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Abstract

We revisit the problem of recovering 3D shape from the
projection of planar curves on a surface. This problem
is strongly motivated by perception studies. Applications
include single-view modeling and fully uncalibrated struc-
tured light. When the curves intersect, the problem leads
to a linear system for which a direct least-squares method
is sensitive to noise. We derive a more stable solution and
show examples where the same method produces plausible
surfaces from the projection of parallel (non-intersecting)
planar cross sections.

1. Introduction

Extracting depth from a single image of curves is a long
standing problem. Since projection discards depth infor-
mation, the problem is severely under-constrained. Clearly,
for any curve in the image, there is always an infinite set
of 3D curves whose projections coincide with that image
curve. Therefore additional assumptions have to be made.
One assumption that has been studied extensively is that the
curves are planar, either lying on planar faces of polyhedra
or planar cross sections of curved surfaces. Perception stud-
ies [16, 19] have demonstrated cases where humans clearly
make the planarity assumption. Pizlo et al. [10] showed that
planarity can even override stereo depth cues. Although the
extraction of salient curves from real images is a difficult
problem by itself, it is hard to believe the sophisticated abil-
ity to interpret curves as 3D surfaces had been evolved with
no relation to depth perception of real scenes.

Figure 1 illustrates fully uncalibrated structured light.
The curves in the image are projections of planar cross sec-
tions of the surface. The goal is to compute the 3D surface
from the observed network of curves without any informa-
tion about the planes. Notice that all planar curves could be
placed on the same plane. A key here is to escape from flat
and nearly-flat solutions.

This paper makes several contributions to the theory of
shape from planar curves. We present a unified framework
for interpreting projections of intersecting planar faces or
cross sections, and demonstrate cases where the same prin-

Figure 1. 3D reconstruction from uncalibrated structured light.
Top left: a planar laser strip projected on the object. Top right:
curves extracted from a video sequence of projected strips. Bot-
tom: rendering of the computed surface.

ciples can be used to deal with parallel planar cross sections.
These important connections have not been pointed out in
the literature before. We extend the method of Bouguet,
Weber and Perona [2] to deal with arbitrary planes and de-
rive a more stable algorithm. Specifically, we look for a
solution that minimizes the algebraic error of a linear sys-
tem, under the constraint that a geometrically meaningful
measure of non-planarity is held constant. In addition, we
provide statistical analysis for the component of the solu-
tion vector which lies in the trivial subspace, and explore
solution ambiguities.

2. Algebraic structure

In this section we review the algebraic structure of the
problem and characterize the space of solutions in the
ideal noiseless case. The theory for interpreting line draw-
ings of polyhedra was formulated algebraically as a lin-
ear system by Sugihara [18]. Ulupinar and Nevatia [21]
found similar structure in Straight Homogeneous Gener-
alized Cylinders (SHGC). Our presentation is closer to
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Rothwell et al. [12, 13] and Bouguet et al. [2].
Consider a surface on which N planar curves

Γ1, . . . , ΓN , lying on N planes π1, . . . , πN , are marked.
Each curve Γi is just a set of points on a common plane πi,
and does not need to be continuous. For now assume an im-
age is taken under orthographic projection, and the intersec-
tion points (xij , yij) between the projections of the curves
Γi and Γj onto the image are identified. The setting is il-
lustrated in figure 2. Our input is the intersection points, to-
gether with their association to the intersecting curves. The
goal is to recover the planes and compute the depth along
the curves. Note that two curves may not intersect in the
image or they may intersect several times. For simplicity
we omit the intersection multiplicity index. If two curves
share a straight line segment, we pick its two endpoints as
intersection points. When more than two curves intersect at
a point, we consider them as pairs in a cyclic order.

Assuming the planes do not contain the projection direc-
tion (an edge-on plane provides no information and should
be ignored), we can parameterize plane πi as

zi(x, y) = aix + biy + di . (1)

A 2D intersection point in the image corresponds to a 3D
intersection on the surface, which allows us to eliminate the
unknown depths:

zi(xij , yij) − zj(xij , yij) =
(ai − aj)xij + (bi − bj)yij + (di − dj) = 0 .

