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Abstract

We propose a novel approach to improve the distinctive-
ness of local image features without significantly affecting
their robustness with respect to image deformations. Local
image features have proven to be successful in computer
vision tasks involving partial occlusion, background noise,
and various types of image deformations. However, the rel-
atively high number of outliers that have to be rejected from
the correspondences set, formed during the search for sim-
ilar features, still plagues this approach. The task of re-
jecting outliers is usually based on estimating the global
spatial transform suffered by the features in the correspon-
dences set. This presents two problems: i) it cannot prop-
erly deal with non-rigid objects, and ii) it is sensitive to a
high number of outliers. Here, we address these problems by
combining typical local features [2, 7] with shape context
[1]. A performance evaluation shows that this new semi-
local feature generally provides higher distinctiveness and
robustness to image deformations, thus potentially increas-
ing the inlier/outlier ratio in the correspondences set. Also,
we show that in wide baseline stereo matching, and non-
rigid motion applications, the use of the novel semi-local
feature not only provides robustness to non-rigid deforma-
tions, but also produces a higher inlier/outlier ratio than
the standard Hough clustering of the global spatial trans-
form of parameters.

1. Introduction

Highly distinctive and robustly detectable local features
[2, 6, 7, 12, 11, 13] have been shown to be useful in sev-
eral computer vision applications. Doubtless, the main ap-
plications involving these types of local features are those
handling partial occlusion, background noise, and several
types of image deformations. Examples of such applica-
tions include: wide baseline stereo [10, 14], long range mo-
tion [2, 7, 12], and object recognition with a limited set of
model images [8]. However, there is still a common prob-
lem affecting all the systems above, which is the relatively
small number of inliers present in a typical correspondences
set built during the feature similarities search. The task of

rejecting outliers, while keeping the inliers, then becomes
of supreme importance in such systems.

Various approaches envisioned for outlier rejection have
focused mainly on systems that strongly depend on infer-
ring the global spatial transform of local features [3]. Un-
fortunately, two issues affect these methods: a) they cannot
deal with non-rigid objects, and b) they are sensitive to high
number of outliers in the correspondences set. Here we pro-
pose a novel approach to solve these problems, which is
based on adding semi-local geometric information to the
feature vector. A somewhat similar approach to filter out
outliers from the correspondences set is described in [12],
where a fixed number of local features around a given fea-
ture is used to determine its semi-local structure. On the
other hand, our approach considers all the features in a tun-
able neighborhood to build the semi-local structure of a
given local feature.

While the distinctiveness is clearly improved, care must
be taken so that the high robustness of local features is
not degraded. The semi-local feature proposed here is im-
plemented using typical local feature approaches (here, we
consider the methods [2, 7]) and a variation of the shape
context method [1]. This variation is proposed to improve
the robustness of the shape context feature in terms of par-
tial occlusion, rotation, and scale changes, and it is as fol-
lows: a) nearby neighboring features have higher weight
than features that are farther away during the construction
of the shape context histogram; b) boundary effects are re-
duced by spreading a single vote over a small region of the
histogram; c) invariance to rotation is achieved by rotating
the histogram axis according to the main orientation of the
feature; and d) scale invariance is reached by re-scaling the
distance measures.

We study how the inclusion of the shape context varia-
tion affects the performance of the local features proposed
in [2, 7] using the performance evaluation method intro-
duced in [2]. We observe that the performance is consider-
ably improved in terms of distinctiveness while the robust-
ness is not significantly affected by the changes. We show
that the use of this new semi-local feature in wide base-
line matching and non-rigid motion problems generally pro-
duces a set of correspondences that is robust to non-rigid



deformations and that has a higher inlier/outlier ratio than
Hough clustering, which is a common approach that uses
global pose to reject outliers.

2. Semi-local Image Features
The local features proposed in the literature (e.g., [2,

7, 11, 12, 13]) are in fact formed not only from values at
some particular image location, but also from values ex-
tracted from neighboring pixels. What makes them local is
the small support region, which generally comprises four
to 16 sub-sampled pixels around the feature location. Usu-
ally, increasing the support region size improves the fea-
ture distinctiveness, but degrades the feature robustness to
changes. Here, we propose a method to increase the support
region size of a local feature, thus improving its distinctive-
ness, but without strongly affecting its robustness.

