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Abstract (wavelet) response is down-weighted if the adjacent chan-

In this paper we develop a novel contrast-invariant appear-nels are equally active but upgraded otherwise. The full set

ance detection model. The goal is to classify object-specifig ormalized sensors tuned for different spatial positions,
images (e.g. face images) from generic background patches, _.. : : . co e
The novel contribution of this paper is the design of a per_spat|al frequencies, orientations and contrast discrimination

ceptual distortion measure for comparing the appearance obands provide a basis for assessing the perceptual similarity
an object to its reconstruction from the principal subspace.between two images (see [13] for more details).

We demonstrate our approach on two different datasets: sep- : : o —
arating eyes from non-eyes and classifying faces from non- Ou'r.work generallzes this normallzat|9n scheme to object
faces. On the eye database, for a true detection rasf specific multi-scale representations derived from S-PCA. In

we demonstrate a nine-fold improvement in the false positiv@articular, we show that after applying a linear model for
rates over a previously reported detection model [5]. We alsahe appearance and doing perceptual normalization, we can
compare our detector model with a SVM classifier. simply use theL; norm to separate the classes. For the
1 Introduction task of separating images of eyes (extracted from the FERET

. . . database) from non-eyes, for a true detection rat@58%
In this paper we present a novel contrast-invariant aPPealye demonstrate a nine-fold improvement in the false posi-

ance.model for cIassﬁymg object-specific ensembles (e'g(ive rates over a previously reported detection model [5]. We
face images) from generic background patches. The oMy show results on the MIT face database [1].
trast signal is the intensity variation around a mean bright-

ness value. For the model proposed in this paper, we find it
convenient to employ a generic, local contrast-normalizatioy pDatasets
scheme based on the standard definition of Weber-contrast.
For mode”ing appearance, we emp|0y a linear, orthonor- We investigate two dif‘ferentimage datasets: eyES/non'eyeS
mal basis fromsparse principal component analy$&-PCA)  [5] and faces/non-faces [1]. The eye images are regions
[4, 3]. The S-PCA basis have roughly similar reconstruc-cropped from the FERET face database [6]. The face images
tion properties as PCA, but the PCA basis are global whilgvere first scaled and rotated such that, in the warped image,
S-PCA basis are sparse, spatially local, object-specific anthe centers of left and right eyes have a horizontal separation
multi-scale (that is, wavelet-like as shown in Fig. 1). of 40 pixels. From these warped images, we crop image re-
The novel contribution of this paper is the design of a per-9ions around the eyes, each of skfe< 25 pixels, to generate
ceptual distortion measure for comparing the appearance &fdatabase af392 eye patches.
an object to its reconstruction from a parameterized model, For non-eyes, we construct a generic background patch en-
such as an S-PCA based principal subspace. It is well knowsemble by running an interest point detector [10] on several
that standard error norms, such as the mean-squared-ermifferent natural images and collecting image patches with
(MSE), are unsuitable for measuring perceptual distortiondetector responses above a certain threshold. The interest
Recent successes in formulating perceptual distortion normgoint detector can be seen as a first step in the detection hi-
(e.g. [13]) have come from analyzing the psychophysicserarchy in that it eliminates blank, texture-less regions from
of detecting spatially simple patterns, particularly contrasffurther consideration. To populate th@0 dimensional input
and orientation masking, and understanding the functionadpace with a sufficiently large number of positive and nega-
properties of neurons in the primary visual cortex. A typ-tive examples, we symmetrize the ensemble. In particular, the
ical perceptual distortion model consists of a linear transeye images were flipped to generate mirror-symmetric pairs
formation of images by a “hand-crafted” wavelet represenfor a total of (2 x 2392) images. We take more liberties with
tation that is tuned to different spatial orientations and scaleghe generic background patches, reflecting them about the x-
followed by a divisive normalization mechanism. The nor-/y-axis and around the origin, to make the original database
malization scheme involves pooling information in adjacentof 3839 imagesi times as large. The datasets were randomly
wavelet channels (that is in neighbouring spatial locationssplit in half to train and test the detection algorithm proposed
orientations and scales, e.g., [2]). Normalization provides dere. We defer the details about the MIT face database to the
context for local significance, in that a high sensor channetesults section.



