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Many different approaches have been suggested for the mea- 
surement of structure in space from spatially separated cameras. 
In this report we critically examine some of these techniques. 
Through a series of examples we show that none of the current 
mechanisms of disparity measurement are particularly robust. By 
considering some of the implications of disparity in the frequency 
domain, we present a new definition of disparity that is tied to the 
interocular phase difference in bandpass versions of the monocu- 
lar images. Finally, we present a new technique for measuring 
disparity as the local phase difference between bandpass versions 
of the two images, and we show how this technique surmounts 
some of the difficulties encountered by current disparity detection 
mechanisms. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The localization of objects in the real world from a 
stereo presentation has been one of the major goals of 
both computer vision researchers and photogrammetric 
engineers. Two very different computational approaches 
have been suggested: The underlying computation has 
been reduced to one either of correspondence or of corre- 
lation. Although both approaches gave rise to initial suc- 
cesses, more recent research has not given rise to the 
expected improvements in performance. 

We begin by examining the classical techniques for 
measuring disparity in both the computer vision and pho- 
togrammetric domains. We construct a number of simple 
one-dimensional stimuli to investigate the behavior of the 
two major classes of disparity detectors, and present spe- 
cific examples which pose difficulties for the various al- 
gorithms. The difficulties exhibited by current algorithms 
are a result of the restrictive nature of the underlying 
definition of disparity used by the various algorithms. By 
investigating the notion of disparity in a bandpassed spa- 
tial-frequency tuned channel, we relate the local disparity 

to the interocular phase difference. We develop a local 
computational technique that measures this phase differ- 
ence and thus the local disparity. This new disparity mea- 
surement technique is then applied to the stimuli which 
presented difficulties to the classic disparity detection 
techniques. In this paper we do not address many of the 
properties of this new method for disparity detection. 
Additional work is required to determine the effect of 
noise on the response of the new detector, and the detec- 
tor must be placed within a complete stereopsis algorithm 
in order to examine its abilities more fully. Some prelimi- 
nary results have been obtained, and the interested 
reader is directed to Jenkin [ 141. 

In this paper we address only the problem of extracting 
(or measuring) the initial disparity estimates. We ac- 
knowledge that there must exist complex processes that 
operate on these primitive measurements to arrive at a 
final three-dimensional description of the environment. 
However, regardless of the complexity of these later pro- 
cesses, they can only produce results based on the nature 
of the initial disparity measurements. 

2. CLASSIC DISPARITY DETECTORS 

2.1. Correlation 

Since the mid-1950s correlation-based techniques have 
been applied to the task of recovering ground height from 
stereo parallax measurements. (See Wood [37] for a gen- 
eral discussion of the history of automatic correlation 
techniques.) Two cameras take pictures of the same 
scene with the cameras’ positions separated by a known 
baseline, or (as in the case of aerial photogrammetry) a 
single camera is used to take the picture, but the camera 
is moved between exposures. The computational task is 
the automatic recovery of surface height from the two 
images. The classic approach has been to present the task 
as one of correlation. Fundamentally, the assumption is 
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made that the left and right images are simply shifted 
versions of each other, and that the measurement of this 
shift is equivalent to determining the stereo parallax. 
(Note that this assumption includes assumptions of fron- 
toparallel surface, orthographic projection, and identical 
lighting conditions as viewed by the two eyes.) The as- 
sumption is made that the correct shift is the shift that 
sets the integral of the square of the difference between 
the two images to zero. This sum has a minimum when 
the images are shifted the correct amount with respect to 
each other. In a corresponding way, the correlation (the 
integral of their product) has a maximum. We can gener- 
alize this idea to measure the shift between two regions in 
the image. The disparity or shift that will be assigned to 
the point x can be found as 

max 
disp I W(z)left(x + disp + z)right(x + z)dz, (1) 

where W is a windowing function used to localize the 
disparity measure, and left and right are the left and right 
images. The performance of the algorithm in the presence 
of noisy images can be greatly improved by choosing a 
windowing function W that has a blurring effect. 

Unfortunately, the left and right views of a scene are 
not simply shifted views of each other. Examine a sur- 
face with a regularly repeating pattern (such as ruled 
note-paper) with your two eyes (see Fig. I). Hold the 
surface so that the pattern is vertical, and rotate the sur- 
face so that it is almost lined up with the line of sight of 
one of your eyes. Rotate the surface about the vertical 
axis. You should note that the spacing of the pattern is 
different in the left and right eyes, and that the effect of 
this spacing change (spatial frequency) is dependent on 
the interocular surface tilt. A simple correlation function 
applied to this tilted surface would have grave difficulties 
as the left and right views are not particularly similar. 

I 
FIG. 1. Nonfrontoparallel surface. A piece of paper with vertical 

lines which is rotated from the fronto-parallel plane (A) will have differ- 
ent spatial frequencies as seen by the two eyes. If we place the paper so 
that it is rotated with respect to one eye (B), but is perpendicular to the 
line of sight of the other eye (C) then the two eyes see drastically 
different structures. The effect of surface deformation under perspec- 
tive projection has been emphasized for clarity of presentation. 

Indeed, in the limit, the spatial-frequency properties of 
the left and right views can be made arbitrarily different. 

It is also possible to explicitly consider nonzero sur- 
face tilts in the design of a stereopsis algorithm. A simple 
measure of differing interocular patterns has been given 
by Clark and Lawrence [5]. Suppose that the retinal dis- 
parity is a linear function of retinal position; then the 
disparity d(x) has the form 

d(q) = xr - Xl = PO + PI-V. (2) 

If inter-ocular lighting differences are ignored, then Z,’ 
and Z: (the left and right observed intensities) are related 
as 

z;cd = ZXX,) 
= zxpo + (1 + Plh>. (3) 

Even with this simple measure, the left and right eyes do 
not see simple shifted versions of each other, and for 
surfaces with a disparity gradient (pi) different from 0, 
correlation based schemes are likely to fail. 

In practice, correlation is not able to deal with scenes 
that are distorted by perspective projection or by interoc- 
ular differences in illumination (Horn [12]). The same 
surface patch will appear with different brightness when 
viewed from two different directions. Specular reflection 
in particular will pose a difficult problem. A number of 
problems have been noted by researchers even when the 
geometry and illumination are ignored. The task of deter- 
mining a unique minimum can be very difficult when 
there are large regions of constant intensity. The con- 
verse case in which there is a great deal of variation in 
image intensity also leads to problems. As Crombie notes 

Correlation is an inadequate measure when there is less than, or 
more than, a moderate amount of image structure at and around 
points selected for image matching. i 

For more details on correlation-based methods for stere- 
opsis, and the surface models used, the reader is directed 
to Forstner [9]. 

