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Abstract

The estimation and detection of occlusion boundaries
and moving bars are important and challenging prob-
lems in image sequence analysis. Here, we model such
motion features as linear combinations of steerable
basis flow fields. These models constrain the interpre-
tation of image motion, and are used in the same way
as translational or affine motion models. We estimate
the subspace coefficients of the motion feature models
directly from spatiotemporal image derivatives using
a robust regression method. From the subspace coeffi-
cients we detect the presence of a motion feature and
solve for the orientation of the feature and the relative
velocities of the surfaces. Our method does not require
the prior computation of optical flow and recovers ac-
curate estimates of orientation and velocity.

1 Introduction
Constant and affine parameterized models have been used
successfully with area-based regression methods for esti-
mating the optical flow arising from smooth surfaces. These
methods have been extended to situations involving multiple
moving surfaces through the use of robust statistical tech-
niques and layered motion representations. But they do not
explicitly model the spatiotemporal structure of motion fea-
tures such as motion discontinuities or moving bars. These
features occur frequently in natural scenes due to depth
discontinuities, moving objects, and the relative motion of
objects such as sign posts, telephone poles, and trees. Such
features provide important information about the structural
properties of the scene and their modeling and detection
remain challenging problems in image sequence analysis.

In this paper we show how to model motion features such
as moving edges and bars, and how to detect these features
directly from spatiotemporal image derivatives. By com-
parison, most previous approaches attempt to detect motion
features (e.g., occlusion) by first computing dense optical
flow, or by using indirect energy measures. Alternatively,
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Figure 1: Example motion features (in white circles) and
explicit models for a motion discontinuity and a moving
bar. Both motion features are parameterized by the mean
velocity �ut, the feature orientation �, and the change in
velocity across the feature ∆�u.

flow discontinuities have been treated as statistical outliers.
One key insight here is that motion features can be modeled
in the same way as traditional constant or affine optical flow
models, as a linear combination of basis flow fields. The lin-
ear coefficients of these models can therefore be estimated
using robust area-based regression techniques [3, 4].

This paper addresses three main issues: modeling, es-
timation, and detection. First, consider the modeling of
motion edges and bars like those in Figure 1. A motion
edge can be described by a mean (DC) motion vector �ut,
an orientation �, and a velocity change across the boundary
∆�u. Let �u��x; �ut�∆�u� �� be the corresponding flow field over
spatial positions �x � �x� y� in an image region R. Because
�u��x; �ut�∆�u� �� is non-linear in the parameters of the motion
feature, direct estimation of the parameters can be difficult.

Our approach, depicted in Figure 2, is to approximate �u as
a linear combination of a small number of basis flow fields

�u��x; �ut�∆�u� �� � �us��x; �c� �

nX
j�1

cj�fj��x� � (1)

where�us��x; �c� is a flow field in the subspace spanned by the
basis flow fields�fj��x�, and the vector �c contains the linear
coefficients, cj . While the basis flow fields can be learned
from examples as in [4], we take a different approach here
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Figure 2: A motion discontinuity can be approximated by a linear combination of basis flow fields within a circular window.
Here, the flow fields are shown with the horizontal (u) and vertical (v) components as images, one on top of the other. Black
indicates motion to the left or up respectively. Gray is zero motion and white is motion to the right or down. The coefficients,
cj , are scalar weights.

and construct a steerable set of basis flow fields. This
steerable basis set provides a parameterized model of the
motion within an image region.

We estimate the linear coefficients,�c, that produce a flow
field satisfying the brightness constancy assumption

I��x � �us��x; �c�� t� 1� � I��x� t�� ��x � R � (2)

Equation (2) states that the image, I , at frame t � 1 is a
warped version of the image at time t. Recent work on op-
tical flow estimation has focused on area-based regression
methods for recovering the coefficients of parameterized
models for affine motion [1, 3, 7]. These methods recover
the model coefficients directly from the spatiotemporal im-
age derivatives, and can be used similarly to recover the
coefficients of our motion feature models.

It is important to note that linear models (1) provide an
explicit representation of image motion. We do not first
recover a general flow field and then project it onto the model
basis functions to find the subspace coefficients �c. Instead,
we exploit the linear model directly, estimating the subspace
coefficients using the brightness constancy assumption (2).

