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Abstract
In this paper we develop a novel contrast-invariant appear-
ance detection model. The goal is to classify object-specific
images (e.g. face images) from generic background patches.
The novel contribution of this paper is the design of a per-
ceptual distortion measure for comparing the appearance of
an object to its reconstruction from the principal subspace.
We demonstrate our approach on two different datasets: sep-
arating eyes from non-eyes and classifying faces from non-
faces. On the eye database, for a true detection rate of95%
we demonstrate a nine-fold improvement in the false positive
rates over a previously reported detection model [5]. We also
compare our detector model with a SVM classifier.

1 Introduction
In this paper we present a novel contrast-invariant appear-

ance model for classifying object-specific ensembles (e.g.
face images) from generic background patches. The con-
trast signal is the intensity variation around a mean bright-
ness value. For the model proposed in this paper, we find it
convenient to employ a generic, local contrast-normalization
scheme based on the standard definition of Weber-contrast.
For modelling appearance, we employ a linear, orthonor-
mal basis fromsparse principal component analysis(S-PCA)
[4, 3]. The S-PCA basis have roughly similar reconstruc-
tion properties as PCA, but the PCA basis are global while
S-PCA basis are sparse, spatially local, object-specific and
multi-scale (that is, wavelet-like as shown in Fig. 1).

The novel contribution of this paper is the design of a per-
ceptual distortion measure for comparing the appearance of
an object to its reconstruction from a parameterized model,
such as an S-PCA based principal subspace. It is well known
that standard error norms, such as the mean-squared-error
(MSE), are unsuitable for measuring perceptual distortion.
Recent successes in formulating perceptual distortion norms
(e.g. [13]) have come from analyzing the psychophysics
of detecting spatially simple patterns, particularly contrast
and orientation masking, and understanding the functional
properties of neurons in the primary visual cortex. A typ-
ical perceptual distortion model consists of a linear trans-
formation of images by a “hand-crafted” wavelet represen-
tation that is tuned to different spatial orientations and scales,
followed by a divisive normalization mechanism. The nor-
malization scheme involves pooling information in adjacent
wavelet channels (that is in neighbouring spatial locations,
orientations and scales, e.g., [2]). Normalization provides a
context for local significance, in that a high sensor channel

(wavelet) response is down-weighted if the adjacent chan-
nels are equally active but upgraded otherwise. The full set
of normalized sensors tuned for different spatial positions,
spatial frequencies, orientations and contrast discrimination
bands provide a basis for assessing the perceptual similarity
between two images (see [13] for more details).

Our work generalizes this normalization scheme to object-
specific multi-scale representations derived from S-PCA. In
particular, we show that after applying a linear model for
the appearance and doing perceptual normalization, we can
simply use theL1 norm to separate the classes. For the
task of separating images of eyes (extracted from the FERET
database) from non-eyes, for a true detection rate of95%
we demonstrate a nine-fold improvement in the false posi-
tive rates over a previously reported detection model [5]. We
also show results on the MIT face database [1].

2 Datasets

We investigate two different image datasets: eyes/non-eyes
[5] and faces/non-faces [1]. The eye images are regions
cropped from the FERET face database [6]. The face images
were first scaled and rotated such that, in the warped image,
the centers of left and right eyes have a horizontal separation
of 40 pixels. From these warped images, we crop image re-
gions around the eyes, each of size20×25 pixels, to generate
a database of2392 eye patches.

For non-eyes, we construct a generic background patch en-
semble by running an interest point detector [10] on several
different natural images and collecting image patches with
detector responses above a certain threshold. The interest
point detector can be seen as a first step in the detection hi-
erarchy in that it eliminates blank, texture-less regions from
further consideration. To populate the500 dimensional input
space with a sufficiently large number of positive and nega-
tive examples, we symmetrize the ensemble. In particular, the
eye images were flipped to generate mirror-symmetric pairs
for a total of(2× 2392) images. We take more liberties with
the generic background patches, reflecting them about the x-
/y-axis and around the origin, to make the original database
of 3839 images4 times as large. The datasets were randomly
split in half to train and test the detection algorithm proposed
here. We defer the details about the MIT face database to the
results section.