Given that the simple correlation task will not uniquely 
determine interocular disparities at all points in an image, 
complex later processes have been proposed to produce 
a final depth map. Not only must multiple depth measure- 
ments at a given image point be resolved, but areas of 
constant intensity (zero, for example) may have no depth 
measure assigned, and some technique must be pre- 
sented to “fill in” these missing values. Many commer- 
cial systems utilize a human operator in this final step. 
For example, the Gestalt Photomapping System uses a 

’ Crombie [6, p. 5291. 
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left right 

FIG. 2. Left and right intensity profiles of bar target. Note that 
these profiles are of intensity and are of a one-dimensional target. 

human operator to set critical disparities before and dur- 
ing image processing (Kelly [17]). 

Consider the application of a correlation algorithm to a 
simple surface, such as a bar that is tilted in depth (it does 
not lie completely within the frontoparallel plane). The 
bar has a zero disparity at one end and a nonzero dispar- 
ity at the other (See Fig. 2.) 

Figure 3 shows the result of applying the correlation 
algorithm to a 1D slice through a bar. The figure shows 
the correlation strength for all possible (x, d) positions. 
Note that no decision has been made to determine a 
unique measure of disparity for a given x position; rather 
all possible responses are represented. Classic correla- 
tion techniques choose peaks in the disparity for a given x 
position as the true disparity. 

The correlation-based algorithm produces a large 
broad peak over a wide range of disparities. The window- 
ing function used was chosen to be a Gaussian with a 
half-height cut-off which was considerably smaller than 
the bar width (approximately one-half the width of the 

bar). Although a Gaussian was chosen, windowing func- 
tions with support regions smaller than the bar width will 
produce similar responses. The large plateau in the corre- 
lation space is due to the relative lack of features in the 
image, and thus peak finding algorithms will fail. 

An additional problem with the correlation-based tech- 
nique comes from the fact that the background of the 
stimulus does not have an intensity of zero. Thus for any 
x position away from the actual bar, there are peaks in 
the correlation space that arise simply from the correla- 
tion of a higher intensity region (the bar) with lower in- 
tensity region (the background). Peaks in the correlation 
surface do not necessarily correspond to true surface 
structure. 

This effect of a nonzero background resulting in a false 
correlation surface suggests that some sort of initial 
bandpass filtering should be applied to the raw images to 
reduce areas of constant or slowly changing intensity to 
zero. This would require that the correlation surface be 
computed at a number of different scales to be a true 
measure of objects in the environment. Figure 4 shows 
the application of the correlation detector to the bar (Fig. 
2) which had previously been bandpass filtered. For this 
example, the windowing function was chosen to be par- 
ticularly tightly localized in space in order to highlight 
problems inherent in the general approach. As there is no 
formal theory behind how the low-pass filter should be 
chosen, many filters would be appropriate. Filters with a 
lower high-frequency cut off will produce better results; 
however, there is no theory to guide the choice of such a 
filter. 

A number of effects are apparent. The correlation sur- 
face is no longer constant over the width of the bar; 
rather it peaks (in x) near the edges of the bar. This is to 

t x 
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FIG. 3. Correlation (x, d) surface for bar target. Disparity is mea- 
sured in terms of the left eye’s view. Commonly, peaks in slices in d 
(horizontal axis) are considered as the true disparity for the given x 
coordinate. 

FIG. 4. Correlation surface after initial bandpass filtering. Note that 
the broad shoulders in Fig. 3 have been successfully removed, but that a 
number of smaller peaks remain. 
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be expected as bandpass filtering will tend to emphasize 
the bar’s edges and reduce the weight of the bar’s inte- 
rior. In addition, there are a number of spurious peaks 
which might be reduced by the application of a low-pass 
final filter. The blind application of correlation to the out- 
put of bandpass filtered versions of the raw images does 
not appear to produce a useful response. 

Much more sophisticated correlation-based techniques 
are available. Normalized cross-correlation, for example, 
replaces the simple correlation of (1) with the correlation 
of zero-mean signals, normalized by their variances. (See 
Witkin et al. [36] for an application of normalized cross- 
correlation.) Although more sophisticated techniques are 
available for correlation-based processing, fundamental 
problems remain. In particular, the notion that the dis- 
parity of a signal can be captured as a single process 
operating over all scales can be easily confounded by 
images in which the processes that generate structure 
operate only locally in scale. Rather than there being one 
single disparity accounting for all of the structure at a 
given location, a number of disparities exist, each ac- 
counting for a different amount of the structure at a given 
point in an image. Witkin et al. for example, apply nor- 
malized cross correlation to different blurred versions of 
the image in order to overcome this basic problem. 

As a technique for measuring disparity, correlation has 
been shown to have a number of problems. It has difficul- 
ties in dealing with 

l perspective projection. 
l interocular illumination differences. 
l disparity gradients. 
l too much structure in an image. 
l too little structure in an image. 

By adding preconvolution steps, or blurring windowing 
functions, a number of problems may be surmounted. 
However, the process of adding these bells and whistles 
becomes rather ad hoc, and the underlying theory be- 
comes lost in the use of image and correlation space oper- 
ators whose functions are at best of a “heuristic” nature. 
Rather than continuing with the addition of unsupported 
features to correlation algorithms, let us turn our atten- 
tion to the correspondence algorithms proposed by com- 
puter vision researchers. 

2.2. Correspondence 

Current correspondence-based theories of stereopsis 
involve three distinct stages (Arnold [l], Barnard and 
Thompson [2], Grimson [ 111, Lowrie [ 191, Marr 1201, 
Marr and Poggio [21, 221, Mayhew and Frisby [24], Ohta 
and Kanade [27], Richards, Nishihara, and Dawson [31], 
Pollard, Mayhew, and Frisby [29]). First, the two images 
of a stereo pair are processed separately to extract mo- 
nocular features. One common choice of feature is the 

presence of a zero-crossing in a bandpassed version of 
the image (often referred to as an edge). Second, the 
monocular features in one image are matched with corre- 
sponding features found in the other image. In practice 
this second stage cannot be expected to produce only the 
correct matches, and a third stage must be considered in 
order to remove the incorrect matches (“false targets”). 
There are therefore three main issues in the design of a 
traditional correspondence based algorithm for stereop- 
sis, namely (i) the choice of image features; (ii) the choice 
of matching criteria; and (iii) the way false targets are 
avoided or eliminated. 