Finally, given the coefficients, �c, we need to detect the
presence/absence of a motion feature, since not all flow
fields in the subspace spanned by the basis flow fields, �fj ,
correspond to actual motion features. We also use the coef-
ficients to compute accurate estimates of the parameters of
the motion feature ��ut� ∆�u� ��.

2 Related Work
Early work on motion boundaries focused on their detection
in a dense optical flow field. Authors explored region or
edge segmentation techniques [13] and analyzed the distri-
bution of flow vectors in local neighborhoods [14]. These
methods are unreliable as they require accurate estimates of
optical flow near the motion boundary which are difficult to
obtain without an explicit model of motion discontinuities.

Methods that estimate piecewise smooth flow fields us-
ing line processes or robust statistics (see [3]) treat motion
discontinuities as violations of a spatial smoothness assump-
tion. This is a weak model of motion boundaries that cannot
recover more complex features such as moving bars.

Another approach uses filters tuned to the local spatiotem-
poral image structure of a motion discontinuity [6, 8, 11].
These methods model image structure over time rather
than the motion field. For low-level motion-based detec-
tion, Black and Anandan [2] look for multiple peaks in
a sum-of-squared difference surface as evidence of an oc-
clusion/disocclusion boundary. Although they detect oc-
clusions, these methods do not explicitly model the image
motion present at a motion feature.

In [4], the authors propose “learning” explicit linear mod-
els of motion features from training examples using prin-
cipal component analysis (PCA). In contrast to this work,
we directly construct a steerable basis set for motion edges
and bars. Unlike [4], we are also interested in the detection
problem; i.e., given the estimated subspace coefficients of
the linear feature model, determine whether the coefficients
correspond to a motion feature and, if so, recover the feature
parameters.

The problem of detecting motion features is, in some
respects, similar to the detection of features in static images.
Static image features, such as lines, edges, and junctions, are
often seen as primitive structures in images upon which later
stages of processing, such as object recognition, are based.
Remarkably, the primary focus of work on feature detection
has been in static images rather than in image sequences.
Unlike static image features, motion features are typically
related directly to scene structure.

Here we construct a set of basis flow fields for motion
features that is similar to the construction of steerable filters
for edge detection [9, 12]. Our motion feature models are
also analogous to the static feature models described by
Nayer et al. [10] for edges, bars, and corners. In the case of
linear models for static features, the model coefficients are
obtained by convolving the image with the basis images.
With motion models we cannot take the same approach
because the optical flow field is not known. Rather than
try to recover the flow field densely and then filter it, one
should use the strong constraints imposed by the motion-
feature models to improve the accuracy and stability of the
motion estimates.

In [10], the detection problem for static features is ad-
dressed by taking tens of thousands of example features and
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projecting them onto the basis set. These training coeffi-
cients provide a dense sampling of a manifold in the sub-
space spanned by the basis vectors. Given the coefficients
corresponding to an image feature, the closest point on the
manifold is found. If the point lies sufficiently close to the
manifold then the parameters of the nearest training exam-
ple are taken to be the feature parameters. Alternatively,
one could interpolate feature parameters over the manifold
[5]. This approach to detection is appropriate for complex
features where no underlying model is available (e.g., the
motion of human mouths [4]). In our case, the underlying
models are relatively simple and we solve for the parameters
directly, (�ut�∆�u� �), given the subspace coefficients, �c.

3 Linear Bases for Flow Features
In this paper we construct a basis set that is steerable in ori-
entation and velocity, and that provides a reasonable approx-
imation to the motion features of interest, namely, motion
edges and motion bars. The resulting basis set is identical to
that learned from a sufficiently large set of examples using
PCA [4], up to rotations of invariant subspaces. Here we
control the structure of the basis flow fields that span invari-
ant subspaces to facilitate detection and interpretation.

To construct basis flow fields for motion edges and bars,
we first construct a basis for the spatial structure of the
features. These basis images are then combined with a
basis for velocity, to produce the basis flow fields.

