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Abstract

This paper presents a perceptual grouping algorithm
that performs boundary extraction on natural images. Our
grouping method maintains and updates a model of the ap-
pearance of the image regions on either side of a growing
contour. This model is used to change grouping behaviour
at run-time, so that, in addition to following the traditional
Gestalt grouping principles of proximity and good contin-
uation, the grouping procedure favours the path that best
separates two visually distinct parts of the image. The re-
sulting algorithm is computationally efficient and robust to
clutter and texture. We present experimental results on nat-
ural images from the Berkeley Segmentation Database and
compare our results to those obtained with three alternate
grouping methods.

1. Introduction

Consider the following experiment: A human observer
(perhaps the reader of this paper) is presented with a line
drawing such as the one illustrated in Fig. 1 and asked to
identify the central object in the image. After looking at it
carefully for a moment, the observer might point out with
remarkable confidence that he is looking at an image of a
bear. In a surprisingly short interval, the observer has per-
ceptually organized a large set of input features into mean-
ingful groups and, at some point during the organization
process, correctly identified the object in the image. A vast
amount of research has been dedicated to identifying the
principles that guide the formation of such groups and to
developing algorithms that can exploit these principles to
perceptually organize sets of input features.

In the particular case of line drawings, the above demon-
stration suggests that it should be possible to organize a
set of input line segments using exclusively the informa-
tion provided by the geometric relationships between them.
Indeed, significant progress has been made in the fields of
perceptual grouping and contour extraction by the clever
exploitation of such geometric cues as proximity, smooth

Figure 1. A complex line drawing with a bear inside it (left). Best
contour detected with the grouping algorithm from [5] (right).

continuation, parallelism, and compactness. These cues,
commonly referred to as Gestalt grouping principles or
Gestalt laws after the school of psychologists that first in-
vestigated them at the turn of the 20th century [10, 20],
have proven useful because they are good predictors of
non-accidentalness [11]: groups of features that exhibit the
above properties are unlikely to have originated randomly.

Gestalt principles are the foundation of all current con-
tour extraction algorithms. However, our computational
models of these principles are not yet sufficient to deal with
complex line sets such as the one depicted in Fig. 1. In
such images, the abundance of clutter and structured tex-
ture results in increased ambiguity that geometric cues may
not be able to resolve, rendering contour grouping algo-
rithms unreliable. The increased ambiguity also manifests
itself as a dramatic increase in the computational expense
required to perform grouping on complex line-sets. These
problems have traditionally been alleviated by introducing
domain specific knowledge, or by enforcing strong shape
constraints such as convexity, but these approaches limit the
applicability of grouping algorithms.

In this paper we show that an algorithm that adapts its
grouping behaviour to the appearance of the image regions
on either side of a growing contour is able to recover, reli-
ably and robustly, the boundaries of objects in natural im-
ages with significant amounts of texture and clutter. Our
method is based on the grouping algorithm of Estrada and
Jepson [5]. Their algorithm provides an efficient search-
based engine for contour extraction. We extend the algo-
rithm to maintain and update a model of the appearance of



the image regions on either side of a growing contour. This
model is used, in conjunction with traditional Gestalt cues,
to guide the boundary extraction process so as to follow the
path that best separates two visually distinct parts of the im-
age. Once a complete contour has been found, the appear-
ance model for the inside and outside of the contour can be
used to measure the quality of the extracted boundary. The
novel property of our algorithm is that it changes its group-
ing preferences at run-time depending on the characteristics
of a particular grouping hypothesis. This allows the algo-
rithm to accumulate information about the appearance of a
potential object. Such information is particularly useful for
finding the boundaries of heterogeneous objects, and is not
available at the start of the search.