There are several factors involved in the choice of suit- 
able image primitives. We consider these factors from the 
traditional viewpoint of extracting symbolic monocular 
features. Of primary importance is that an extracted fea- 
ture can be expected to correspond to a particular prop- 
erty of a surface in the scene being viewed, and that this 
surface property is likely to produce the same type of 
feature in both images. In other words, we wish to use 
features that can be expected to produce reliable informa- 
tion about surface structure once they have been cor- 
rectly matched. It is also important that matches occur 
sufficiently often to provide a fairly dense description of 
the disparity. While algorithms are available for filling in 
expected values of disparity given only sparse data (Ter- 
zopoulos [34]), it is obviously preferable to have denser 
data. Of course, the density of any measurement will be 
limited by the surface texture. Smooth surfaces will not 
give rise to as rich a description as surfaces with complex 
textures. 

Finally, the choice of image features strongly affects 
the options available for obtaining matches and eliminat- 
ing false targets. This has been expressed very clearly by 
Mat-r: 

The basic problem to be overcome in binocular fusion is the elimi- 
nation or avoidance of false targets, and its difficulty is deter- 
mined by two factors: the abundance of matchable features in an 
image and the disparity range over which the matches are sought. 
If a feature occurs only rarely in an image, the search for a match 
can cover quite a large disparity range before false targets are 
encountered, but if the feature is a common one or the criteria for 
a match are loose, false targets can occur within quite small dis- 
parities2 

In brief, the features (i) should correspond to surface 
properties, (ii) should produce matches that are fairly 
dense, and (iii) should have distributions over a typical 
image such that false matches can be relatively easily 
avoided or eliminated. 

The constraints on the density and on the ease of elimi- 
nating false targets are in direct opposition. In particular, 
the number of possible matches in a given region in- 
creases polynomially with the density of a given symbolic 

2 Marr [20, p. 1271. 
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FIG. 5. DOG response for bar target. 

feature. Therefore the problem of finding the correct 
match can be expected to rapidly become more difficult 
as the density grows. 

Many different features have been chosen as a basis for 
disparity measurement. Perhaps the simplest is the image 
intensity itself. This makes the technique very similar to 
the correlation process with the window function W re- 
placed by the delta function. This choice of monocular 
feature is quite attractive (if for no other reason than its 
simplicity of computation) for restrictive domains such as 
random dot stereograms (e.g., Mar-r and Poggio [21]). For 
more complex images, it suffers from exactly the same 
problems as does the correlation method, with the added 
burden that the use of the delta function for windowing 
exaggerates the problems. 

The use of feature points as monocular primitives has 
been a favorite approach of computer vision researchers, 
and provided that the monocular features are appropri- 
ately chosen (by human intervention, for example), this 
approach can be very successful. Automated selection of 
feature points, such as points of high contrast (Barnard 
and Thompson [2], Moravec [25]) or corner points (Nagel 
and Enkelman [26]) have also been used. Unfortunately 
feature points have been found to be quite unstable (see 
Thorpe [35] for a comparison of feature point operators). 
More recent results with feature detectors have shown 
promise with corner-based detectors (Forstner [lo]). 
However, fundamental problems with features remain. 
Classification as to feature type can easily change, the 
feature may not exist at all in a particular image pair (e.g., 
a corner-based detector might be applied to an image 
lacking corners), or a feature may not be detectable in 
one image at all due to interocular differences in image 
intensities or geometry. 

Mar-r and Poggio [22] were the first to suggest the use of 
zero-crossings detected in the second derivative of the 
image as monocular features. Later work by Arnold [l], 
Grimson [ 111, Lowrie [ 191, Mayhew and Frisby [24], and 
Richards, Nishihara, and Dawson [31] have expanded 
upon this notion by modifying the types of filtering and 
the features extracted. However, the basic computa- 

tional paradigm has remain unchanged: A spatial-fre- 
quency bandpass filter is applied to the image, and a num- 
ber of features are extracted from the result. Current 
algorithms select either zero-crossings, or zero-crossings 
and peaks, at a number of different spatial frequencies as 
their monocular primitives. 

Spatial-frequency tuned channels have been chosen for 
a number of reasons. Many computer vision algorithms 
claim biological relevance; that is, they draw support for 
specific computational processes from findings in physi- 
ology and psychology. There is a large body of literature 
supporting the notion of independent stereo processing 
from spatial-frequency tuned channels (Hubel and Wiesel 
[13]; Blakemore, Fiorentini, and Maffei [3]; Poggio and 
Fischer [28]). From a purely computational point of view 
structure is often localized in frequency space. As Marr 
noted, 

The spatial organization of a surface’s reflectance function is often 
generated by a number of different processes, each operating at a 
different scale.) 

The notion of extracting primitives from bandpass fil- 
tered images gives rise to a symbolic pattern matching 
task as opposed to numerical correlation techniques. 
Problems that are encountered in correlation techniques 
due to interocular lighting differences may be reduced if 
tokens such as zero-crossings from bandpass channels 
are used. Unfortunately, token-based correspondences 
give rise to their own problems. (See Jenkin and Kolers 
[ 151 for a review of problems with correspondence.) Fea- 
tures may not be extracted from both eyes’ views with 
equal ease, and the features themselves may be highly 
sensitive to small local perturbations in image intensity. 
The task of designing matching rules that are robust in 
the presence of unstable features, while not simply con- 
sidering all interocular correspondences, is a very diffi- 
cult problem. 

The use of bandpass channels localizes structure in 
frequency space. Tilted surfaces can be detected so long 
as the left and right views of the local structure fall within 
the same channel. Note, however, that if the disparity 
gradient becomes too large, or if the spatial-frequency 
tuning becomes too narrow, the correspondence algo- 
rithm will be unable to respond to the surface. 

Consider the application of a correspondence algo- 
rithm to the bar shown earlier in Fig. 2. Figure 5 shows 
the matching strengths for all possible (x, d) positions. 
The correspondence-based algorithm correctly identifies 
one end of the bar target as having zero disparity, while 
the other end of the target has a nonzero disparity, but 
makes no inference whatsoever as to the disparity of the 
intervening region. Although the bandpass filter was cho- 
sen so that the zero-crossing found would correspond to 

3 Marr [20, p. 461. 
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left right 

FIG 6. Left and right views of saw-tooth surface. The plot is of 
intensity as a function of position. Note that the eyes see surfaces of 
similar frequency but with differing profiles. 

the edges of the bar, lower spatial frequencies produce 
responses that have little to do with the actual edges of 
the bar. In addition, zero-crossings will be located within 
the structure of the bar due to the frequency of the band- 
pass filtering. Thus feature matches will occur between 
zero-crossings that correspond to the edges of the bar 
and zero-crossings detected within the bar. Figure 5 has 
zero-crossings at each end of the bar at the correct dis- 
parities. A different choice of spatial frequency tuning for 
the DOG operator may result in the formation of addi- 
tional zero-crossings. 