3.1 Spatial Bases for Edges and Bars
A generic template for the spatial structure of a motion
boundary, S��x�, is given by the step edge in Figure 3 (left).
This is a mean-zero, unit amplitude step edge within a cir-
cular, 32 pixel diameter, window. A circular window is
used to avoid orientation anisotropies in the basis set, so
that all orientations are treated in the same manner. A steer-
able basis set for this spatial structure is constructed using
the method outlined in [12]. This yields a set of complex-
valued basis images, bk��x�, at specific angular harmonics
with wavenumber k � H�n�, where H�n� denotes the set
containing the nmost significant harmonic wavenumbers in
the approximation.

The real and imaginary parts of bk��x� form a quadrature
pair, and for convenience, we normalize the basis functions
so kbk��x�k� 1. The features are then steered (rotated) by
taking a linear combination of the basis functions with sinu-
soidal weights (steering functions). Thus, the edge template,
S��x�, and rotated versions of it, S���x�, are approximated by
a linear sum of the basis images as follows:

S���x� � �

�
� X
k�H�n�

�k ak��� bk��x�

�
� � (3)

where � � �0� 2�� is the rotation angle, ak��� are the steer-
ing functions, and ��z� denotes the real-part of z. The

1 2 3 4 5 6

Figure 3: (left) Edge template. (right) Real and imaginary
parts of the first 3 complex-valued basis images.

1 2 3 4 5 6 7

Figure 4: (left) Bar template. (right) Real and imaginary
parts of the first 4 complex-valued basis images. The first
basis image has wavenumber zero and therefore its imagi-
nary part is zero and not shown.

weights, �k, encode the relative magnitudes of the harmon-
ics that are required to approximate the spatial structure of
the feature. The set H�n�, for a given feature, contains the
n wavenumbers with the largest values of j�kj.

The steering functions are angular harmonics, and for a
rotation angle of �, they are given by

ak��� � e�ik� � (4)

We are only interested in the real part of the expression be-
cause the templates are real-valued. One could also rewrite
(3) in terms of real-valued basis images and weights as

S���x� �
X

k�H�n�

�k
�
cos�k����bk��x�� � sin�k����bk��x��

�
�

where ��bk��x�� and ��bk��x�� are the real and imaginary
parts of bk��x�. The quality of the approximation improves
with the number of harmonics, n, in the summation.

The basis set for the static edge structure includes a con-
stant (DC) image and a set of images at nonzero angular
wavenumbers. Because the edge is odd-symmetric it con-
tains only odd-numbered harmonics. The real and imag-
inary parts of the first three odd-numbered harmonics, ig-
noring the DC component, are shown in Figures 3(1–6).
These three harmonics account for approximately 94% of
the power (variance) in the edge template.

By comparison, the template for the spatial structure of a
bar is shown in Figure 4. The template is mean-zero, and
the bar has an amplitude of 1. The bar is 8 pixels wide, and
the diameter of the circular region R is 32 pixels. The basis
set for the bar is composed of even-numbered harmonics.
Ignoring the constant basis image, the real and imaginary
parts of the basis images for the first four even-numbered
harmonics are shown in Figure 4 (1–7). These harmonics
account for approximately 90% of the power in the template.
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Figure 5: Steerable basis flow fields for occluding edges.
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Figure 6: Steerable basis flow fields for motion bars. The
DC basis flow fields are equivalent to the first two basis flow
fields in the motion edge basis set in Figure 5.

3.2 Basis Flow Fields for Motion Edges and Bars
The basis flow fields for the motion features are formed
by combining a basis for velocity with the basis for the
spatial structure of the features. Two vectors, �1� 0�T and
�0� 1�T , provide a basis for translational flow. Thus, the
basis flow fields for the horizontal and vertical components
of the motion features are given by

�hk��x� �
�
bk��x�

0

�
� �vk��x� �

�
0

bk��x�

�
�

For each angular harmonic,k, there are four real-valued flow
fields. These are the real and imaginary parts of bk��x�, each
multiplied by the horizontal and the vertical components of
the velocity basis.

