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Abstract

This paper describes an algorithm that efficiently groups
line segments into perceptually salient contours in complex
images. A measure of affinity between pairs of lines is used
to guide group formation and limit the branching factor of
the contour search procedure. The extracted contours are
ranked, and presented as a contour hierarchy. Our algo-
rithm is able to extract salient contours in the presence of
texture, clutter, and repetitive or ambiguous image struc-
ture. We show experimental results on a complex line-set.

1. Introduction

The visual world is an extremely complex environment,
the abundance of detail, texture, clutter, and other artifacts
complicates significantly the work of algorithms that per-
form tasks such as recognition, motion analysis, and geo-
metric reconstruction. In order to reduce the complexity of
the visual environment to manageable levels, perceptual or-
ganization is used to select parts of the image, or subsets of
features that are of particular interest for further processing.
Contour extraction is one way in which regions of the im-
age that are likely to correspond to objects of interest can
be identified. However, the development of a generic proce-
dure that works well on complex images has proven to be
extremely difficult. Our goal in this paper is to present an
efficient algorithm to carry out contour extraction on com-
ples line-sets extracted from real world images. We present
an affinity based method for guiding group formation, dis-
cuss an efficient search procedure, and explore the problem
of ranking and organizing the extracted contours.

2. Previous Work

There is a significant amount of previous work in Per-
ceptual Grouping and Image Segmentation. Lowe started
the systematic use of grouping for object recognition

in [8], and [9]. His system used properties such as prox-
imity, collinearity and parallelism to generate candidate
groups for matching against known object models. Mo-
han and Nevatia use geometric relationships such as prox-
imity, co-curvilinearity, symmetry, and continuity to group
edgels into a description hierarchy [12], [13]. Sarkar and
Boyer [14] introduce a voting based scheme for group-
ing that uses Bayesian Networks to infer structure from
subsets of features. Guy and Medioni propose an al-
gorithm based on tensor voting with communication
between neighboring features [4], [3]. It incorporates con-
straints such as co-surfacity and good continuity, and is
capable of performing perceptual completion on frag-
mented data. Huttenlocher [5], and Jacobs [6] among
others have studied the use of convexity as a grouping con-
straint. Jacobs [6] demonstrated the use of convex groups
for indexing in object recognition.

Affinity measures have been used for clustering and seg-
mentation by Ng, et. al. [1], Shi and Malik [16], and Ma-
lik, et. al. [11], among others. Their work exploits the prop-
erties of the eigenvectors of an affinity matrix generated
from image features, and uses these eigenvectors to de-
termine an appropriate segmentation. More recently, Ma-
hamud, et. al. [10] propose a contour extraction method
based on the random walk probabilities of particles trav-
eling between edgels in an image. They use an affinity mea-
sure that incorporates proximity and smooth continuation,
calculate the saliencies of links between image edgels, and
extract contours as connected components within the link
saliency matrix. Saund [15] presents a search based proce-
dure for contour extraction from sketches. In his algorithm,
a table of pre-computed preferences for configurations of
consecutive edges is used along with domain-specific con-
straints to keep the search tractable. The algorithm is able to
extract salient contours in sketch art and simple line draw-
ings, but is not designed to deal with fuzzy or textured con-
tours. Even though previous methods have proven to be suc-
cessful in their particular domains, extracting salient con-
tours from real world images of significant complexity con-
tinues to be a challenging problem.



3. Contour Search Procedure

We first introduced inter-line affinities for search con-
trol in [2]. It was shown there that on real world imagery,
even well constrained search procedures will be confronted
with a combinatorially large number of valid groups aris-
ing from texture, clutter, and repetitive image structure. It
was also shown that in the context of convex group extrac-
tion, a search procedure based on a measure of the geo-
metric affinity between pairs of lines yields a very signif-
icant reduction in the amount of search that is required to
locate salient groups. We will briefly describe the affinity
measure and search algorithm presented in [2] and then in-
troduce modifications that make the extraction of general
(non-convex) contours practical and computationally effi-
cient.

Our affinity measure is based on the geometric configu-
ration of pairs of line segments in the image. A perfect junc-
tion between two edges occurs when both segments termi-
nate exactly at their intersection point. Gaps between the
segments and the intersection point, or junctions that split
either or both segments are penalized. We will refer to the
split part of a line segment as a tail. The effect of gaps
and tails on the affinity measure is given by two Gaussian
PDF’s:

DFgap = e−d2/(2σ2

gap), DFtail = e−d2/(2σ2

tail), (1)

where d is the length of the gap or tail, and the σ parame-
ters determine how quickly the appropriate term decreases
with increasing d. The values for these constants were set
experimentally to σgap = 20 and σtail = σgap/2. We
make the contribution of tails decrease faster since we ex-
pect junctions that come from object boundaries to have lit-
tle or no splitting of line segments. For each line in the junc-
tion, DFline is set to one of DFgap or DFtail, as dictated
by the particular intersection.

