
Quantitative Evaluation of a Novel Image Segmentation Algorithm

Francisco J. Estrada and Allan D. Jepson
Department of Computer Science

University of Toronto
Toronto, ON., M5S 3G4, Canada
{strider,jepson}@cs.utoronto.ca

Abstract

We present a quantitative evaluation of SE-MinCut, a
novel segmentation algorithm based on spectral embedding
and minimum cut. We use human segmentations from the
Berkeley Segmentation Database as ground truth and pro-
pose suitable measures to evaluate segmentation quality.
With these measures we generate precision/recall curves
for SE-MinCut and three of the leading segmentation algo-
rithms: Mean-Shift, Normalized Cuts, and the Local Varia-
tion algorithm. These curves characterize the performance
of each algorithm over a range of input parameters. We
compare the precision/recall curves for the four algorithms
and show segmented images that support the conclusions
obtained from the quantitative evaluation.

1 Introduction

Image segmentation continues to be a challenging prob-
lem. Despite continuous improvements, the task of accu-
rately segmenting an arbitrary image remains basically un-
solved. At the same time, only recently has a significant ef-
fort been dedicated to developing suitable quantitative mea-
sures of segmentation quality that can be used to evaluate
and compare segmentation algorithms.

In this paper we present a quantitative evaluation of a
novel technique that uses spectral embedding together with
the minimum-cut algorithm to generate high quality seg-
mentations. We compare SE-MinCut against three of the
leading image segmentation algorithms: the Mean-Shift al-
gorithm of Comaniciu and Meer [5, 6], the Normalized
Cuts algorithm of Shi and Malik [16], and the Local Vari-
ation algorithm of Felzenszwalb and Huttenlocher [10].
The algorithms are evaluated on the Berkeley Segmentation
Database [14, 13], which provides human segmentations for
a large collection of images.

The contributions of our paper are: 1) A simple def-
inition of precision and recall measures for segmentation

quality, these measures are sensitive to over- and under-
segmentation and can be computed efficiently. 2) The intro-
duction of precision/recall curves that characterize the seg-
mentation quality of a given algorithm. These curves allow
for a robust comparison of segmentation quality that is in-
dependent of the choice of input parameters. 3) A quantita-
tive evaluation and comparison of segmentation quality for
the four segmentation algorithms over the complete BSD
which, to our knowledge, is the first direct comparison of
current segmentation algorithms presented in the literature.

We will start with an overview of the SE-MinCut frame-
work and place it in the context of current research involv-
ing minimum-cut for image segmentation. We will then
show segmentation results for the four algorithms on im-
ages from the BSD, proceed to the complete quantitative
evaluation of the algorithms, and discuss our results.

2 Spectral Embedding and Min-Cut

The minimum cut algorithm is a graph-partitioning tech-
nique that has received a significant amount of attention in
recent years as a useful framework for image segmentation.
Any image I(~x) can be viewed as a graph G(V,E) where
V is a set of nodes that correspond to pixels in the image,
and E is a set of edges that connect nodes in the graph. E is
usually set up so that only neighboring pixels are connected,
and the strength of the connection between two pixels is
given by the weight of the edge that spans them. The graph
G(V,E) is usually stored as an affinity matrix. For an n×m
image, we can build an nm × nm affinity matrix A whose
elements Ai,j are proportional to the similarity between pix-
els i and j and correspond to the weight of the edges Ei,j .
Given this affinity matrix, the min-cut algorithm computes
the subset of edges Ei,j that must be removed from G(V,E)
so that the graph is partitioned into two disjoint sets, and the
sum of weights for the removed edges is minimal.

Computation of the minimum cut usually involves defin-
ing two special nodes called source and sink that are linked
to elements within one of the disjoint sets in G(V,E).