The real and imaginary parts of the basis flow fields for the
motion edge are depicted in Figures 5(1-10). Here, there
are two angular harmonics, each with 4 real-valued flow
fields, along with the DC basis flows that encode constant
translational velocity. Similarly, Figures 6(3-12) show the
basis flow fields for the motion bar. Figures 6(3-4) encode
the basis flow fields for wavenumber k � 0, for which only
the real-part is nonzero. Figures 6(5-8) and 6(9-12) depict
the basis flow fields for wavenumbers k � 2� 4 respectively.

3.3 Direct Estimation of Subspace Coefficients
We can now write the linear model (1) in a more useful
form that explicitly identifies which linear coefficients are
associated with horizontal and vertical basis components at
particular wavenumbers:

�us��x;�c� � �udc ��

�
� X
k�H�n�

�k�hk��x� � �k�vk��x�

�
� � (5)

Here, �udc denotes the first two coefficients in �c that
weight the DC basis functions. Similarly, �k and �k are

the complex-valued coefficients from �c that weight the
complex-valued basis functions that encode horizontal and
vertical components of the flow, for wavenumber k.

To recover the subspace coefficients we use the brightness
constancy assumption in Equation (2), and minimize the
following objective function:

Es��c� �
X
�x�R

��I��x � �us��x;�c�� t� 1�� I��x� t�� �� � (6)

Here, � is a scale parameter and ���� �� is a robust error
function applied to the residual error

r��x;�c� � I��x � �us��x;�c�� t� 1�� I��x� t� � (7)

For the experiments below, ��r� �� � r2	��2 � r2��
Equation (6) is minimized as described in [4]. Briefly,

we replace �c in (6) with �c � 
�c and linearize the equation
with respect to the update vector 
�c. We then use iterative
coordinate descent to solve for 
�c. This involves taking
partial derivatives of the linearized objective function with
respect to the real and imaginary parts of 
�c.

Gaussian pyramids of the input images and the basis flow
fields are constructed. The minimization is performed first
at a coarse level and then the coefficients are successively
updated at each finer level using the motion estimated at the
previous level to warp the image at time t � 1 towards the
image at time t.

To deal with the non-convexity of Es, the robust scale
parameter, �, is initially set to a large value and then slowly
reduced during the minimization [3]. The region R is a
circular region 32 pixels in diameter. For every pixel in the
image (excluding a 16 pixel boundary) we center a regionR,
and estimate the subspace coefficients using the robust re-
gression method. While this is computationally expensive,
the minimization at each pixel could be done in parallel.
Currently we do not employ any coherence constraints on
the spatial variation of the coefficients.

Translating Disk Example. We constructed a synthetic
sequence of a disk translating horizontally at 2 pixels/frame
across a stationary background (Figure 7). The estimation
of the optical flow, with a motion discontinuity basis (Figure
5), provides a set of coefficients for each estimation neigh-
borhood in the image. We show the coefficient values as
images, as a function of spatial position. The real-valued co-
efficients corresponding to the real-valued basis flow fields
in Figure 5(1-10) are shown in Figure 7(1-10).

For example, the real and imaginary parts of�1 are shown
in Figures 7(3-4). Each images depicts the value of a model
coefficient (�1) computed at every pixel, to model the optical
flow in the circular region centered at that pixel. Similarly,
the real and imaginary parts of �1 are shown in Figures
7(5-6). The flow vector corresponding to the center pixel in
each region is used to generate the dense flow field shown
in Figure 7(c).
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Figure 7: Translating Disk. (a) Image of the disk and back-
ground (same random texture). (b) Mask showing location
of disk. (c) Recovered flow. (1-10) Recovered coefficient
images for the motion edge basis set (scaled differently at
each wavenumber to maximize the contrast range).

4 Feature Detection and Estimation
The estimated flow field�us��x;�c� for a particular motion fea-
ture is, by definition, representable in the subspace spanned
by the basis flow fields for that feature. It is not the case,
however, that every flow field �us��x;�c� corresponds to a
valid motion feature. A valid feature, �um��x; �ut�∆�u� ��,
is the projection of the ideal feature model �u��x;�ut�∆�u� ��
onto the subspace. Here, the ideal features project onto a
5-dimensional nonlinear manifold within the subspace. To
detect the presence of a motion feature and to estimate its pa-
rameters ��ut�∆�u� ��, we find the flow field on this manifold
that is closest to the estimated flow field �us��x;�c�.