Mayhew and Frisby [24] reported that surfaces in 
which intensity changes were coupled to changes in dis- 
parity posed difficult problems for zero-crossing based 
algorithms. Figure 6 is such a surface. The left and right 
saw-tooth waveforms are of the same frequency but with 
slightly different profiles. (Note that the left and right 
images are plots of intensity, not depth.) The true depth 
of the surface is saw-tooth in nature. The “correct” sur- 
face disparity is shown in Fig. 7. If standard difference of 
Gaussians (DOG) filters are used, a simple symmetry ar- 
gument shows that the exact zero-crossing always occurs 
halfway between the peaks. The matching algorithm 
therefore produces only a constant disparity response; 
the variation in depth is not detected. Moreover, the 
slope of the zero-crossing in higher frequency channels is 

FIG. 7. True disparity of the saw-tooth surface. 

L/ 
left right 

FIG. 8. DOG applied to left and right views. 

extremely shallow. This is exhibited in Fig. 8, where the 
left and right images are plotted after being passed 
through a DOG filter whose peak frequency is set at twice 
the fundamental. The shallow slope indicates that the 
positions of the zero-crossings are extremely sensitive to 
discretization errors and noise. In the left eye’s view the 
zero-crossings will be very difficult to detect, and the 
slope of the response is almost zero through all zero 
crossings. In the right eye’s view, 50% of the zero-cross- 
ings will be easy to detect, while the remaining 50% again 
suffer from a near-zero slope through the zero-crossings. 
As matches must be made between these two views, it is 
unlikely that good binocular matches can be constructed. 

Note that changing the spatial-frequency tuning of the 
bandpass filters does not seem to improve the perfor- 
mance of the correspondence algorithm. As Mayhew and 
Frisby [24] reported, and as we have found, higher spa- 
tial-frequency tuned channels do not produce signifi- 
cantly different results. Figure 9 shows the matches of 
zero-crossings to the saw-tooth surface at different spa- 
tial frequencies. As can be seen, information gathered 
over three octaves does not encode a large amount of the 

FIG. 9. Zero-crossings at different spatial frequencies. The super- 
imposed planes (x, d) show the locations of zero-crossing across spatial 
frequencies. The spatial frequency scale is logarithmic. 
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structure in the saw-tooth surface. It would be difficult to 
imagine how these zero-crossings could be integrated to 
recover the true surface structure. 

Mayhew and Frisby have reported more successful 
results using both zero-crossings and peaks from the out- 
put of the bandpass filtering. Indeed when this informa- 
tion is added to the correspondence algorithm, more 
matches are recovered. Unfortunately, peaks are gener- 
ally more difficult to detect accurately in the presence of 
noise, and due to the discrete nature of the responses, 
very few response points are recorded for the underlying 
disparity surface. The underlying problem is that the ex- 
traction of tokens from a bandpass channel severely un- 
dersamples the output from a spatial-frequency tuned 
channel. Any disparity inferred from these tokens will 
also undersample the surface structure under examina- 
tion. Although by an appropriate choice of channels 
tuned to different spatial frequencies it may be possible to 
recover this structure, it seems a waste to discard useful 
information from each bandpass channel. Rather than 
utilize only isolated features from the channel, and thus 
possibly lose information and at the very least complicate 
the task of “filling in” missing disparity values, it would 
be useful to base a disparity measurement primitive on 
the entire output of the spatial-frequency tuned channel. 

2.3. Summary 

Many correspondence mechanisms for disparity mea- 
surement implicitly assume that surfaces are frontoparal- 
lel, and that the imaging system samples using an ortho- 
graphic projection. These assumptions allow the same 
surface feature to give rise to identical left and right mo- 
nocular views of three-dimensional structure. Unfortu- 
nately, objects do not in general lie in frontoparallel 
planes, and imaging systems are not orthographic in na- 
ture. The same problem that plagues correlation-based 
systems (left and right views are not simply shifted ver- 
sions of each other) also arises in correspondence-based 
systems. Other algorithms, which allow for tilted sur- 
faces, still assume that the processes that gave rise to a 
feature in one view are the same processes that gave rise 
to the feature in the other view. Sophisticated monocular 
primitives extracted from bandpass channels may be less 
sensitive to surfaces with nonzero disparity gradients or 
interocular lighting effects, but these problems will still 
exist and cannot be completely avoided. 

Perhaps the major advantage of correlation techniques 
is that correlation promises a high density of responses. 
Theoretically, correlation is capable of providing a depth 
determination at each and every image point. Techniques 
which use zero-crossings in a spatial-frequency tuned 
channel can by definition only respond twice over each 
wavelength. This lower density of response requires an 
even more robust process to “fill in” the missing values, 

and solving this problem has not proven particularly 
easy. 

Even with the very simple stimuli presented here, nei- 
ther the correlation nor the correspondence techniques 
have proven very successful. Correlation responses may 
have a high density, but they are highly susceptible to 
either too little or too much structure in an image. Corre- 
spondence provides a more robust set of responses, but 
the responses are sparse, and some later process must be 
postulated to “fill in” the missing responses. As illus- 
trated here, and as demonstrated by Mayhew and Frisby, 
surfaces in which intensity changes are tied to disparity 
changes pose serious problems for zero-crossing based 
approaches. The practice of extracting sophisticated 
primitives from bandpass channels as matching tokens 
seems to create as many problems as it solves. 

Both correspondence- and correlation-based schemes 
have difficulties when applied to certain simple one-di- 
mensional structures. Even without addressing the com- 
plex task of determining overall surface structure, cur- 
rent techniques may miss gross surface structure. In 
terms of human binocular vision, Mayhew and Frisby 
[24] have shown that saw-tooth surfaces (such as the one 
used in Fig. 6), are perceived as saw-tooth structure in 
depth. Thus there is evidence that the correct interpreta- 
tion can be obtained, but that current algorithms are un- 
able to detect this structure. Some new technique for 
disparity measurement is required. 

Correlation and correspondence approaches to stere- 
opsis are in a sense complementary; correlation produces 
a dense set of responses but has difficulty with constant 
or rapidly changing structure and with interocular image 
differences, while correspondence avoids some of these 
problems by considering the image at different scales but 
then fails to obtain a dense set of responses by matching 
only sparse tokens. It would be desirable both to avoid 
the problem of structure at different scales and at the 
same time to produce a dense response. The develop- 
ment of such a measure is the goal of the next section. 

3. DISPARITY AS PHASE DIFFERENCE 

In this section we present our basic computational ap- 
proach used to measure local disparity information. To 
illustrate the proposed technique in its simplest form we 
consider one-dimensional sinusoidal signals here. We 
note, however, that only relatively minor modifications 
of this basic technique will be needed to deal with more 
general two-dimensional images. 