The cut itself can be computed using a max-flow formula-
tion [4]. The minimum cut framework is attractive for sev-
eral reasons: the min-cut separating source and sink nodes
can be computed efficiently [2, 4], it is guaranteed to be a
global minimum, and given appropriate source and sink re-
gions, the resulting cut will partition an image along salient
image boundaries. Several algorithms have been proposed
that use minimum cut for image segmentation, Wu and
Leahy [18] propose trying every pair of pixels as source and
sink and selecting from the resulting partitions the cut with
the minimum weight, while Veksler [17] proposes placing
sink regions outside the image and using individual image
pixels as source. However, both of these techniques can be-
come impractical due to the large number of partitions that
have to be computed. At the same time, the final selected
cut may not correspond to salient image structure. Boykov
et al. [2, 1] on the other hand, rely on user interaction to se-
lect suitable source and sink regions to produce a segmenta-
tion efficiently. Finally, Boykov et al. [3] propose a method
to optimize an initial label field using min-cut to perform
label swap and region expansion operations.

2.1 Spectral Embedding

We will briefly review the algorithm proposed in [8],
which uses spectral embedding to define suitable source
and sink regions for min-cut. The algorithm uses a simple
affinity measure based on the grayscale difference between
neighboring pixels

Ai,j = e−(I(~xi)−I(~xj))
2/(2σ2), (1)

where σ represents the typical gray-level variation between
neighboring pixels. Without loss of generality, we assume
A is sparse, and the entries Ai,j are non-zero only for ele-
ments within the 5×5 pixel neighborhood centered at pixel
~xi (although any neighborhood structure including the com-
plete image can be used).

We generate a Markov matrix M by normalizing the
columns of A using Dj ≡

∑nm
k=1 Ak,j , and Mi,j =

Ai,j/Dj . M defines a Markov chain representing a ran-
dom walk over image pixels (see Meila and Shi [15]). Let
pt(~xj) denote the probability that a particle undergoing the
random walk is at pixel ~xj at time t, and let the nm di-
mensional vector ~pt represent pt(~x). We can estimate ~pt+1

using
~pt+1 = M~pt, where M = AD−1, (2)

and D is a diagonal matrix formed by the normalization
factors Dj .

Given an initial distribution ~p0, it follows from (2)
that the distribution after t steps of the random walk is
~pt = M t~p0. Here, M t can be expressed in terms of its
eigenvectors and eigenvalues, obtained conveniently from

1
2

3

4

5

6

7

8

9
10

11
12

13

1415

16 17

1819

20

21

22

23

24 25
26

27

28

29

30

31

32

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

z
2
 x 1000

z 3 x
 1

00
0

1

2 3

4

5

6

7 8

9
10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

Figure 1. Fractal image (3 regions plus noise,
100 × 100 pixels), seed regions generated by
our algorithm, second and third components
of the embedding, and final segmentation.
For this image d = 15 and t was calculated
so that |λd+1|

t ' 1/3.

the similar, symmetric matrix L = D−1/2MD1/2 =
D−1/2AD−1/2. Since L is symmetric, its eigendecompo-
sition has the form L = U∆U T , where U is an orthogonal
matrix whose columns are the eigenvectors of L, and ∆ is
a diagonal matrix of eigenvalues λi, i = 1, . . . , nm. We
assume that the eigenvalues have been sorted in decreasing
order of magnitude. It can be shown from the shape of D
and A that λi ∈ (−1, 1] and that at least one eigenvalue is
equal to 1. So, without loss of generality, we assume that
λ1 = 1. This eigenvalue problem is equivalent to that of Shi
and Malik [16] except for the choice of the affinity matrix.

From the eigendecomposition of L and (2) we obtain

~pt = M t~p0 = (D1/2U)∆t(U T D−1/2)~p0. (3)

Suppose that we start the random walk at pixel ~xi. The
initial distribution is given by ~p0,i = ~ei, which is a vector
with 1 in the ith row and zeros elsewhere. Then, after t
steps of the random walk, we obtain the diffused distribu-
tion ~pt,i = M t~ei, which we call a blur kernel. Since the
probability that a particle will jump across a strong image
boundary is small, blur kernels will diffuse little across such
boundaries, and the stronger the boundary, the smaller the
diffusion across it. As a result of this, blur kernels for pixels
separated by a strong boundary will have their probability
masses distributed over different subsets of pixels, and their
inner product ~p T

t,i~pt,j must vanish. Conversely, blur kernels
for neighboring pixels in homogeneous regions will be sim-