4.1 Nonlinear Least-Squares Estimation
Let �um��x; �ut�∆�u� �� be the projection of the motion feature
�u��x;�ut�∆�u� �� onto the subspace. One can show that these
flow fields, which lie on the manifold, have the form

�um � �ut ��

�
� X
k�H�n�

�ke
�ik�

�
∆u�hk��x� � ∆v�vk��x�

	�� (8)

The five parameters of the manifold include the two com-
ponents of the mean translational velocity �ut � �ut� vt�, the
two components of the velocity change ∆�u � �∆u�∆v�T ,
and the feature orientation �.

Our goal is to determine the feature parame-
ters, ��ut�∆�u� ��, that produce the closest flow field
�um��x; �ut�∆�u� �� to the estimated flow field �us��x;�c� in the

subspace, and to decide whether the model is a sufficiently
good fit to allow us to infer the presense of the feature. For
a region R, we seek the parameters that minimize

X
�x�R

k�um��x; �ut� ∆�u� �� � �us��x;�c�k2 � (9)

Because �us and �um are represented using the same or-
thogonal basis it suffices to find the parameters that mini-
mize the sum of squared differences between model coeffi-
cients and estimated coefficients �c. Thus, the translational
velocity �ut is given directly by the linear coefficients that
correspond to the DC basis flow fields, namely, �udc. The
remaining parameters, ∆�u and �, are found by minimizing

Em�∆�u� �� �
X

k�H�n�

k��k� �k�� �ke
�ik��∆u�∆v�k2 (10)

where �k and �k are the known estimated coefficients. This
is a nonlinear least-squares problem that can be solved iter-
atively with a sufficiently good initial guess.

4.2 Suboptimal Direct Estimation
The least-squares minimization enforces two constraints on
the motion feature parameters. First, the velocity struc-
ture of the motion feature, ∆�u, must be the same for all
angular harmonics. Second, the orientation of the motion
feature, �, in the phase angles of the model coefficients,
must be consistent across all of the angular harmonics and
both components of flow. The constraint on ∆�u is related to
the magnitudes of the complex-valued model coefficients,
while the constraint on � concerns their phase values. To
obtain an initial guess for minimizing Em�∆�u� ��, we first
decouple these constraints. This provides a suboptimal, yet
direct, method for estimating � and ∆�u.

Direct Estimation of Velocity Change. To formulate a
constraint on ∆�u it is convenient to collect the complex-
valued coefficients of the model flow in (8) into a matrix

M �

�
∆u�k1e

�i k1 � ��� ∆u�kne�i kn �
∆v �k1e

�i k1 � ��� ∆v �kne�i kn �

�
� (11)

where kj is the jth wavenumber inH�n�. The top row ofM
contains the model coefficients for the horizontal component
of the model velocity field, �um��x; �ut�∆�u� ��. The second
row of M contains the model coefficients for the vertical
component of �um��x; �ut�∆�u� ��.

To obtain a set of transformed coefficients that depend
solely on ∆�u, we construct A � MM�T , where M�T is
the conjugate transpose of M . To understand the form of
A, we can rewrite M as an outer product

M � ∆�u
�
�k1 e

�i k1 � � ���� �kn e
�i kn �

�
� (12)
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a b c d

Figure 8: Translating Disk. (a) Raw orientation estimates
from direct method. Black pixels indicate that no estimate
was possible. Intensity varies from white to dark grey as
orientation goes from �	2 to ��	2. (b,c) Confidence mea-
sures from velocity constraint and orientation constraint. (d)
orientation estimates masked by joint confidence measure.

This explicitly shows the separability of the model coef-
ficients with respect to ∆�u and �. From this it is also
straightforward to show that A given above is equivalent
to ��2

k1
� � � ���2

kn
�∆�u ∆�uT , the components of which are

independent of �.
For example, in the case of the motion edge, with the

estimated coefficients �1, �3, �1 and �3, let

M̃ �

�
�1 �3

�1 �3

�
� Ã � M̃ M̃�T � (13)

If the estimated flow field, �us��x;�c�, were on the manifold
defined by the feature model, then the singular vector asso-
ciated with the largest singular value, e1, of Ã should give
the direction of the velocity. Thus, an estimate of the veloc-
ity change, ∆�ue, is obtained by scaling this singular vector

by
q
e1	��2

1 � �2
3� .

