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Abstract

This paper describes a new method for estimating op-
tical flow that strikes a balance between the flexibil-
ity of local dense computations and the robustness and
accuracy of global parameterized flow models. An
affine model of image motion is used within local im-
age patches while a spatial smoothness constraint on
the affine flow parameters of neighboring patches en-
forces continuity of the motion. We refer to this as a
“Skin and Bones” model in which the affine patches
can be thought of as rigid “bones” connected by a flex-
ible “skin”. Since local image patches may contain
multiple motions we use a layered representation for
the affine bones. To regularize this layered motion rep-
resentation we develop a new framework for regular-
ization with transparency.

1 Introduction
Recent work on optical flow can be seen as trying to find
a balance between local dense optical flow schemes and
global parameterized approaches [2, 9, 14]. Dense opti-
cal flow methods require only local image measurements
and integrate information over larger areas via regulariza-
tion. While these methods have the advantage of being
able to cope with complex and varying flow fields and can
be extended to model motion discontinuities in a relatively
straightforward fashion [8], they remain somewhat inaccu-
rate. Global parameterized approaches, on the other hand,
assume that the optical flow within some image region (pos-
sibly the entire image) can be modeled by a low-order poly-
nomial [4]. When the model is a good approximation to
the image motion these methods are very accurate since one
only has to estimate a small number of parameters given
hundreds or thousands of constraints. The problem with
these methods is that large image regions are typically not
well modeled by a single parametric motion due to the com-
plexity of the motion or the presence of multiple motions.
Smaller regions on the other hand may not provide suffi-
cient constraints for estimating the motion. This problem of
choosing a region size has been referred to as the general-

ized aperture problem (GAP) [11]. The work described here
combines features of both the regularized and parameterized
methods to obtain nearly the accuracy of the parametrized
motion approaches but with the generality and flexibility of
the regularized approaches.

The approach tiles the image with a fixed set of rectangu-
lar patches and assumes that the motion within the regions
can be represented by a small number of affine motions that
can be thought of as “layers” [10, 16]. The approach assigns
pixels to layers and estimates the motion of each layer using
a robust mixture model formulation [2, 11, 13] that accounts
for outliers which cannot be represented by any of the layers.
The assignment to layers and the estimation of the motions
is achieved using a variant of the EM algorithm [13].

Within image regions of fixed size the affine motion
model may be underconstrained, and therefore we add a reg-
ularization term that embodies the assumption that the affine
parameters of a patch should be similar to its neighbors’ pa-
rameters. We refer to this formulation as “Skin and Bones”
where the parameterized patches can be thought of as rigid
pieces of bone that are connected by a flexible skin. Stan-
dard regularization techniques, however, cannot cope with
this situation since there may be multiple affine motion es-
timates in each patch.

Consider a single patch with multiple motion estimates
and its four nearest neighbors which may also have multi-
ple affine motion estimates. Our approach “connects” every
layer in the center patch with every layer in all the neighbor-
ing patches. To regularize a particular layer one considers
all possible neighboring motions within a robust statistical
framework. In such a framework, neighboring layers that
have similar motions with have a strong influence on the so-
lution while layers with dissimilar motions will be treated
as outliers with little, or no, influence. We call this method
regularization with transparency.

The following section reviews related work on layered
motion estimation. Sections 3 and 4 introduce single-layer
Bones and Skin respectively and show how the skin im-
proves the motion estimates. The model is then extended to
include multi-layer bones in Section 5 and transparent reg-
ularization in Section 6.



Computer Vision and and Pattern Recognition (CVPR’96), San Francisco, June 1996. c IEEE 1996 2

2 Related Work
Parameterized optical flow methods assume that the spa-
tial variation of the image motion within a region can be
represented by a low-order polynomial (eg. affine motion).
With many motion constraints and few parameters to es-
timate these approaches can recover accurate motion esti-
mates when the motion model is a good approximation to
the image motion. The problem with this approach is that
parametric motion models applied over arbitrary image re-
gions are rarely valid in real scenes due to surfaces at vary-
ing depths or the independent motion of objects.