The main contributions of this paper are: 1) an adap-
tive grouping framework that uses both geometric infor-
mation together with an evolving appearance model of po-
tential objects; 2) a procedure for modifying the grouping
behaviour of the algorithm at run-time, based on the ap-
pearance model for a particular (partial) contour hypothesis;
3) an appearance-based measure of contour quality used to
rank detected shapes. 4) A quantitative evaluation and com-
parison of our algorithm and two alternate grouping meth-
ods on images from the Berkeley Segmentation Database
(BSD). We also evaluate a reduced version of our frame-
work that can use colour, but is not adaptive. We will show
that the proposed algorithm is robust and efficient, and that
it extracts boundaries that correspond more closely to indi-
vidual object contours.

2. Previous Work

Because of space limitations, a comprehensive review of
perceptual grouping research is not possible. Here we dis-
cuss only those methods that are directly related to the prob-
lem of detecting closed object contours from images. Ma-
hamud et al. [12] propose an algorithm for contour extrac-
tion based on the stochastic completion fields of Williams
and Jacobs [21]. The algorithm estimates the probability
that a random walk started at one segment will visit other
lines in the image and come back to the starting edge. These
probabilities determine the saliency of segments and their
connecting links. Closed contours are extracted as con-
nected components derived from the edge and link salien-
cies. Elder and Zucker [2] describe a method that finds
closed contours as shortest path cycles in a graph. Their
formulation expands the representation of lines by includ-
ing brightness values on either side of a segment. Elder
et al. [1] extend this algorithm to extract closed boundaries
by finding progressively longer chains of edges. Their al-
gorithm explores only the edge sequences that have high
likelihood with regard to a set of probabilities derived from
natural scene statistics.

Jacobs [9] proposes an efficient, search based method for

convex group extraction based on a threshold on bound-
ary coverage (i.e. the percentage of a contour that is cov-
ered by image segments). Huttenlocher and Wayner [8]
also use convexity as a constraint, but propose a greedy
search algorithm. Saund [16] presents a grouping method
that uses shape compactness (the ratio of a contour’s area
to the area of its convex hull), along with predefined prefer-
ences for particular grouping choices, to find closed bound-
aries on sketches. Estrada and Jepson [5] introduce an effi-
cient search-based grouping algorithm based on local affin-
ity normalization and shape compactness.

Sarkar and Soundararajan [18] use graph partitioning
techniques to identify subsets of features that are weakly
connected to the remaining features in a graph that en-
codes parallelism, perpendicularity, proximity, and conti-
nuity. Gdalyahu et al. [7] propose an algorithm that deter-
mines subsets of features that appear together on stochasti-
cally generated cuts in a graph. Wang et al. [19] present an
algorithm that extracts closed contours as maximum likeli-
hood cycles in a graph which encodes geometric relation-
ships between neighboring edges. The likelihood of closed
contours is normalized by the contour length to avoid a bias
for small boundaries. They show that their Ratio Contour
algorithm compares favorably to the grouping algorithms
of Mahamud et al. [12], and Elder and Zucker [2].

A common problem for current contour grouping algo-
rithms is that they rely almost exclusively on geometric re-
lationships between edges, line segments, or small curve
fragments. In general, current boundary extraction meth-
ods fail when confronted with images that are rich in clutter
and structured texture. This is illustrated in Fig 1. Group-
ing in such images is extremely challenging because tex-
ture elements tend to align with object boundaries to yield
a combinatorially large number of possible closed contours.
In addition to this, clutter and texture combine to cause an
explosive increase in grouping complexity that can render
many grouping approaches impractical.

3. Robust Contour Extraction

Our search framework is based on that of Estrada and
Jepson [5]. Their algorithm is capable of efficiently search-
ing for closed contours in cluttered line-sets. For each pair
of segments l1 and l2, our algorithm computes an affinity
value given by

Taffty (l1, l2) = Gaffty(l1, l2) + γ, (1)

where the term Gaffty(l1, l2) ≥ 0 scores junctions accord-
ing to geometric cues, and γ > 0 is a suitable constant. The
form of this affinity function represents the belief that, on
any given image, we will find two types of junctions: first,
there are junctions that correspond to neighboring pairs of
lines along object boundaries. Such junctions should be
well-modeled by geometric grouping principles and should



receive a high Gaffty(l1, l2) score. Secondly, we have junc-
tions that originate from un-structured texture, clutter, and
noise. These junctions should receive a low Gaffty(l1, l2)
score, and their affinity value will be dominated by the uni-
form term γ. The fact that such accidental junctions receive
a similar affinity value (i.e. roughly γ) indicates that we
have little reason to believe one of these junctions to be bet-
ter than another.