ilar, and their inner product will be large.
We approximate these blur kernels using only the top d

eigenvectors and eigenvalues of the Markov matrix M

~pt,i ' ~qt,i ≡ (D1/2Ud)~wt,i, (4)

where ~wt,i = ∆t
dU

T
d D−1/2~ei is the projected blur ker-

nel for pixel ~xi at time t, Ud contains the first d columns
of U , and ∆d is a d × d diagonal matrix formed with the
first d eigenvalues λi. We can approximate the inner prod-
uct of the original blur kernels with ~p T

t,i~pt,j ' ~q T
t,i~qt,j =

~wT
t,iQ~wt,j , with Q = U T

d DUd. Defining ~zt,i = Q1/2 ~wt,i

we have ~q T
t,i~qt,j = ~z T

t,i~zt,j . The approximation error de-
pends on the magnitude of the terms |λi|

t for i > d, the
largest of which is |λd+1|

t. We find a good approximation
when d and t are chosen so that |λd+1|

t < 1/3. Fig. 1b
shows a plot of two of the dimensions in the embedding.
Other properties and details of the embedding are discussed
in [8].

2.2 Seed Region Selection

The projected blur kernels cluster in the d-dimensional
space induced by the embedding. Because blur kernels from
homogeneous image regions are similar to one another,
these clusters correspond to local groups of similar pixels.
Furthermore, the density of blur kernels between neighbor-
ing clusters is indicative of whether there is a smooth con-
tinuation between the groups of pixels corresponding to the
clusters. A low density valley between two clusters indi-
cates the existence of an image boundary.

To find clusters, we map the ~z points onto the unit sphere
~st,i = ~zt,i/||~zt,i||, and generate a set of initial guesses for
the cluster centers {~mk}

K
k=1 by randomly sampling points

from ~st,i. Successive samples are constrained to have an
inner product of at least τ0 from previous samples with
τ0 = 0.8. The number of clusters K is chosen to be the
maximum number of samples that can be drawn before all
points ~st,i have an inner product of at least τ0 with some
center ~mk, this ensures that we have enough clusters to span
the embedding.

The location of each cluster center ~mk is then updated
iteratively by computing a weighted average of the points
~st,i in the neighborhood of ~mk

~m′
k =

∑
~s T

t,i
~mk≥τ1

(~sT
t,i ~mk)~st,i

∑
~s T

t,i
~mk≥τ1

(~sT
t,i ~mk)

. (5)

The weights correspond to the inner product between the
points ~st,i and the current estimate for the cluster center.
Only the points on the unit sphere whose inner product with
regard to the cluster center is greater than a threshold τ1

contribute to the weighted average. In what follows we use
τ1 = 0.95.

The resulting cluster centers can be used to define seed
regions in the image that consist of groups of similar pix-
els. Seed region Sk originating from cluster k is obtained
by thresholding the inner products of ~st,i with ~mk, Sk ≡
{~xj |~s

T
t,j ~mk ≥ τ1}. Seed regions obtained in this fashion

are illustrated in Fig. 1. Notice here two important prop-
erties of the seed regions: they include a significant frac-
tion of the image area, and they do not cross salient image
boundaries. Combinations of seed regions are used to de-
fine source and sink nodes for min-cut. Details about how
this is accomplished are found in [8].

We compute a minimum cut for every source/sink com-
bination and store the resulting partitions. After all the
cuts are done, we generate an intermediate segmentation as
the intersection of all the partitions generated by min-cut.
This intermediate segmentation is usually over-segmented,
so we perform an additional stage of region merging. Re-
gion merging is performed by examining the distribution
of links along the boundary between two regions. For parti-
tions that correspond to salient image boundaries most links
should be weak (smaller than .1 in our case). If less than a
certain portion τm of the links along the boundary are suit-
ably weak, we merge the regions.