Moreover, if the estimated coefficients lie on the mani-
fold, then the rank of Ã in (13) should be 1. As a conse-
quence, we use the ratio of the singular values, e1 � e2, to
determine the quality of the model fit. A measure of the
consistency of the estimated coefficients with the model is
therefore given by r � �e2 � a�	e1. Here, r is close to
zero when the coefficients satisfy the constraint and large
otherwise; a is a small constant that helps to avoid insta-
bility when both singular values are extremely small. We
use Cv � exp��100 r2� as a confidence measure derived
from this constraint, an image of which is shown for the
disk sequence in Figure 8(b). The values of Cv approach 1
as the rank of Ã tends to 1.

Direct Estimation of Spatial Orientation. Once the ve-
locity parameters have been estimated, we can use the es-
timate, ∆�ue, along with the matrix M̃ to obtain a set of
transformed measurements that, according to the model,
depend only on the spatial structure of the motion feature.
In particular, given the true velocity change ∆�u, it is easy to
show from (12) that the product ∆�uTM has the form

∆�uTM � j∆�uj2
�
�k1 e

�i k1 � � ���� �kn e
�i kn �

�
� (14)

From this it is clear that the orientation � is available in the
phase values of the elements of ∆�uTM .

To obtain an orientation estimate �e, we form the product
�z � ∆�uTe M̃ , using the estimated velocity change ∆�uTe and
the matrix of estimated coefficients M̃ . To obtain �e from�z
we unwrap the phase of each component of �z according to
its corresponding wavenumber, as in (14), and take their av-
erage. Figure 8(a) shows the average of the two unwrapped
phases for the Disk Sequence. In practice one might use a
weighted average to deal with greater noise in higher-order
harmonics.

The variance of the unwrapped phases also provides us
with another measure of whether the estimated coefficients
satisfy the model. In the case of the edge model, where only
two harmonics are used, the phase of the third harmonic
coefficient should be three times the phase of the first; i.e.,
∆� � �1��3	3 � 0 where�k is the phase of the component
of �z at wavenumber k. As a simple confidence measure
for the quality of the model fit, Figure 8(c) shows C� �
exp��∆�2	500� for the Disk Sequence coefficients. Here,
C� approaches 1 where the model is a good fit, or when the
coefficients are all zero.

4.3 Experiments: Least-Squares Results
The direct method provides estimates of orientation �e and
the velocity change ∆�ue, along with two confidence mea-
sures, Cv and C�. We find that these estimates of � and
∆�u are usually close to the least-squares estimates. The
confidence measures can be used to reject pixels that are
clearly far from the feature manifold. For example, Fig-
ure 8(d) shows orientation estimates, �e, at pixels where
Cv C� � 0�1.

To obtain optimal estimates of the motion feature param-
eters we use a gradient descent procedure to find values of
� and ∆�u that minimize Em�∆�u� �� in (10), given the ini-
tial guess from the direct method. Detection is based on the
squared error in the optimal fit divided by the power in the es-
timated subspace coefficients, i.e., P �

P
k�j�kj

2 � j�kj
2�.

Note that this sum does not include the coefficients for the
translational basis flow fields. Then, our confidence mea-
sure is given by

C � c�P � e�Em�P � (15)

We find that the reliability of the detection improves as P
increases. To exploit this, c�P � is a function that tends
towards 1 as P increases; for motion edges c�P � � e�40�P ,
and for motion bars c�P � � e�50�P . The larger constant in
the case of motion bars reflects the greater amount of noise
we observe in the estimation of the bar model coefficients.
As P decreases, the relative errorE	P must decrease for C
to remain constant.

