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a b s t r a c t

We introduce a new method that characterizes quantitatively local image descriptors in terms of their
distinctiveness and robustness to geometric transformations and brightness deformations. The quantita-
tive characterization of these properties is important for recognition systems based on local descriptors
because it allows for the implementation of a classifier that selects descriptors based on their distinctive-
ness and robustness properties. This classification results in: (a) recognition time reduction due to a
smaller number of descriptors present in the test image and in the database of model descriptors; (b)
improvement of the recognition accuracy since only the most reliable descriptors for the recognition task
are kept in the model and test images; and (c) better scalability given the smaller number of descriptors
per model. Moreover, the quantitative characterization of distinctiveness and robustness of local descrip-
tors provides a more accurate formulation of the recognition process, which has the potential to improve
the recognition accuracy. We show how to train a multi-layer perceptron that quickly classifies robust
and distinctive local image descriptors. A regressor is also trained to provide quantitative models for each
descriptor. Experimental results show that the use of these trained models not only improves the perfor-
mance of our recognition system, but it also reduces significantly the computation time for the recogni-
tion process.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the last few years, there has been a growing interest in recog-
nition systems using a collection of local image descriptors for the
tasks of object recognition [22,32], image matching [31], object
discovery and recognition [35], among others. The model represen-
tation used in these systems is based on a collection of image
descriptors with small spatial support extracted from salient image
regions, such as corners [18], difference of Gaussians [22], etc.
When compared to image representations based on a large spatial
support (i.e., global image feature) [25], local representations
achieve a better robustness to clutter, partial occlusion, and com-
mon image deformations.

Current state-of-the-art local image descriptors have been care-
fully designed to be robust to geometric transformations and pho-
tometric deformations and also to be distinctive [23]. However,
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individual local descriptors have, in general, different discriminat-
ing and robustness properties, even though they are extracted
using the same algorithm. This happens because some local
descriptors are detected from regions with different stability prop-
erties with respect to image deformations, and also because some
descriptors lie in regions of the feature space more or less densely
populated. Therefore, an explicit quantitative characterization of
the distinctiveness and robustness of local descriptors is important
in order to: (1) provide a classification scheme that selects descrip-
tors with superior discriminating and robustness properties, and
(2) allow for a more accurate formulation of the recognition pro-
cess. The descriptor selection decreases the size of the model data-
base by keeping only the most useful model descriptors for the
recognition task, which results in a faster and more accurate recog-
nition process and in a more scalable system (i.e., the system is
able to deal with a higher number of visual classes). Finally, the
more accurate formulation of the recognition process can improve
the recognition accuracy.

In the literature the characterization of local image descriptors
for classification and for estimating their relative importance dur-
ing a recognition process has usually been treated separately by
several authors.

The use of distinctiveness in order to estimate the relative
importance of the model descriptors has been exploited by Amit
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and Geman [2]. In this work, the authors estimate the distribution
of the descriptor similarities with respect to background descrip-
tors, thus estimating the distinctiveness of the descriptor. This
characterization is used for selecting local descriptors better suited
for the recognition process, but note that the authors do not pro-
pose a classification scheme, nor do they use the local descriptor
robustness. The use of robustness for estimating the relative
importance of model local descriptors was the focus of various
works [14,29,34], where the authors use an exponential distribu-
tion to approximate the robustness distribution. Additionally,
other works try to estimate the detectability and discriminating
power of a descriptor by calculating how often it appears in the
learning stage [27,29].

Methods to classify local image descriptors without quantita-
tively characterizing their robustness and distinctiveness proper-
ties have been intensively studied lately [1,14,12,19,28,37,40].
Note that these approaches are useful for the selection process,
but the absence of a quantitative characterization does not allow
these methods for estimating the relative importance of local
descriptors. Specifically, Ohba and Ikeuchi [28] select robust
descriptors by verifying how their feature values vary with defor-
mations, and unique descriptors are filtered by checking their dis-
tinctiveness when compared to other training image descriptors
(i.e., two descriptors are discarded as ambiguous if they lie too
close to each other in the feature space). Alternatively, Dorko and
Schmid [12] proposed an approach that selects descriptors based
exclusively on their discriminating power. Zhang also worked on
a descriptor selection method using not only the discriminating,
but also their robustness properties. In other related methods
[1,14,37], a clustering algorithm selects the descriptors that appear
more often during the training stage. However, none of the meth-
ods above estimates quantitatively the robustness and distinctive-
ness distributions in order to properly classify each descriptor, as
we propose here. In robotics, there has been some interest in the
problem of selecting local descriptors for reducing the complexity
of the simultaneous localization and mapping (SLAM) approaches.
However, the proposed methods generally involve a way of select-
ing local descriptors without explicitly characterizing their distinc-
tiveness and robustness properties, as we propose in this paper. For
example, Sala et al. [30] propose a descriptor selection method for
the problem of vision based navigation of a robot in a small envi-
ronment. Their approach, based on graph theory, involves the par-
tition of the environment into a minimal set of maximally sized
regions, such that for all positions of a given region, the same set
of k descriptors is visible.