3 Previous Work filter G(i; o). The neighborhood size is determined by the
In our previously reported detection method [5], we ex-Standard deviatiom of the Gaussian function. While this
pand the test image in terms of an orthogonal basis derivegontrast computation removes shading variations, there are
from the training set. The orthogonal basis includes a conpixel outliers, such as the specularities from the eye glasses
stant DC image, the mean of the training set with the DCor the hair falling over the eye brows, that can bias the com-
component removed and the leadihf) eigenbasis vectors. putation. To reduce the effect of outliers we normalize the

For aM = 50 dimensional PCA subspace, the true deteccontrast values using the following expression:

tion rate grows t®5% and the false positive rate reduces to t, = ﬁ%ﬁ:ggg, (2)

~ 7%. We believe these recognition rates are less than satigvhere 3 is chosen such that for a predefined contrast value
factory. A closer inspection of the eyes rejected as false neg-, = c4;, the normalized contrast takes a value 0d.5. We
atives shows that these are images that look extreme, in thgkto = 3 for estimating the contrast anges = 0.3 for nor-
many have highlights caused by the specularities from the eymalization. In general, we observe larger values dhprove
glasses or contain pixel outliers such as the hair falling ovethe performance of the detector, but the detector is less sus-
the eyebrows etc. It is possible to improve on the false negaceptible to the actual setting ofer.

tive rates by taking into account only relevant portions of anSteps 2 & 3: S-PCA RepresentationiV, B

image in detec_ti_ng eyes, aswe have_ done in [5]. However, th@ye ;s 5.PCA over the standard PCA model for several rea-
high false positive rate remains major cause for concern andyns 4], S-PCA is an orthonormal basis with directions ro-
we present a vastly improved detection model next. tated away from the PCA basis but with roughly similar re-

While we concentrate on appegranc.:ejbased Subspa‘c”:‘énstruction properties. The computation of S-PCA basis co-
methods, much work has been done in building feature-basegkicients is efficient because of the presence of zero-valued

object detectors [12, 11], in particular systems where the feav'veights in the basis vectors (s§&6 in [3]). Finally, the S-

tures are simple to compute and hence the objects are fast o~ 5 learning algorithm is simple and the optimization pro-
detect[8, 7, 15, 9]. cedure is robust and scalable to high-dimensional spaces.

4 Detection Model The S-PCA basis matrix trained on generic background
The problem of detecting known appearances is analogowatches is given by, an N x N matrix. For anN-

to the problem of measuring image similarity, in that we needdimensional contrast-normalized imagthe V-dimensional

a perceptual error norm for meaningful results. Motivated byS-PCA coefficient vector is given by = W7”¢. Because
the work in [13], we propose a new th_e S-PCA basis look like Wav_el_ets, we abuse the notation
detector model outlined in the ﬁgf —— Z slightly to calld a wavelet coefficient vector. Next, S-PCA
ure shown to the right. There ar is trained separately on the wavelet coefficiehigenerated
five steps involved: (1) contrasts’” for Fhe images in the object-specifiq ensemble. For tthe fol-
normalize WCA)) the test imagey 57 B % lowing step, we build a low-dimensional representation for

i to obtaint: (2) project? into the the V\_/gvelet coefficie_nt vect(afusing the I_eadingw object-
wavelet-like spacéV derived from | o PDNl sp_ecmc S-F_’QA basis vectors. !n par_tlcular, Btbe the
training S-PCA on generic back™ g object-specific S-PCA basis matrix of sidex M, then pro-

ground patches and obtairas the 2 7 jecting the wavelet coefficient givesb = BTd and the

coefficient vector; (3) build a low-dimensional approximation wavelet coefficient vector can be reconstructed as Bb =
d to the coefficient vectod using S-PCA basi® constructed ~BB” d, which is againN-dimensional. Because the basis
for the object-specific ensemble in the “wavelet” space; (4matr|x B resides in the wavelet space populated by vectors

