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Abstract

Sparse Principal Component Analysis (S-PCA) is a novel
framework for learning a linear, orthonormal basis repre-
sentation for structure intrinsic to an ensemble of images.
S-PCA is based on the discovery that natural images ex-
hibit structure in a low-dimensional subspace in a sparse,
scale-dependent form. The S-PCA basis optimizes an ob-
jective function which trades off correlations among output
coefficients for sparsity in the description of basis vector el-
ements. This objective function is minimized by a simple,
robust and highly scalable adaptation algorithm, consisting
of successive planar rotations of pairs of basis vectors. The
formulation of S-PCA is novel in that multi-scale represen-
tations emerge for a variety of ensembles including face im-
ages, images from outdoor scenes and a database of optical
flow vectors representing a motion class.

1 Introduction

Our goal is to extract structure intrinsic to an ensemble
of images. We consider ensembles formed from natural
images—for example, images sampled from outdoor envi-
ronments, face images acquired from roughly similar view-
points, images of a gesturing hand, or vector-valued optical
flow images collected from motion sequences. As is well
known, the images in such ensembles exhibit structure at
multiple spatial scales. In this paper we describe a new
learning technique, for deriving a linear basis representation,
to highlight ensemble-specific, multi-scale structure.

To obtain a multi-scale representation, there are at least
two approaches to take: (1) use a basis set that is “prede-
fined” or “fixed”, e.g. 2-D Gabors or wavelets; (2) learn a
representation to match the structure in an image ensemble.
Since a predefined basis is inflexible, and often awkward to
define, we pursue a learning framework instead.

Most learning algorithms are based on the hypothesis that
images are caused by a linear combination of statistically
independent components. The typical goal is to seek a rep-
resentation that can reduce, if not eliminate, pixel redundan-
cies. The hope is that basis functions will acquire the shape
and form of the underlying independent component struc-
ture. One strategy is to combine the knowledge of ensemble
statistics with simple optimization principles. For example,
Principal Component Analysis (PCA) [7] uses second-order

statistics to decorrelate the outputs of an orthogonal set of
basis vectors. Alternatively, Sparse coding constrains out-
puts to be drawn from a low-entropy distribution to achieve,
if not independence, at least a reduction in higher-order de-
pendencies [12]. Similarly, Independent Component Analy-
sis (ICA) is closely related to sparse coding and is based on
an information-theoretic argument of maximizing the joint
entropy of a non-linear transform of the coefficient vectors
[2].

The strategies of sparse coding and ICA are deemed suc-
cessful when applied to an ensemble of natural scenes, be-
cause they extract multi-scale, wavelet-like structure. How-
ever, when the input ensemble is specific to an object (e.g.
face images), sparse coding, ICA and PCA lead to basis im-
ages that are not multi-scale, appear holistic and lack an “ob-
vious” visual interpretation [1, 15, 17]. We will explore this
observation further when we compare these methods with
our framework below.

A primary contribution of this paper is to show how multi-
scale representations emerge, for a variety of image ensem-
bles, by trading off redundancy minimization for sparsity
maximization in a basis matrix. We base our strategy, Sparse
Principal Component Analysis (S-PCA), on the discovery
that natural images exhibit structure in a low-dimensional
subspace in a sparse, scale-dependent form. As we demon-
strate, placing a sparse prior on the basis elements is a pow-
erful way to predispose the learning mechanism to converge
to this naturally-occurring, sparse, multi-scale structure. We
will show that, while PCA determines the optimal subspace,
S-PCA can discover the structure internal to that space.