In pattern recognition theory, there has been numerous meth-
ods proposed for the problem of feature selection and extraction
[17]. Generally, the feature selection and extraction problems con-
sist of building a lower dimensional feature space from the original
one, where tasks such as classification or regression are performed
more accurately and/or efficiently. The goal of our paper is that of
descriptor selection (and characterization). Therefore, the feature
space of each descriptor remains intact throughout the algorithm,
but the set of descriptors representing an image will be reduced to
include only the most robust and distinctive ones. Even though the
problem being presented by this paper is on descriptor selection
and characterization, traditional methods of feature selection
(and extraction) could be adapted. The main idea to permit such
adaptation is to build a feature space using the model descriptors.
The issue involved in such approach is that the dimensionality of
the feature space can grow indefinitely high (note that each new
descriptor would define a new dimension in this feature space),
and traditional techniques for feature selection and extraction
(e.g., principal components analysis, manifold learning, linear dis-
criminant analysis) are unlikely to work in these very high dimen-
sional spaces. A practical example on how to make this approach
work is the bag of features [9], where a feature space is built based
on the clusters formed by the distribution of local descriptors. This
means that the new feature space has a number of dimensions
equal to the number of clusters, and the feature values are deter-
mined by the number of votes cast to each cluster. This way, the
feature dimensionality has a fixed value, and consequently, the tra-
ditional techniques mentioned above can work for the feature
selection/extraction problems. Nevertheless, the approaches in
the literature following such idea focus more on the recognition
task than on the feature selection process (e.g., how to build a clas-
sifier capable of working in such high dimensional space and how
to cluster the features in order to help the classification task). A re-
cent trend in the computer vision community is to build descriptor
selection methods for specific recognition tasks, such as the face
and facial features detector by Ding and Martinez [11]. This meth-
od works based on a sequence of several classifiers, each trained to
detect a specific facial feature (note that each facial feature is man-
ually determined). This approach differs from ours since there is no
explicit characterization of the descriptors and the design of the
method is quite specific for the problem at hand.

There has been studies similar to ours for specific goals in robot-
ics, which makes a direct comparison hard to implement. For
example, He et al. [19] characterize explicitly the distinctiveness
and robustness of local descriptors in order to provide a classifica-
tion scheme to filter out descriptors that will not be effective for a
recognition process. In particular, the authors study the problem of
vision based environment localization using single images (as op-
posed to works on SLAM [10,33] that generally use pairs of
images). Their system uses a temporal sequence of training images
to learn a manifold with the property that nearby images in the
environment are also close together in the manifold. Using this
constraint, the authors propose an incremental learning frame-
work that selects robust and distinctive descriptors for represent-
ing images. Notice that although the goal of He et al. [19] is
similar to ours, they formulate the problem specifically to solve
the environment localization task. The method we propose here
is more generic because it is designed for the problem of visual ob-
ject recognition.

1.1. Contributions

This paper introduces a novel way of characterizing quantita-
tively the distinctiveness and robustness of local image descriptors
[8]. In a visual object recognition framework, this characterization
is used for: (1) selecting the most appropriate descriptors based on
their robustness and distinctiveness properties; and (2) formulat-
ing more accurately the recognition process. We further show that
it is possible to train a multi-layer perceptron (MLP) classifier for
fast descriptor selection. We also train an MLP regressor for quick
quantification of the distinctiveness and robustness properties of
the descriptors. The proposed quantitative characterization and
training of the MLP classifier and regressor are quite generalizable
in the sense that the same basic approach can be applied to several
different types of local image descriptors. We show this by apply-
ing the whole process of local descriptor characterization and MLP
training to the following two different types of local descriptors:
local phase [5] and SIFT [22] descriptors. We also use the classifica-
tion and regression procedures as a pre-processing step for our rec-
ognition system [7]. Empirical results using this system show that
this pre-processing stage significantly decreases the time to pro-
cess test images and also improves the recognition accuracy.

1.2. Paper organization

This paper is organized as follows. Section 2 introduces the
quantitative characterization of local image descriptors. The classi-
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fication of descriptors based on robustness and distinctiveness is
presented in Section 3. The discussion in Section 4 shows the main
problems of the quantification and classification methods pre-
sented in Section 3, and solutions to these problems are presented
in Sections 5 and 6. Experiments showing the advantages of using
this quantification and classification approaches are demonstrated
with a full-blown recognition system in Section 7 and Section 8
concludes the work.

2. Quantitative characterization of local image descriptors

This section introduces a method to quantitatively characterize
the distinctiveness and robustness properties of local image
descriptors. The main purpose of this quantitative characterization
is to classify useful descriptors and also to weight the importance
of each descriptor for the recognition process.

2.1. Local image descriptor

Local image descriptors are photometric features extracted
from image regions with limited spatial support. There is not a pre-
cise definition in the literature about the actual size of this spatial
support, but the assumption is that the size of a local image
descriptor can be between 1 pixel and 32 pixels in a typical image
of size around 500 � 500 pixels. These features are generally ex-
tracted from image regions presenting two basic properties known
to be useful for recognition and matching processes. The first prop-
erty is robustness to image deformations, such as rotation, scale,
translation, and brightness variations. The second property is a
high degree of information content that helps discriminate these
regions. The algorithms that automatically select such regions are
generally known as interest point detectors [18,22]. From these re-
gions, image features are extracted such that they possess similar
properties (i.e., robustness and uniqueness). In this paper, we de-
fine a local image descriptor as the following feature vector:

f l ¼ ½xl; vl�; ð1Þ

where xl 2 R2 is the image position of the descriptor fl, and
vl 2 RV is the descriptor vector with V photometric values. Section
6 shows two examples of local feature photometric values. The
database of model descriptors extracted from a model image Im

is then denoted as Om ¼ ff ljxl 2 Img, where Im is defined as the
set of interest point locations xl (1) of each local descriptor fl ex-
tracted from image Im. Finally, the similarity between two descrip-
tors fl and fo is computed by the function sf(fl, fo) 2 [0,1] (sf(�) � 1
means high similarity).

2.2. Quantitative characterization of distributions

As mentioned before, local image descriptors must be distinc-
tive and stable to image deformations to be useful for several com-
puter vision applications. Although local descriptors are designed
to be distinctive and robust to image deformations, each individual
descriptor has different degrees of these properties. In this section,
we explain our method to estimate the following three statistics of
each local descriptor: (a) distribution of robustness to image defor-
mations, (b) distributions of distinctiveness, and (c) probability of
detection. Using these three statistics, we implement a classifica-
tion process that keeps only the most appropriate descriptors for
visual recognition tasks.