In particular, we let Z,(x) and Z,(x) be the left and right 
“images,” where 

Z,(x) = A sin(olx + 0,); A, wI > 0, 

Zr(x) = B sin(w,x + 8,); 
(4) 

B, w, > 0. 
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Note that, since different perspectives in the left and 
right views can alter the spatial frequencies of the ob- 
served patterns, we do not assume that o1 = 0,. How- 
ever, we do assume that 01= wr (Le., Iw, - w,l/(wl + wJ G 
l), and in practice we ensure this by considering two 
bandpassed versions of the left and right raw images. 

One way to define a local phase difference between 
two bandpass signals is to consider matching “features” 
such as peaks and zero-crossings. For Z, and Z, as above, 
this basically amounts to matching the arguments of the 
two sinusoids, modulo 23~. Thus, we define the local 
phase difference to be 

Here 101 denotes the principal part of the angle 8, which is 
obtained by adding an integral multiple 27r to 8 so that the 
result lies in the interval [--7~, r). Note that this mod 
operation produces a discontinuous function, $(x), 
whenever ol # w,. Moreover, the discontinuities corre- 
spond to boundaries of intervals in x where the matching 
of peaks and zero-crossings between the two images is 
one-to-one. 

The local disparity, d(x), is the distance the images 
must be shifted with respect to each other so that Z, and Z, 
agree up to a multiplicative constant (B/A in the above 
example).4 This definition leads to the following form for 
the local disparity; 

d(x) = ; 4(x), w = ; (0, + w,) (6) 

With this definition it follows that the left image shifted to 
the right by &Z(x), namely Zl(x - &Z(x)), is a constant 
times the right image shifted by the same amount to the 
left, namely Z,(x + &Z(x)). Positive disparity, therefore, 
corresponds to objects that are further from the fixation 
point of the two eyes. 

In order to extract 4(.x) we consider the point-by-point 
multiplication of the left and right images, that is, 

Z,Z, = AB sin(w,x + &)sin(o,x + 0,) 

= y (COS((W, - W,)X - (e, - e,)) 

- COS((O, + W,)X + (e, + em. (7) 

By low-pass filtering this product with a filter, L, having a 
high-frequency cut-off below WI + wr, we obtain 

4 We assume frontoparallel surfaces in our development of the dispar- 
ity detectors; in a later section we will generalize the result to surfaces 
with nonzero disparity gradients. 

P(x) = L * G(xVr(x)) 

ABK 
= 2 COS((W, - 0,)~ + (e, - e,)) 

= K cos(ddX>>, 
ABK 

K=2. 

Here 4(x) is as in (5) and K = K(ol - 0,) is the sensitivity 
of the low-pass filter to the frequency wI - w, . This result 
is encouraging since P(x) depends only on the desired 
local phase difference and a scale factor involving the 
product of the amplitudes. However, a local technique is 
needed to disambiguate the amplitude and the relative 
phase information inherent in P(x). The technique must 
be local since we cannot expect bandpassed images to be 
well approximated by (4) over intervals of roughly the 
length of one wavelength of P(x), that is, over lengths 
2~/lwl - w,I. Therefore it is not possible to estimate the 
scale factor by examining the behavior of P(x) over one 
of its wavelengths. Instead it is necessary to obtain an 
estimate for 4(x) based on information available over no 
more than a few wavelengths of the base frequency W 
(i.e., Ax = 2n/W). 

A suitable local technique can be obtained by the inclu- 
sion of a specific shift in one (or both) of the images 
before the pointwise product is calculated. For example, 
we define 

P(x, s) = L * (6(x - ; s)zr(x + ; s)) 

= K COS(& - 4(X)), (9) 

with W as in (6). Now, to obtain an approximation for $J 
near a given point x0, the value of s is adjusted so that a 
particular local feature of P(x, s) occurs at x = x0. Suit- 
able local features of P are, of course, features that are 
independent of the product AB, and include zero-cross- 
ings and local extrema. Here we chose to avoid seeking 
local extrema of P(xo, s), which can be fairly sensitive to 
noise. Instead we consider a simple feedback control 
which provides a value s&x0) such that 

P(xo, s4XO)) = 0, 

!J( x0, 4x0)) > 0. 

For the moment assume that such an sm(xO) is computed. 
Then we see from (9) that (10) is satisfied if and only if 

lwsco(xo) - $(x0)] = - z 2’ (11) 

Therefore the local relative phase difference is given by 
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$4x0) = [Osm(xo) + ;I, (12) 

which can be computed given L(x~) and the mean fre- 
quency W. 

The basic idea behind the control loop is best illus- 
trated with the following simple scheme. Consider s(t; 
x0), which is defined to be the solution of the differential 
equation 

ds 
z= -nxo, s(c x0)), f > 0, 

s(0; x0) = so. (13) 

Here so is some initial guess for the local phase difference 
at x0. The meaning of (13a) is made clear in Fig. 10. 
Roughly speaking, Eq. (13) simply states that if P(xo, S) 
is positive then s should be decreased, and if P(xo, S) is 
negative then s should be increased. Except for the un- 
stable situations where the initial guess ~(0; x0) precisely 
satisfies (10a) but with the inequality (lob) reversed, the 
solution s(t; x0) of (13) converges to a solution of (10) as 
t + ~0. We refer to this limit as s&x0). 

If the mean frequency 0 is known, then the relative 
phase can be computed from (12) and the limit s&x0) = 
lim,, s(t; x0). In addition it follows from (5) and (12) that 
the local disparity d(xo) satisfies 

d(x,,) = sm(xo) + & = s&x0) + f. (14) 

In practice W might be approximated by wo, the peak 
frequency of the bandpass filter used to compute Z,(X) 
and Z,(x). The error in the disparity calculated using (14), 
with i3 replaced by oo, is then 

P(X,S) 

FIG. 10. P(x, s) for a step edge at zero disparity. 

where X0 = 2n/wo is the wavelength corresponding to the 
peak frequency, and (W - wo)/wo is the relative displace- 
ment of W from the peak frequency. For example, if the 
bandwidth of the bandpass filter is less than an octave, 
then the relative displacement of W is bounded by 4, and 
(15) implies 

IAd/ i;Xo. (16) 

We note, however, that for images in which the power 
spectrum is relatively smooth near the peak frequency 
00, the appropriate value of 0 will be closer to wo than is 
indicated above. In this case we can expect to obtain 
results whose accuracies are well within the bound pro- 
vided in (16). This completes the description of one tech- 
nique for measuring the disparity d. We end this section 
by describing a modification of this technique which pro- 
vides the disparity to a greater accuracy. 