The Gaffty(l1, l2) term we use here has a very simple
form. It captures the geometric cues of proximity and
smooth continuation, and has only one free parameter (no-
tice that this is different from the form proposed in [5]).
The proximity component is an exponential function of the
gap between the segments measured as the distance d be-
tween their closest endpoints: e−d2/(2σ2

gap) with an appro-
priate σgap. The smooth continuation term is proportional
to the cosines of the angles between each segment and the
line that joins the midpoints of these segments. If we call
these angles θ1 and θ2 respectively, the smooth continuation
term is given by ((cos(θ1)+1)/2)∗((cos(θ2)+1)/2). This
term is 1 when the lines are collinear, and it decreases as the
angles between the lines grow. The geometry used here is
similar to that proposed by Elder and Zucker in [2], except
that they measure θ1 and θ2 with regard to the line joining
the closest endpoints of the two segments.

The Gaffty score is calculated by multiplying together
the proximity and smooth continuation terms. The affinity
given by (1) is computed for every pair of lines in the im-
age, but the grouping algorithm doesn’t use the raw affinity
scores. Instead, affinity values are locally normalized as fol-
lows: for each segment l1 the algorithm finds the set K that
contains the k segments with the largest affinities toward l1.
For each of these k segments, a normalized affinity score is
computed as

Naffty(l1, l2) =
Taffty(l1, l2)∑

li∈K Taffty(l1, li)
∈ (0, 1).

The resulting normalized affinities sum to 1, and provide
information about the relative goodness of possible group-
ing choices in the neighborhood of segment l1. The prop-
erties of these normalized affinities are discussed in detail
in [4], but it should be noted that they are not symmetric
so in general Naffty(li, lj) �= Naffty(lj , li). The local nor-
malization procedure leads to a robust and efficient search,
and is particularly good at reducing search complexity in
textured and cluttered regions of the line-set.

The contour grouping process is a depth-first search con-
trolled by a threshold τaffty on normalized affinities and by
geometric constraints. In particular, each partial group is
checked for simplicity (no self-intersections are allowed)
and for compactness. That is, the ratio of the area of a con-
tour to the area of its convex hull should be greater than
some threshold τcompact. The search algorithm is summa-
rized as follows:

1 - For each segment i in the line-set, generate a group con-
taining the single segment i.
2 - Find the set K with the best k junctions for the segment
added most recently to the group (sorted by decreasing nor-
malized affinity).
3 - For each segment j in K

– If Naffty(i, j) < τaffty end loop, otherwise add j to
the group.

– Compute the compactness of the shape, if compactness
< τcompact try the next j.

– Check for closure, if the group is closed, compute its
saliency and report it.

– Recursively call step 2 with the newly extended group.

4 - Report the extracted polygons sorted in order of decreas-
ing saliency.

We will discuss how to estimate the saliency of a contour
further on in the paper. Estrada and Jepson show that the
use of normalized affinities leads to an efficient search even
in the presence of clutter and un-structured texture. How-
ever, as illustrated in Fig 1, the presence of large amounts
of structured texture leads their algorithm to form groups
through textured regions of the image and miss the actual
object contours. In what follows, we will describe the pro-
cedure that allows our algorithm to adaptively change the
affinities between pairs of segments. We describe the ap-
pearance model used by the algorithm to judge region simi-
larity, and discuss how this similarity can be used to change
grouping behavior at run-time depending on a particular
(partial) grouping hypothesis.