3 Previous Work
In our previously reported detection method [5], we ex-

pand the test image in terms of an orthogonal basis derived
from the training set. The orthogonal basis includes a con-
stant DC image, the mean of the training set with the DC
component removed and the leadingM eigenbasis vectors.
For aM = 50 dimensional PCA subspace, the true detec-
tion rate grows to95% and the false positive rate reduces to
≈ 7%. We believe these recognition rates are less than satis-
factory. A closer inspection of the eyes rejected as false neg-
atives shows that these are images that look extreme, in that
many have highlights caused by the specularities from the eye
glasses or contain pixel outliers such as the hair falling over
the eyebrows etc. It is possible to improve on the false nega-
tive rates by taking into account only relevant portions of an
image in detecting eyes, as we have done in [5]. However, the
high false positive rate remains major cause for concern and
we present a vastly improved detection model next.

While we concentrate on appearance-based subspace
methods, much work has been done in building feature-based
object detectors [12, 11], in particular systems where the fea-
tures are simple to compute and hence the objects are fast to
detect [8, 7, 15, 9].

4 Detection Model
The problem of detecting known appearances is analogous

to the problem of measuring image similarity, in that we need
a perceptual error norm for meaningful results. Motivated by

the work in [13], we propose a new
detector model outlined in the fig-
ure shown to the right. There are
five steps involved: (1) contrast-
normalize (WCN ) the test image
~x to obtain~t; (2) project~t into the
wavelet-like spaceW derived from
training S-PCA on generic back-
ground patches and obtain~d as the

~t
WCN←−−−− ~xyW T

~d
BT

−−−−→ ~b
B−−−−→ ~̂

dyPDN PDN
y

~z ~̂z

coefficient vector; (3) build a low-dimensional approximation
~̂
d to the coefficient vector~d using S-PCA basisB constructed
for the object-specific ensemble in the “wavelet” space; (4)
apply perceptual distance normalizationPDN on the coef-

ficient vector~d and its reconstruction~̂d to obtain normalized
vectors~z and~̂z; and finally (5) apply a simple detection strat-
egy to~z and~̂z. We explain these details next.
Step 1: Weber-Contrast Normalization (WCN )
Weber-contrast is a measure of the relationship between the
response of a pixel and that of its neighborhood. In par-
ticular, if xi is the response of a pixel at locationi and
µi is an estimate of the mean response value in its neigh-
borhood, then the Weber contrast signalci is defined as:

ci = (xi − µi)/µi. (1)
The mean signal valueµi can be obtained by convolving the
image with a two-dimensional radially-symmetric Gaussian

filter G(i ; σ). The neighborhood size is determined by the
standard deviationσ of the Gaussian function. While this
contrast computation removes shading variations, there are
pixel outliers, such as the specularities from the eye glasses
or the hair falling over the eye brows, that can bias the com-
putation. To reduce the effect of outliers we normalize the
contrast values using the following expression:

ti = 1−exp(−βci)
1+exp(−βci)

, (2)
whereβ is chosen such that for a predefined contrast value
ci = cdef, the normalized contrastti takes a value of0.5. We
setσ = 3 for estimating the contrast andcdef = 0.3 for nor-
malization. In general, we observe larger values ofσ improve
the performance of the detector, but the detector is less sus-
ceptible to the actual setting ofcdef.

Steps 2 & 3: S-PCA Representation:W,B
We use S-PCA over the standard PCA model for several rea-
sons [4]. S-PCA is an orthonormal basis with directions ro-
tated away from the PCA basis but with roughly similar re-
construction properties. The computation of S-PCA basis co-
efficients is efficient because of the presence of zero-valued
weights in the basis vectors (see§3.6 in [3]). Finally, the S-
PCA learning algorithm is simple and the optimization pro-
cedure is robust and scalable to high-dimensional spaces.