Note that the error estimate in (16) is based entirely on 
the uncertainty in the value of W, which is needed to 
compute the disparity from the limit, s&x0), of the loop 
filter. The technique illustrated below uses a loop filter 
whose limit is precisely the local disparity. The value of 
W is not needed, and the error produced by its use is 
thereby eliminated. The key to this approach is an appro- 
priate choice of the initial filtering. In particular, suppose 
the left and right images Z, and Z, are obtained using a 
zero-phase and a - rr/2-phase filter, respectively. For ex- 
ample, sine and cosine Gabor filters could be used. (The 
Gabor pair must be slightly modified so that both the sine 
and cosine Gabors are bandpass.) Then the right image 
becomes 

Z,(x) = A sin i w,x + 8, - 5 1 . (17) 

Forming P(x, S) as in (9), with Z,(x) as in (2.la), we find 

P(x, s) = K sin(% - (b(x)). (18) 

Now the control scheme (13) provides s(t; x0) such that 
s(t; x0) + s,(xo) as t + 03, where s-(x0) satisfies 

lOs,(xo) - +(x0>] = 0. (19) 

Finally, we see that if %,(x0) E [--7~, n) then (4), (5), and 
(19) imply that s-(x0) = d(x,). Therefore the control 
scheme converges to the local disparity, and the precise 
value of W is not needed. We will use Gabor filtering in 
the following experiments with the disparity detector. 
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3.1. Other phase difference methods 

Phase-based methods have been considered previously 
in the matching of Fourier transforms between image 
pairs (Kuglin and Hines [18]; Stokes [33]). Both methods 
are similar to the phase matching proposed here, in that 
the task of measuring disparity is reduced to the problem 
of measuring the phase difference between two signals. 
Stokes has shown that if the phase is measured over a 
long input signal (about twice the wavelength), very poor 
values for the phase shift may be reported. He has also 
demonstrated that noise can seriously affect the results 
obtained by phase matching over larger signal lengths. 

The method proposed here differs from these previous 
methods in that we measure the phase difference locally. 
The computation of phase difference in our work has no 
similarity to Fourier-based schemes, and the density of 
the sample points that are considered using the phase- 
based scheme is considerably higher than once every 
other wavelength. 

Sanger [32] has also considered disparity computation 
using phase measurements obtained from Gabor filters. 
His technique involves a direct measurement of the 
phase in the left and right signals, and then a subtraction. 
This results in a much smaller disparity range than the 
technique proposed here. We have also considered the 
use of Gabors and different techniques of disparity mea- 
surement (Jepson and Jenkin [16]). 

3.2 Phase-Sensitive Demons 

The general form of the phase measurement scheme 
discussed above is given in Fig. Il. We summarize this 
scheme below. The raw images, Zp and $‘, are first sent 
through bandpass filters BI and B,, respectively, to pro- 
duce 

Z,(x) = jTm B,( x - z)Z%)dz, w = 1, r. (20) 

The left and right bandpass image is shifted by s/2, and 
the phase detector, 

P(x, s) = /rrn u x - z> [Z,(z - ;)Zr(z + $1 dz, (21) 

is applied. Here L is a low-pass filter. The response of the 
phase detector is fed into the loop filter, which for now 
we take to be 

ds 
dt= 

-P(x, s), t > 0. (22) 

It is also convenient to introduce an initial guess, say 

s(0; x) = so. (23 

The value of s computed in (22) is fed back to the shift 
module. The loop is said to be locked when P(x, s) = 0, 
and in this case we set s,(x) = s. We refer to this mecha- 
nism as a phase-sensitive demon. 

We imagine the initial stereo images decomposed into a 
multiple spatial scale representation, perhaps through the 
use of a Burt pyramid (Burt [4]) or the DOLP transform 
(Crowley and Stern [7]). Also there is a similar hierarchi- 
cal scheme that can be used to construct Gabor-like re- 
ceptive fields (Fleet and Jepson [S]). The filter B1 and B, 
are members of such a family. For each spatial scale 
there is a demon applied at each sample point x and, like 
all good demons, they are independent of other demons 
at different x’s or different scales. In particular, we em- 
phasize that the demons are simply collecting local dis- 
parity information. A globally consistent interpretation of 
the computed local disparities is the job of either a subse- 
quent level of processing or a network connecting de- 
mons to their neighbors. 

--r/Z 

PD 

I0 r Ir 
! 

P 
c Bandpass __c Shift * 

I 

FIG. 11. Feedback computation of P. F is a loop filter which modulates the output of the phase detector PD. 
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3.3. Dealing with a disparity gradient 

The disparity demons that we have presented are tuned 
for a specific spatial frequency, a specific retinal location, 
and a specific disparity. In addition, these disparity de- 
mons are tuned to a particular disparity gradient (fir = 0). 
As with the correspondence-based algorithms using fea- 
tures extracted from bandpass channels, the use of band- 
pass signals will allow surfaces with nonzero disparity 
gradients to be processed. The limit of the disparity gra- 
dient will be controlled by the width of the bandpass filter 
used. In this section we will sketch how the demons can 
be modified to measure surfaces with a nonzero disparity 
gradient. 

Suppose that a detector is required that will be tuned 
for a particular disparity gradient pt. Then from (3), Z;(xJ 
= I:(& + (1 + pl>xJ. Suppose that Z; is a sinusoidal 
function of x, say with frequency w; then Z: is also a 
sinusoidal function of x, but with a frequency w/(1 + pi), 
and with a phase shift of ~30, In order to apply a disparity 
measure similar to (9) the left and right images must be 
bandpass filtered to equal spatial-frequency channels. 
We can accomplish this by resampling the right (or left) 
eye’s view so that the resampled images have similar 
central frequencies. Equation (20) is modified so that the 
right raw image is sent through a bandpass filter which 
has a central frequency w, = l/(p, + l)wl. The resulting 
bandpass channel is then resampled at (~3 + 1). The result 
of this construction is that Z; and Z: are bandpass signals 
with similar spatial-frequency tuning although they do 
not necessarily encode the same spatial-frequency chan- 
nels from the raw images. We can then apply (21), (22), 
and (23) to measure disparity between Z; and Z:. A locked 
response indicates the presence of a surface with a dis- 
parity gradient ~3~ at the point in space for which the 
demon was tuned. 