2.3 Experimental Results

Figure 2 shows the segmentation results generated with
our algorithm on several images from the Berkeley Segmen-
tation Database (BSD) [13]. Results generated with Nor-
malized Cuts [16], Mean Shift [5, 6], and the Local Varia-
tion [10] algorithm are shown for comparison. The choice
of parameters for each algorithm is noted in the figure and
is based on the comparative graphs described in the next
section. These results indicate that the regions extracted
with our algorithm better capture the perceived structure of
the images, and the boundaries of regions are more closely
aligned with salient image boundaries (this is an expected
result of the use of min-cut). The next section presents
a quantitative comparison of the segmentation results pro-
duced with the four algorithms on the BSD.

3 Comparing Segmentation Algorithms

The images in Fig. 2 offer compelling evidence that our
segmentation algorithm performs well on a variety of im-
ages from different domains. Such visual comparisons have
been used extensively in the past as a means of illustrating
the capabilities of segmentation algorithms. However, we
would like a quantitative measure of segmentation quality
that can be used to compare the algorithms directly.

In this section, we will evaluate the performance of
our algorithm on the Berkeley Segmentation Database
(BSD) [13]. We will discuss the organization of the BSD,



Figure 2. Segmentation results, from top to
bottom: Original image, SE-MinCut, Mean-
Shift, Local Variation, Normalized Cuts, and
human segmentations. Parameters for the al-
gorithms are: d = 40, and τm = .25 for SE-
MinCut, spatial bandwidth SB = 4, and range
bandwidth RB = 6 for Mean-Shift, k = 100 for
Local variation, and the number of regions
for Normalized Cuts was set to 64 (see text
for the explanation of the choice of parame-
ters). SE-MinCut clearly generates segmenta-
tions that more closely capture the structure
of the scenes, and does so with less over-
segmentation.

develop appropriate measures of segmentation quality, and
use these measures to generate tuning curves that character-
ize the behavior of each algorithm over a range of input pa-
rameters. Finally, we will present quantitative performance
results for SE-MinCut [8], Normalized Cuts [16], Mean-
Shift [5, 6], and Local Variation [10].

3.1 Evaluation Measures and the BSD

The current public version of the BSD [13] consists of
300 colour images. The images have a size of 481 × 321
pixels and are divided into two sets, a training set contain-
ing 200 images that can be used to tune the parameters of a
segmentation algorithm, and a testing set that contains the
remaining 100 images. For each image, and separately for

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Precision

R
ec

al
l

Tuning curves for Mean−Shift

SB=2
SB=4
SB=8

0.6 0.7 0.8 0.9

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Precision

R
e

ca
ll

Tuning curves for SE Min−Cut

τ
m

=.75
τ
m

=.5
τ
m

=.25
τ
m

=.125
τ
m

=.0625

Figure 3. Tuning curves for SE-MinCut (top)
and Mean-Shift (bottom) (notice that the
scales are not the same). For SE-MinCut the
points along each curve correspond to vari-
ations of the parameter d within [5, 40]. For
Mean-Shift the points along each curve cor-
respond to variations of the range bandwidth
within [1 − 20]. From the above plots, we se-
lected for comparison the curve for τm = .25
for SE-MinCut, and the curve for a spatial
bandwidth SB = 4 for Mean Shift. These
curves offer the best compromise between
precision and recall for these algorithms.

the colour and grayscale versions of the image, a set of hu-
man segmentations is provided. This set contains between 4
and 7 segmentations specified as labeled images in a special
format.

Martin et al. [14] show that the human segmentations,
though varying in detail, are consistent with one another
in that regions segmented by one subject at a finer level of



detail can be merged consistently to yield the regions ex-
tracted by a different subject at a coarser level of detail.
Based on this consistency, Martin et al. propose two mea-
sures to evaluate segmentation performance and use them to
compare the Normalized Cuts algorithm against the human
segmentations. However, these measures are not sensitive
to over and under-segmentation (both of which can yield
low error values). This effect was also noted by Martin [12]
who proposed several alternative measures for comparing
segmentation algorithms. Among these, he discussed the
use of precision/recall values that characterize the agree-
ment between the region boundaries of two segmentations.
In his work, these measures are computed using a bi-partite
matching formulation that matches boundary pixels using
their location and orientation.