Our method of estimating the distinctiveness and robustness
distributions of local descriptors is inspired by Yuille’s approach
[39], which uses the probability distributions Pon and Poff corre-
sponding to the true positive and false positive distributions,
respectively, for the problem of road tracking. We describe the
probability distribution for robustness Pon(sf(fl, fo); fl), i.e., the prob-
ability of observing descriptor similarity sf(fl, fo) 2 [0,1] given that
the descriptor fo is a true match for the descriptor fl. The robust-
ness of a local descriptor fl also depends on the probability that
the interest point detector will fire at its relative position xl. We de-
fine this probability as Pdet(xl), which is the probability that an
interest point is detected in the test image near the location corre-
sponding to xl of descriptor fl. The distinctiveness Poff(sf(fl, fo); fl) is
the probability of observing sf(fl, fo) given that the descriptor fo is a
false match for the descriptor fl.

The main goal of this section is to present a simple way of char-
acterizing the distributions Pon, Poff, and Pdet involving a small
number of parameters. It is important to have a representation
with a small number of parameters since the visual models we
consider in this work generally consist of thousands of descriptors,
so the complexity of the representation can increase significantly
with the number of parameters for Pon, Poff, and Pdet. The basic idea
of the whole process is depicted in Fig. 1. Step 1 comprises the fol-
lowing tasks: (1) select a model image containing the visual object
of interest; (2) apply several synthetic image deformations to this
model image; and (3) build a database of local descriptors ex-
tracted from a database of images that does not contain the model
image (this forms the database of random descriptors). Step 2 con-
sists of: (1) matching each local descriptor from the model image
to the correct position at each deformed image; (2) from this
matching process, it is possible to build a histogram of similarity
distribution for each model descriptor and also to determine its ra-
tio of detection (the ratio of detection of each model descriptor is
represented by the percentage that the descriptor is detected at
the deformed model images); and (3) matching each local descrip-
tor from the model image to each descriptor in the database of ran-
dom descriptors and building a histogram of false positive
matches. Finally, in step 3, it is possible to quantitatively character-
ize the detectability, robustness, and distinctiveness for each mod-
el descriptor. We first describe how to automatically learn these
parametric models, and then we define which model we use and
how to estimate its parameters.

To train the models, we make use of a training set consisting of
a fixed set of foreground and background images (see Appendix B),
along with synthetic image deformations (see Appendix A). Note
that the use of synthetic image deformations has become relatively
popular lately in order to increase the robustness of classifiers
[3,21]. However, these works usually do not address the same is-
sues of our paper. We propose a method that not only improves
the robustness of local descriptors, but also that selects and quan-
titatively characterizes the descriptors for improving the accuracy
of the probabilistic detection. The set of foreground images T has
30 images, and the set of background images R contains 240
images, where T \R ¼ ;. As shown in Appendix B, the sets of fore-
ground and background images are taken from the same pool of
images, which contain pictures of landscape, people, animals, and
texture. There is no conceptual difference between the two sets
of images. This implementation with foreground and background
images taken from the same pool of images has the potential to im-
prove the generalization capabilities of the learned models. Given
an image Ik 2T, the set of local descriptors extracted from this im-
age is represented by Ok ¼ ff lgl¼1;...;N , and the set of interest points
detected in the image Ik is denoted as Ik ¼ fxlgl¼1;...;N , where each
xl 2 Ik is the respective position of the descriptor f l 2 Ok. Typically,
the number of local features per image varies between 1000 and
10,000. Consequently, the total number of features in the fore-
ground set is between 30,000 and 300,000, depending on the type
of local feature used (for details on the specific number of descrip-
tor per feature type, please see Section 6). Moreover, the set of
descriptors extracted from the background images is represented
by OðRÞ, which has between 100,000 and 1,000,000 descriptors,
depending on the type of local feature (Section 6). The Poff(sf(fl, �), fl)
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of each descriptor f l 2 Ok is computed from the histogram of false
positive matches

fsf ðf l; foÞjfo 2 OðRÞg: ð2Þ

On the other hand, Pon(sf(fl, �), fl) is computed from the histogram of
descriptor similarities with respect to an image deformation
d 2 DF, where DF is a set of synthetic image deformations (see
Appendix A). Assuming that xl is the position of the descriptor
f l 2 Ok, and that the synthetic deformation d 2 DFapplied to Ik forms
the image eIk;d, where points in Ik are mapped to points in eIk;d as fol-
lows: ~xl;d ¼MðdÞxl þ bðdÞ, where M(d) and b(d) represent the spatial
warp for the deformation d. Since we depend on the interest point
detector to fire sufficiently close to that position, we search the corre-
sponding descriptor on the deformed image as

~f l;d ¼ arg max
fo

fsf ðf l; foÞjf l 2 Ok; fo

2 OðeIk;dÞ; kMðdÞxl þ bðdÞ � xok < �g; ð3Þ

where � is fixed at 2.0 pixels (as measured in the image eIk;d, which is
down-sampled according to scale). It is important to mention that
the local descriptors considered in this work are extracted with band-
pass filters with peak frequency response at xd = 2p/(4.36rd), corre-
sponding to a wavelength of kd = 4.36rd, where r denotes the
standard deviation of the filters. Also, test images are processed at
kd = 8, which makes rd � 2.0 pixels (empirically, the use of kd = 8
achieves a good signal-to-noise-ratio). Thus, the uncertainty in terms
of the local image descriptor position is around 2.0 pixels, hence� = 2.0.