4. Building an Appearance Model for Partial
Contours

There are many possible ways in which we could repre-
sent the appearance of the regions that lie on either side of
a growing contour. We will not explore the important but
separate problem of determining the optimal representation
here. Instead we will use a simple, non-parametric repre-
sentation that has been used extensively and with success
in the context of image database retrieval [14]. We repre-
sent local appearance using colour histograms [17] in the
CIELab colour space [22]. The histogram representation
is compact, easy to compute and manipulate, has well stud-
ied similarity measures [15], and, as we shall see, can be
easily updated as additional knowledge about the appear-
ance of an image region becomes available. In addition to
this, the same model supports the use of other image cues
such as texture [14].

Local histograms are computed within a small square
window of fixed size wsize centered at a particular im-
age location (x, y). Each histogram contains a fixed num-
ber nbins of bins, and three layers corresponding to the
three CIELab colour components. The colour values at
each pixel within the window are accumulated onto the



histogram with contributions weighted by a 2-D Gaussian
mask (we ignore any pixel locations outside the image
bounds). The resulting histograms are normalized to sum
to 1. The choice of σ for this Gaussian is determined by the
window size so that at least 1.5σ fit within the window on
either side of (x, y). We will discuss in detail the appropri-
ate choice of wsize and number of bins nbins further on in
the paper.

The local histograms need to be computed only once,
before the search phase begins. Given the overlap be-
tween neighboring histograms, we could sample the image
sparsely and still obtain a good representation. However,
in the interest of simplicity, here we compute and store lo-
cal colour histograms centered at every pixel in the image.
To simplify notation in the next two sections of the paper,
we will denote local histograms H as single layer, unit-area
histograms that result from concatenating the individual his-
tograms for the three layers of the CIELab colour space.

4.1. Choosing the Optimal Histogram Characteris-
tics

To determine the optimal values for wsize and nbins, we
performed an empirical evaluation of three histogram sim-
ilarity measures on images from the Berkeley Segmenta-
tion Database. We randomly selected 75 images from the
training image set of the BSD, and for each image we se-
lected the human segmentation with fewest regions (under
the assumption that this segmentation correctly captures the
coarse structure of the image). We then randomly chose
one of these 75 images, and extracted a pair of randomly
located patches for a given wsize. We used the ground truth
to determine whether the patches belonged to the same im-
age region or not. We then computed histograms with dif-
ferent numbers of bins (between 2 and 50) from the ex-
tracted patches, and evaluated the similarity between them
using histogram intersection, the χ2 measure, and the JD-
divergence (which is similar to the KL-divergence but has
the advantage of being symmetric). See [15] for details on
these measures.

We examined window sizes between 3 and 79 pixels,
and for each window size we performed 2500 trials (each
of them on a randomly chosen image). At the end of the
sequence of trials, we computed a joint score for each com-
bination of wsize and nbins. The joint score is the average
similarity for pairs of patches from the same image region
plus the average dissimilarity for patches from different re-
gions (where dissimilarity = 1 − similarity, or vice-versa
if the chosen measure yields dissimilarity). The results are
shown in Fig. 2. From these plots we can select the optimal
values for wsize and nbins that maximize the joint score.
Notice that the three measures agree that smaller histograms
with fewer bins yield the best results on the set of training
images. Based on this, we set wsize = 11 and nbins = 4 in
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Figure 2. Joint score for the χ2 (left), histogram intersection (cen-
tre), and JD-divergence (right) similarity measures for different
window sizes and number of histogram bins. Blue indicates low
scores, red indicates high scores.

our grouping method, and will use these values throughout
our experiments.