As an example, suppose that we wish to build a detec- 
tor that is tuned to objects that have a disparity gradient 
/3i of 1. Such an example is shown in Fig. 12. Instead of 
applying filters to the left and right views with the same 
frequency, we use filters with central frequencies such 
that the left frequency is twice that of the right. The 
phase detector requires that its input signals be of the 

FIG. 12. Nonfrontoparallel surface. 

same frequency, so we must resample one (or both) of 
these signals. In Fig. 12 we chose to resample the right 
bandpass signal. We scaled the right signal by a factor of h 
so that after resampling the left and right signals have the 
same spatial frequency. We can then apply our disparity 
detector to these two signals. In this way we can con- 
struct a detector tuned to a nonzero disparity gradient. 

We note that other interocular differences can be mea- 
sured in a similar fashion. Interocular orientation differ- 
ences, contrasts, etc., can easily be encoded by a dispar- 
ity sensitive demon. All that is required is that the signals 
available to the demon be of similar spatial frequencies 
along the axis that passes through the two eyes. The 
demon will operate independently of other information 
encoded in its response. 

For example, to produce a demon which is sensitive to 
opposite contrasts in the left and right eyes view, we 
need only modify one of the initial bandpass filters (Bt, 
say) so that its output is inverted. To produce a demon 
that is sensitive to structure oriented at 45” in the left 
eye’s view, and to structure oriented at -45” in the right, 
Z3t and B, must be modified to be orientation specific to 
+45” and -45”, respectively. Of course, although the 
construction of demons tuned to a large number of inter- 
ocular differences is possible, constraints on the total 
number of demons will exist in any environment (and in 
biological systems in particular). 

3.4. Discussion 

The underlying mechanism we have presented for dis- 
parity detection is one of measuring the local phase dif- 
ference between two small windows in a bandpass chan- 
nel. Computationally, this appears as a modification to 
the simple correlation scheme presented earlier: The im- 
ages are cross-correlated, and a feature (in our case, a 
zero-crossing) is extracted. A number of important differ- 
ences are apparent: 

1. The initial image is not correlated directly, nor is a 
windowing function used in an attempt to blur the image 
to reduce noise in the correlation. Bandpass versions of 
the images are used. Thus we measure structure at differ- 
ent scales in the scene, rather than performing a global 
(across scales) measure. A correlation system that does 
not utilize measurements at different scales can easily be 
confounded by scenes that have conflicting structure at 
different scales. 

2. Classic correlation is based upon the correlation of 
identical left and right signals. In the phase-based detec- 
tor, the bandpass filtering in the left and right images 
need not necessarily be similar. For example, use of the 
Gabor pair discussed earlier results in the left and right 
images being convolved with radically different func- 
tions. If disparity gradient tuning is required, then left 
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and right images may not be convolved with filters having 
similar bandpass properties. 

3. The output of the correlation is low-pass filtered. If 
this step is not performed then the high-frequency addi- 
tive term in (7) will not be removed, and the resulting P 
space will not be sinusoidal. The detection of the correct 
(low-frequency) zero-crossing from within the high-fre- 
quency component without the low-pass filtering would 
be quite difficult, if not impossible. Such as surface is 
shown in Fig. 4. 

4. Our disparity detectors have been constructed to 
extract the local relative phase difference between two 
signals. Correlation applied to bandpass signals followed 
by low pass filtering may produce similar results, but 
without a formal description of what is being extracted 
the results are difficult to interpret, and an intelligent 
choice of the low pass filter is not possible. 

4. TESTING THE DISPARITY DETECTOR 

Figures 13 and 14 show the response of our disparity 
detectors to the bar target (Fig. 2) and to the saw-tooth 
target (Fig. 6) respectively. 

:-:- 

A = l/4 bar width 

x 

A = l/Z bar width 

FIG. 13. Disparity demon response to bar target. The height of the 
response is proportional to the slope in s as the surfce passes through 0 
in P(x, s) and is zero othewise. 

FIG. 14. Disparity demon response to saw-tooth texture. Re- 
sponses are shown for filters tuned to 4 and 8 times the base frequency 
of the saw-tooth function. The results are superimposed over the true 
surface disparity. 

Consider the response to the bar first. The bandpass 
channels were chosen to be approximately one-half the 
width of the bar. The detector has responded at zero 
disparity at one end of the bar, and with nonzero dispar- 
ity near the other end. Within the bar, the disparity detec- 
tor has interpolated possible disparity values. In addi- 
tion, at the ends of the bar, the strength of the disparity 
response falls off rapidly beyond the bar’s edge. The fall- 
ing off distance can be easily computed a priori from the 
spatial-frequency properties of the bandpass filtering. 
The disparity detector begins to address the problem of 
providing results in a region near discontinuities in inten- 
sity, rather than just at the discontinuities. 

In addition to the correct zero disparity, responses 
were also obtained from points in s that were considera- 
bly different from zero. These points arise from the dis- 
crete nature of the digital implementation and undersam- 
pling of the P(x, s) space. Note that these “false targets” 
could be eliminated by simple thresholding or the task of 
distinguishing these responses could be left to whatever 
later process deals with the general problem of false 
targets. 

Figure 14 shows the responses near zero to the saw- 
tooth surface. Due to the regularly repeated structure, a 
large number of different interpretations are available. 
The same response pattern will be repeated in disparity 
space every multiple of the wavelength of the pattern. 
The structure near disparity zero, however, consists of a 
saw-tooth section. By utilizing the full bandpass signal in 
phase locking, structure can be detected that might other- 
wise be missed. Such missing structure can only further 
complicate later processes that might attempt to produce 
coherent descriptions of global surface structure. 

Figure 15 shows the output of the disparity detector 
when it is applied to the saw tooth surface at different 
spatial frequencies. The disparity range in Fig. 15 is 
larger than the range in Fig. 9, and thus shows some of 
the false targets that occur due to the regularly repeated 
structure in the raw images. The output of the disparity 
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left right 

FIG. 17. DOG response for bar target. 

FIG. 15. Disparity demon at different spatial frequencies. 

detector should be compared with the output of the zero- 
crossing correspondence algorithm shown in Fig. 9. The 
disparity detector has recovered surface structure in con- 
siderably more detail than is available using sparse corre- 
spondence techniques. Higher spatial frequencies tend to 
encode information about the position of the peaks, while 
lower spatial-frequency tuned channels encode more of 
the gross structure of the surface. 

The correlation based schemes perform reasonably 
well on the saw-tooth texture, successfully correlating 
the peak shapes between the two images. Unfortunately, 
the strength of the correlation depends on the intensity of 
the texture. That is, the strength of the response is less 
when the intensity of the signal is closer to zero. 