Approaches have been devised which ameliorate some of
the problems of “global” parametric models. One set of ap-
proaches estimates a fixed number of parametric motions
within a given image region using a variety of regression
techniques [5, 6, 11, 18]. Another set of approaches ap-
plies parametric models to coarse flow fields by grouping
the flow vectors into consistent regions [1, 16]. Both sets of
approaches can cope with a small number of motions within
a region but not with general flow fields. They do not ad-
dress how to select appropriate image regions in which to
apply the parametric models nor how to select the appropri-
ate number of motions or layers. These limitations can lead
to inaccuracies and instabilities in the recovered motions.

A number of methods have addressed the problem of how
to choose the appropriate number of parameterized motions
that are necessary to represent the motion in the scene. One
set of approaches [2, 10] uses a minimum description length
encoding principle to strike a balance between accurate en-
coding of the motion and the number of layers needed to rep-
resent it. While these methods provide a segmentation of the
image based on the support of pixels for each of the layers,
they still operate over fixed image regions (typically the en-
tire image).

There have been a number of recent attempts to find ap-
propriate image regions within which to apply parameter-
ized motion models. For example, Black and Jepson [9] first
segment an image into regions using brightness information
and then fit the motion within the regions using parameter-
ized flow models. When a good segmentation is available,
the motion can be estimated accurately but brightness infor-
mation alone cannot be guaranteed to provide a good seg-
mentation.

Szeliski and Shum [14] take an approach based on
“quadtree splines” that treats the image as a set of patches
of varying size which are connected in a spline-based repre-
sentation that enforces smooth motion. The motion within
a patch is determined by a parametrized motion model and
the patch size varies based on how well the motion in a re-
gion can be approximated by a single flow model. The ap-
proach can only model a single motion within a patch which
precludes the representation of transparent motion and frag-
mented occlusion. Additionally, the spline-based represen-
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Figure 1: A robust error norm.

tation does not readily admit spatial discontinuities.
In contrast, we take fixed sized regions of the image and

model multiple motions within each region using a layered
motion estimation scheme [2, 6, 11, 18]. To model spa-
tial smoothness we add a constraint on the affine param-
eters of neighboring patches. This is similar in spirit to
the constraints used in oriented particle systems [15]. In
our case we must extend standard regularization schemes
to deal with the multi-layer data. Madarasmi et al. [12]
approached a similar problem of regularization with mul-
tiple depth measurements at each point using a stochastic
minimization framework. Our solution is deterministic and
is a straightforward extension of the robust regularization
scheme described by Black and Anandan [8].

3 Locally Affine Motion (Bones)
For a small image region, an affine (linear) transformation
can well approximate the image motion of a smooth surface.
This model is defined as

u(x; y) = a0 + a1(x� xc) + a2(y � yc); (1)

v(x; y) = a3 + a4(x� xc) + a5(y � yc); (2)

where u(x; a) = [u(x; y); v(x; y)]T are the horizontal and
vertical components of the image velocity at the image point
x = [x; y]T , and a = [a0; a1; a2; a3; a4; a5]T denotes the
vector of parameters to be estimated relative to some region
center (xc; yc).

The assumption of brightness constancy for a given re-
gion and a particular flow model gives rise to the optical
flow constraint equation

rI � u(x; a(s)) + It = 0; 8x 2 R(s) (3)

where a(s) denotes the affine model for region s, R(s) de-
notes the points in region s, I is the image brightness func-
tion and t represents time. rI = [Ix; Iy], and the sub-
scripts indicates partial derivatives of image brightness with
respect to the spatial dimensions and time at the point x.

To estimate the parameters a(s), we minimize

E(s) =
X

x2R(s)

�(rI � u(x; a(s)) + It; �); (4)

with respect to the affine parameters a(s). The value � is
a scale parameter and � is some robust error norm. For the
examples in this paper, � is taken to be

�(x; �) = x2=(� + x2) (5)
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(a) (b)

Figure 2: Yosemite Sequence, ground truth. (a) Image 11 in
the sequence; (b) flow field.

which is used in [6] and is shown in Figure 1. The shape of
� is such that it “rejects”, or down-weights, large residual
errors. The function  (x; �), also shown in Figure 1, is the
derivative of � and characterizes the influence of the resid-
uals. As the magnitudes of residuals rI � u(a) + It grow
beyond a point their influence on the solution begins to de-
crease and the value of �(�) approaches a constant.