Here we propose a simpler method for matching bound-
aries between a source segmentation S1 and a target seg-
mentation S2. Matching is performed by examining the im-
mediate neighborhood of each boundary pixel bi in S1 for
potential matches. The neighborhood is searched in order
of increasing distance in a fixed pattern following the pixel
grid, up to a maximum distance of τd. Pixels are matched to
the nearest boundary element bx in S2 as long as there is no
other boundary pixel bj in S1 between bi and bx. This pro-
cedure allows for many-to-one matchings between bound-
ary pixels, which is useful when corresponding boundaries
in the two segmentations have different length due to small
localization errors. However, it is possible for (at most) two
boundaries in the source segmentation to be matched to the
same boundary in the target segmentation. This would oc-
cur when the target boundary is ’sandwiched’ between the
two boundaries from the source segmentation.

Using this matching strategy, we define precision and re-
call to be proportional to the total number of unmatched
pixels between two segmentations S1 and S2. Unmatched
pixels are those for which a suitable match cannot be
found within a particular distance threshold τd. Our pre-
cision/recall measures are defined as follows:

Precision(S1, S2) =
Matched(S1, S2)

|S1|
, (6)

where Matched(S1, S2) is the number of boundary pixels
in S1 for which a suitable match was found in S2, and |S1|
is the total number of boundary pixels in S1. Similarly

Recall(S2, S1) =
Matched(S2, S1)

|S2|
. (7)

Precision is low when there is significant over-
segmentation, or when a large number of boundary
pixels have localization errors greater than τd. A low recall
value is typically the result of under-segmentation and
indicates failure to capture salient image structure.

The principal advantage of using precision and recall for
the evaluation of segmentation results is that we can com-
pare not only the segmentations produced by different al-
gorithms, but also the results produced by the same algo-
rithm using different input parameters. By systematically
changing the value of the input parameters, we can produce
tuning curves that characterize the performance of a partic-
ular segmentation technique for a wide range of its input pa-
rameters, thus providing a more complete evaluation of the
quality of the segmentations that can be generated with that
algorithm. The tuning curves also allow for the selection
of input parameters that will yield the desired combination
of precision and recall within the operating range of each
algorithm.

3.2 Experimental Setup

We will use the measures defined above to compare the
segmentations produced by the four algorithms. However,
neither our algorithm nor the Normalized Cuts implemen-
tation from [7] can work directly on the images from the
BSD due to their size. In what follows, we will use the
grayscale images from the BSD after they have been appro-
priately blurred and downsampled by a factor of 4 to a size
of 121×88 pixels. The human segmentations of each image
have also been downsampled to the appropriate size.

Since human segmentations of the same image vary in
level of detail, precision and recall would change signifi-
cantly depending on which target segmentation is chosen.
Instead of comparing against individual human segmenta-
tions, we choose to compare against a composite segmen-
tation that is formed by the union of all region boundaries
extracted by human observers for the same image. This had
already been suggested by Martin [12]. Since the automatic
segmentation results and the human segmentations in the
BSD consist of labeled images, we use an identical proce-
dure to generate the region boundaries for all the segmen-
tations involved. This procedure is simple and consists of
marking as a boundary any pixel that has at least 1 neighbor
with a different label.

We used the implementations of the algorithms made
available by the authors. For Normalized Cuts see [7], for
Local Variation see [9], and for Mean-Shift see [11]. We
tested each algorithm over a range of values for its input pa-
rameters. Matching was carried out using a distance thresh-
old τd = 5, which is reasonably large given the resolution
of the images. Since there is no training phase involved, we
ran each algorithm for each combination of input parame-
ters over the full 300 images of the BSD. For each of these
runs, we calculate the median precision and recall values
and use these values to generate tuning curves that charac-
terize the algorithm’s performance. For algorithms with a
single input parameter (Normalized Cuts and Local Varia-



tion), we obtain a single curve. For algorithms with two pa-
rameters (SE-MinCut, and Mean-Shift), we get a curve for
each value of one input parameter, while the values along
the curve correspond to variations of the second parameter.
The ranges for the input parameters of each algorithm were
determined experimentally to produce significant over- and
under-segmentation at the extremes, while values within
this range were chosen so as to yield segmentations with
perceptible differences.