(2)

The last equation has another geometric interpretation.
Planes πi and πj intersect at a 3D line whose projection
onto the image is the image line Lij defined by

(ai − aj)x + (bi − bj)y + (di − dj) = 0 . (3)

Equation (2) simply means that (xij , yij) is on Lij . Collect-
ing equations (2) for all visible intersection points results in
a homogeneous linear system:

Av = 0 , (4)

where v = (a1, . . . , aN , b1, . . . , bN , d1, . . . , dN )T is a vec-
tor collecting the planes’ parameters and A is a sparse ma-
trix whose rows contain xij ,−xij , yij ,−yij, 1,−1 at the
appropriate columns. Any vector v defines surface curves
{Γi} by the back-projection of the image curves onto their
planes. Sugihara already noted that the problem has similar
structure under perspective projection (see appendix A.1).

2.1. GBR ambiguity and trivial subspace

The vector of true planes is a solution to (4) and hence
in the null space of A, which we denote Null(A). How-
ever, Null(A) also contains trivial solutions, which place

image 3D
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xij , yij

Figure 2. Intersecting planar curves in 3D and their projection.

straight
curve

Figure 3. A trivial solution can embed all curves into the same
geometric plane while assigning the straight line a different plane.

all curves in the same arbitrary plane. Observe that (2) has
a basic trivial subspace of solutions spanned by

v1 = (1N ,02N )T

√
N

,v2 = (0N ,1N ,0N )T

√
N

,v3 = (02N ,1N )T

√
N

, (5)

where we use the notation ck to denote a k-vector whose en-
tries are all c. For any non-flat solution v to (4) there is a 4D
subspace of ambiguous solutions, since any linear combina-
tion of v,v1,v2,v3 is also a solution to (4). This is known
as Generalized Bas-Relief (GBR) ambiguity under ortho-
graphic projection and perspective GBR (GPBR [8]) under
perspective projection. The GBR ambiguity was already
known to Sugihara, although the term GBR became com-
mon later [1]. Interestingly, in human perception studies of
pictorial relief, Koenderink et al. [7] found that variations
in 3D perception of the same picture by different observers
can be attributed to the GBR ambiguity.

It might be though that v1,v2,v3 do not span the full al-
gebraic subspace of flat solutions. This happens when there
is a curve whose intersection points are along a straight line
(in particular a curve with less than three intersections), as
illustrated in figure 3 (assuming the planes are not edge-on
implies that a straight curve in the image is straight in 3D).
Note that Zero Gaussian Curvature (ZGC) surfaces [20] are
a special case of surfaces that contain lines.

To characterize the complete space of flat solutions we
need a measure of surface flatness. A natural approach is
to pick a set of points on the surface, fit a plane with linear
regression, and measure the residual error. The error will be
zero whenever all points are coplanar. Although we don’t
know the depths at the points, we can express these depths
as a linear function of v. Let (xi, yi) be a set of k repre-
sentative points on the curves (e.g. the intersection points).
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Figure 4. System of three intersecting lines (Γ1, Γ2, Γ3)
in 2D. The image is formed by projection on the x-axis. Here
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Let Z be a matrix that reverse-projects the points onto their
planes. The rows of Z contain xi, yi, 1 at the appropriate
columns, so that Zv = (z1, . . . , zk)T , where (z1, . . . , zk)T

are the depths of the planes at the points (xi, yi). The geom-
etry is illustrated in figure 4, where for simplicity it shows
the intersections of lines in 2D instead of planes in 3D. De-
fine the matrix C by

P =




x1 y1 1
...

...
...

xk yk 1


 C =

(
I − PP+

)
Z/

√
k

, =
(
Z − P

(
P+Z

))
/
√

k ,
(6)

where P+ is the pseudo-inverse of P. Then ‖Cv‖2 is the
averaged squared norm of the deviation in the z direction of
the points (xi, yi, zi) from the best fitting plane obtained by
plane-fitting linear regression.

We define the trivial subspace to be the null space of C.
All vectors in the trivial subspace correspond to coplanar
points (xi, yi, zi), including cases with straight curves as in
figure 3. There are three degrees of freedom in choosing
this plane, but the dimension of Null(C) could be larger.

The trivial subspace has degrees of freedom which could
be set with additional information (e.g. depth of some
known points). In absence of additional information, un-
der orthography one may get a convincing qualitative shape
by picking a solution which is orthogonal to the trivial sub-
space (under perspective this might place observed points
behind the camera). This choice is natural since while the
planar solutions are common to any set of curves, the non-
trivial component is specific to the observed curves. Related
ideas appear in [2, 12]. Statistical support to this choice is
provided in appendix A.2.