The value � effects the point at which the influence of
residuals begins to decrease. This down-weighting of resid-
uals begins where the second derivative of � is zero; that is
�p�=3 for the norm used here. Following [6] we consider
residual errors, rI � u(a)+ It, to be outliers if their magni-
tude is greater than

p
� times

p
�=3; that is, �=

p
3.

To minimize Equation (4) we use a simple gradient de-
scent scheme with a continuation method that begins with a
high value of � and lowers it gradually during the minimiza-
tion until it reaches the desired value [8]. To cope with large
motions a coarse-to-fine strategy is employed [6].

3.1 Bones Example
To illustrate the behavior of local affine “bones” we ap-
ply the method to two images in the synthetic Yosemite
sequence1, the first of which is shown in Figure 2(a). Fig-
ure 2(b) shows the known vector-field for the true motion.
The image is segmented into fixed rectangular patches (51�
48 pixels) and the affine motion of each patch is estimated
independently. A four-level Gaussian pyramid was used in
the coarse-to-fine processing. The value of � began at 35
and was lowered by a factor of 0.95 at each iteration to a
minimum of 10, and 30 iterations of gradient descent were
used at each level. These parameters, except for patch size
and levels, remain fixed for the experiments in the remain-
der of this section and the next.

The affine motions a(s), for each region s, specify the mo-
tion of every pixel x 2 R(s) and we can use this computed
affine motion to produce a dense flow field with a vector at
every pixel as shown in Figure 3 (a).

Since the sequence is synthetic, we can compute the error
in the flow using the angular error measure of Barron et al.

1This sequence was generated by Lynn Quam and provided by David
Heeger.

[3]. The performance of the algorithm can be quantified
as shown in Table 1 (Bones). “Average Error” refers to the
mean angular error over the non-sky portion of the image.

By visual inspection, it is clear that the motion field in
Figure 3(a) is not as smooth as the actual flow and shows
a clear block structure. In some regions, most notably at the
boundaries, the estimated motion is incorrect. The follow-
ing section illustrates how a regularization term (skin) im-
proves on these local affine estimates.

4 Regularization (Skin)
Regardless of the region size chosen for optical flow esti-
mation, there is the possibility that the solution will be ill-
conditioned due to the lack of sufficient brightness variation
within the region. It is therefore useful to regularize the op-
tical flow estimation problem by adding a spatial coherence
constraint that favors solutions which are “smooth”. Tradi-
tionally, this constraint is formulated to minimize the dif-
ference between neighboring optical flow vectors but, when
the local flow estimation is performed by affine bones, we
instead need to formulate a notion of spatial coherence be-
tween the parameters of neighboring affine patches.

We define the Skin & Bones model by adding a spatial
coherence term to the to Equation (4)

E(s) =
1

jR(s)j [
X

x2R(s)

�(rI � u(x; a(s)) + It; �D)]

+
�

jG(s)j [
X

t2G(s)

�(ka(s) � a�(t)k; �S)] (6)

where s is an image region, � controls the relative impor-
tance of the two terms, R(s) and a(s) are the pixels and
the affine parameters of region s respectively, G(s) are the
neighboring patches of s, and some appropriate norm is de-
fined on the neighboring affine parameters. The neighbor-
ing affine motion a(t) is dependent on the region center
(xc(t); yc(t)) and to be compared with a(s) must be trans-
formed as explained below. This transformed affine motion
is a�(t). The data and spatial terms ofE are normalized with
respect to the size of R(s) and G(s) respectively and each
has its own scale parameter. The use of a robust error norm,
� allows spatial discontinuities between neighboring affine
patches.