Fig. 1 we show the matrild/ « B obtained by pre-multiplying

object-specific S-PCA basi8 by the generic background
patch S-PCA basi$l’. Notice, the basi$V * B is sparse,
spatially local and multi-scale.

ficient vectord and its reconstructiod to obtain normalized
vectorsz andz; and finally (5) apply a simple detection strat-
egy toz andz. We explain these details next.
Step 1: Weber-Contrast Normalization (VCN) . o
Weber-contrast is a measure of the relationship between theteP 4: Perceptual Distance Normalization®DN)
response of a pixel and that of its neighborhood. In par-The coefficient vectord andd are now subjected to a per-
ticular, if z; is the response of a pixel at locatiagnand ceptual distance normalization process. The idea is to nor-
1; is an estimate of the mean response value in its neighmalize each wavelet coefficient by the pooled amplitude of
borhood, then the Weber contrast sigralis defined as: wavelet coefficients tuned to similar spatial frequencies and
ci = (x; — i)/ i (1) similar spatial neighborhoods [13, 2]. Because S-PCA basis
The mean signal valug; can be obtained by convolving the are learned from the data, as opposed to being hand-crafted,
image with a two-dimensional radially-symmetric Gaussianwe need to find what the adjacent scales and orientations are
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Figure 1: Leading multi-scale S-PCA basis for the datasets descril§ed({Rows 1-3)Waveletdor generic background image
patches;(Rows 4-Byeletsor eye database. Notice the sparsity in the S-PCA basis, with zero value denoted by gray level 127.

for each S-PCA basis function in an automatic fashion. Wetl gray levels) and measuring the statistics of the resulting S-
outline a simple strategy next. PCA coefficients. In particular, the random images are con-
The spatial frequency tuning of the waveletdinwas ob-  trast normalized and for each wavelet band a corresponding
served to be related to the variance of the wavelet coefficien@mplitude map is generated. The amplitude maps are then
over the training set. Therefore by partitioning the varianceProjected back onto the wavelet space and the saturation con-
spectrum we obtain subsets of wavelets tuned to roughly sinftantuy, is set to the median value of the coefficients of the
ilar spatial frequencies. We automated this partitioning usingimplitude map in each wavelet band. The perceptual distance
a K-means clustering algorithm on the log of the variancenormalized coefficients of a wavelet coefficient veefand
spectrum. The result is shown in Fig. 2a, where the spectrurits reconstructiorl are given by vectors andz respectively.
is partitioned into5 groups, each drawn in a different color Step 5: Detection Strategy
for the generic background patch ensemble. For the purpose of detection we measure two numbers: (1)

To identify the local amplitude of image structure in eachthe wavelet norm given by the, norm ofz; and (2) the error

frequency band we form the amplitude image using a band dform given by theL., norm of the error vector— 2. We study
S-PCA basis indexed froito A, the variation of these two numbers as a function of the in-

= ‘Zl<k<h Brdy| . (3) creasing subspace dimensionalit§; the number of columns

. o . ] in the basis matrix3. We expect the error norm to be high for
Hereuj;, denotes thé™ basis vectordy, is the corresponding  yeneric image patches because the subspace was built for the
wavelet coefficient value. In Fig. 2bOP) we show an eye  gpiect-specific ensemble. Also, we expect that the higher the
'mage and the b_andp_ass images that result from the,summ@hvelet norm, the higher will be the error norm for generic
tion in the equation given above in each of the five d|fferentimage patches. In fact, as we discuss next, what we observe
basis bands. In Fig. 2b(MDLE) we show the eye image g that the generic background patches and the object-specific
along with its amplitude maps that result from the absolutg;nsemple appear as two distinguishable clouds with a small

operation over the bandpass images as given in the equatiof,oynt of overlap (Fig. 2c). We next present results using a
above. To provide a better intuition for the bandpass image%traightforward detection strategy.

the images in Fig. 2b(B1TOM) show the Fourier magnitudes
of the bandpass images. 5 Results