2.1. Local Image Features

Local image features suitable for local image represen-
tation must have three properties: a) distinctiveness, b) de-
tectability, and c) robustness to image deformations. In
[2, 9] it is empirically shown that both the multi-scale phase
based [2] and SIFT [7] features are suitable for this task
since they generally have those properties. Those features
are extracted using the following two steps: a) the ’where’
step selects interest points that are robustly localizable un-
der common image deformations forming the set of loca-
tions ����������	�
 at the following set of wavelengths (in pix-
els): �
����������� �����
����� �! �#"$�#%&%'��" �(
 ; b) the ’what’ step
extracts a feature vector describing the image structure in
the neighborhood of an interest point, say ) 	 �*)+�,� 	 � �- . 	 ��/ 	 ��0 	 ��1 	,2 . Here

. 	 is the model identification, / 	 is the
main orientation of the location � 	 (see [4]), 0 	 �43
5��6 798 rep-
resents the feature scale, and 1 	 is the feature vector values.

The features extracted from an image :�� are then repre-
sented by ;<�=�>�?)+�,��	 ��@ ��	BA����C
 . The similarity between
local features )�	 and ) � is computed according to the meth-
ods described in [2, 7], and we denote such similarity func-
tion by D
E��F) 	 � )G� � A -  ��" 2 .
2.2. Variation of Shape Context

The shape context feature proposed in [1] is based on a
log-polar space histogram as shown in Fig. 1. Although the
log-polar space makes the descriptor more sensitive to posi-
tions of nearby features than to those farther away, we added
the following additional properties in order to improve its
robustness to occlusion, to reduce boundary effects, and
also to make it robust to rotation and scale changes. A
vote in a specific histogram bin is weighted by the fol-
lowing function that decreases with distance: HI�J)�	 � ) � � �
KMLON�P Q�RTS9UWV 5JX VZY9[\ S , where ]^�F)�	 � ) � � �`_�a 5Fb a Y _c d

S5fe
d
SY is the scale in-

variant distance measure, and

g � maximum model diameter in pixelsg
div

� (1)
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Figure 1. Shape context of local feature h�i . As in
[1], we also use five bins for log(distance) and 12
bins for relative orientation. Note that we modify
the original shape context method as follows: a)
the histogram is rotated according to the main ori-
entation of h�i , b) the votes of neighboring features
h�j and h�k are weighted in terms of their distance to
hCi (darker cell means higher weight), c) each vote
spans four histogram bins to reduce boundary ef-
fects, and d) the distance is scaled to make it ro-
bust to scale changes.

where
g

div is a variable. This results in an approach that
prioritizes the votes of nearby features. Moreover, in order
to reduce boundary effects, each neighboring feature votes
for the two closest bins in each dimension. Finally, we make
the shape context robust to rotation changes by rotating the
histogram axis according to the main orientation of the fea-
ture. For all the cases below, we set

g
div � "  $ .

The shape context similarity between feature his-
tograms l��F)�	 � and l��F) � � is computed using them 7 ��lM�J)�	 ��� lM�J) � ��� test statistic defined in [1]. The sim-
ilarity between two histograms is then defined by

D
no��lM�J) 	 ��� l��F)G� ��� � K LON�P Q�p S Urq�UWV 5 [ X q�UZV Y ['[UZNCP Q�[ S .

3. Performance Evaluation

The performance evaluation utilizes a database of im-
ages �
: � 
 �,s+tfu�vW6W6W6Wv u�u�7�w , where �?: � 
 �Fs+tfufvW6W6W6Wv uCx9x�w are used to
compute the true positive rates (TP), and the remaining 12
images form the database of random images used for the
false positive rate (FP) calculation. The TP is computed by
taking the proportion of features that D E �F)�	 ��y)�	 �{z>| E and
D n ��lM�J)J	 ��� l�� y)�	 ���}z~|?� such that ���J���J� � ��	��=���F� ���?� y��	9����� ,
where �J���F� � ��	��~���F� ��� is the transformed position of fea-
ture )�	 in the deformed test image, according to spatial de-
formation � . Here, )�	�A�;�� and y)�	�A y;�� , where y;<� is
the feature set from y: � , which is : � after a known defor-
mation � is applied. On the other hand, the FP is com-
puted by taking the proportion of random image features
in the set ��;���
 ��s+tfuCx�u�vW6W6W6Wv u�u�7�w that D E � y)�	 � ) � ��z`| E and
D n ��lM� y)J	 ��� l��F) � ����z~|�� . Note that the database of random im-
ages has approximately "  � features. We generate the ROC
curves by varying the feature similarity threshold | E A -  ��" 2
and then evaluating TP and FP using the following values
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Figure 2. The TP rate curves in terms of eight
different image deformations are obtained by fix-
ing the FP rate at ������� in the ROC curves gener-
ated by the evaluation experiment. Black curves
are the phase local feature [2] without shape con-
text (solid), with shape context such that �	��
���� 

(dashed), and �	��
���� � (dotted). Cyan curve shows
the performance of SIFT [7] without shape con-
text (solid), with shape context such that � � 
���� 

(dashed), and � � 
���� � (dotted). Note that the error
bars are omitted for the dashed and dotted curves
for clarity, but are roughly the same size as the
ones we show.

for | � A��? �#%�� �#% �T��%�� �#% � 
 . Notice that when | � �� , we are
not using the shape context.

