the image� Nelson 
�� describes a method which could
properly be thought of as a ��D method� Given the observer motion� he compares
the expected motion �eld against measured component velocities� and where sig�
ni�cant deviation is found assumes independent object motion� This method has
the drawback of requiring a priori knowledge of the observer motion� and does
not attempt to distinguish between di�erent independent moving objects�

In this paper we present a method for motion segmentation based on clus�
tering constraints on ��D translational velocity� These constraints are derived
using subspace methods� which have the advantage of not being sensitive to depth
discontinuities in the static environment �in fact� it bene�ts from them�� The clus�
tering is achieved through the application of the EM algorithm to the constraints�
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using a �nite�mixture model� The results of this clustering are then used to pro�
vide an initial guess for parameter �tting using bilinear constraints on translation
and rotation� We �rst give a brief over�view of the subspace methods� then de�ne
mixture models and the EM algorithm� Results are given for an image sequence
from an industrial environment

� Constraints on ��D Relative Motion

A relative motion can be described by its translation� �T � and rotation� ��� The
rotation is about an axis which passes through the nodal point of the imaging
system� which is de�ned as the origin in our coordinate system� We consider a
point in ��D space� �X � �X�� X�� X��T � where X� lies along the optical axis of
the camera� The motion �eld at the image of this point� namely �x � �x�� x�� f� �
f
X�

�X � can be de�ned in terms of the motion parameters 
��

�u��x� �

�
� � �x��f
� � �x��f

��
f

X���x�
�T � ��� �x

�
���

where �T and �� are motion of the background with respect to the observer� f
is the focal length of the system� and X���x� � X� is the projection of �X onto
the optical axis� The �ow �eld can be thought of as having two components�a
translational component and a rotational component� Note that only the trans�
lational component is a�ected by the distance to points in the image� Therefore�
any discontinuities in the optic �ow �eld must be due to variations in depth�� a
fact exploited by Rieger � Lawton 
�� in their method for recovering translational
motion� It is also exploited by the subspace methods�

A simple algebraic manipulation of Eqn� � 
� allows us to derive the following

bilinear constraint on �T and ���

�T T ��x� �u��x�� � ��T � �x���x� ��� � � ���

This is an exact constraint on the motion �eld� although it is non�linear in the
motion parameters� Only a single �ow vector �and its image location� are required
to de�ne each constraint� This constraint is also independent of the depth of the
point imaged at �x� Eqn� � can be rewritten as �TT ��a��u� �B��� � � where �a is � �
� and B is � � �� Both are functions of �x� and �a is also a function of �u�

It is possible to derive a linear constraint on �T from � or more bilinear con�
straints 
�� Given optic �ow sampled at K discrete points in the image� f�xkgKk���
we construct a constraint vector wi��i �

PK
k�� cik 
�u��xk� � �xk� Here k��ik � �� and

wi is the norm of the right�hand side of the expression� Through suitable choice
of the �ci � 
ci� � � �ciK T we can guarantee that the constraints f��igNi�� will be

orthogonal to �T � i�e� ��Ti �T � �� i � � � � �N � From Eqn� � we see that a su�cient
condition on the �ci is that they are orthogonal to all quadratic forms involving

�These variations in depth can be classi�ed into two types� depending on whether the depth
variation is due to a boundary formed by an independently moving object or not� The former is
of importance to motion segmentation using the subspace methods�
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�xk� and 
�xk�� This e�ectively annihilates the contribution due to ��� In the ab�
sence of independently moving objects we would expect all the constraints shown
to intersect at a common point� the focus�of�expansion �FOE�� The presence of
the forklift which is moving to the right causes additional constraints which are
inconsistent with the background motion� hence it becomes necessary to segment
the constraints based on the underlying ��D motions�

Since the �ci are orthogonal to all quadratics in image location� the technique
requires a variation in depth that is not planar over the image region from which
the optic �ow is sampled to create a non�zero constraint� The practical importance
of this is that no constraint can be generated if all the �ow samples come from a
single planar surface� The constraints are generated by pair�wise combining �ow
samples from the boxes in Figure � �this is done since �ow samples from a single
box are consistent with a planar surface�this is a consequence of the a�ne model
used to estimate the �ow�� In the event that the box representing the forklift is
paired with a box from the background� the fundamental rigidity assumption of
the subspace methods is not met� Note that if a priori segmentation information
is available� then the constraints can be generated using custom masks that never
cross independent object motion boundaries� Generation of suitable �ci coe�cients
is straightforward once the sampling geometry is known

� Mixture Models

When a set of data has more than one underlying process� i�e�� any given data point
in the set will have been generated by one of several processes� the concept of a
mixture of distributions is useful 
��� Each process� will have its own distribution
and parameters� Our task is to i� estimate the parameters for each process� and ii�
determine the probability that a given data point is the result of a given process�
We assume in advance that we know the number of underlying processes and
the form of each corresponding distribution� Testing for the number of processes
in a mixture is a di�cult and� in general� unsolved problem 
��� Part ii� of
this objective is commonly referred to as clustering� We can consider our linear
and bilinear constraints on relative motion as observations arising from one of
several underlying motion processes� We �rst consider mixtures involving linear
constraints and translational motions� The probability density function �PDF�
of an observed constraint ��i with respect to a number of underlying translationsn
�Tj

oM
j��

can be written as

p���ij�T�� �� � � � �TM � �M� � ��p� �
MX
j��

�jp���ij�Tj � �j��
MX
j��

�j � �� � � �j � �

where M is the number of processes� The variances f�jgMj�� depend on the noise
in the optic �ow� The �j are positive valued constants representing the mixing

proportions of the distributions� Both the �j and ��Tj � �j� parameters may be

�The processes are also referred to as populations or modes�
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unknown� and can be estimated given the data� We take the form of the PDF	s
to be a Gaussian modi�ed for the unit sphere�

p���ij�Tj� �j� � �
�����expf������

j
g	
exp

n
� ���Ti �Tj	

�

���
j

o
p� � constant

where p� is a uniform distribution meant to model outliers in the data 
cf� 
���
Once parameters are known or estimated� each observed constraint can be

assigned an ownership probability to each process� j � � � � �M �

sij � �jp���ij�Tj� �j��p���ij�T�� �� � � � �TM � �M�

Similarly for bilinear constraints we can write

p��uij�Tj� ��j� �j� � �p
���j

exp

�
� ��TTj ��ai��ui� � Bi��i���

���j

�

where ��Tj� ��j� represent the underlying motion process� It should be noted that
the �j 	s will not be the same between the linear and bilinear models�

� Application of the EM Algorithm

While the mixture model provides a powerful way of modeling the constraint data�
it also requires careful thought in order to proceed to a solution� If the ownership
probability of each constraint were known� then it is straightforward to calculate
the motion parameters� Conversely� if the motion parameters were known then
assigning ownership is again relatively straightforward� We expect outliers to arise
due to constraints being generated across independently moving object boundaries�
as well as from errors in recovered optic �ow�

A number of researchers have used the EM algorithm to estimate the param�
eters of mixture models 
��� �� The EM�algorithm is an iterative� ��step method
where �EM� stands for expectation � maximization� the two basic steps involved�

The algorithm starts with an initial guess for the motion parameters� The
expectation step assigns an ownership probability for each constraint to each mo�
tion process on the assumption that the current motion parameters are the correct
ones� The mixture proportions are also estimated� The maximization step solves
for the motion parameters on the assumption that the assigned ownership values
are correct� Each expectation�maximization pair constitutes one iteration of the
algorithm� Dempster et� al�
� have shown that each iteration of the EM algorithm
is guaranteed to improve �or� at worst leave unchanged� the likelihood function of
the model� The case in which the likelihood function is left unchanged corresponds
to having found a local maximum in the likelihood function�

No results are given for the rate of convergence to a maximum likelihood point�
although methods for improving the convergence rate have been proposed 
���
The existence� in general� of local maxima in the likelihood function leads to the
importance of a good initial guess for the algorithm� A poor choice of initial guess
may lead to slow convergence� or convergence to a local� not global� maximum�
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Figure �� a� The ownership probabilities for the bilinear constraints as �tted by
the EM algorithm� The solid line indicates ownership by the �rst motion� the
dashed line the second motion� and the dotted line the outlier process� b� The
recovered inverse�depth values for each patch over the sequence are plotted� The
moving forklift is excluded� as depth values recovered for it are not valid� Note
that the relative distances to various objects are correct�

��� Clustering Linear Constraints

The linear constraints f��igNi�� are exact in the absence of noise� They can be used

to recover the direction of �T � but not its magnitude�� Once translational direction
has been recovered� it is straightforward to recover the rotation and relative depth
information� For the remainder of this paper we will only be interested in the
direction of �T � and will assume k�Tk � �� Recovery of translational direction can
be accomplished by a linear least�squares technique� The translational direction
will be given by the eigenvector corresponding to the smallest eigenvalue of the
following matrix�

D �
NX
i��

w�
i��i��

T
i ���

This is equivalent to minimizing E��T � � �TTD�T �
We wish to generate estimates for the underlying translational directions based

on the linear constraints� fwi��igNi��� k��ik � � as well as determine the number of
translational directions represented by these constraints� We start with an initial
estimate for either one or two translations based on the D matrix of Eqn� �� Our
estimate for �T� will be the eigenvector corresponding to the smallest eigenvalue of
D� If the second smallest eigenvalue is also small compared to the largest� then
a second translation �T� is hypothesized in the eigendirection corresponding to the
second smallest eigenvalue of D� A further discussion of this point is given below�

At each �E��step in the EM algorithm the ownership probability sij of con�

straint i by process j is calculated as well as the mixture proportions �j � �
PN

i�� sij

�This is a feature inherent in the problem itself ����
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where � is determined by the fact that the �j sum to �� Then� during the �M��step

the translation parameters �Tj are re�evaluated by using the eigenvector correspond�
ing to the smallest eigenvalue of

�Dj �
NX
i��

sijw
�
i��i��

T
i �

NX
i��

sijw
�
i ���

as the new estimate� The variances are estimated by

��j �
NX

i � �

sij���i �T
T
j ���

NX
i � �

sij

This continues until the parameters converge�
It is worthwhile to consider a geometric interpretation of the constraints� In

the event that one eigenvalue of D is signi�cantly smaller than the other two� then
the constraint vectors lie close to a great circle on the unit sphere� and the correct
translational direction is the vector normal to the plane de�ned by this great circle�
Once the EM algorithm has terminated� we re�examine our current estimate for
the number of processes� This is done by testing for structure in process � �the
outlier process�� If we generate �D� and examine its eigenvalues ��� 	 �� 	 ����
we expect to �nd one of three cases�

�� 	 �� � ��� This indicates the possibility of one new translational direction�
i�e� great circle� This case occurs when the constraints are clustered in an elliptical
shape with the major axis signi�cantly larger than the minor� This gives support
for a single translational direction�

�� � �� � ��� This suggests that there may be two possible translational direc�
tions� This case occurs when all the constraints are close together and distributed
roughly in a circular fashion� In this case there are two possible eigendirections
for the translation to lie in�

�� � �� � ��� This indicates that the constraints in process � are distributed
roughly equally in all � directions� There may or may not be unique underlying
translations� but we have no indication of a preferred direction�

In order to distinguish between the �rst two possibilities we compare �� to the
geometric mean of the largest and smallest eigenvalues� namely

p
����� In either of

the �rst two cases we add new translational directions� as de�ned by the eigenvec�
tors of �D�� to our mixture model and repeat the EM algorithm� This is repeated
until either the mixing proportion of process � becomes too small� indicating it
has ownership of few constraints� or until the new translational directions cease
to be unique as compared to the processes already existing� This can be done by
comparing

p��T jD� �
�

k
exp

n
��TTD�T

o
� k �

�

�
��e��� � e��� � e���� ���

��� Clustering Bilinear Constraints

The preceding section outlined a method for recovering the number of translational
processes as well as estimating their directions� We now describe a method for
clustering bilinear constraints and estimating rotational motion�
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Initial guesses�

Process �� �T � �������	 ����
	� ��

�� �� � � ���� ��
� ���
 �� � �������

Process 	� �T � ����

�� ���	�� ���

� �� � � �	�
� �

��� ����� �� � ������	

Final Results�

Mixtures� ������ ������ �����


Process �� �T � � �����	 ����
	� ��

�� �� � � 	��
 	�	� ����� �� � �������

Process 	� �T � ����

�� ���	
� ���
�	 �� � � ����� �

�	� ����� �� � ������	
Process �� FOE � � ���	�� ���
�	��
Process 	� FOE � ��������
�� �
�����

Table �� Results from the �tting the bilinear constraints for the frame shown in
Figure ��

The number of processes is now �xed� For each estimated �Tj we calculate a

least�squares estimate for ��j�

��j �

�
KX
i��

BT
i
�Tj �T

T
j Bi

��� KX
i��

BT
i
�Tj �T

T
j �ai

In each step of the EM algorithm ownership probabilities are calculated as

sij � �jp��uij�Tj� ��j� �j��p��uij�T�� ���� �� � � � �TM � ��M � �M�

and updated parameters for ��Tj � ��j� are generated by using a Newton�Rhapson
algorithm to minimize

f��Tj � ��j� �
KX
i��

sij

h
�TTj

	
�ai �Bi��j


i�

subject to the constraint k�Tjk � � and holding the sij	s �xed� Variances are
estimated as

��j �
KX
i��

sij

h
�TTj

	
�ai �Bi��j


i�
�

KX
i��

sij

The EM�algorithm is allowed to run until the parameters converge� This provides
us with improved estimates for ��Tj � ��j� as well as clustering the constraints to
processes� Since each constraint is tied to an image location� this gives us a
segmentation of the image based on underlying ��D motion� As with the linear
constraints� we check the uniqueness by comparing �T parameters using Eqn� ��

� Results

Figure � shows a frame from a sequence taken by a robot navigating in an indus�
trial environment� The forklift and driver are translating to the right at roughly ��
pixels frame� while the robot is moving forward�� Optic �ow was recovered from

�The robot	s speed was not measured� but was the equivalent of a fast walk�
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the sequence using a method that �ts �ow in image regions �patches� to functions
that are either a�ne or rational in image coordinates �x 
��� The �� were recovered
by considering patches in a pair�wise manner
� � �ow samples were generated
for each patch� using the � corners of each patch plus two interior points� The
constraints were clustered according to the method in Section ��� and gave esti�
mates for two translational directions �see Table ��� Bilinear constraints were then
generated for each sample point and clustered according to Section ���� Figure �
plots the FOE values recovered for the �rst motion for each frame in the sequence�
The results are summarized in Table �� Figure �a suggests that motion process �
belongs to the patch �tting �ow for the moving forklift� and that motion process �
owns the remainder of the constraints�

It is necessary to check that the recovered translational directions are unique�
for each process we generate a set of translation constraints from the bilinear
constraints �given ��� and use this to generate a D matrix as described in Eqn� ��

We then test each �T against each D by Eqn� �� In Table � we see that p��T�jD��

and p��T�jD�� are zero� indicating that �T� and �T� are indeed distinct� Therefore
we have segmented the moving forklift in the image�

Once �T and �� are known for the egomotion �the �rst motion�� it is possible to
estimate relative�depth values for each sampled point from Eqn� �� The estimates
for the centre of each patch are shown in Figure �b� We see that the relative depths
make sense� in that closer objects �the �oor� pillar� and stationary forklift� have
larger inverse�depths than do the farther objects �the back wall� and the mockup
windows�� The moving forklift �not shown� gives negative depth values when
considering the egomotion parameters� this provides another method of detecting
that it is moving independently�

The bilinear constraint clustering ran in about � seconds frame on a Silicon
Graphics �D ���VGX� with comparable times for the linear constraint clustering�

� Conclusions

We have described a method of segmenting images containing both egomotion
and independent object motion based on ��D motion constraints� Results are
given from an image sequence taken in an industrial environment�

The authors would like to acknowledge the assistance of David Wilkes in ac�
quiring the image sequence analyzed in this paper� This work was supported by
ITRC� NSERC� and OGS�
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