To estimate the portion ?f this amplitude image within Eyes/Non-Eyesin Fig. 2c—d we show the results of applying
the spatial support of thé™ wavelet wy, we compute:  the new detection method on the test set of eyes/non-eyes by

sk = |dy|" . _ ~ (8 varyingM = {20,50,100,200}. For clarity the plot has been
It can be shown thay, > |d| with the equality holding when - scaled in such a way as to show all of the eye images (green
dj = 0forj # k. points) at the expense of omitting a portion of the non-eye im-

We can finally express the perceptual distance normalizaages (red points). As a detection strategy, we adopted a very
tion (PDN) of the k" element of the coefficient vector as simple approach of using a line aligned with the principal
zi = di/(sK + vip)- (5) axis of the generic image patch cloud (red points). Points be-
The constanty,, is a saturation parameter for the basis bandow the line are taken as positive detections. The ROC curve
indexed froml to h. It is determined empirically by pro- (Fig. 2d) is obtained by adjusting the y-intercept of the line.
cessing random images with a predetermined noise level (¥he ROC curve makes one thing very clear: the false posi-
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Figure 2: (a) Partitioning the variance spectrum into five regions. (b) An eye image and its bandpass components from the five
different basis bands ¢p), the corresponding amplitude maps®DLE) and the corresponding Fourier magnitude maps for
the bandpass imagesdTTOM). (¢) Characterizing eyes (green) and non-eyes (red) for the test set. (d) ROC curves for the eye
test set usinPDN.
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Figure 3: (a) Characterizing test-faces (blue), train-faces (green) (which together constitute the mixed-test set) and non-faces
in the mixed-test set (red). (b) ROC curves for the “mixed” test set UBiRgy". The black curve denotes recognition rate for
just the train-faces in the “mixed” test set. (c & d) ROC curves comparing SVM R\ for the eye test set in (c) and the
“mixed” face test set in (d). The green and the blue curves correspaid-to[50, 100] dimensional subspaces with DN
model. The red and magenta curves show results from using SVMwith5, 10] on the contrast normalized{CA/) dataset.
The SVM performance on the unnormalized eye images (gray) is given by the black and cyan curves inRPAT ligaphs
for eyes and faces are identical to the ones shown in Fig. 2d and Fig. 3b.
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tives can be kept very low, namely a value less thafi, for  the original training set and blue dots indicate faces from the
a true acceptance rate of 95% in a M = 50 dimensional original testing set. Using/ = 50 for a false positive rate
subspace. This is a significant improvement over the previef 0.1% we observel6% false negatives, out of which6%
ously reported detection model in [5] shown here in the saméelong to the original testing set. In fact, the face images in
plot as a black line. In particular, fab/ = 50 the gain in  the original testing set make up% of the mixed dataset and
false positive rate witlPDN is nine-fold for a true detection given the separation between the original training and origi-
rate of95% and is24-times better for a true detection rate of nal testing face images in the perceptually normalized space,
90%. this is not a surprise. Also, the black curve in Fig. 3b de-
Faces/Non-Faces:The MIT face database [1] consists of notes the recognition rates obtained usiig= 50 on just
2429/472 training/testing face images add48 /23573 train-  the original training set, while omitting the original test set.
ing/testing non-face images. Informally, most of the imagesThe recognition rates are near perfect.

in the training set are: cropped above the eyebrows, cropped e have also observed similar detection results using PCA
just below the bottom lip, centered, roughly frontal views, and,qqels (instead of S-PCA) for object-specific and back-

relatively well exposed. However, very few of the images inground ensembles with the saf®A formulation as pro-
the test set appear to satisfy all these properties. We therefo{fye( in Eqs4 — 5).
created “mixed” training and testing sets by merging all these

face images, adding the mirror symmetric versions, then rancemparison with SVM: We compare the performance of our

domly selecting half the dataset for mixed-training and thed€tector with a publicly available implementation of a support
other half for mixed-testing. In Fig. 3a we plot the perceptu-'ECtor machine (SVM) classifier [1]. SVM is parameterized
ally normalized space for the newly created testing set, WherBy a kernel function and & value which is the cost per unit