To select the similarity measure, we follow the recom-
mendations put forth by Rubner et al. in [15]. They
performed a thorough experimental comparison of several
measures of histogram similarity. Their results indicate that
for the tasks of classification and image segmentation the
χ2 measure performs best at a reasonable computational
cost (the Earth-Mover’s distance has the best discrimina-
tion power, but Rubner et al. point out that for applications
such as our algorithm that require the similarity measure to
be evaluated a large number of times, its computational cost
becomes prohibitive). For the above reasons, we have cho-
sen to quantify histogram similarity using the χ2 measure
which for two histograms H1 and H2 is defined as

χ2(H1, H2) =
∑

i

(f(i; H1) − f̂(i))2

f̂(i)
(2)

where f(i,H1) is the value of the ith bin of H1, and f̂(i) =
(f(i,H1) + f(i,H2))/2. For unit-area histograms the χ2

measure gives values in [0, 1], where 0 indicates that the
histograms are identical.

5. Adaptive Grouping

Given the colour histograms on either side of a partial
contour, we can bias the growth of the contour so that it
favours the path that best separates two dissimilar colour
distributions. More formally, we say that each partial con-
tour splits the image into two regions: an inside region,
which lies to the right of the contour when traveling in the
direction of contour growth, and an outside region that lies
to the left of the contour. We maintain and update colour
histograms for the inside and outside colour distributions
along the partial contour.

Each segment to be considered for grouping is associ-
ated with two local histograms corresponding to the inside
and outside (right and left respectively) with regard to the
direction of contour growth (which always proceeds clock-
wise). To select the appropriate local histograms, we look
in the direction perpendicular to the segment starting from
its midpoint, and retrieve the pre-computed histograms at



a distance of ±(wsize + 1)/2. This choice ensures that we
use histograms on either side of the segment that are close to
the line, but still mostly contained within the inside or out-
side regions bounded by the contour. At the same time, the
Gaussian weighting ensures that pixels close to the edges
contribute little to the histograms, thus providing robustness
to the colour variations that occur near image edges.

At search time, we compare the associated histograms
of possible grouping choices with the colour histograms
for the current contour, and we bias the search to favour
grouping together edges that have similar colour distribu-
tions on the inside, as well as high dissimilarity between
the inside and outside colour histograms. We denote the
contour’s inside histogram by Hb−in, its outside histogram
by Hb−out, and the inside and outside histograms of a
segment that is being considered as a possible extension
to the contour by Hs−in, and Hs−out. We then use χ2

to compute the similarity between the colour distributions
on the inside, and the dissimilarities between the colour
distributions on opposite sides of the boundary: Sin =
1 − χ2(Hs−in,Hb−in), Do→i = χ2(Hs−out,Hb−in), and
Di→o = χ2(Hs−in,Hb−out).

Here, Sin is simply the similarity between the inside
colour distributions of the segment and the contour. Do→i

is the dissimilarity between the colour distribution on the
outside of the new segment and the inside of the contour.
It discourages grouping with segments that are inside an
object (in which case, Sin is high, but Do→i dissimilarity
should be low). Di→o is the dissimilarity between the in-
side of the new segment and the outside of the contour; it
is useful when no candidate segment can be found whose
inside colour distribution matches the inside of the con-
tour. In this case, we favour the segment whose inside is
most dissimilar to the outside of the current contour. Given
these three terms, we define the histogram-based colour
affinity between a segment l and a partial contour B as
Ccolour−affty(l, B) = (Sin + Do→i + Di→o)/3. This mea-
sure combines the three components of the colour affinity
with equal weights. In general, an optimal weighting could
be determined from results on training images.

Incorporating the colour affinity into the search proce-
dure involves multiplying the original geometric affinity
values by the newly computed colour affinities, and re-
normalizing the resulting scores. For each line l2 in the
set K that contains the best grouping choices for the last
segment l1 in the current contour B, we compute

Taffty = (Gaffty(l1, l2) ∗ Ccolour−affty(B, l2)) + γ,

and re-normalize the resulting, modified affinities. Once
a segment has been chosen for grouping, it is added to the
contour, and the segment’s histograms are used to update
the contour’s appearance model. Since a contour with M
segments has already accumulated M local histograms, the
new inside histogram is given by Hb−in = ((M/(M +

Figure 3. Clockwise from top-left: original image and three pro-
gressively longer contours (including the final, closed shape). For
each contour, we show the similarity of the local histograms across
the image with regard to the current model for the inside of the par-
tial boundary (brighter is more similar). Notice that the similarity
changes as the contour grows, and observe that parts of the image
that should be inside in the bear are given high similarity.