S-PCA learns an orthonormal basis by rotating the basis
vectors that span the principal subspace. Rotation achieves
sparsity in the basis vectors at the cost of introducing cor-
relations in the output coefficients. If the input ensemble
is a multi-dimensional Gaussian with widely separated vari-
ance distribution, then S-PCA returns a redundancy mini-
mizing solution, namely the basis vectors of PCA. On the
other hand, if the input ensemble is devoid of any structure
(i.e. i.i.d. pixel intensities), then S-PCA returns a maximally



Proceedings International Conference on Computer Vision, pages 641-647, Vancouver, Canada, 2001 © |EEE 2

Distribution 1 Distribution 2

10 2
N N
g o0 2o
o a
-10 -2
-2 -4
—%O 0 20 -4 -2 0 2 4
Pixel 1 Pixel 1
(@) (b)

Figure 1: What is PCA good for? Distributions 1 and
2 (black dots) are 2-pixel image ensembles sampled from
multi-dimensional Gaussian priors. (a) Distribution 1 has a
dominant orientation indicated by the PCA basis (blue). (b)
Distribution 2 has no orientational structure, and the PCA
basis (blue) reflects sampling noise. In both cases the pre-
ferred S-PCA basis vectors (red) are obtained by rotating
PCA directions. In (a) the rotation is minimal, while in (b)
the rotation maximizes sparsity in the basis vector descrip-
tion by aligning them with the pixel basis.

sparse representation, with each basis vector representing
the brightness at a single pixel. As our examples show, this
property of returning a sparse representation, when possible,
provides a much more intuitive representation of the ensem-
ble than a standard PCA based representation.

Besides this theoretical advantage of providing a better
intuitive model of an ensemble, the computation of the basis
coefficients is more efficient because of the presence of zero
valued weights in the sparse basis vectors. The speed-up
obtained from this sparsity will depend on both the ensemble
and on the number of basis vectors used. In particular, for
all the natural data sets we have considered, the S-PCA basis
vectors tend to get increasingly sparse as the corresponding
variances decrease. Therefore the speed-up due to sparsity
can be very significant when many basis vectors are used,
but less significant when only a few are used.

2 Encouraging Sparsity

To illustrate the basic idea of S-PCA, consider 2-pixel im-
age ensembles generated from a multi-dimensional Gaus-
sian distribution. Each image is a point in a 2-dimensional
space. In Fig. 1, we show two such datasets, one with a
dominant orientation (a) and the other essentially isotropic
(b).

PCA determines an orthogonal set of basis vectors with
the property that the basis expansion coefficients are decor-
related. The idea of PCA in this 2D example is to rotate
the pixel basis, (;?), until the variance of the projected data
is maximized for one component and is minimized for the
other. In Fig. 1, the PCA directions for the distributions are
shown in blue. For the correlated dataset in Fig. 1a, the PCA
vectors are aligned with the oriented structure underneath.

For the uncorrelated dataset in Fig. 1b, the specific direc-
tions that PCA selects are dictated by sampling noise. For
such datasets we prefer basis vectors that are sparse, that is,
have few non-zero entries. In this 2D example, this is just
the pixel basis, (;7), as shown in red in Fig. 1b. Note the
sparse basis can be achieved by simply rotating the PCA ba-
sis by an amount depending on the degree of correlation in
the underlying dataset.

3 SPCA Pairwise Rotation Algorithm

The idea behind S-PCA is to retain the PCA directions
when there is correlational structure in the data set, and oth-
erwise rotate them to be as sparse as possible. We propose
a cost function C'(A) = Cy + AC5, where C; is a function
of the variances of the data projected onto the individual ba-
sis vectors, and C is a function of the elements of the basis
vectors themselves. The exact form for C; and C, are not
so important, so long as C; is designed to retain the PCA di-
rections while C'; promotes sparsity. The A parameter in the
cost function provides the relative importance of the sparsity
term, and in this paper we choose it to make the contribu-
tions from C; and C> have the same scale. See the Appendix
for the actual Cy, C> and A used in all the examples in this
paper.