2.2. Dimension of non-trivial solutions

Ideally our system would have a 4D solution space: three
dimensions are due to the GBR ambiguity and the fourth
comes from the true shape. One may wonder whether sys-
tems with more independent non-trivial solutions exist. The
dimension depends on the observed pattern of intersections.
For instance, disjoint components of curves leave some de-
grees of freedom. If the image is of a triangular mesh,
we can place all its vertices freely in depth. Rothwell and
Stern [12] demonstrated polyhedra with more than four de-
grees of freedom but relatively few intersections. How-
ever, for highly-connected networks of curves the system
will typically be over-determined. For example, in a struc-
tured light scenario we may have O(N2) equations in 3N
unknowns. Although extremely rare, highly-connected sys-
tems with O(N2) intersections and a 2D non-trivial sub-
space do exist, as shown in figure 5. We explore this ques-
tion further in appendix A.3.

Figure 5. Multiple interpretations. The left drawing can be inter-
preted as a cube or as having doubly-ruled faces.

3. Proposed linear method

We now turn into solving the system in practice. Sugi-
hara already noticed what he called the superstrictness prob-
lem: the linear system is typically over-determined and has
no exact non-trivial solution in presence of noise. Vari-
ous approaches have been taken to address this problem.
Sugihara [18] explored finding a maximal generically re-
constructible subset of equations. This approach does not
spread the error evenly [11]. Shimshoni and Ponce [15]
developed a linear programming method for a specified
level of uncertainty in the vertices’ positions. Ros and
Thomas [11] proposed a nonlinear optimization algorithm
based on a special ordering of vertices and faces (resolv-
able sequence). Grimstead and Martin [6, 22] used an it-
erative reweighting least-squares method. Sturm and May-
bank [17] used SVD to solve for the displacements of the
planes assuming the normals of the planes are known. Our
approach extends the method of Bouguet et al. [2], which
will be discussed in section 4.1.

In the presence of noise the trivial (planar) solutions are
still exact, but in general there are no additional exact so-
lutions. Geometrically this means there may be depth gaps
between the planes at (xij , yij). A standard approach is to
minimize the norm of the residuals of (4), i.e. looking for a
vector v such that ‖Av‖ is small. However, when the points



are nearly planar ‖Av‖ is small for any set of curves. Thus,
we want at the same time to keep the points (xi, yi, zi) away
from a common plane. The condition ‖Cv‖ = 1 holds
the points away from their best fitting plane. Recall that
Null(C) is made of the planar solutions and hence con-
tained in Null(A), even when A is noisy. We may assume
for now that v is orthogonal to Null(C), since any compo-
nent of v in the trivial subspace does not affect ‖Av‖. The
trivial component can be added later if additional informa-
tion is provided. We reformulate (4) as

argmin
v

‖Av‖ s.t. ‖Cv‖ = 1 , v ⊥ Null(C) . (7)

To solve (7), let C = UD̃ṼT be the SVD of C. Define
V and D by removing the columns of Ṽ and rows of D̃ that
correspond to singular values smaller than ε. The removed
columns of Ṽ span the trivial subspace, which is at least 3D.
The columns of V form a basis for the orthogonal comple-
ment of the trivial subspace. Writing v = VD−1w, and
using the fact that U is orthogonal, the problem becomes

argmin
w

‖AVD−1w‖ s.t. ‖UDVT v‖ = ‖w‖ = 1 . (8)

The algorithm is summarized below:

Step 1: Form the matrices A,Z,P,C.
Step 2: Compute the SVD of C. Form V and D.
Step 3: Compute the SVD of AVD−1. w is the last

right singular vector. Return v = VD−1w.

w essentially picks a solution in the V basis. The matrix
D−1 weights the columns of V so that vectors closer to a
flat solution get higher cost.

4. Results

Demonstrations of the method to uncalibrated structured
light are shown in figures 1 and 6. The curves were ex-
tracted from a video sequence of projected laser strips con-
trolled by hand. Curves whose intersection points were
nearly linear were pruned. These surfaces were computed
using the orthographic model. Surface interpolation be-
tween the curves was done by Matlab, which interpolates
over a triangulation.

We also applied the method for single-view model-
ing [17]. The user creates a 3D model from a photograph
by drawing line segments and linking them to planar faces.
Results are shown in figures 7 and 8. Though many faces
had to be defined to fix all degrees of freedom in these ex-
amples, we used nothing but grouping of segments to planes
to infer the 3D shape.