To compare the affine parameters of neighboring patches,
it is necessary to transform these parameters so that they
are defined with respect to the center of the central patch,
s. If the center of patch s is (xc(s); yc(s)) and the center of
a neighboring patch t is (xc(t); yc(t)) then a point x in re-
gion t can be described, with respect ot the center of s, as
((x�xc(s))+(xc(t)�xc(s)); (y�yc(t))+(yc(t)�yc(s))).
Substituting this into the affine motion equations (1) and (2)
and simplifyinggives shifted affine parameters, a�, of patch
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Average Standard Percent of flow vectors with error less than:
Error Deviation < 1� < 2� < 3� < 5� < 10�

Bones: 2:77� 3:4� 23:7% 49:9% 69:2% 89:1% 98:3%

Skin&Bones: 2:16� 2:0� 33:0% 61:3% 76:3% 91:6% 99:6%

Table 1: Error results for the Yosemite fly-through sequence.

(a) (b)

Figure 3: Yosemite flow results. (a) Local affine patches;
(b) Affine patches with spatial coherence.

t as

a�0 = a0 + a1(xc(t) � xc(s)) + a2(yc(t)� yc(s));

a�3 = a3 + a4(xc(t) � xc(s)) + a5(yc(t)� yc(s));

and a�i = ai, i 6= 0; 3.
In practice we have found that minimizing the sum of the

differences in the neighboring individual affine parameters
works as well as minimizing the norm and is simpler to im-
plement. The spatial term then becomes

X

t2G(s)

5X

i=0

�(ai(s) � a�i (t); �i) (7)

where ai(s) is the ith affine parameter of patch s and the
scale parameter may vary depending on the parameter.

We minimize this function using the same gradient de-
scent scheme and continuation method described in the pre-
vious section and in [6, 8]. Unlike traditional parametric
motion estimation schemes, the addition of the spatial co-
herence constraint on the affine parameters means that each
step in the optimization takes into account both the optical
flow constraints within the region and the parameters of the
neighboring regions (cf. [14]). This results in more accurate
motion estimates and a more stable optimization problem.

4.1 Example: Skin & Bones
To illustrate the effect of regularizing the affine parameters
we add skin to the Yosemite sequence example from the
previous section. The recovered optical flow using Equa-
tion (6) is shown in Figure 3 (b). Comparing the results to
those in Figure 3 (a) reveals that the unstable results near
the boundaries are gone and that the flow appears slightly
smoother. Quantitatively, the addition of “skin” improves

Technique Average Standard Density
Error Deviation

Anandan 15:84� 13:46� 100%

Singh 13:16� 12:07� 100%

Nagel 11:71� 10:59� 100%

Horn and Schunck (modified) 11:26� 16:41� 100%

Uras et al. 10:44� 15:00� 100%

Fleet and Jepson 4:29� 11:24� 34:1%

Lucas and Kanade 4:10� 9:58� 35:1%

Weber and Malik [17] 3:42� 5:35� 45:2%

Black and Anandan [8]� 4:47� 3:90� 100%

Black [7]� 3:52� 3:25� 100%

Black and Jepson [9]� 2:29� 2:25� 100%

Skin & Bones� 2:16� 2:0� 100%

Table 2: Comparison of various optical flow algorithms.

the average angular error by 22% as seen in Table 1 (Skin
& Bones).

All parameter values were the same as those in the previ-
ous section and, for the new parameters, �0 = �3 started at
4:0 and were lowered to 0:2 by a factor of 0:88 per frame.
The remaining �i were a factor of 100 smaller than this and
� was taken to be 0:05.

The results of the Skin & Bones approach are compared
with other published results for the Yosemite sequence in
Table 2 [3]. Methods followed by a “�” have errors com-
puted without the sky region. In [3], when the sky is ig-
nored, the accuracy of the other methods improves by ap-
proximately 25% which is still below the accuracy of the
Skin & Bones model. The Skin & Bones model also pro-
vides a flow vector at every point (100% density).

In [9], Black and Jepson perform a similar parametrized
fit, but do so in regions obtained by segmenting the bright-
ness images. They allow deformations from the fitted mo-
tions using a robust regularization scheme in which the pa-
rameterized motion of the patches is treated as a prior. If we
allow similar local deformations from the Skin & Bones fit,
the average angular error decreases to 1:82�with as standard
deviation of 1:58� and 100% density.