The learning algorithm of S-PCA is very simple. The ba-
sis vectors are initialized to be the principal components.
The dimensionality of this principal subspace is chosen be-
fore hand. Every pair of these basis vectors defines a hyper-
plane, and we successively select suitable rotations within
these hyperplanes to minimize C'(\). We sweep through
every possible basis vector pair doing these rotations, and
these sweeps are repeated until the change in C'()) is below
a threshold. The product of the pairwise rotations provides a
composite rotation matrix which, when applied to the PCA
vectors generates the S-PCA basis. In particular, the S-PCA
and PCA bases are orthonormal representations for the same
subspace and are related to each by other by this rotation ma-
trix. A typical implementation of this algorithm is included
in the Appendix.

The PCA basis is used as the starting point since it iden-
tifies the principal subspace best suited to recovering corre-
lational structure. The job of the S-PCA algorithm is then
simply to resolve the range of the spatial correlations. Note
that the S-PCA basis is always a rotation of the original ba-
sis, so some care should be taken in choosing this starting
basis. In cases for which we want a complete representa-
tion, we have found that the trivial basis (i.e. provided by
the columns of the identity matrix) can also be used as a
starting point for the S-PCA algorithm.

3.1 SPCA on Filtered Noise

For an illustrative example we consider an ensemble gen-
erated by convolving random white-noise vectors Z with a
Gaussian kernel g, and adding small amounts of noise .
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Figure 2: Representing filtered noise ensemble. Each wave-
form is 32 pixels long. (a) Basis vectors from PCA (b)
Multi-scale basis vectors from S-PCA. Zero valued weights
cause hasis matrix to be sparse.

That is, ¥ = § ® ¥ + 7, with both Z and 77 i.i.d. signals.
Note that, because of the smoothing, the output signal i is
correlated in spatially local neighborhoods. Below we show
that S-PCA provides a representation which highlights this
structure.

A Principal Component Analysis (PCA) of such a data
set provides a basis representation which is global and spa-
tial frequency specific. The PCA basis is depicted in Fig. 2a,
where each waveform corresponds to a basis vector. Notice
that this representation does not highlight the spatially local-
ized structure introduced by the Gaussian smoothing.

The S-PCA basis derived for the low-pass filtered noise
vectors provides structure at multiple scales (see Fig. 2b).
The first few basis vectors appear as low-pass signals, whose
size is indicative of the Gaussian kernel used to introduce the
correlations between pixels. While these basis vectors are
spread evenly over the pixel space, they cannot significantly
overlap due to the orthogonality constraint. Instead, basis
vectors at the next scale exhibit entries with multiple signs,
but still remain local. Thus S-PCA generates spatially local-
ized, bandpass functions as basis vectors, thereby achieving
a joint space and frequency description in a manner similar
to a wavelet basis. Moreover, the basis derived by S-PCA is
orthogonal.

The separation in scales can be also seen in the plot of
the variances as a function of the basis index (Fig. 3a). No-
tice that the smoothly decaying variances for the the PCA
basis have been reshaped by S-PCA to locally flat portions.
Each flat portion corresponds to basis functions at a particu-
lar scale.

There are two other properties of S-PCA worth noting.
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Figure 3: Representing filtered noise ensemble (contd). (a)
Smoothly decaying variances of PCA (blue) reshaped to lo-
cally flat portions by S-PCA (red) (b) Fraction of the total
variance captured by k-dim subspaces as k varies from 1 to
32: PCA (blue), S-PCA (red), Identity matrix (maximally
sparse) (green). The covariance matrix is diagonal for PCA
(c) but only diagonally dominant for S-PCA (d).

First, when X is non-zero, the fraction of input variance cap-
tured by the first k-dimensional subspace is always higher
in PCA (blue curve in Fig. 3b) than S-PCA (red curve in
Fig. 3b). However, the difference between these two curves
is relatively small, compared to the increased sparsity of the
basis (see Fig. 2). As X is increased, the sparsity of the S-
PCA basis is increased, with a corresponding decrease in the
variance captured by S-PCA. At extremely large values of ),
the S-PCA basis becomes maximally sparse, with each ba-
sis function representing an individual pixel. The variance
captured by the maximally sparse basis is given by the green
line in Fig. 3b. The second property of S-PCA is that the
rotation of PCA basis introduces small correlations in the
output coefficients (see Fig. 3c,d).