Fig. 2 shows the mean and standard deviation of the histogram of
false positive (2) and true positive matches (3) for the phase feature
[6] using the sets T and R described above, where the descriptor
similarity sf(�) is the phase correlation. Notice that the true positive
(TP) and false positive (FP) histograms present a unimodal structure
with a heavy tail, which resembles a beta distribution (see Fig. 4).
Quite similar TP and FP distributions are also shown by Lowe [22].
Hence, we approximate the distributions Pon and Poff with the beta
parametric distribution, which is defined as follows:

Pbðx;a;bÞ¼
1R 1

0
ta�1ð1�tÞb�1dt

xa�1ð1�xÞb�1 if x2 ð0;1Þ and a;b>0;

0 otherwise:

8<
:

ð4Þ
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This distribution is defined within the range [0,1] (i.e., the same
range of sf(�)). Notice that we need to store only two parameters
for the beta distribution, which can be considered as a low com-
plexity representation. In Fig. 3, we see the approximation of the
histograms above with the beta distribution using the local phase
descriptors [5,6].

The method of moments (MM) provides a good one-step esti-
mate of the beta parameters a and b providing results very sim-
ilar to maximum likelihood estimation [38]. It is based on the
first and second moments, namely lb and r2

b , of the histograms
for Poff and Pon. The parameters (a,b) of the fitted beta distribu-
tion are then

b ¼
lbð1� 2lb þ l2

bÞ
r2

b

þ lb and a ¼
lbb

1� lb

: ð5Þ

Finally, in order to determine Pdet of a model descriptor position
xl 2 IðIkÞ, we have to investigate how stable this position is
with respect to the deformations d 2 DF (see Appendix A). Spe-
cifically, let CðxlÞ be the set of deformations for which a corre-
sponding interest point can be found in the original image Ik, so
CðxlÞ ¼ fdj9xj 2 IðeIk;dÞ s:t: kxj �MðdÞxl � bðdÞk < �g with � fixed
at 2.0 pixels (as measured in the image eIk;d, which is down-sam-
pled according to scale), and M(d) and b(d) represent the spatial
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Fig. 3. Approximation of distinctiveness and robustness histograms using the beta distr
descriptors being studied, represented by the white circle on the image). Note that the d
540. The receiver operating characteristic (ROC) curves of robustness vs. distinctiveness
The Pdet of the descriptor 260 is 87%, and for descriptor 540 is 67%. The two numbers after
Descriptor 540 is filtered out due to low robustness (see a and b parameters for robustnes
representation.
warp for the deformation d. Hence the detectability probability
is denoted by

PdetðxlÞ ¼
jCðxlÞj
jDFj : ð6Þ
3. Local descriptor classification

We use one key observation about the beta distribution in order
to define our classification process, as depicted in Fig. 4. Notice that
in general, as a > b, the mode of the distribution is close to one, and
when b > a, the mode is closer to zero. Therefore, the ideal distribu-
tion for Pon should resemble the graphs (a) and (b) in Fig. 4, where
a > b because it is desirable that the similarity values for correct
matches are as close as possible to one, which means that the
descriptor values are relatively insensitive to image deformations.
On the other hand, the ideal distribution Poff of a model descriptor
should be similar to the graphs (c) and (d), where b > a since we
want that model descriptors and wrong matches have low similar-
ity values.

Therefore, our classification procedure consists of checking the
following properties: (a) high robustness aon(f) > sonbon(f) (i.e., the
mode of the Pon distribution gets closer to one); (b) high distinc-
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the legend ‘BetaMM’ are the estimated parameters a and b, respectively (see Eq. (5)).

s graph in first row) and low detectability, while descriptor 260 is kept for the model
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tiveness boff(f) > soffaoff(f) (i.e., the mode of the Poff distribution gets
closer to zero); and (c) high detectability Pdet(x) > p%. As a result,
we obtain a subset of descriptors O�k #Ok that have the three prop-
erties above. The values son, soff, and p above are determined in or-
der to have, on average, the percentage of interest points around
0.3% of total image size. This percentage is based on the study by
Carneiro and Jepson [6] who noticed that the number of interest
points is around 0.3% of total image size for the state-of-the-art
methods developed by Lowe [22] and by Mikolajczyk and Schmid
[24]. In Fig. 5, we show an experiment with varying values of the
parameters above with respective equal error rate (EER)1 and the
percentage of interest points with respect to the image size. Accord-
ing to this graph, we set son = 7, soff = 2, and p% = 75% because these
values produced a percentage of interest points around 0.3% com-
pared to the image size and also because the EER is relatively high
(compared to other parameter values).

Fig. 3 illustrates examples of selected and rejected local phase
descriptors, where son = 7, soff = 2, and p% = 75%. Also, Fig. 6 shows
the significant improvement of the ROC curve and the reduction of
the number of descriptors from 3.2% to 0.3% of total image size
when the classification procedure above for local phase descriptors
is applied on all the descriptors of the image.

4. Discussion

There are two problems with the method described above for
computing the descriptor robustness and distinctiveness, namely:
(1) there is no guarantee that those distributions learned in artifi-
cially deformed images can be extended to real deformations; and
(2) the time needed to learn those distributions is quite large.

The first problem is addressed in Section 5 through empirical
experiments, where we show that the parameters learned in the
artificially deformed models are indeed applicable to real image
perturbations. Further quantitative analysis given controlled image
deformations would also be worthwhile although this is beyond
the scope of this work.

The second problem is solved in Section 6 by training two mul-
ti-layer perceptron models [26] using a supervised learning
scheme. The first multi-layer perceptron classifies descriptors
according to the properties above (i.e., robustness and distinctive-
ness), and the second estimates through non-linear regression the
parameter values for each descriptor selected by the classifier. Both
multi-layer perceptron models are trained using the filter re-
sponses of the local descriptor as the input. The distribution
parameters provide the target output for the regression problem,
and the classification results provide the target output for the clas-
sification task.
1 The EER is the point at which the true positive rate equals one minus the false
positive rate.
5. Comparison between real and artificial deformations

The main reason why artificial image deformations are used for
learning the descriptor probability distributions is to allow for a
complete control over the corresponding descriptor positions in
the deformed images. Ideally, this learning procedure should be
done on real image deformations that would produce a better esti-
mation of those distributions. However, that would require a
knowledge of the descriptor positions of the model in the images
containing the deformed model. The question to be answered here
is whether the densities learned over the sequence of artificially
deformed images are applicable to actual deformations of the mod-
el image.