The input parameters and ranges are as follows: for Nor-
malized Cuts, the only input parameter is the desired num-
ber of regions; we tested the algorithm for values within
[2, 128]. The Local Variation algorithm also takes a single
input parameter k that roughly controls the size of the re-
gions in the resulting segmentation (for details please refer
to [10]); smaller values of k yield smaller regions and favour
over-segmentation. For this algorithm we tested values of k
within [10, 1800].

For Mean-Shift we have two parameters: The spatial
bandwidth and the range bandwidth. These parameters are
related to the spatial and gray-level intensity resolution of
the analysis (see [5, 6] for details). In practice, the segmen-
tation software for Mean-Shift uses an additional parameter
(the size in pixels of the smallest allowed region). We didn’t
test the effect of this parameter; since it only imposes an ar-
tificial limit on over-segmentation, it was kept fixed at 25
pixels (which is the same size as the search window used
for boundary matching). Experimentation showed that the
largest differences between segmentations were obtained
when varying the range bandwidth parameter. Thus, we
evaluated the algorithm using three values for the spatial
bandwidth within [2, 8], and for each of these values, we
computed a tuning curve that corresponds to variations of
the range bandwidth within [1, 20].

For SE-MinCut, we tested two parameters. One is d,
which determines the number of eigenvectors to use in the
embedding. We then use d to determine t so that |λd+1|

t '
1/3 as described in the previous section. The other pa-
rameter is the merging threshold τm. The remaining in-
ternal parameters mentioned in the text were kept fixed at
the original values proposed in [8]. The largest variation
between segmentations is obtained by changing the value
of d. Following the same methodology used with Mean-
Shift, we chose 5 values for the merging threshold between
[1/16, 3/4], and for each of these we computed a tuning
curve that corresponds to variations of d within [5, 40].

Finally, we generated precision and recall data for hu-
man segmentations. Given the set of human segmentations
for a particular image, we selected each segmentation in
turn and compared it against a composite of the remaining
segmentations for that same image. We then computed the
median precision and recall for all observers. The result-
ing precision and recall points are useful for comparing the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

R
ec

al
l

Tuning Curves for all Algorithms

SE Min−Cut
Mean Shift
Local Variation
Normalized Cuts
Canny
Human

Figure 4. Tuning curves for all segmenta-
tion algorithms plus canny edges, and preci-
sion/recall values for human segmentations.
SE-MinCut clearly has the best performance
of all algorithms over its range of input pa-
rameters.

performance of segmentation algorithms against human ob-
servers.

4 Tuning Curves and Algorithm Comparison

Since we have 3 tuning curves for the Mean-Shift algo-
rithm, and 5 curves for the SE-MinCut algorithm, we se-
lected for comparison the curves that corresponds to the pa-
rameter combinations that yield the best compromise be-
tween precision and recall. Fig. 3 shows the tuning curves
obtained for SE-MinCut and Mean-Shift. We have chosen
the tuning curve that corresponds to τm = .25 as the rep-
resentative for SE-MinCut, and the tuning curve that cor-
responds to a spatial bandwidth SB = 4 is selected as the
representative for Mean-Shift.

The selected curves for SE-MinCut and Mean-Shift to-
gether with the curves for Normalized Cuts and Local Vari-
ation are shown in Fig. 4. The figure also shows the points
that correspond to the median precision and recall of hu-
man segmentations for the 300 images of the BSD. This fig-
ure shows that SE-MinCut outperforms the other segmenta-
tion algorithms across its range of input parameters. For a
given recall value, SE-MinCut achieves the highest preci-
sion; conversely, for a given precision value, our algorithm
achieves the best recall. This improved performance indi-



Figure 5. From top to bottom: Original im-
age and composite human segmentation, SE-
MinCut segmentations, Mean-Shift results,
Local Variation results, Normalized Cuts seg-
mentations, and Canny edges. Boundary pix-
els that were matched to the composite hu-
man segmentation are shown in red. For each
algorithm the leftmost column corresponds
to the highest possible recall, the middle col-
umn is for the center of the tuning curve, and
the rightmost column corresponds the high-
est precision.

cates that SE-MinCut finds salient regions with less over-
segmentation, and the boundaries of these regions corre-
spond more closely to the human-marked boundaries. This
agrees with the results displayed in Fig. 2, the segmenta-
tions shown there correspond to the parameters that yield a
recall value closest to .6 for each algorithm. Notice that the
Local Variation curve has two points close to .6 on the recall
axis; we chose the point with the largest precision value.