4 S-PCA on Natural Ensembles

We next apply S-PCA on ensembles of natural images.
For each ensemble, we present our guess for the inherent
structure and show that S-PCA confirms our intuition.

4.1 Facelets

We represent face images that have been acquired under
roughly similar viewing conditions with a varying degree of
pose changes. For such an image collection we argue that the
ensemble can be decomposed using a basis set of spatially
coherent image blobs. The spatial coherence is caused by
the consistency and uniqueness in the overall shape of the
object and in the shape of its parts across the ensemble.
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(b) S-PCA
Figure 4: Facelets for facial images each of size: 28 x 23. The top 200 PCA basis vectors were reorganized to generate
S-PCA basis. Only the first 48 basis vectors are displayed here for (a) PCA (b) S-PCA. While PCA basis appear global,
S-PCA is multi-scale. Subimages are rescaled to have zero value correspond to a gray level of 127.

The PCA representation displayed in Fig. 4a is typical
of the results obtained for object specific image ensembles.
In particular, the first few principal vectors are relatively
smooth and represent global correlations. As the index &
increases (i.e. the variance of the component decreases),
the basis vectors represent finer spatial structure but remain
global in space. This is apparent in Fig. 4a from the relative
sizes of the individual regions in which the basis functions
are of one sign, which get increasingly smaller with increas-
ing index. Unfortunately, it is impossible to tell from the
PCA basis whether or not such fine scale structure is corre-
lated across the entire image.

The first few basis vectors for the S-PCA results on the
face ensemble represent correlations across the whole im-
age (see Fig. 4b). However, as the index increases, the basis
vectors become quite sparse, indicating that the information
at finer spatial scales is not strongly correlated across the
entire image. Indeed, 72.5% of the elements of the first 40
S-PCA basis vectors are less than 5% of the maximum abso-
lute value, and can be thresholded to zero (see Fig. 5). This
proportion of effectively zero elements increases as larger
dimensional basis sets are considered.

4.2 Flowlets

The results of PCA and S-PCA on a set of flow fields ob-
tained for a bush blowing in the wind are presented in Fig. 6.
The flow fields are sampled in 8 x 8 pixel blocks. We see that
the PCA results provide global vector fields which vary on

0 Basis Histogram
10 ‘

1072

log(Prob)

-1 -0.5 0 0.5 1
Weights

Figure 5: Histogram of the basis elements for PCA (blue)
and S-PCA basis (red). Note the increase in probability vol-
ume around zero for S-PCA.

increasingly fine scales as the basis index increases (Fig. 6a).
The PCA analysis leaves open the question of whether or not
the fine scale structure of the flow is correlated across the
image patch. However, S-PCA reveals that the local flow is
predominantly affine ( Fig. 6b), with the finer scale structure
collapsing down to variations involving essentially individ-
ual pixels.

4.3 Wavdets

The results of PCA and S-PCA on a set of 8 x 8 patches
from natural images show the same general results (Fig. 7).
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Figure 6: Flowlets represent optical flow fields measured from an image sequence of a bush blowing in the wind. The flow
fields are sampled in 8 x &8 pixel blocks. The basis flows from S-PCA provide a clear interpretation of the motion being

mostly affine (b), which is not so apparent with PCA (a).

We see that the PCA results provide global basis vectors
which represent variations on increasingly fine spatial scales
as the basis index increases (see Fig. 7a). Again, the PCA
analysis leaves open the question of whether or not this fine
scale spatial structure is correlated across the image patch.
However, S-PCA reveals that the fine grain structure is not
significantly correlated over large spatial regions. Rather, as
the basis index increases, the S-PCA basis vectors exhibit in-
creasingly local structure (Fig. 7b). Here the fine scale basis
vectors appear to have either a center-surround structure or
are similar to orientation tuned, scale-specific filter kernels.