4.1. Comparison

Several previous works have been attempting to do un-
calibrated structured light. Chen, Gao and Chen [4] assume

Figure 6. Surface reconstruction from 78 curves and 1053 inter-
section points. The slant is due to non-zero trivial component in
the collection of true planes.

Figure 7. Top row: input image and manually drawn curves (54
planar faces). Bottom row: shaded and texture-mapped computed
surface from different viewpoints.

the projected planes form an orthogonal grid. Caspi and
Werman [3] assume the planes belong to two pencils. In the
setting of Bouguet et al. [2] it was assumed that all planes
intersect at a known point (the light source) so each plane
had only two degrees of freedom. Our formulation does not
restrict the planes and thereby allows scanning any visible
part of the surface.

In this subsection we derive the algorithm of Bouguet et
al. [2] in a different way (their formulation makes the so-
lution exactly orthogonal to the basic trivial subspace only
when an exact solution exists), and compare it to ours. To
avoid the zero solution (v0 = 03N ) to (4), write

argmin
v

‖Av‖ s.t. ‖v‖ = 1, v ⊥ Span{v1,v2,v3} . (9)

Essentially one is looking for the fourth smallest right sin-
gular vector of A. To enforce the solution to be orthogonal



Figure 8. Image, curves, shaded and texture-mapped surface.

to the basic trivial subspace (both in the noisy and noiseless
cases), write v = Bu, where B is a matrix whose columns
form an orthonormal basis to the orthogonal complement of
v1,v2,v3 defined by (5). A possible closed-form choice is

B =


E 0 0
0 E 0
0 0 E




3N×(3N−3)

, α =
1√
N

− 1

N − 1
,

E =




− 1√
N

− 1√
N

· · · − 1√
N

1 + α α · · · α
α 1 + α · · · α
...

...
. . .

...
α α · · · 1 + α




N×(N−1)

(10)

(a less symmetric choice for E is the Helmert matrix). Since
B has orthonormal columns the problem becomes

argmin
u

‖ABu‖ s.t. ‖Bu‖ = ‖u‖ = 1 . (11)

Let AB = UDVT be the SVD of AB. u is the last column
of V and v = Bu is the desired solution. It can be verified
that except for the columns associated with the intersection
points of the first curve, the other columns of AB are sparse
and contain the same elements as A. Since only the last sin-
gular vector is used, there might be iterative methods that
are faster than the computation of the SVD (we didn’t ex-
periment with numerical methods).

Comparing (8) to (11), the matrix VD−1 is replaced
with B. The methods differ in two aspects. First, excluding
only the basic trivial subspace yields a flat solution when a
straight line is present. Secondly, omitting D−1 is prone to
nearly-flat solutions. These solutions place all curves, ex-
cept a small number, near a single plane. Almost all inter-
section points contribute nearly zero to the total error, and
the error at the small number of intersection points of curves

(A) (B) (C) (D)
Figure 9. (A) 25 synthetic cross sections of a radial sine. The
351 intersection points are perturbed (red dots). (B) Our solution.
(C) Last singular vector of the simple SVD method. This is a
nearly-flat solution (note the bottom-right curve). (D) Second-last
singular vector of the simple method. Although resembling the
solution, it must be perpendicular to the last singular vector (C).

Figure 10. Left: adding four straight segments to figure 5 resolved
the ambiguity. Right: computed surface by our method. The Last
four singular vectors of the simple SVD method are flat, and the
shape appears only at the fifth (note that our method thresholds by
ε the singular vectors of C, not A).

far from this plane might be relatively negligible. Note also
that unlike the condition ‖Cv‖ = 1, the condition ‖v‖ = 1
has no geometric meaning. In fact, it mixes units of slope
(ai, bi) and depth (di).

Figure 9 compares both methods on synthetic randomly
oriented cross sections of a radial sine. The positions of
the intersection points were perturbed and shown by red
dots. Both methods succeed solving this example without
the perturbation. However, this perturbation was enough to
break down the simple SVD method while our method suc-
ceeded. Figure 10 demonstrates our method when straight
curves are present.