We also incorporated a term that accounts for the small
error in line orientation that we can expect due to noise in
the line extraction process. Orientation error causes uncer-
tainty about the true location of the intersection between
two segments, and depends on the segments’ length and the
expected error in endpoint localization (usually a couple of
pixels perpendicular to the line). The expected uncertainty
in endpoint localization w is calculated for each segment,
and its contribution to the over-all affinity is computed us-
ing another Gaussian PDF: UFline = e−w2/(2k2

u) where ku

is a constant that determines how strongly orientation un-
certainty affects the inter-line affinity. The value of ku was
set experimentally to ku = 8, so small uncertainties are not
heavily penalized.

The above affinity factors are combined into a geometric
affinity measure given by

Gaffinity = (DFline1∗UFline1∗DFline2∗UFline2), (2)

and total affinity for a pair of segments is calculated with

Taffinity = Gaffinity + κ. (3)

Where κ is a suitable constant which constitutes a lower
bound on the total affinity, and it set to κ = .25 (see [2]
for details). Our contour extraction procedure is a depth-
first search with a single segment as the starting point. The
search adds a line at each level subject to geometric con-
straints until a closed contour is found or a geometric in-
consistency has been detected. A great part of the robust-
ness and efficiency of the algorithm comes from the use of
normalized affinities, at each step, the best K possible junc-
tions that can be formed with a particular line segment are
chosen, and their affinities normalized. A threshold on nor-
malized affinity is used to determine which groups to form,
and which to remove from further consideration. The search
algorithm also checks for contours that are similar to pre-
viously encountered shapes, and keeps the search proce-
dure from exploring combinatorially many small variations
of the same contour.

It was shown in [2] that the above search algorithm, cou-
pled to the constraint that extracted contours must be con-
vex, led to an extremely efficient grouping algorithm, ca-
pable of finding perceptually salient convex groups in com-
plex imagery. However, the extraction of non-convex con-
tours requires additional effort. If the convexity constraint is
removed, the number of possible groups that can be formed
in an image with moderate amounts of texture and clutter
becomes too large, and renders even our previously effi-
cient search procedure impractical. Hence, other constraints
are needed to keep the search manageable. The search al-
gorithm we propose here substitutes compactness for con-
vexity, at each step in the search, the area of the current
contour is compared with the area of its convex hull, and
the search procedure is only allowed to continue if the ra-
tio of the two is above a threshold. The usefulness of com-
pactness has already been explored by Saund in [15] in the
context of contour extraction, but we have found that by it-
self it is insufficient to keep the search manageable. The
problem is that in the absence of other constraints, compact
contours can have irregular boundaries that wander through
parts of the image where line density is high. In the pres-
ence of texture or clutter, the number of possible variations
of such contours grows exponentially. To control the explo-
ration and formation of such groups, we use a smoothness
term AF = (cos(θ) + 1)/2, where θ is the angle between
the segments. This term multiplies the geometric affinity de-
fined in (2). Whenever there is a clear path for the contour
to follow that preserves smooth continuation, the angle term
will keep the search procedure from wandering into textured
regions of the line-set. At the same time, the affinity nor-
malization procedure ensures that if a sharp turn offers the
best grouping choice, its normalized affinity will be above



threshold, and the group will be explored. It will be shown
in the experimental results that the algorithm is capable of
extracting non-convex contours with smooth boundaries as
well as sharp corners. The resulting search algorithm is ro-
bust, and remains efficient in the presence of texture, clut-
ter, and ambiguous image structure.

4. Contour Ranking and Organization

Output contours are ranked and inserted into a hierarchi-
cal structure with the largest, non-equivalent shapes at the
top level, and where each contour contains a list of smaller
contours found within. To determine equivalence, we com-
pute the percentage of overlap between two shapes, if this
percentage is above 95%, we say the shapes are equiva-
lent, and keep only the one with the best ranking. Rank-
ing is based on the Qualitative Probabilities framework de-
scribed by Jepson and Mann in [7], which estimates the log-
unnormalized posterior of a model given the image data

log q(M |I) = log (p(I|M)p(M)), (4)

where p(M) is the prior probability of finding a particular
model, and p(I|M) is the likelihood of the image given that
model. Jepson and Mann show that by imposing weak pri-
ors on the probability of occurrence of lines and vertices of
polygons, a reasonable estimate of the plausibility of a par-
ticular contour can be determined. These weak priors are
defined with regard to a small constant ε � 1, and their
magnitudes are shown to be of order O(ε2) for polygon ver-
tices, and O(ε4) for isolated line segments.