5 Application

For a demonstration of an application for the S-PCA rep-
resentation, consider the Facelets learned in Fig. 4. As men-
tioned above, 72.5% of the elements in the top 40 vectors
of the S-PCA basis are less than 5% of the amplitude of
the corresponding basis vector. We would like to take ad-
vantage of these nearly zero elements and avoid doing extra
arithmetic operations. Indeed, we set these elements to zero
and considered the reconstruction using the resulting thresh-
olded S-PCA basis vectors. It is important to remember that
thresholded S-PCA basis vectors need not be strictly orthog-
onal and hence, the algorithms that exploit sparsity have to
take this fact into account.

We found that the average squared reconstruction er-
ror, taken over the set of training images and using the
thresholded S-PCA basis, was 4.126 x 106, as compared to
4.121 x 109 for the unthresholded S-PCA basis. Thus the
thresholding to zero of over 70% of the elements of the S-
PCA basis had only an minor impact on the reconstruction
error, clearly supporting our claim that the basis is sparse.

As we pointed out above, the sparsity in the S-PCA basis

is achieved at the cost of some correlation between the basis
vectors. The presence of this correlation implies that the
least squares reconstruction error of the S-PCA basis will
not be optimal (cf. Fig. 3b). The minimum least squares
reconstruction error is obtained by the PCA basis, and for
40 basis vectors, we found the average squared error to be
4.100 x 108, This is to be compared to the averaged squared
error of 4.126 x 10, for the thresholded S-PCA basis. Thus
we have achieved 70% sparsity in this basis with only a 0.6%
increase in the squared error. As a note of caution, \ decides
the amount of sparsity in the basis matrix and consequently
the reconstruction error. It remains to be seen what the best
value for A is.

6 Reated Work

To the best of our knowledge there is no other algorithm
that extract multi-scale structure in object-specific ensem-
bles. There are, however, a host of formulations all closely
related to sparse coding [5, 12] and ICA [2], which may ap-
pear confusingly similar to our framework, S-PCA. We first
explore these connections before highlighting other relevant
material.

To begin with, all these methods represent images as lin-
ear superposition of basis vectors, i.e. = U, where t'is a
N-element image from the input ensemble, U is N x M ma-
trix whose columns are basis vectors and & is a M -element
coefficient vector. The idea is to infer the basis matrix U
given an image ensemble {E;}izl__k. It is useful to note that
ICA learns a filter matrix F’ first, always of size N x N, i.e.
Ft = & whose inverse then corresponds to a basis matrix,
i.e. U = F~1. The resulting coefficients from ICA will be
N-element long.

The optimization criterion used in sparse coding (and in-
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directly in ICA) is to employ a sparse prior on the elements
of the coefficient vector & The motivation for the sparse
prior comes from observing the shape of the output coeffi-
cient histograms of a multi-scale wavelet transformed natu-
ral scene. For natural scenes, sparse coding (as well as ICA)
lead to basis vectors that are multi-scale, non-orthogonal.
Unfortunately, the sparse coding algorithm is restricted to
work on small sub-images extracted from a larger image.
As such, spatial structure larger than the image block may
never be captured. The object-specific ensembles (face im-
ages) we handle are large in size, so it is not easy to train
these algorithms. Instead we refer the reader to the ICA re-
sults published by Bartlett et al in [1]. While the filters in
[1] appear to capture facial features at one scale, the corre-
sponding basis functions appear global.

Varimax is one of the earliest known references for rotat-
ing principal components so that the basis vectors are more
interpretive [8]. The rotation is performed to increase the
variance of the elements that describe the basis vectors. An
increase in variance can be seen as an increase in entropy,
but as we have shown for interpretable basis directions, the
basis elements can be drawn from a distribution with high
kurtosis.