4.2. Examples with parallel curves

In previous sections we discussed systems of planar
curves with many intersections. Next we demonstrate the
method on examples with parallel cross sections where
standard shape from texture algorithms would fail. In what
may seem counterintuitive at first, Todd and Reichel [19]
showed an example where humans perceive parallel cross
sections better than randomly oriented cross sections with
plenty of intersection points. Consider the topographic
maps in figure 11. In this problem one has to set the or-
der and distances (in z) between the planes. Notice the
strong depth perception in absence of elevation values. Hu-
man perception doesn’t rely completely on the density of
the curves, since erasing a small number of curves will not
change the perception as would be expected if they were
perceived equally spaced. We are not particularly interested
here in Euclidian reconstruction of topographic maps with
fixed depth gaps between adjacent cross sections. Our aim



is to demonstrate a 3D interpretation mechanism similar to
the case with intersecting curves. The parallel case is obvi-
ously a harder under-constrained problem. Even for humans
many topographic maps will not pop-out naturally.

To reduce the parallel case to the intersections case we
use a simple shape prior, namely assume that the surface is
roughly planar over local patches. We overlay a coarse rec-
tangular grid over the image region, and group neighboring
2 × 2 cells into a set of W partially overlapping windows.
The windows serve as virtual facets. We sample a set of
points (xi, yi) along the curves. These points are treated
as the image of the intersection points between the planar
curves and the virtual planar facets. Although in general the
planes will not intersect at the sampled points, we may still
strive to minimize the distances. Rather than parameteriz-
ing the facets explicitly, for each window we measure the
distances between the curves to the best fitting plane at the
sampled points. This is done by constructing a matrix Ci as
in (6) for each window (normalized by the number of points
in each window). To enforce the curves to be parallel, we
can either set ai = bi = 0 and solve for v = (d1, . . . , dN )T ,
or alternatively add a penalty for the variance

‖Rv‖2 = λ (Var(ai) + Var(bi)) , (12)

R =

√
λ

N

[
IN − 1

N 1N×N 0N×N 0N×N

0N×N IN − 1
N 1N×N 0N×N

]
.

The choice of λ depends on our confidence that the planes
are parallel. The optimization problems becomes (semi-
colons denote vertical matrix concatenation):

argmin
v

∥∥∥[
R; 1√

W
C1; · · · ; 1√

W
CW

]
v
∥∥∥ s.t. ‖Cv‖ = 1 .

(13)
This problem is solved as in (8). The solution is up to GBR
ambiguity. Examples are shown in figure 11.

5. Conclusions

We presented a unified analysis of shape from planar
curves. We generalized the linear method of Bouguet et
al. to deal with arbitrary planes, improved its robustness,
and demonstrated its applicability to single view modeling
and fully uncalibrated structured light. Then we showed ex-
amples with parallel curves where we assumed the curves
intersect implicit planar facets. As the cases of polyhe-
dra, SHGC’s, ZGC’s and uncalibrated structured light were
treated independently in the literature, it is valuable that the
same approach can deal with all of them.

A difficult issue we weren’t dealing with is assigning
curves to planar faces automatically, which is a perceptual
grouping problem. One may try heuristics such as group-
ing parallel lines to a planar face, yet often multiple inter-
pretations are possible. Similarly, the method proposed for

Figure 11. Reconstruction of topographic maps by piecewise pla-
narity using a grid of 10×10 cells. Each window is made of 2×2
cells.

Figure 12. Clockwise: synthetic cross sections of a radial sine and
last three singular vectors, solved by piecewise planarity on a grid
of 10× 10 cells. These solutions over-smooth the surface where a
single plane fit (figure 13(C)) is appropriate for this shape.

dealing with parallel curves depends on the size of the win-
dows that roughly approximate the surface. When they are
too small the surface will be over-smoothed, as shown in
figure 12.

A technical limitation of our formulation for parallel
planes is that we cannot group all sampled points to the
same plane, since minimizing ‖Cv‖ s.t. ‖Cv‖ = 1 is
meaningless. It is interesting to note that several unre-
solved examples in the literature could be solved by arrang-
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Figure 13. Shapes determined by a single plane fit. (A) Waves
from Stevens [16]. (B) Radial sine from Todd and Reichel [19].
(C) Sine with non-uniform cuts (same as figure 12). (D) Sine
with perturbed parallel cuts (intersection points were not used).
λ = 104 for (A,B,C) and λ = 103 for (D).

ing the cross sections as close as possible to a single princi-
ple plane. Computationally this means finding the singular
vector of the matrix

[
R;C

]
that corresponds to the smallest

singular value greater than ε. Figure 13 demonstrates this
singular vector on examples from Stevens [16], Todd and
Reichel [19], and two synthetic examples with random gaps
between parallel planes and nearly-parallel planes. While
the case of intersecting planar curves is now well under-
stood, the case of parallel cuts is more challenging and may
require combination of additional depth cues.