Consider a closed contour consisting of t line segments,
under the QP framework, a polygonal contour with t edges
and t vertices, has a prior probability of order O(ε2∗t),
whereas t isolated line segments occur with a prior prob-
ability of order O(ε4∗t). Thus, a contour that contains these
t lines offers a more plausible explanation than the acci-
dental occurrence of t independent segments that happen
to form a closed loop. Jepson and Mann also describe a
method to account for fragmentation along edges of the con-
tour in terms of ε. The effects of fragmentation and other
imaging artifacts are accumulated onto the p(I|M) in Equa-
tion 4, and allow for the estimation of the posterior likeli-
hood of a particular polygon given the observed image data.
In [2] we show how the Qualitative Probabilities framework
can be extended to incorporate evidence provided by lines
that are split by an extracted contour, and lines that termi-
nate at the contour’s boundary. Given the above considera-
tions, our ranking method prefers contours that account for
a significant number of segments along their boundary, split
few or no lines, and preferably run through parts in the im-
age where there is evidence of a separating boundary in the
form of lines terminating at the contour.

The complete contour extraction procedure is summa-
rized as follows: a) Starting with each line segment in turn,
generate as many closed contours as possible subject to the
thresholds on compactness and normalized affinity; b) when
a contour is found, calculate its QP ranking; c) check for
equivalence against previously extracted shapes, if equiva-
lence is detected keep only the polygon with the highest QP
ranking; d) If no equivalence is found, determine the appro-
priate place for the contour in the contour hierarchy, and in-
sert it. Within the polygon hierarchy, the top level polygons
are sorted according to QP rank.

Previous results in [2] demonstrated that in the con-
text of convex group extraction, the QP ranking procedure
would robustly identify perceptually salient groups even in
the presence of hundreds or thousands of competing hy-
potheses. Our results here indicate that this is still the case
for less constrained contours. This is an important result,
since it shows that a probabilistic framework working ex-
clusively on line segment data, and without any domain-
specific knowledge, can be used to obtain a reasonable esti-
mate of the saliency of a compact contour.

5. Experimental Results

Figure 1 shows the result of running our contour extrac-
tion procedure on a line-set extracted from the photograph
of a car, notice that the line-set is rich in textured com-
ponents, and shows significant complexity. Within the car
itself, there are many possible paths a contour grouping pro-
cedure may take to form closed boundaries. The top con-
tours extracted by our algorithm are shown, along with their
sub-components. These contours correspond to perceptu-
ally significant structure, which illustrates the robustness of
the ranking procedure. It is also worth noting that the con-
tours have both smooth sections and sharp bends, which
shows that the smoothnes bias does not preclude the for-
mation of groups with sharp corners. In terms of run-time,
our current algorithm matches, and in some instances out-
performs the more constrained convex-grouping proce-
dure we described in [2], which in turn had been shown
to be significantly faster than previous convex group-
ing schemes. This indicates that the modifications made
to the affinity measure, and the introduction of compact-
ness as a grouping principle are indeed capable of man-
aging the combinatorial explosion in the number of pos-
sible paths the grouping algorithm has to choose from
when forming contours. The reader is encouraged to visit
http://www.cs.utoronto.ca/˜strider/icpr2004/ for addi-
tional experimental results.

We have found that it is possible to obtain a further de-
crease in run-time if we use additional information to bias
the search, we are currently experimenting with filters that
provide an estimate of the probability that a particular im-



age region is textured, we are using this probability as an
additional term in the affinity function, so that search al-
gorithm can avoid grouping through texture-rich regions as
long as there is an alternative path. We’re also evaluating
the use of colour cues during the search phase to increase
the robustness of the algorithm and improve the ranking of
extracted contours. Preliminary results in these directions
look quite promising, and indicate that the algorithm pre-
sented here can be easily extended to include other sources
of information and grouping constraints.
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Figure 1. From top to bottom: a) Original line-
set (579 non-oriented segments), b) Contours
detected at the top level, c) Best contour
(black) and its subparts (color), and d) sec-
ond and third ranked contours (black) and
their subparts (color). The algorithm was run
with K = 20, compactness threshold of .80,
and normalized affinity threshold of 1.2/K.
Run-time was 21 seconds on a P4, 1.9GHz
machine.