4.2 Limitations of Single-Layer Bones

The Skin & Bones model exploits the accuracy of area-
based regression techniques locally and does so reliably
through the use of a regularizing skin. When the affine flow
model is a reasonable approximation for the motion in a re-
gion this results in very accurate motion estimates as were
seen with the Yosemite sequence. In practice, flow fields
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(a) (b)

(c) (d)

Figure 4: (a) Image with patches shown; (b) Outliers (in
black) where the estimated motion did not conform to the
parameterized model; (c) Horizontal component of flow
(darkness is proportional leftward velocity); (d) Flow field.

are rarely smoothly varying and typically contain disconti-
nuities.

Consider the “flower garden” sequence shown in Figure 4
(a). The 43�40 pixel regions in the figure span surfaces at a
number of depths. In this case the robust estimation scheme
of the Skin & Bones model will tend to recover the dominant
motion within a region. This can be seen in the horizontal
flow estimates in Figure 4 (c) (there is very little vertical mo-
tion). Regions that span the boundary of the tree choose one
of the two motions in the region and, where this occurs, pix-
els corresponding to the other motion are treated as outliers
(Figure 4 (b)). If the patch size is increased sufficiently, the
motion of the foreground may eventually be ignored com-
pletely.

5 Mixtures of Robust Bones

We deal with several motions within a single region using
a straightforward extension of the mixture model approach
described in [11] (cf. [2]). That is, for a given image region
we model the flow using several affine layers. In addition,
to accommodate data which cannot be accounted for by any
of these layers, we include an outlier process. The data at
any given pixel x is assigned to the ith layer with an own-
ership weight mi(x; �). The estimation problem, then, in-
volves recovering the affine parameters for each layer, say
ai for 1 � i � L, along with the appropriate layer assign-
ment weights,mi(x; �) for 1 � i � L+ 1. Here we denote
the outliers as layer L+ 1.

The estimation process we use is a variant of the EM-
algorithm, which is an iterative process involving two sepa-
rate steps at each iteration. The first step involves the es-

timation of the ownership weights, while the second uses
these ownership weights to solve for the affine parameters
of each layer.

Ownership Weights. We use a soft assignment of data to
layers based on the discrepancies between the data and each
of the layers. In particular, the assignment weights are de-
fined in terms of the robust error norm �, from which we de-
rive the likelihood function

l(x; �) =
1

2x

@

@x
�(x; �) =

 (x; �)

2x
=

�

(� + x2)2
: (8)

This is the same �-function as used earlier and its associated
likelihood function is shown in Figure 1. For a given pixel,
we consider the likelihood that the pixel x belongs to layer
i in region s to be

li(x; �) = l(rI � u(x; ai(s)) + It; �)

=
�

(� + (rI � u(x; ai(s)) + It)2)2
: (9)

As we see from Figure 1, data having a smaller error is con-
sidered to have a higher likelihood of belonging to layer i,
and this likelihood decays to zero as the error increases.

We will also need the likelihood, lL+1(x; �), that the data
at a given pixel arises from the outlier process. Following
[11] we take any data item to be equally likely to be pro-
duced from this outlier process. Moreover, the value of this
likelihood is taken to be the weight given by � to the small-
est possible outlying residual, namely

lL+1(�) =
�

(� + (�=
p
3)2)2

=
9

�(3 + �)2
: (10)

Finally, we set L to be the sum of the likelihoods for each
layer, including the outliers; that is L =

PL+1
i=1 li(x; �).

Given these likelihoods li(x; �), 1 � i � L + 1, the
ownership weightsmi(x; �) are determined by rescaling the
likelihoods so that the results sum to one. That is,

mi(x; �) = li(x; �)=L; (11)

for 1 � i � L+1. This rescaling is particularly useful in sit-
uations where the layers are close enough so that a data item
has a significant likelihoodof coming from two or more lay-
ers. In such a situation the reweighting can reduce or elim-
inate a bias towards the mean of nearby layers (see [13]).