Our quantitative evaluation of local descriptor performance
consists of the following steps:

� Take a sequence of N images {Ii}i2 {1,. . .,N} containing the model to
be studied under real image deformations. Effectively, a model is
a region present in all those images (e.g., a person’s face).

� Extract the local descriptors from the model image I1 to form the
set O1. Learn the probability distributions (i.e., Pon, Poff, and Pdet)
of each descriptor present in O1 using the scheme described in
Section 2.

� Extract the local descriptors of each subsequent test image,
which produces Oi for i > 1.

� Find the correspondences between the set of model descriptors
O1 and each set of test descriptors Oi for i > 1, separately, as
follows:

N1i ¼ fðf l;
~f lÞj~f l 2 Oi; f l 2Kð~f l;O1;jNÞ; sf ðf l;

~f lÞ > ssg; ð7Þ

where sf(�) 2 [0,1] represents the descriptor similarity function such
that values close to one mean high similarity, ss = 0.75, and Kð�Þ is
the set of the top jN correspondences with respect to sf(�) between
test image descriptor ~f l 2 Oi and the database of model descriptors
0 5 10 15 20 25 30
experiment index

Fig. 5. Experiment showing the EER (vertical axis) and percentage of interest points
with respect to the image size (this percentage is denoted by the number over each
marker). The horizontal axis display the specific parameter values used in each of
the 28 experiments as follows: (son,soff,p%).
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Fig. 6. ROC curve computed from the descriptors (white circles) in each figure above. The graph in the first row, second column shows the mean and standard deviation graph
of the ROC curves computed from all the local descriptors at wavelength k = 8 from the image shown on the top-left corner. The graph in the second row, second column
shows the ROC curves with the points filtered by the procedure described in Section 3. Notice the significant improvement in terms of robustness vs. distinctiveness, and also
the reduction of the number of descriptors detected.

2 The local phase descriptor is detected using the scale filtered Harris corner [6],
and the similarity is computed by the phase correlation function [6].
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O1. For this experiment, the value of jN is not very relevant, but set-
ting it at two produces a good trade-off between speed and robust-
ness; that is, smaller values produces faster results and larger
values results in more robust but slower estimation. Either way,
the final results presented here are not significantly affected. With
these correspondences, use RANSAC [36] to estimate the affine
transformation to align the model descriptors in O1 to the test im-
age descriptors in Oi. Note that the affine transform is computed
using robust parameter estimation. This affine transform provides
a rough approximation of the deformation that took place between
these two images.
� Use the estimated affine transform to compute the approximate

positions of the descriptors from I1 to Ii, for i > 1, so that it is pos-
sible to compute the ROC curves for: (1) all model descriptors
O1, (2) the filtered model descriptors O�1, and (3) the set of
rejected descriptors formed by O1 � O�1.

Using the ROC curves computed with the artificial image
deformations, it is possible to verify how well they approximate
the ROC produced by the real image deformations d 2 fDFg (see
Appendix A). We show one instance of the experiment described
above in Figs. 7 and 8 using the local phase descriptor [6]. Notice
that the ROC curves produced by the artificially deformed
images are generally better than the ones yielded by the real
deformations. This could have been caused by numerous pro-
cesses, which include: the computed affine transform used to
determine the approximate positions of the descriptors from I1

to Ii is not sufficiently precise; or the set of artificial deforma-
tions d 2 fDFg are not a reliable approximation of the real
deformations. However, we see that the curves for the filtered
set of descriptors is always comparable or better than the sets
of all and rejected descriptors. This indicates that the learning
process can be considered reliable since it can be generalized
for small real deformations.

6. Reducing the time to learn the distributions

The learning procedure explained in Section 2 is computationally
very intensive due to the requirement for explicitly deforming the
image in order to estimate the performance statistics of each
descriptor. On average, it can take between 20 and 30 h to estimate
the descriptor probabilities for a single model, which is clearly non-
practical for the training and recognition tasks. Specifically, two
tasks can be identified: (a) a classification problem that categorizes
a descriptor as part of the set of filtered descriptors O�k; and (b) a
regression task to predict the parameters of Pon, Poff, and Pdet. The
important question is whether it is possible to do the classifica-
tion/regression using the filter responses alone (i.e., without going
through the whole learning procedure).

For the classification task we trained a multi-layer perceptron
(we also refer to it as a neural network classifier) using Netlab
[26], where the input layer received the following filter responses
from the local phase descriptor fl [6] extracted from a given loca-
tion xl

2:
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Fig. 9. Configuration of the phase-based local descriptor [5]. The center point
represents the location selected by the interest point detector, and the nine points
around it are the sampling points of the local descriptor.

Fig. 7. Real image deformations approximated by an affine deformation. The first column of the first row shows the first image of the sequence containing the model ‘kevin’s
face’ (i.e., O1). The remaining images from the second to the fourth columns present the deformed model contour using the affine transform computed with the matches
depicted on the second row as the red dots. Since the affine transform was computed using a robust parameter estimation, some matches can be left out of the contour if they
were considered to be outliers. The whole sequence contains 30 images.
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detection performance for the filtered descriptors O�1, while the dotted red curve is for the unfiltered descriptors O1, and the dashed green line is for the set of rejected
descriptors O1 � O�1.
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� The values at the sampling points (see Fig. 9) of the second
derivative of a Gaussian (i.e., the G2 filter) and its Hilbert trans-
form (i.e., the H2 filter) tuned to the orientations 0� + hl, 45� + hl,
90� + hl, and 135� + hl, where hl is the dominant orientation at
descriptor position xl, and to the scales kc, kc=

ffiffiffi
2
p

, and kc

ffiffiffi
2
p

[16] (a total of 216 dimensions).
� Ix, Iy (i.e., horizontal and vertical image derivatives) within a