1))Hb−in)) + ((1/(M + 1))Hs−in)), and similarly for the
outside histogram. The search algorithm is identical to the
one described on Section 3 and uses the same thresholds on
normalized affinity and compactness.

The above procedure has several important effects: First,
it changes the exploration order of potential grouping
choices. The algorithm will favour segments whose colour
histograms agree with the current appearance model for
the partial contour. Second, it reduces the chance that the
grouping algorithm will wander into textured regions even
for structured texture patterns; this is because segments
within a textured region are likely to have similar colour
distributions on both sides. Third, it allows the algorithm
to use information that was not available at the beginning
of the search phase, and that keeps changing as the con-
tour grows. The resulting adaptive search enables our al-
gorithm to find object boundaries more accurately and with
increased robustness. The adaptation process is illustrated
in Fig 3. Notice that the model does a good job of esti-
mating which parts of the image are likely to be part of the
inside of the object bound by the partial contours.

6. Estimating The Quality of a Contour

The contour grouping phase is likely to find hundreds
of closed groups on moderately complex line-sets. These
have to be ranked so that only a few contours, deemed to be
’salient’, are reported back to the user. In the current group-
ing literature, the saliency of groups is either determined as
a side-effect of the optimization algorithm being used (i.e.
the contour found first by a given optimization process is by
the definition the most salient, like in [19]), or evaluated af-



terward using geometric information, either within a proba-
bilistic (Bayesian) framework, such as in [5], or using espe-
cially defined saliency measures (for example, as in [12]).
The important thing to notice is that such saliency measures
depend almost exclusively on geometric information, and
are thus likely to be unreliable in images with significant
amounts of clutter and texture.

We propose that the quality of a contour should be re-
lated to the quality of the segmentation of the image in-
duced by that contour. The best boundary neatly sepa-
rates two visually distinct regions of the image. To quan-
tify this, we evaluate the cost of encoding the image using
the colour distributions inside and outside a hypothesized
group. We compute colour histograms (here we will use
again the original notation, with 3, unit-area colour lay-
ers per histogram) Hin, and Hout for the inside and out-
side of the contour respectively. Under the simplifying as-
sumption that the three colour components for a given pixel
are independent, the probability of drawing a pixel’s colour
�x = (xL, xa, xb) from a particular colour histogram is
given by p(�x|H) = H(BxL

) · H(Bxa
) · H(Bxb

), where
Bxlayer

gives the appropriate layer and bin in the histogram
for the indicated colour component of pixel x.

We estimate the encoding cost of a contour as the sum
of the log-probabilities of drawing each pixel in the image
from the appropriate region (inside or outside of the con-
tour). For the shape S bound by the contour

EC = −
∑

�x∈S

log(p(�x|Hin)) −
∑

�x/∈S

log(p(�x|Hout)).

This measure favours boundaries that separate two different
colour distributions because histograms for well-separated
distributions have more probability mass on the bins of
their corresponding pixels than histograms for more hetero-
geneous distributions (which are flatter, and get closer to
uniform the more heterogeneous the corresponding region).
All groups extracted by the algorithm are sorted, and the
contours with the lowest encoding cost are presented at the
top of the list.

7. Experimental Results

In this section we present a comparative study of group-
ing performance between our adaptive algorithm and three
alternate grouping methods. The algorithms were tested
on 21 images from the testing image set of the BSD. We
selected only those images that contain at least one large,
un-occluded object that is fully contained within the image
bounds. We generated ground-truth object boundaries from
the human segmentations provided with the BSD. Addition-
ally, we selected 10 images from the training set of the BSD
(following the same criteria) to be used as a training set for
the parameters in our algorithm. The selected images de-
pict complex objects in natural environments and usually

contain large amounts of texture and clutter; as such, they
constitute difficult perceptual grouping problems.