Layer Parameters. Given the soft assignment of the data
into the different layers by Equation (11), we solve for layer
parameters, ai, using a reweighted least squares formulation

E(s) =
X

x2R(s)

LX

i=1

mi(x; �)(rI � u(x; ai) + It)
2: (12)

This formulation can be expected to be robust to outliers
since the ownership for large errors will be small.
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Figure 5: Transparent regularization. (a) Transparent data;
(b) Single-layer regularization; (c) Weight of the connec-
tion between neighboring points in all layers; (d) Transpar-
ent regularization, piecewise smooth result.

New estimates for the affine parameters ai, 1 � i � L,
obtained by minimizing E(s) are then used to re-estimate
the ownership weights, and so on, as in the iterative EM-
algorithm.

Unlike the approach presented in [11] we choose a like-
lihood function based on a robust error norm rather than
the standard Gaussian component densities. Additionally,
rather than attempt to estimate the probability, averaged
over the image region, that a data item will belong to each
of the layers, we simply take it to be equally likely.

6 Regularization with Transparency

The need to regularize noisy data arises in many computer
vision and image processing problems. Here we will con-
sider what happens when there are multiple measurements
at a given point. To illustrate what this means we will con-
sider a 1D example which extends a simple regularization
problem to the transparent case.

Consider the noisy data in Figure 5(a). At each spatial
position, k, there are multiple values, dk;1 and dk;2 which
might, for example, be derived from depth measurements of
two transparent surfaces. Fitting a single surface to this data
using a least-squares formulation does not provide a useful
solution as shown in 5(b).

Our goal is to regularize the measurements to derive
two piecewise-smooth approximations uk;1 and uk;2 with-
out knowing a priori which measurements are grouped with
which other measurements. A given point uk;1 has two
neighbors to its left: uk�1;1 and uk�1;2. It is important to
note that we do not know which, if either, of these measure-
ments belongs to the same “surface” as uk;1. If we knew the
segmentation of the data points into surfaces, these surfaces
could be regularized independently.

When the segmentation is not known a priori, we can still
regularize by minimizing

E(u; d) =
KX

k=0

LX

i=1

[�(uk;i � dk;i; �D)

+
LX

j=1

�(uk;i � uk�1;j; �S)] (13)

with respect to each surface point uk;i, whereL is the num-
ber of layers. This means that we smooth a point with re-
spect to all its neighbors in all surfaces. If any of these
points are similar, they will be treated as inliers by the ro-
bust norm � and will have a strong influence on the solution.
If they differ, they will be treated as outliers and will be au-
tomatically ignored. Minimizing Equation (13) smooths the
data without explicitly assigning data to particular layers.

To illustrate this, Figure 5(c) shows the “weight” that the
�-function gives to each neighbor. The dark lines indicate a
strong connection between the surface points while the light
lines indicate a weak connection. Note that we could thresh-
old these values to derive a segmentation of the data into sur-
faces, but that there is no need to do this explicitly. As Equa-
tion (13) is minimized, the values of �i are gradually low-
ered, and outlying points receive lower and lower weight.
Figure 5(d) shows the result of minimizing Equation (13) in
this way. The solution converges to the desired piecewise-
smooth, and transparent, surface interpretation.

6.1 Optical Flow
The transparent regularization theory can incorporated into
the optical flow problem in a straightforward way to allow
the regularization of multi-layer bones. We modify Equa-
tion (6) which combined single-layer affine motion esti-
mates with standard robust regularization and define a new
objective function,Ei(s), for layer i of patch s as

Ei(s) =
1

jR(s)j [
X

x2R(s)

mi(x; �D)(rI � u(x; ai) + It)
2]

+
�

jG(s)j [
X

t2G(s)

X

l2L(t)

5X

j=0

�(ai;j(s) � a�l;j(t); �j)]: (14)

The first term is simply a multi-layer motion model. The
smoothness term considers each of the neighboring patches
t and, for each of these patches, considers the layers L(t)
present in that patch (here a�l;j(t) refers to the jth coeffi-
cient of the transformed affine parameters for layer l in the
patch t). For each of these neighbors and layers, the robust
smoothness term is applied to the affine parameters. Mo-
tions that are similar will tend to reinforce each other while
dissimilar motions will be ignored as outliers.