The reader may wonder about the significance of the
larger range of recall values achieved by the other algo-
rithms when compared to SE-MinCut. Figure 5 shows seg-
mentations of the same image produced with different pa-
rameter choices for each of the algorithms. The parameters
used correspond to the points of highest recall, highest pre-

cision, and middle of the corresponding tuning curves. At
the point of highest recall, Mean-Shift, Normalized Cuts,
and Local Variation produce notoriously over-segmented
results, while at the point of highest precision Mean-Shift
and Local Variation produce segmentations that partition
small, high-contrast regions that do not necessarily cap-
ture the structure of the image. Over-segmentation is lim-
ited for SE-MinCut by the fact that the leading eigenvec-
tors of the Markov matrix usually capture coarse properties
of the random walk, as well as by the algorithm’s merging
stage. Under-segmentation occurs for all algorithms, but
SE-MinCut and Normalized Cuts benefit from the global
nature of the eigenvectors used during segmentation. Re-
sults in Fig. 5 also agree visually with the information pro-
vided by the tuning curves. Over-segmentation is character-
ized in the curves by high recall but low precision, and the
converse is true for under-segmented images.

We have also included results from running the Canny
edge detector (with no hysteresis thresholding) on the input
images. A tuning curve was produced by varying a single
threshold on normalized gradient magnitude between 0.05
and 0.6. Region boundaries are 2 pixels wide, so the Canny
edges were artificially dilated to 2 pixels before comput-
ing precision/recall values for each test. It is worth noting
that the comparison with the Canny edge detector is unfair
in that Canny edges are not required to form closed con-
tours (see Fig. 5), and do not produce a segmentation of the
image. We show the Canny results here to provide a hint
of how well the segmentation algorithms perform purely as
boundary detectors.

Perhaps not surprisingly, there is a significant gap in per-
formance between all the segmentation algorithms and hu-
man observers (though humans segmented the images at
high resolution, which gives them an advantage especially
with finer image structure). The data for human segmenta-
tions confirms the observation that humans segment images
consistently; this is reflected in the high precision scores
obtained by most human segmentations. On the other hand,
the large variation in recall scores reflects the fact that dif-
ferent observers will segment an image at different levels of
detail. Some images show more variability than others and
thus receive a lower recall score.

Though the gap is still significant, we believe that there
has been consistent progress in the field of image segmen-
tation and expect the gap to become smaller as research
in image segmentation continues. We should note that we
expect the tuning curves shown here (and in general, any
measure designed to compare segmentation results) to be
sensitive to image resolution. However, we have computed
tuning curves using the original precision/recall definitions
and matching algorithm of Martin [12], and the results are
very similar. We are confident that our results are sound
and provide a fair comparison between the algorithms. It



is worth mentioning that SE-MinCut produces good quality
segmentations using a simple gray-scale based affinity mea-
sure. We expect that better affinity measures will enhance
the quality of the segmentations produced by our algorithm.

In terms of run-time, the best performance is achieved
by the Local Variation algorithm, which takes around 1 sec.
to segment images of the size used here; Mean-Shift takes
between 1 and 7 sec. depending on the spatial bandwidth
parameter; Normalized Cuts takes between 10 sec. and
1.5 min. depending on the number of regions requested;
finally, SE-MinCut takes between 1 and 7 min. depend-
ing on the number of eigenvectors used for the embedding.
These times were measured on a 1.9GHz Pentium IV ma-
chine. Both Normalized Cuts and SE-MinCut are partly im-
plemented in Matlab. In the case of SE-MinCut there are
three main components: the spectral embedding and region
proposal step, min-cut, and the merging stage. We expect
that the first and last of these components can be optimized
for increased efficiency. Our goal here was to show that
min-cut with automatic source and sink selection, followed
by a simple post-processing stage can produce higher qual-
ity segmentations than other current algorithms.