Fig. 2 shows the TP rates for a FP rate of  %'"�� for eight
different image deformation types described in [2]. With
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Figure 3. Inlier and outlier rejection ratios.

shape context, the smaller FP rate is quite easy to achieve
for the lower shape context threshold and is nearly guar-
anteed for the higher threshold. As a consequence a very
loose matching threshold on phase correlation can be used
to achieve this false positive rate, allowing the reported TP
rate to be close to one. In order to resolve the performance
of features with shape context more precisely, we would
need more features in our database.

The inliers and outliers that are rejected from the corre-
spondences set as |?� increases (with FP=  %'"�� ) are shown in
Fig. 3. The inlier rejection is computed as �����

� x � b �����
�"!$# �

� ���
� x � ,

where % �"& � | � � is the number of inliers (see computation
of TP rate above) for a given |?� , while the outlier rejection
is calculated as

�
�(' Y ' � x � b �(�)�

� x*�+� b � ��' Y ' �)!$# � b �����
�)!,# �-��

� ' Y ' � x*� b � �)�
� x �-� , where

%/.F�$.�� | � � is the total number of features in the correspon-
dences set for a given |?� . From these curves it is clear that
the use of shape context (for |
��0  %1� ) rejects many outliers
while keeping most of the inliers in the correspondence set.

4. Applications

In order to assess the distinctiveness and robustness of
the semi-local feature proposed in this work, we consider
the following two applications: wide baseline stereo match-
ing, and non-rigid motion. We only combine the shape con-
text described in Section 2.2 with the multi-scale phase-
based local feature [2] since it produces the overall best re-
sults in the performance evaluation experiment. We built a
system that is divided into feature extraction, searching, and
verification steps. The feature extraction is as described in
Section 2.1. The searching forms the correspondences set
�+�J)J	 � y)�	 �#@ )�	 A�;<� � y)J	�A y;�� � D E �F)�	 � y)�	 �Bz  %���� 
 . Note that y;��
is the feature set from image y:�� , which contains an unknown
deformed version of image :�� . In the experiments below, we
compare the following two possibilities to reject outliers: a)
our method using shape context; and b) Hough clustering
using the same configuration as in [8], where we select the
group with the highest number of features.

4.1. Wide Baseline Stereo Matching

Here, we take the set provided by the outlier rejection
methods and compute the 2 matrix [5] using RANSAC
[15]. We are interested in computing the proportion of in-



Figure 4. Wide-baseline stereo matching. Top row
shows frames 1 and 5 of the Wadham set of im-
ages, and bottom row presents frames 1 and 3
from the Merton set. The lines represent corre-
sponding epipolar lines.
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Figure 5. Proportion of inliers from the sets pro-
vided by the outlier rejection methods.

liers within this set. An inlier is considered to be a fea-
ture that lies within four pixels (approximately the spatial
resolution of the local features used) of the epipolar line
computed from the 2 matrix. Fig. 4 shows two examples
of the epipolar lines computed from the image pairs using
the semi-local features such that |
� � %1� (images available
from Oxford’s Visual Geometry Group’s webpage). Fig. 5
presents the proportion of inliers in terms of the set size
provided by the outlier rejection methods, where the curves
were obtained by varying | � in our method and varying the
bin sizes of the Hough transform. Notice that for sets of
equal size, the use of shape context for rejecting outliers
provides a higher inlier ratio than Hough clustering.

4.2. Non-rigid Motion

We also consider the problem of non-rigid motion in Fig.
6, where we show the correspondences provided by the out-
lier rejection methods. For this problem, one wants to find
a good compromise between distinctiveness and robustness
when deciding on the values of |
� and the histogram bin
sizes for the semi-local feature and Hough, respectively. We
chose those values based on the curves in Fig. 5, and they
are |�� �  %1� for our method, and for Hough we have " � �

Semi-local Feature Hough

Figure 6. Non-rigid motion using the ’snake of
cans’ model. The left image shows the correspon-
dences (white lines) from the semi-local features,
and the right depicts the correspondences from
Hough clustering.

for rotation bin size, a factor of 2 for scale, and  %&" � times
the maximum model diameter for translation. Note how the
use of shape context not only allows for a higher inlier ratio
than Hough clustering, but also finds inliers over the whole
’snake of cans’ model that suffered a non-rigid deformation.
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