Equation (14) can be minimized in exactly the same way
as all the previous objective functions considered so far.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) Image with segmented regions shown; (b)
Horizontal component of flow; (c) Weights for layer 1; (d)
Weights for layer 2; (e) Weights for outlier layer; (f) Flow
field.

This process alternates between solving for the ai in each
layer taking into account the smoothness term and solving
for the weights mi(x; �D). In our current implementation
we assume that the number of layers is known and is taken to
be two (plus outliers). If more motions are present, they will
be treated as outliers. If fewer motions are present, which is
quite likely, both layers converge to the same motion and the
weights assigning pixels to layers become close to 0:5.

The motion parameters are estimated using a coarse-to-
fine strategy in which the affine transformations are com-
puted at a coarse level and then, at the next finer level, the
estimated transformations are used to register the two im-
ages by warping one towards the other (note that this must
be done for each of the layers). This process is repeated
down to the finest level in the pyramid while the transfor-
mations are updated at each stage.

Experimental Results. Since the data term is different
from that used in Section 4, some the parameters used for
the multi-layer case differ from the single layer case. In par-
ticular, �D decreases from 85:0 to 15:0 by a factor of 0:9 at
each stage in the continuation method and � is taken to be
1:0. All other parameters remained the same.

Figure 6 revisits the flower garden sequence of Figure 4.
In the single-layer case regions containing multiple motions

chose only one of the motions. In the multi-layer case, re-
gions are assumed to contain two motions. This can be seen
in the horizontal motion at the boundary of the tree in Figure
6 (b). The regions boardering the tree have two clearly dis-
tinct motions which are smoothly connected to their neigh-
bors.

Figure 6 (c) and (d) show the weights for the two mo-
tion layers within each region. Gray areas correspond to
a weight of 0.5 where only one motion was present. Re-
gions that span a motion boundary have two distinct sets of
weights. One portion of the region has high weights (white
areas in the figure) while the other has low weights within a
particular layer. This pattern is reversed in the other layer.
Figure 6 (d) shows those points that were not accounted for
by either layer and were treated as outliers. These occur pre-
dominantly at the boundary between the tree and the back-
ground. A flow field (Figure 6 (e)) can be generated by tak-
ing the most likely motion at each pixel (given the weights
mi(x; �D)).

Figure 7 shows multi-layer results for the SRI tree se-
quence. The weights indicate that the ground plane is
treated as a single layer while the branches of the tree and
the background are assigned to different layers when they
both appear in the same region.

In evaluating these motion estimates it is important to
keep in mind that this is not a “dense” method in the standard
sense but rather a cross between the parametric and dense
approaches. The flow for the SRI tree, for example, does
not exhibit smoothness at the pixel level, but rather at the
region level.

As mentioned in Section 4, the Skin & Bones method can
provide an initial guess for, and a constraint on, a more tradi-
tional dense method. For example, the approach in [9] was
applied to the multi-layer results to produce a dense flow
field, the horizontal component of which is shown in Fig-
ure 8. This result is more accurate than that obtained by a
dense method alone.

7 Conclusions
Estimating optical flow accurately involves pooling infor-
mation over a large area. Parametric motion models do this
well and can cope with multiple motions in certain cases
but are not applicable globally. When applied locally, how-
ever, insufficient constraints may result in an unstable solu-
tion. We have shown how regularization can be extended to
constrain these local affine flow parameters. Moreover, we
have provided a general framework for regularization with
transparency that extends regularization to cope with mul-
tiple local motion estimates. The methods have been tested
on synthetic and natural images and provide accurate flow
estimates common to parametric approaches, while main-
taining the flexibility of regularization schemes.
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Figure 7: (a) Image with segmented regions shown; (b)
Horizontal component of flow; (c) Weights for layer 1; (d)
Weights for layer 2; (e) Weights for outlier layer; (f) Flow
field.
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