The S-PCA basis matrix trained on generic background
patches is given byW , an N × N matrix. For anN -
dimensional contrast-normalized image~t theN -dimensional
S-PCA coefficient vector is given by~d = WT~t. Because
the S-PCA basis look like wavelets, we abuse the notation
slightly to call ~d a wavelet coefficient vector. Next, S-PCA
is trained separately on the wavelet coefficients~d generated
for the images in the object-specific ensemble. For the fol-
lowing step, we build a low-dimensional representation for
the wavelet coefficient vector~d using the leadingM object-
specific S-PCA basis vectors. In particular, letB be the
object-specific S-PCA basis matrix of sizeN ×M , then pro-
jecting the wavelet coefficient~d gives~b = BT ~d and the

wavelet coefficient vector can be reconstructed as~̂
d = B~b =

BBT ~d, which is againN -dimensional. Because the basis
matrix B resides in the wavelet space populated by vectors
~d it is hard to interpret the basis vectors visually. Hence, in
Fig. 1 we show the matrixW ∗B obtained by pre-multiplying
object-specific S-PCA basisB by the generic background
patch S-PCA basisW . Notice, the basisW ∗ B is sparse,
spatially local and multi-scale.

Step 4: Perceptual Distance Normalization (PDN )

The coefficient vectors~d and ~̂
d are now subjected to a per-

ceptual distance normalization process. The idea is to nor-
malize each wavelet coefficient by the pooled amplitude of
wavelet coefficients tuned to similar spatial frequencies and
similar spatial neighborhoods [13, 2]. Because S-PCA basis
are learned from the data, as opposed to being hand-crafted,
we need to find what the adjacent scales and orientations are
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Figure 1: Leading multi-scale S-PCA basis for the datasets described in§2: (Rows 1-3)Waveletsfor generic background image
patches;(Rows 4-5)Eyeletsfor eye database. Notice the sparsity in the S-PCA basis, with zero value denoted by gray level 127.

for each S-PCA basis function in an automatic fashion. We
outline a simple strategy next.

The spatial frequency tuning of the wavelets inW was ob-
served to be related to the variance of the wavelet coefficients
over the training set. Therefore by partitioning the variance
spectrum we obtain subsets of wavelets tuned to roughly sim-
ilar spatial frequencies. We automated this partitioning using
a K-means clustering algorithm on the log of the variance
spectrum. The result is shown in Fig. 2a, where the spectrum
is partitioned into5 groups, each drawn in a different color
for the generic background patch ensemble.

To identify the local amplitude of image structure in each
frequency band we form the amplitude image using a band of
S-PCA basis indexed froml to h,

~p =
∣∣∣∑l≤k≤h ~wkdk

∣∣∣ . (3)

Here ~wk denotes thekth basis vector,dk is the corresponding
wavelet coefficient value. In Fig. 2b(TOP) we show an eye
image and the bandpass images that result from the summa-
tion in the equation given above in each of the five different
basis bands. In Fig. 2b(MIDDLE) we show the eye image
along with its amplitude maps that result from the absolute
operation over the bandpass images as given in the equation
above. To provide a better intuition for the bandpass images,
the images in Fig. 2b(BOTTOM) show the Fourier magnitudes
of the bandpass images.

To estimate the portion of this amplitude image within
the spatial support of thekth wavelet ~wk, we compute:

sk = |~wk|T ~p. (4)
It can be shown thatsk ≥ |dk|with the equality holding when
dj = 0 for j 6= k.

We can finally express the perceptual distance normaliza-
tion (PDN ) of the kth element of the coefficient vector as

zk = dk/(sk + υlh). (5)
The constantυlh is a saturation parameter for the basis band
indexed froml to h. It is determined empirically by pro-
cessing random images with a predetermined noise level (=