Finally, as suggested by the reviewers, we consider the 
effect of noise on the three disparity measurement tech- 
niques. As a base case, consider a simple bar target with 
identical presentations to the left and right cameras (see 
Fig. 16). The central bar region has a higher intensity 
than the background, and the background has a nonzero 
intensity. Figure 17 shows the output of a difference of 
Gaussians operator to the stimuli shown in Fig. 16. As 
expected, two sharp zero-crossings can be found at the 
edges of the bar. Depending on the sensitivity of the zero- 

crossing detection process and on the central frequency 
of the operator used, additional zero-crossings can also 
be detected. Note the difficulty in rejecting the false zero- 
crossings within the bar in Fig. 17, but accepting the true 
zero crosssings between the peaks in Fig. 8. 

The output of a simple correlation process using a 
Gaussian windowing function with a support region con- 
siderably smaller than the bar width is shown in Fig. 18. 
As one would expect from the large featureless areas, the 
task of peak finding in the correlation surface would be 
quite difficult. Figures 19a and 19b show the positive 
zero-crossings in the P(x, s) space for the phase differ- 
ence operator at two different spatial frequencies 
(roughly l/4 (a) and l/2 (b) of the bar width). Strong 
responses are seen near the edges of the bar with smaller 
incorrect responses from false zero-crossings at incorrect 
disparities. These responses are consistent with the re- 
sponses obtained with the tilted bar target earlier in the 
paper. 

Now consider the effect of adding Gaussian white 
noise with a standard deviation of 20% of the intensity 
difference between the bar and the background (see Fig. 
20). The general structure of the bar is visible, although 

left 

FIG. 16. Left and right intensity profiles of bar target. FIG. 18. Correlation surface for bar target. 
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I A = l/4 bar width 
IX 

x X = l/z bar width 

FIG. 19. Phase difference response for bar target. 

the fine structure is lost within the noise. The application 
of the DOG operator gives a large number of zero cross- 
ings (see Fig. 21) which will provide many possible 
matches. The task of sorting out the correct matches 
from the noise response will be quite difficult without the 
use of very strong high level constraints. The correlation 
space no longer shows the smooth structure of Fig. 18, 
but the new peaks introduced are simply the correlation 
of noise added to the two signals. The peaks do not corre- 
spond to the correct disparity of the bar, only to the 

left right 

FIG. 20. Left and right intensity profiles of corrupted bar target. 

left 
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right 

FIG. 21. DOG response for corrupted bar target. 

maximum correlation of the noise added to the bar (Fig. 
22). The addition of random, uncorrelated texture does 
not simplify the correlation task. The phase difference 
technique responses are shown in Fig. 23. The noise in- 
troduces more false zero-crossings, but strong responses 
are still seen at the edges of the bar. Note that the lower 
spatial-frequency tuned channel has less noise responses. 
This also is expected as the noise tends to be of a high 
spatial frequency, and is attenuated by the use of band- 
pass channels. 

As a final example, consider the case of noise added to 
a bar tilted in depth (such as the bar in Fig. 2). Previous 
figures show the action of the correlation- (Fig. 3), corre- 
spondence- (Fig. 5), and phase-based methods (Fig. 13). 
As before, we add Gaussian white noise to the left and 
right signals (Fig. 24) and present the output of the DOG 
operator to the stimuli (Fig. 25). As with the frontoparal- 
lel bar there are many zero-crossings in the signals which 
do not correspond to the edges of the bar. The correlation 
method also produces a result similar to that given in 
Figure 22, with noise adding spurious texture to the cor- 
relation surface with no relationship to the underlying 
structure (Fig. 26). Finally, the phase matching technique 

x 

/ c 
\d 

FIG. 22. Correlation surface for corrupted bar target. 
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X = l/4 bar width 

FIG. 23. Phase difference response for corrupted bar target. 

responses are shown in Fig. 27a, b. The results are simi- 
lar to those shown in Fig. 23 with the exception that the 
tilted nature of the surface is more pronounced in Fig. 
27a than in 27b. This is consistent with the results ob- 
tained with the saw tooth surface. At lower spatial fre- 
quencies, the finer details of the disparity surface are 
lost. 

The three techniques compute the actual position of 
measured points in disparity space in very different 
ways. The actual position determined by the algorithms 
is dependent on the process used to find the peak or zero- 
crossing required. For example, to find the actual posi- 
tion of a zero-crossing, the surface could be locally inter- 
polated and the exact position of the zero-crossing found 
from an explicit solution of the interpolant for its zeros. 

The correspondence-based technique should find two 
matches (corresponding to the edges of the bar), and this 
is found in practice. When noise is added, a number (48 
for both the bar and tilted bar experiments) of false 
matches occur. 46 of these matches would have to be 
removed by later levels of processing. For the correla- 
tion-based technique, the theoretical peak in the correla- 
tion space (65025) is almost exactly matched by (65024 

and 65025) by the implementation. When noise is added 
the correlation space peaks in a number of places and the 
maximum peak is now much larger than the peak found 
by correlating the uncorrupted signals (72562 and 73455). 
An examination of Figs. 22 and 26 show that the correla- 
tion surface peaks due to the accidental correlation of 
noise in the left image with noise in the right. 

The phase-difference-based technique has the advan- 
tage of using spatial-frequency tuned channels that re- 
duce much of the effect of the noise. A number of false 
locks are found, but strong locks are still identified at the 
edges of the bar. Although more formal analysis is re- 
quired, the phase difference method appears to perform 
quite well in the presence of noise. 

5. SUMMARY 

We have presented current techniques for the mea- 
surement of structure in space from disparate views. Cur- 
rent techniques can be classified according to their under- 
lying computational task. We have identified two such 
tasks: correspondence or correlation. Using a few simple 

left right 

left right 

FIG. 24. Left and right intensity profiles of corrupted, tilted bar 
target. FIG. 25. DOG response for corrupted, tilted bar target. 
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FIG. 26. Correlation surface for corrupted, tilted bar target. 

examples we have shown that neither of these techniques 
is particularly robust. Interocular differences in lighting 
and the effects of the perspective imaging of binocular 
systems pose difficult problems to correlation algorithms 
that fundamentally assume that the left and right eyes see 
simply shifted versions of the same structure. Correspon- 

FIG. 27. Phase difference response for corrupted, tilted bar target. 

dence-based algorithms, on the other hand, undersample 
the true disparity of the surface, and have difficulties 
when presented with surfaces in which intensity changes 
are tied to changes in disparity. 

By developing a notion of disparity in a bandpass spa- 
tial-frequency tuned channel, we have constructed a dis- 
parity demon which can be tuned for particular dispari- 
ties. \These disparity detectors can be applied 
independently and are capable of producing dense and 
robust responses to surfaces that can only be marginally 
processed using current techniques. In addition these de- 
tectors can be tuned to deal with interocular differences 
such as orientation, contrast, and nonzero disparity gra- 
dients that cannot be easily measured with current dis- 
parity measurement techniques. 
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