The idea of applying a sparse constraint on the weights of
aneural net appears in [11, 18]. The networks are non-linear
and the learning has not shown the ability to extract multi-
scale structure. Recently, such sparsity constraints were ex-
tended to both the basis matrix and the coefficients as in [6]
but this algorithm is likely to have problems with the size of
the input image. Our learning algorithm has a flavor simi-
lar to the one used in [3] where the tensor properties of the
cumulants for the coefficient densities are exploited using a
rotation based Jacobi algorithm.

The notion of sparsity also appears in the basis selection
literature. The idea is to have a dictionary of basis func-
tions, possibly multi-scale, and pick a small number of them
to represent the input image [4]. The basis functions are ei-
ther predefined, as in wavelets, or specific to a class, as in
correlation-based kernels [14, 13]. Unfortunately, determin-
ing coefficients for each image is formulated as a quadratic
programming problem and this can be computationally very
expensive. In [10] a constraint of positiveness on the basis
elements appears to lead to facial features at a single scale.

7 Conclusions

We presented a novel framework, Sparse Principal Com-
ponent Analysis (S-PCA), for learning a linear, orthonormal
basis representation for representing structure intrinsic to an
ensemble. We showed how introducing a sparsity constraint
on the elements of a basis matrix recovers structure in spa-
tially coherent image blobs and provides a multi-scale rep-
resentation for the ensemble. The principal advantages of
S-PCA over a standard PCA based representation include

an intuitive understanding of the features underlying the
ensemble and efficiency in computations resulting from a
sparse basis representation.

Sparsity in the basis matrix is best understood as saving
computations over the lifetime of the representation system.
In the process, extra bits are spent in representing images as
S-PCA causes output coefficients to be slightly correlated.
The learning algorithm of S-PCA is very simple, with an
optimization procedure that is robust and scalable to large-
dimensional spaces. As we have shown, the formulation of
S-PCA is novel in that multi-scale representations emerge
for a wide variety of ensembles.

There are several avenues open for research. The S-PCA

formulation we presented here does not consider noise in the
dataset. We have designed a new algorithm, Sparse Informa-
tion Maximization, to account for both the photon noise at
the input and quantization noise at the output [16]. Finally,
it is natural to consider the use of the local basis represen-
tations provided by S-PCA for representing partly occluded
objects.
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Algorithm 1 Sparse Principal Component Analysis
Define M, N, U, d, lambda as above

. . o . . done =0
e i 1 Sy ol q0 00 s L+ v 20
while (!done)
Appendix for i =1 to (M-1)
A probabilistic treatment for the cost function, C = for j = i+l to M . )
Cy + ACs, is presented in detail in [16]. For this paper, (u_i, uj) = (i"th, joth) basis vectors
we chose an entropy-like measures for both C; and Cs, as (d_i, d_j) = relative variance captured by

u_i, u_j)

given below. - _ _ )
_Let U = [@1 .ﬁ2 an]- be a basis ma_trix span- rotationAng <- mlmmlze(sg;ggg:é_gdzit )
ning a M —dimensional principal subspace, with u;, = )
(Um,1s-- - um,n)T. Let o2, be the variances of the data if (rotationAng > thresholdAng)
projected on the direction @,,,. Setd = (dy,...,dy)T tobe update u_i and u_j
the vector of relative variances for each of the basis func- update d_i and d_j
tions, that is, dp, = 02,/ S p, 02. end

Then the first term of the cost function, namely C (d), end

is defined to be Cy(d) = Zl‘mlzl —d, log(d,,). 1t can be ﬁg\(/jvcost= C_1(d) + lambda*C_2(U)
shown that only when the basis vectors are PCA directions if (abs(oldcost-newcost)/oldcost) < eps
is the cost function C; minimized [9]. done = 1

The second term of the cost function, Cy(U), is defined to end

be Co(U) = M SV —uy, ,log(uz, ,). Notice that ~ end
this is just the sum of the entropies of the distributions de-
fined by the square of the elements for each basis vector @,