4 gray levels) and measuring the statistics of the resulting S-
PCA coefficients. In particular, the random images are con-
trast normalized and for each wavelet band a corresponding
amplitude map is generated. The amplitude maps are then
projected back onto the wavelet space and the saturation con-
stantυlh is set to the median value of the coefficients of the
amplitude map in each wavelet band. The perceptual distance
normalized coefficients of a wavelet coefficient vector~d and
its reconstruction~̂d are given by vectors~z and~̂z respectively.
Step 5: Detection Strategy
For the purpose of detection we measure two numbers: (1)
the wavelet norm given by theL1 norm of~z; and (2) the error
norm given by theL1 norm of the error vector~z−~̂z. We study
the variation of these two numbers as a function of the in-
creasing subspace dimensionalityM , the number of columns
in the basis matrixB. We expect the error norm to be high for
generic image patches because the subspace was built for the
object-specific ensemble. Also, we expect that the higher the
wavelet norm, the higher will be the error norm for generic
image patches. In fact, as we discuss next, what we observe
is that the generic background patches and the object-specific
ensemble appear as two distinguishable clouds with a small
amount of overlap (Fig. 2c). We next present results using a
straightforward detection strategy.

5 Results
Eyes/Non-Eyes:In Fig. 2c–d we show the results of applying
the new detection method on the test set of eyes/non-eyes by
varyingM = {20, 50, 100, 200}. For clarity the plot has been
scaled in such a way as to show all of the eye images (green
points) at the expense of omitting a portion of the non-eye im-
ages (red points). As a detection strategy, we adopted a very
simple approach of using a line aligned with the principal
axis of the generic image patch cloud (red points). Points be-
low the line are taken as positive detections. The ROC curve
(Fig. 2d) is obtained by adjusting the y-intercept of the line.
The ROC curve makes one thing very clear: the false posi-
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Figure 2: (a) Partitioning the variance spectrum into five regions. (b) An eye image and its bandpass components from the five
different basis bands (TOP), the corresponding amplitude maps (MIDDLE ) and the corresponding Fourier magnitude maps for
the bandpass images (BOTTOM). (c) Characterizing eyes (green) and non-eyes (red) for the test set. (d) ROC curves for the eye
test set usingPDN .
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Figure 3: (a) Characterizing test-faces (blue), train-faces (green) (which together constitute the mixed-test set) and non-faces
in the mixed-test set (red). (b) ROC curves for the “mixed” test set usingPDN . The black curve denotes recognition rate for
just the train-faces in the “mixed” test set. (c & d) ROC curves comparing SVM withPDN for the eye test set in (c) and the
“mixed” face test set in (d). The green and the blue curves correspond toM = [50, 100] dimensional subspaces with thePDN
model. The red and magenta curves show results from using SVM withσ = [5, 10] on the contrast normalized (WCN ) dataset.
The SVM performance on the unnormalized eye images (gray) is given by the black and cyan curves in (c). ThePDN graphs
for eyes and faces are identical to the ones shown in Fig. 2d and Fig. 3b.

tives can be kept very low, namely a value less than0.8%, for
a true acceptance rate of≈ 95% in a M = 50 dimensional
subspace. This is a significant improvement over the previ-
ously reported detection model in [5] shown here in the same
plot as a black line. In particular, forM = 50 the gain in
false positive rate withPDN is nine-fold for a true detection
rate of95% and is24-times better for a true detection rate of
90%.
Faces/Non-Faces:The MIT face database [1] consists of
2429/472 training/testing face images and4548/23573 train-
ing/testing non-face images. Informally, most of the images
in the training set are: cropped above the eyebrows, cropped
just below the bottom lip, centered, roughly frontal views, and
relatively well exposed. However, very few of the images in
the test set appear to satisfy all these properties. We therefore
created “mixed” training and testing sets by merging all these
face images, adding the mirror symmetric versions, then ran-
domly selecting half the dataset for mixed-training and the
other half for mixed-testing. In Fig. 3a we plot the perceptu-
ally normalized space for the newly created testing set, where
red dots indicate non-faces, green dots indicate faces from

the original training set and blue dots indicate faces from the
original testing set. UsingM = 50 for a false positive rate
of 0.1% we observe16% false negatives, out of which96%
belong to the original testing set. In fact, the face images in
the original testing set make up16% of the mixed dataset and
given the separation between the original training and origi-
nal testing face images in the perceptually normalized space,
this is not a surprise. Also, the black curve in Fig. 3b de-
notes the recognition rates obtained usingM = 50 on just
the original training set, while omitting the original test set.
The recognition rates are near perfect.