Figures 9(a-c) show optimal estimates of �, ∆u and ∆v.
Notice that the sign of the velocity difference is clearly
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Figure 9: Translating Disk. (a-c) Optimal estimates of �,
∆u, ∆v. (d) Confidence measure C, derived from squared
error of least-squares fit. (e) Locations where C � 0�8 are
white. (f-h) Estimates of �, ∆u, ∆v where C � 0�8.

visible in Figure 9(b) as the disk is moving to the right at
2 pixels/frame. Figure 9(d) shows the confidence measure
C, while Figure 9(e) shows locations at which C � 0�8.
The remaining images in Figure 9 show the least-squares
estimates of � and ∆�u at locations where C � 0�8. For
these pixels, the mean error in � was 0�12� with a standard
deviation of 5�2� (RMS error: 5�2�). The mean error in
∆u was �0�21 pixels/frame with a standard deviation of
0�16 (RMS error: 0�27 pixels/frame). Errors in ∆v were
insignificant by comparison.

To test feature detection and estimation with the motion
bar we constructed a synthetic sequence of an annulus (width
of 8 pixels) translating across a stationary background to the
right at 2 pixels/frame (see Figure 10(a-c)). Figure 10(d)
shows C at the least-squares minimum. The remaining
images, Figures 10(e-g) show the optimal estimates of �
and ∆�u at pixels where C � 0�7. The fits with the motion
bar model are noisier than those with the edge model,and we
therefore use a more liberal threshold to display the results.
For these pixels, the mean error in �was 0�9� with a standard
deviation of 9�1� (RMS error: 9�1�). The mean error in ∆u
was �0�26 pixels/frame with a standard deviation of 0�21
(RMS error: 0�34 pixels/frame).

Note that in these two experiments, although the models
for the edge and the bar are straight, we are testing them here
with curved edges and bars. This, in part, accounts for the
errors we report, but also shows how the models generalize
to a relatively wide class of similar feature instances.

Finally, Figures 11 and 12 show motion edges and bars
detected in two outdoor sequences. The velocity differences
at the tree boundary in the flower garden sequence are as
large as 7 pixels/frame. The sign of the velocity change in
Figure 11(e) clearly shows the occluding and disoccluding
sides of the tree. The orientation estimates along the tree
are vertical, as indicated by the grey pixels in 11(d).

a b c

d e f g

Figure 10: Translating Annulus. (a) Frame 1 of sequence.
(b) Mask showing location of annulus. (c) Recovered flow.
(d) Confidence measureC from least-squares minimization.
(e-g) Optimal estimates of �, ∆u and ∆v where C � 0�7.

The results on the handrail sequence are noisier,but where
the change in velocity between the rails and the hill behind
them is sufficiently large, the rails are detected well. The
rails are moving upwards faster than the background, the
motion of which is visible in Figure 12(e,f). Unlike results
in previous figures, orientation in Figure 12(d) is represented
between 0 and 2�, so that horizontal is shown in grey.

5 Discussion
We have shown how motion features such as occlusion
boundaries and moving bars can be modeled as a linear
combination of basis flow fields. Our approach extends the
notion of a steerable basis set from static images to motion
data. Moreover, we show how the coefficients of the fea-
ture models can be recovered directly from the image in the
same fashion as affine motion coefficients are computed.
Finally, we have shown how to reliably detect the presence
of a motion feature from the linear coefficients and how
to recover the feature orientation and the relative velocities
of the surfaces. This work extends regression-based opti-
cal flow methods to cope with more complex features and
helps brings to light the relationships between static image
features and motion features.

In current work we are combining moving edges and
bars into a single basis set and are extending the detection
method to determine which features are present. We also
plan to explore how variations in scale affect detection and
how to extend our model to cope with features at multi-
ple scales. Currently, the coefficients of each image region
are estimated independently and it would be interesting to
explore the regularization of neighboring coefficients to re-
duce noise and enforce continuity along contours. We could
also classify motion edges as occluding or disoccluding, but
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a b
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Figure 11: Flower Garden Sequence. (a) Frame 1 of se-
quence. (b) Recovered flow. (c) Confidence measure C.
(d-f) Optimal estimates of �, ∆u and ∆v where C � 0�8.

with two frames we cannot determine the relative depth or-
der of the surfaces. The method, however, could be applied
to stereo data where the relative depth ordering could be
determined. Finally, we have not attempted to accurately
locate the position of an edge or bar; this should be relatively
straightforward.
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