We compare our adaptive algorithm (AA) against a vari-
ation of our method that uses local colour histograms to
compute a pairwise colour affinity for every pair of lines,
but does not maintain or use an appearance model for the
inside and outside of partial contours. The pairwise colour
affinity is computed before the search phase begins and is
multiplied directly onto the geometric affinity for the corre-
sponding pair of segments. The resulting non-adaptive al-
gorithm (NA) provides a baseline for judging whether the
adaptation process provides any advantage over a method
that uses colour, but not adaptation. We also compare AA
against the original grouping method of Estrada and Jepson
(EJ) [5], and against the Ratio Contour algorithm (RC) of
Wang et al. [19]1.

All algorithms receive as input the same edge maps com-
puted using the Canny edge detector. A robust line-fitting
procedure was used to generate the line-sets for AA, NA,
and EJ . Ratio Contour uses its own feature fitting pro-
cess to generate a set of input fragments (small segments
modeled with spline curves). The values of the parameters
for our method were set on the training images. We dis-
cussed the optimal values for wsize and nbins in the text
above. In addition to these, our algorithm requires σgap

and γ for the geometric affinity, and a compactness thresh-
old τcompact. We selected a low compactness threshold of
τcompact = .5 to allow for reasonably non-compact shapes
typical of objects such as long-legged animals (in contrast,
the original EJ used τcompact = .8), and we set the val-
ues of σgap = 15 and γ = .1 so that the distribution of
normalized affinities on our training images had the appro-
priate shape described in [4]. Finally, Estrada and Jepson
suggest that values of τaffty in [1.1/K, 1.5/K] are the most
useful, and we have observed that on our training images
τaffty = (1.1/K) = .055 yields the best results. We use
these same parameter values throughout all of our tests for
both AA and NA. For EJ and RC we used the original pa-
rameters set by the authors of the corresponding algorithms,
except that for EJ we used the same τaffty = .055 as with
AA.

To evaluate the quality of a contour, we use a simple error
measure based on the average distance between boundary
pixels from two contours. If B1 is a detected boundary,
and B2 is the corresponding ground truth for the image, we
define the distance error between the two contours as

Derror =

∑NB1
i=1 dist(B1(i), B2)

NB1

+

∑NB2
j=1 dist(B2(j), B1)

NB2

where NB1 is the number of boundary pixels in B1,
dist(B1(i), B2) is the distance between boundary point i in

1We would like to acknowledge the kindness of Dr. Song Wang in
providing us with his implementation of RC.



Figure 4. Results on 3 test images from the BSD (481 × 321 pix-
els in size). From top to bottom: input line-sets, best contours ex-
tracted by AA, best boundaries from NA, best RC contours (us-
ing RC’s own segment fitting procedure), and best groups found
by EJ . Note that RC and EJ do not use colour information.

B1 and the closest boundary point in B2; and similarly for
NB2 and dist(B2(i), B1). This distance error will be small
when the detected and ground-truth boundaries are aligned
with each other without additional or missing sections.

For each image, we have a set of ground truth contours
(corresponding to the different human segmentations of the
same image and any large objects within it). For a given
detected contour B1, we compute and report the average
Derror with regard to all available, overlapping ground-
truth contours from the corresponding image. Each algo-
rithm was allowed to generate 10 contours (using its own
ranking method), and from these contours we selected the
one with lowest distance error for comparison. We do
this because otherwise we would be unable to determine
whether any observed differences in performance are due to
the algorithms themselves, or if instead they are simply the
result of differences in the ranking of output shapes. Fig-
ure 4 shows the resulting contours for several challenging
images from our testing set. Notice the complexity of the
input and the abundance of texture and clutter.