We have also observed similar detection results using PCA
models (instead of S-PCA) for object-specific and back-
ground ensembles with the samePDN formulation as pro-
vided in Eqs.(3− 5).

Comparison with SVM: We compare the performance of our
detector with a publicly available implementation of a support
vector machine (SVM) classifier [1]. SVM is parameterized
by a kernel function and aC value which is the cost per unit
violation of the classifier margin. We chose a Gaussian kernel
and varied theσ parameter. TheC value was set to1, other
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values were tried but did not have a significant effect on the
classifier.

On the eye dataset for different values ofσ we observed a
large variation in the total number of support vectors returned.
In particular, forσ = [3, 5, 10, 20] the number of support vec-
tors returned on the training set are[5267, 1564, 1140, 1616]
respectively. Each support vector involves a dot product and
hence, for a fair comparison the number of support vectors
returned should be comparable to the number of inner prod-
ucts performed with thePDN model for a suitable choice of
M . Thus, we selectedσ = [5, 10] andM = [50, 100].

In Fig. 3c we compare the detection results from SVM to
ourPDN model on the eye dataset. The green and the blue
curves denote the use ofM = [50, 100] dimensional sub-
spaces with thePDN model. ThePDN graphs are identi-
cal to the ones shown in Fig. 2d. The red and magenta curves
show results from using SVM withσ = [5, 10]. The perfor-
mance of SVM withσ = 10 is similar to usingPDN with
M = 50. Increasing the total number of support vectors, i.e.
reducingσ from 10 to 5, improves the performance of SVM.
In addition, we tested the performance of the SVM on the
original gray-level images (i.e. withoutWCN ) (black and
cyan curves in Fig. 3c). It is clear that contrast normaliza-
tion causes a significant improvement in the performance of
SVM.

We ran a similar experiment on the mixed training and test-
ing sets that we created for the MIT face database. The num-
ber of support vectors obtained on the mixed training set for
σ = [5, 10] are[1549, 1434] respectively. In Fig. 3d we com-
pare the detection results from SVM to ourPDN model on
the mixed testing set. The green and the blue curves denote
the use ofM = [50, 100] dimensional subspaces with the
PDN model. ThePDN graphs are identical to the ones
shown in Fig. 3b. The red and magenta curves show results
from using SVM withσ = [5, 10]. The performance of SVM
with σ = 10 is similar to usingPDN with M = 50. The best
detection result we obtained was forσ = 5, which required
1549 support vectors.

A detailed comparison of the different methods is beyond
the scope of this paper for several reasons: (1) ThePDN
normalization isnot optimal in terms of computational effi-
ciency. It was designed for simplicity. The normalization of
each wavelet should depend only on a few “neighbouring”
wavelets, and there is likely to be a more efficient way to do
this than by generating the amplitude map; (2) It is not clear
that the SVM implementation we have used is optimal (e.g.
see [14]). If neither method is optimal, a detailed comparison
may not be very revealing. Perhaps, most interesting is the
use of several detectors (e.g., an eye, a nose, a mouth, and a
face detector) within a single system. For such a system the
wavelet transform used in our approach is common to all de-
tectors, and hence the cost of the wavelet transform, in terms
of the underlying hardware, can be amortized.

6 Conclusion
In this paper we developed a novel contrast-invariant ap-

pearance detection model to classify object-specific images
from generic background patches. The novel contribution of
this paper is the design of a perceptual distortion measure for
comparing the appearance of an object to its reconstruction
from the principal subspace. We showed an improved
performance with our perceptual distance normalization
(PDN ) based detection model. But this improvement comes
with a price in that the images have to be represented in the
full N -dimensional wavelet domain. However, we expect
wavelet decomposition of signals to be a standard pre-
processing tool. The simplicity of the detector in the wavelet
domain is striking. In particular, after applying a linear
model of eyes/faces and performing perceptual distance nor-
malization we can simply use theL1 norm to separate classes.

Ack: We thank G. Hinton and S. Roweis for discussions
related to this work.
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