It is possible to combine planarity with other depth cues
to resolve the remaining degrees of freedom. For example,
Lipson and Shpitalni [9, 22] maximized measures such as
corner orthogonality and verticality of line segments. An-
other example is Surfaces Of Revolution (SOR [5]), which
are SHGC’s with two additional constraints. Shimshoni and
Ponce [15] and Shimodaira [14] used also shading. These
approaches require nonlinear optimization, potentially in
high dimension. Note that Sugihara [18] already proposed
to simplify the search by first solving the linear constraints
and then searching for scale and trivial subspace coefficients
(e.g. search in a 4D space) to optimize additional objectives.
Our method can contribute in that direction as well.

A. Appendices

A.1. Formulation for perspective projection

Following standard conventions, the relation between
image coordinates to world coordinates is x = fX/Z ,
y = fY/Z . A plane πi which does not pass through the
camera center is parameterized by

aiX + biY + ciZ(X, Y ) =
(aix/f + biy/f + ci)Z(X, Y ) = 1 ,

(14)

and the intersections between pairs of curves yield homoge-
nous linear equations analogous to (2)

1/Zi(xij , yij) − 1/Zj(xij , yij) =
(ai − aj)xij/f + (bi − bj)yij/f + (ci − cj) = 0 .

(15)

In the perspective case we divide by f the entries
xij , yij , xi, yi in the matrices A,Z,P of section 2, denoted
as Af ,Zf ,Pf , and minimize ‖Afvf‖ s.t. ‖Cfvf‖ = 1.
Sugihara [18] observed that the orthographic system (2) has
an exact non-trivial solution if and only if the perspective
system (15) with the same intersection points has such a so-
lution. Similarly, the singular values of our linear method in
perspective are the same as the orthographic ones. By set-
ting vf = (fa1, . . . , faN , fb1, . . . , fbN , d1, . . . , dN )T we
get Afvf = Av, Zfvf = Zv, PfP+

f = PP+, and
hence Cfvf = Cv. Note that in general, minimizing
‖Afvf‖ s.t. ‖vf‖ = 1 is not invariant to f .

In perspective, one should pick a solution so that all visi-
ble points are in front of the camera (cheirality constraints).

A.2. Distribution of the basic trivial component

Assume a set of random planes is viewed orthograph-
ically from a random direction, or simply that the planes
have random uniform orientations. What is then the distri-
bution of the basic trivial component? The relative magni-
tude of the basic trivial component is∥∥(

vT v1,vT v2,vT v3

)∥∥ /
∥∥v∥∥ . (16)

Since absolute depth is lost in orthographic view, we may
set vT v3 = 1√

N

∑
di = 0. An upper bound on (16) is

1√
N

∥∥(
∑

ai,
∑

bi)
∥∥ /

∥∥(a1, . . . , aN , b1, . . . , bN )
∥∥ . (17)

When the planes have uniform orientations, the direc-
tions of the unscaled normals are (nx

i , ny
i ,−nz

i ), where
nx

i , ny
i , nz

i ∼ N(0, 1). In the form of (1), ai ∼ nx
i /nz

i ,
bi ∼ ny

i /nz
i . The coefficients of the planes are Cauchy

distributed. The sum of Cauchy variables is also distributed
Cauchy, has a mode at zero but its mean is undefined (the
CLT doesn’t apply). The empiric histogram of (17) is shown
in figure 14. We conclude that, under the assumption of uni-
form normals, it is probable that the relative magnitudes of
vT v1 and vT v2 are small (figure 9 is an example).
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Figure 14. Histograms of (17) for random planes (106 trials).
Left: N = 10 planes, mean = 0.297, std = 0.108.
Right: N = 50, mean = 0.132, std = 0.05.

A.3. Ambiguous systems

The linear system (4) has a special structure: on each
row we have xij ,−xij , yij ,−yij , 1,−1. We show how
to construct systems with O(N2) intersections and a 2D
non-trivial subspace artificially. Let {π1

i },{π2
i } be any two

sets of N planes in general position, and {L1
ij},{L2

ij} the
lines defined by (3). Set (xij , yij) to be the intersection
point of L1

ij and L2
ij . By construction, the two sets of

planes {π1
i },{π2

i } are solutions to the system defined by this
choice of (xij , yij). Having a 3D non-trivial subspace is
much more accidental, since for each intersection the lines
L1

ij ,L2
ij ,L3

ij must intersect at a point (or two lines coincide).
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