5 Conclusion

We have shown that the SE-MinCut algorithm is capa-
ble of generating high quality segmentations using a simple
affinity measure based on gray-scale similarity. We pre-
sented simple precision and recall measures of segmenta-
tion quality, and a matching algorithm that can be used to
compute them efficiently. With these measures, we eval-
uated the quality of the segmentations produced by sev-
eral well known algorithms over the Berkeley Segmentation
Database, and presented tuning curves that characterize the
performance of these algorithms over a range of their input
parameters. This is to our knowledge the first quantitative
comparison of leading segmentation algorithms on a stan-
dard set of images.

The tuning curves show that the SE-MinCut algorithm
produces better segmentations for any desired value of re-
call within its tuning curve. Though the other algorithms
have a wider range of recall values, larger recall and pre-
cision values come at the cost of significant over- or under-
segmentation. It should be noted that there is no in-principle
reason why finer structure cannot be segmented with SE-
MinCut using the recursive approach that has also been pro-
posed for Normalized Cuts. Specifically, once coarse re-
gions have been extracted (and we know from the above
that such regions are likely to agree closely with perceptu-
ally salient image structure), each region can be individually
segmented using SE-MinCut.

References

[1] Y. Boykov and M. Jolly. Interactive Graph Cuts for optimal
boundary & region segmentation of objects in n-d images.
In ICCV, pages 105–112, 2001.

[2] Y. Boykov and V. Kolmogorov. An experimental compar-
ison of min-cut/max-flow algorithms for energy minimiza-
tion in vision. In International Workshop on Energy Min-
imization Methods in Computer Vision and Pattern Recog-
nition, Lecture Notes in Computer Science, pages 359–374,
2001.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast, approximate
energy minimization via graph cuts. PAMI, 23(11):1222–
1239, 2001.

[4] Cherkassky and Goldberg. On implementing push-relabel
method for the maximum flow problem. In Proc. IPCO-4,
pages 157–171, 1995.

[5] D. Comaniciu and P. Meer. Robust analysis of feature
spaces: Color image segmentation. In CVPR, pages 750–
755, 1997.

[6] D. Comaniciu and P. Meer. Mean shift analysis and applica-
tions. In ICCV, pages 1197–1203, 1999.

[7] T. Cour, S. Yu, and J. Shi. Normal-
ized cuts matlab code. code available at
http://www.cis.upenn.edu/˜jshi/software/.

[8] F. J. Estrada, A. D. Jepson, and C. Chennubhotla. Spectral
embedding and min cut for image segmentation. In BMVC,
pages 317–326, 2004.

[9] P. Felzenszwalb and D. Huttenlocher. Image seg-
mentation by local variation code. code available at
http://www.ai.mit.edu/people/pff/seg/seg.html.

[10] P. Felzenszwalb and D. Huttenlocher. Image segmentation
using local variation. In CVPR, pages 98–104, 1998.

[11] B. Georgescu and C. M. Christoudias. The Edge Detection
and Image SegmentatiON (EDISON) system. code available
at http://www.caip.rutgers.edu/riul/research/
code.html.

[12] D. Martin. An Empirical Approach to Grouping and Seg-
mentation. PhD thesis, University of California, Berkeley,
2002.

[13] D. Martin and C. Fowlkes. The Berke-
ley segmentation database and benchmark.
http://www.cs.berkeley.edu/projects/vision/
grouping/segbench/.

[14] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In ICCV, pages 416–425, 2001.

[15] M. Meila and J. Shi. Learning segmentation by random
walks. In NIPS, pages 873–879, 2000.

[16] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 2000.

[17] O. Veksler. Image segmentation by nested cuts. In CVPR,
pages 339–344, 2000.

[18] Z. Wu and R. Leahy. An optimal graph theoretic approach
to data clustering: Theory and its application to image seg-
mentation. PAMI, 15(11):1101–1113, Nov. 1993.