5 � 5 window around xl (a total of 50 dimensions).
� Eigenvalues l1, l2 used to compute the Harris cornerness func-

tion [18] and the following cornerness function value [5]:

tðxlÞ ¼
l2ðxlÞ

c þ ð1=2Þðl1ðxlÞ þ l2ðxlÞÞ
;

where c is a constant to avoid a division by zero (a total of 3
dimensions).
� Deviation between the local wavelength of the descriptor and

local frequency tuning of the G2 and H2 filters, denoted by
jlog(k(xl,kc)) � log(kc)j at the scales kc, kc=

ffiffiffi
2
p

, kc

ffiffiffi
2
p

, where k(�)
denotes the local frequency computed from position xl [15],
and kc represents the local frequency tuning of the filters (a total
of 3 dimensions).

Thus, these filter responses form a 274-dimensional local
descriptor fl. The neural network ideally produces logistic output
of 0 if the descriptor should be filtered out, and 1 otherwise. Recall
from Section 3 that a selected descriptor must present aon(f) > son-

bon(f), boff(f) > soffaoff(f), and Pdet(x) > p%, where son = 7, soff = 2, and
p% = 75%. Therefore, the target function for each descriptor fl in this
supervised learning problem is 1 if f l 2 O�i , and 0 otherwise. The
training algorithm is the standard error back propagation with
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weight decay, using scaled conjugate gradient for the optimization.
Also, we used 300 units for the simple hidden layer.

The input for the regression problem is the same as the one for
the classification problem, but the target values are the two param-
eters for the Pon(sf(fl, f; fl)) distribution, the two parameters for the
Poff(sf(fl, f; fl)) distribution, and the Pdet(xl). As a result, we have five
linear output units. Moreover, a descriptor fl is part of the training
set only if f l 2 O�i . We also used the Netlab package [26] for this
problem.

In order to determine a sufficient number of training samples,
we use the common rule of thumb that there has to be 5–10 times
more training samples than model parameters [13]. Given that we
have 274 � 300 � 1 = 67,400 = O(104) parameters, then we must
have O(105) training samples. Hence, we built a training set with
235,000 descriptors and a test set with 26,000 descriptors.
Fig. 10 shows the ROC curve for the classification task computed
using the test cases, and Fig. 11 shows the actual values of the
Pon and Poff parameters, and Pdet compared to the output of the
regression network for the test cases.

In order to compare the performance provided by the classifica-
tion procedure using the neural network above, we show the fol-
lowing experiment. We compare the descriptors in the set O�k
produced by the standard learning procedure shown in Section 3
and the descriptors in ~O�k generated by the neural network classifier
using a threshold 0.5 on the logistic classifier output. The threshold
at 0.5 was estimated using a hold-out validation set such that the
remaining percentage of descriptors was around 0.3% of the origi-
nal image size (see Section 3). Fig. 12 presents this comparison,
showing the mean and standard deviation produced by O�k on the
center and ~O�k on the right for the respective test images in the left-
most column. Note that these two images were not used for train-
ing the neural network. The neural network classifier produces a
result that is relatively similar to the original filtering method,
and the relative number of descriptors is again reduced from
3.2% to 0.3% of the total number of image points. Notice that
although there is a loss in terms of performance for the ‘‘Filtered”
set when compared to the results produced by the original filtering
method, it still produces results that are relatively better than both
the ‘‘All” and ‘‘Rejected” sets. Moreover, the time for classifying the
model local descriptors and to determine their Pon, Poff, and Pdet

parameter values is significantly reduced with the use of the neural
networks described in this section. Specifically, the time needed to
classify and to determine the Pon, Poff, and Pdet using the direct sim-
ulation of deformations is between 20 and 30 h, while the time
spent in this same activity using the neural networks is around
5 s, as shown in Table 1. Therefore, when adopting such strategy,
one has to consider the trade-off between time and performance.
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Fig. 10. ROC curve that shows the classifier performance on the test set.
6.1. Using the multi-layer perceptron with other local descriptors

In order to show that the classifier and regressor can be used
with different types of local descriptors, we also used the input
of the SIFT descriptor [22] to train the same multi-layer percep-
tron. The main difference between the networks trained in Section
6, and the networks below are the input data and the parameters
to select robust and distinctive descriptors. For the SIFT descriptor,
we use the 128-dimensional SIFT descriptor [22] basically consist-
ing of the image gradient histograms computed at eight orientation
planes around the neighborhood of the descriptor position xl with
the derivative filter tuned to scale k.3

The training set has 30,000 SIFT descriptors and the test set has
4000 descriptors. The training procedure for SIFT descriptor differs
from the one used for local phase descriptors only in the selection
criteria for defining well behaved descriptors. More precisely, we
use son = 7, soff = 0.5, and p% = 50%. We observe that the percentage
of descriptors that are kept in an image processed at scale k = 8 is
reduced from 0.3% to 0.12%. Fig. 13 shows the ROC curve produce
by the classifier on a test set, and Fig. 14 shows the results for the
regression problem with the actual values of the Pon and Poff

parameters, and Pdet compared to the output of the regression net-
work for the test cases for the local phase descriptors. Notice that
the results for SIFT in Figs. 11–13 appear to be more accurate than
the results for the local phase features in Figs. 10 and 11. One pos-
sible reason for that is that SIFT can populate an effectively smaller
dimensional feature space, and for this reason the parameters for
the discriminative model studied in this section can be learned
more easily. For instance, the work by Ke and Sukthankar [20]
showed that the SIFT descriptor can be reduced to around one sixth
of its original dimensionality (i.e., 20 out of the original 128 dimen-
sions) without affecting its performance in terms of discriminative
properties, and actually improving the robustness properties of the
descriptor. Though interesting, the study of the precise reason of
this behavior is out of the scope of this work. Another interesting
point raised by this experiment is the fact that different types of lo-
cal image descriptors generally present different trade-offs be-
tween robustness and distinctiveness. Therefore, a natural way of
improving recognition results is then to combine different types
of local descriptors. For instance, Carneiro and Lowe [4] combined
local phase and SIFT descriptors, and developed powerful system
capable of recognizing challenging visual object classes.