red dots indicate non-faces, green dots indicate faces frofyolation of the classifier margin. We chose a Gaussian kernel
and varied ther parameter. Th€' value was set ta, other



values were tried but did not have a significant effect on thédé Conclusion
classifier. In this paper we developed a novel contrast-invariant ap-
On the eye dataset for different valuesooive observed a pearance detection model to classify object-specific images
large variation in the total number of support vectors returnedfrom generic background patches. The novel contribution of
In particular, fore = [3, 5, 10, 20] the number of support vec- this paper is the design of a perceptual distortion measure for
tors returned on the training set 46267, 1564, 1140, 1616] comparing the appearance of an object to its reconstruction
respectively. Each support vector involves a dot product anfrom the principal subspace. We showed an improved
hence, for a fair comparison the number of support vectorperformance with our perceptual distance normalization
returned should be comparable to the number of inner prod:PPN) based detection model. But this improvement comes
ucts performed with th® DA model for a suitable choice of Wwith a price in that the images have to be represented in the
M. Thus, we selected = [5, 10] andM = [50, 100]. full N-dimensional wavelet domain. However, we expect

In Fig. 3c we compare the detection results from SVM towavelet decomposition of signals to be a standard pre-
our PDA” model on the eye dataset. The green and the bluBrocessing tool. The simplicity of the detector in the wavelet
curves denote the use aff = [50,100] dimensional sub- domain is striking. In particular, after applying a linear
spaces with th@ DA model. ThePDN graphs are identi- model of eyes/faces and performing perceptual distance nor-
cal to the ones shown in Fig. 2d. The red and magenta curvéalization we can simply use ttig norm to separate classes.
show results from using SVM with = [5,10]. The perfor- . ' . '
mance of SVM witho = 10 is similar to usingPDA with Ack: We thank G. Hinton and S. Roweis for discussions
M = 50. Increasing the total number of support vectors, i.e related to this work.
reducingo from 10 to 5, improves the performance of SVM. References
In addition, we tested the performance of the SVM on the[1] M. Alvira and R. Rifkin. An Empirical Comparison of SNoW

iqi - i i i and SVMs for Face Detection. CBCL, MIT, A.l. Memo:2001-
original gray _Ieve_l images (_|.e. withost/CN) (black and_ 004, hitp-//www.ai.mit.edu/projects/chel
cyan curves in Fig. 3c). It is clear that contrast normaliza-  software-datasets/FaceData2.html
tion causes a significant improvement in the performance of2] R w Buccigrossi and E P Simoncelli. Image compression via
SVM. joint statistical characterization in the wavelet domalkEE

We ran a similar experiment on the mixed training and test- | Tcra;' I(r:nhage P;(;cetlssg@(lf).I1:‘>/|8€;17dOlf, Dij T?gsg' o Feat
. L. ennuonotia spectral iviethods T1or Multi->Cale Feature
ing sets that we created for.the MIT face ‘?‘atabas_e-_ The nun{- Extraction and Data Clustering. Ph.D Thesis. Dept of Com-
ber of support vectors obtained on the mixed training set for  puter Science, University of Toronto, 200ttp://www.

o = [5,10] are[1549, 1434] respectively. In Fig. 3d we com- cs.toronto.edu/"chakra/thesis.pdf

pare the detection results from SVM to cBDAN model on  [4] C. Chennubhotla and A. Jepson. Sparse Principal Component
the mixed testing set. The green and the blue curves denote Analysis.ICCV, pg. 641-647,2001.

the use ofM = [50,100] dimensional subspaces with the [5] IC' Cher;néj_bho%a,tA.t_Jer?(s:%n aggojz' Midgley. Robust Contrast-
PDN model. ThePDA graphs are identical to the ones nvariant EigenDetectionlCPR '
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shown in Fig. 3b. The red and magenta curves show result[:ﬁ database and evaluation procedure for face recognition algo-
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wavelets, and there is likely to be a more efficient way to do ~ Statistics of PartslJCV, 2002.
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