The results show that the adaptive algorithm (AA) is
able to retrieve contours that more closely approximate the
boundary of the main object in each scene. It is also clear
that the non-adaptive NA method, while better than the
original EJ and RC, cannot match the quality of the con-
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Figure 5. Left: distance error (as defined in the text) for all of the
21 test images. Right: mean distance error over the complete data
set for each of the algorithms.

tours extracted with AA. This indicates that the appearance
model is in fact providing AA with the necessary guidance
that enables it to detect good object boundaries. RC per-
forms well, though it still has problems on very cluttered
scenes. It appears to be the case that RC benefits from
the smoothing introduced by the spline approximation used
for fitting the input fragments. As a result, contours pro-
duced by RC are usually very smooth. EJ suffers from the
complexity of the input and often yields groups that incor-
porate texture elements. Figure 5 shows the distance error
obtained by each algorithm on each of the test images, as
well as the average distance errors over the complete test
set. This figure shows that the adaptive algorithm produces
better results on most of the test images, achieving a sig-
nificant reduction in boundary localization error. It is worth
noting that the adaptive algorithm performs well on difficult
images on which the competing methods perform poorly.

The average run-times for the algorithms are: 3.2 min.
for AA, 4.2 min. for NA, 5.2 min. for RC, and .5 min. for
EJ . It is interesting to see that NA takes longer to find con-
tours. Since both algorithms require an equivalent amount
of computation per search step, this indicates that the ap-
pearance model in AA not only produces better contours,
but also reduces overall search complexity when compared
to a purely local approach.

We note that our method has some limitations. The algo-
rithm can fail to detect a reasonable boundary if an object
and its background have similar colour distributions (e.g. if
the main object is camouflaged), or if several objects with
similar appearance are in close proximity. Also, algorithm
parameters are scale-dependent. In particular, for images
that are significantly larger than those used here, texture
features on an object may become larger than the local-
histogram windows; the resulting colour bias would favour
the formation of groups around individual texture elements.
Clearly, a multi-scale approach would be desirable. One of
the authors is currently working on a multi-scale grouping
method and preliminary results [3] appear promising. This
multi-scale algorithm is not based on the grouping frame-
work described here, but instead builds on the work of El-



der et al. [1]. On images half the resolution of those used
here, the multi-scale method achieves a mean distance error
(after adjusting for image size) of 36.32 which is very close
to the error achieved by our adaptive algorithm. Results at
full-resolution are worse due to problems with the current
multi-scale implementation.

It is worth noting that humans achieve a mean distance
error of just a couple of pixels which is much better than
all of the grouping methods tested here. The gap in perfor-
mance is similar to that observed for edge detection [13],
and for image segmentation [6]. Clearly, some component
of these tasks is not properly captured by current bottom-up
algorithms. This should be a topic of reflection and discus-
sion for the vision community.

The framework presented here could be extended with-
out much effort to use texture information in the form of
histograms of filter-bank responses (see [14]). The appro-
priate way to combine colour and texture can be learned
from training images, as has previously been demonstrated
by Martin et al. [13]. A more interesting extension involves
the use of histograms of optical flow vectors to perform en-
hanced boundary extraction on motion sequences. These
extensions are the topic of our current research. A more
ambitious project would be to explore the use of recognition
algorithms to modify the behaviour of the grouping phase at
run-time. A match between part of an object boundary and
a partial contour could be used to generate a spatial prior to
guide contour formation. The grouping algorithm, in turn,
could inform the recognition stage of its success or fail-
ure at extending a contour along some hypothesized shape,
this could be used to either reject or refine possible object
matches. However, robustly matching partial contours to
object boundaries is a difficult and as yet open problem.

8. Conclusion

The method we have demonstrated here expands on cur-
rent research in perceptual grouping by demonstrating that a
grouping algorithm can efficiently and successfully change
its behaviour at run-time in a context-dependent way. We
show that an appearance model of the image regions on ei-
ther side of a hypothesized contour can be used to guide
boundary formation, and that dynamically adjusting group-
ing behaviour leads to the detection of better object bound-
aries on challenging natural images. Our method is effi-
cient and robust, and it outperforms competing algorithms
on complex images from the BSD.
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