7. Experiments using a recognition system

In this section, we assess the performance of the recognition
system described by Carneiro and Jepson [7] using the classifica-
tion and regression networks proposed in Section 6 as a pre-pro-
cessing step for the training and testing descriptors. Note that,
originally, this system does not make use of a classifier or a regres-
sion net. We only ran the experiments using this recognition model
with the local phase descriptors,4 where the training algorithm
comprises the following steps:

� Extract the local descriptors from the model image IM, which
builds the set of model descriptors OM .

� Select the well behaved descriptors using the classifier described
in Section 6 (this forms the set O�M #OM), estimate the parame-
ters of the distinctiveness and robustness models using the
regressor introduced in Section 6, and store the descriptors
3 The SIFT descriptors are detected using the difference of Gaussians (DoG) interest
point detector, and the similarity function is the Euclidean distance.

4 Note that based on the results of Section 6.1, this classification and regression
MLPs could also be used in the recognition model designed by Lowe [22].



Fig. 11. Performance of the regression algorithm to predict the Pon and Poff parameters, and Pdet value. The 45� red line is used as a reference only.

Original filtering method

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

log10(false positive)

D
et

ec
tio

n 
ra

te

Filtered
Rejected
All

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

log10(false positive)

D
et

ec
tio

n 
ra

te

Filtered
Rejected
All

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

log10(false positive)

D
et

ec
tio

n 
ra

te

Filtered
Rejected
All

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

log10(false positive)

D
et

ec
tio

n 
ra

te

Filtered
Rejected
All

Neural Net filtering

Fig. 12. Comparison between the ROC curves produced by the original classification procedure and the neural network for the images on the left, which were not used for
training the neural net classifier.
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and respective model parameters in the model database. This
results in the model database M ¼ f½f; aonðfÞ; bonðfÞ; aoffðfÞ;
boff ðfÞ; PdetðxÞ�jf 2 O�Mg.
Table 1
Average time taken for each procedure (i.e., direct method and neural networks) to
learn the parameters of distributions Pon, Poff, and Pdet.

Direct method Neural network

Pon, Poff, and Pdet parameters estimation 25 h 5 s
� Learn the pairwise geometric relations of the selected descrip-
tors [7], which forms the set GM ¼ fgðf l; foÞjf l; fo 2 O�Mg, where
g(�) is a function that describes the geometric pairwise relations
between fl and fo.

The recognition algorithm consists of the following steps:

� Extract the local descriptors from the test image I, forming the
set O (image processing step).
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Fig. 13. ROC curve that shows the classifier performance on the test set using the
SIFT descriptors.
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� Select the well behaved descriptors using the classifier described
in Section 6, which builds the set O� #O (pre-processing step).

� Form the correspondence set by finding the closest model
descriptors to each test descriptor, building the set
N ¼ fðf l;

~f lÞjf l 2 O�M ;
~f l 2 O�; sf ðf l;

~f lÞ > ssg, where ss = 0.75 (data-
base search step).

� Using pairwise geometric constraints, eliminate outliers from
the correspondence set [7] (outlier rejection step).

� Build several independent hypotheses Eh for h¼1;...;H , where H
denotes the number of hypotheses and Eh ¼ fðf l;

~f lÞj8f l 2 O�M;

ðf l;
~f lÞ 2N or ~f l ¼ ;g. Notice that each hypothesis Eh contains

all the model descriptors from O�M , which means that, for each
model descriptor, either a match has been found (i.e.,
ðf l;

~f lÞ 2N) or no match is present in N (i.e., ~f l ¼ ;).
� Compute the probability of the model presence in each of the

hypothesis as follows:
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Fig. 14. Performance of the regression algorithm fo
PðMjEi; TÞ ¼
PðEhjT;MÞPðTjMÞPðMÞ

PðEhjT;MÞPðTjMÞPðMÞ þ PðEhjT;:MÞPðTj:MÞPð:MÞ ;

ð8Þ

where P(M) means our prior expectation that the model is present,
and Pð:MÞ ¼ 1� PðMÞ. Notice that P(TjM) represents the global geo-
metric configuration of local descriptors given M, which we treat to
be similar to PðTj:MÞ and cancel these terms from (8). The probabi-
listic formulation, based on [29], is as follows:

(1) PðEhjT;MÞ �
Q
ðfl ;

~flÞ2Eh
Pððf l;

~f lÞjT;MÞ, where we have the
following two cases:
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(a) ðf l; ;Þ 2 Eh:
Pððf l; ;Þ 2 EhjT;MÞ � ð1� PdetðxlÞÞ þ Pdetð~xlÞPonðs < ss; f lÞ;
(b) ðf l;
~f lÞ 2 Eh:
Pððf l;
~f lÞ 2 EhjT;MÞ � PdetðxlÞPonðsðf l;

~f lÞ; f lÞpðf l;
~f lÞ;

where Pðf l;
~foÞ denotes the probability that the geometric configura-

tion of the model descriptor fl matches the configuration of the test
descriptor ~f l [7]. Q
(2) PðEhjT;:MÞ ¼ ðfl ;
~flÞ2Eh

Pððf l;
~f lÞjT;:MÞ, where we have the

following two cases:

(a) ðf l; ;Þ 2 Eh:
Pððf l; ;Þ 2 EhjT;:MÞ � ð1� 0:003Þ þ 0:003ð1� Poffðsðf l;
~f lÞ

< ss; f lÞÞ;

where the number 0.003 represents the average number of interest
points per test image divided by the size of the image (see Section
3);
(b) ðf l;
~f lÞ 2 Eh:
Pððfk; foÞ 2 EhjT;:MÞ � ð0:003ÞPoffðsðf l;
~f lÞ; f lÞ

1
sizeðIÞ

1
13

1
2p

:

In the last term, we assume uniform distribution of position (one di-
vided by the image size), main orientation (one divided by 2p), and
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escriptors (see Fig. 11 for details).



Fig. 15. Sequences used to assess the performance of the recognition system. The contour represents the model (first column) and the matches (columns 2–4) in the
respective sequences.
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scale (one divided by the total number of scales – see Section 2.1)
given a background feature.

� Select the hypothesis with maximum value for Eq. (8), and if this
value is above a threshold (here, this threshold is 0.5), accept it
as a match.

The last three points represent the verification step. Two im-
age sequences were used (see Fig. 15), where the Kevin se-
quence contains 120 frames, and the Dudek sequence contains
140 frames. Table 2 shows the recognition performance for
the sequences of Fig. 15. Notice the significantly better perfor-
mance in terms of true/false positives and false negatives
Table 2
Performance of the recognition system in terms of true positive (TP), false positive
(FP), and false negative (FN) produced in the sequences of Fig. 15 (with and without
the neural net (NN) classifier). Note that TP + FN = sequence length because the
system either detects or does not detect the visual object. However, the number of
false positives (FP) can be anything greater than or equal to zero since a single image
can have more than one matching of the same object.

Sequence length TP FP FN

Kevin sequence
With NN classifier 120 120 0 0
Without NN classifier 120 108 5 12

Dudek sequence
With NN classifier 140 133 0 7
Without NN classifier 140 106 0 34

Table 3
Average time performance per frame (in s) of each step of the recognition algorithm
with and without the neural net (NN) classifier.

With NN classifier Without NN classifier

Database search 1 40
Outlier rejection 2 120
Verification 5 600

Total 8 760
matched in both sequences. Table 3 shows the average time
spent (in seconds per test image) in the main activities of the
recognition system run on a state-of-the-art PC computer for
the sequences of Fig. 15. Notice the substantial reduction in
computation time per test image achieved with the use of the
classifier.

8. Summary and conclusions

In this paper, we introduce a method to quantitatively charac-
terize the distinctiveness and robustness of local image descrip-
tors. This characterization is shown to provide a useful
classification method that selects well behaved descriptors to be
stored in the model database. Moreover, this characterization is
used to formulate more accurately the recognition process. We fur-
ther present a discriminative classifier that provides a fast and reli-
able descriptor selection, and a regressor that estimates the
robustness and distinctiveness properties of the descriptor. Finally,
we show that such classifier and regressor models not only reduce
significantly the recognition time, but they also allow for a more
accurate recognition.

Appendix A. Image deformations studied

The image deformations described in this section are used to
evaluate the robustness to perturbations of the interest point
detector and the local feature extractor. The set of image deforma-
Fig. A.1. Model image for deformations in Fig. A.2.



Fig. A.2. Image deformations studied.

Fig. B.1. Subset of database of images T.

Fig. B.2. Subset of database of images R.
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tions DF ¼ fdg considered here are: (a) two types of global bright-
ness changes, (b) non-uniform local brightness variations, (c) addi-
tive noise, (d) scale changes, (e) 2D rotation, (f) shear and (g) sub-
pixel translation. The non-uniform global brightness changes are
implemented by adding a constant to the brightness value, taking

into account the gamma correction non-linearity: eIdðxÞ ¼ 255�

max 0; IðxÞ
255

� �c
þ k

� �h i1
c
, where c = 2.2, I is the original image, and

k 2 {�0.5,�0.25,0,0.25,0.5} controls the changes in brightness.
The resulting image is linearly mapped to values between 0 and
255, and then quantized. The uniform brightness change is simply
based on the division of gray values by a constant c 2 {1,2,3}.

For the non-uniform local brightness variations, highlights are
simulated at specific locations of the image {xiji = 1, . . . ,N}, where
the positions xi are selected at regular intervals of 15 pixels both
in the horizontal and vertical directions. The highlights are simu-
lated by adding the following image of Gaussian blobs:
IgðxÞ ¼
XN

i¼1

rigðx� xi;rÞ; ðA:1Þ

where r = 15, ri is a normally distributed random variable with
mean zero and standard deviation one, and g(x;r) = exp(�x2/
(2r2)). The deformed image is then computed aseIdðxÞ ¼ IðxÞ þ pIgðxÞ, where p 2 {5,10,15,20,25,30}. Again, the
resulting image is mapped to values between 0 and 255, and then
quantized. For noise deformations, we simply add Gaussian noise
with varying standard deviation (r = 255 * {10�3,10�2,10�1}), fol-
lowed by normalization and quantization, as above. The geometric
deformations are 2D rotations (from �90� to +90� in intervals of
15�), uniform scale changes (with expansion factors in the range
[0.25,1] with steps of 0.125), shear in the horizontal direction (so
that a vertical line is perturbed by ±26�), and sub-pixel translation
(in the range [0,1] in steps of 0.2) pixel. The geometrically deformed
images are quantized to [0,255] without normalization. All the
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deformations described above are depicted in Fig. A.2, which shows
several deformed versions of the image in Fig. A.1.

Appendix B. Database of images used in the quantitative
evaluations

The images used for the quantitative evaluation consist of general
pictures of landscape, people, animals, and texture. We use a pool of
270 images and randomly sample 30 to form the foreground data-
base (see Fig. B.1), and the remaining 240 images form the back-
ground database (Fig. B.2) The full database is available in [41].

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.imavis.2008.10.015.
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