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Abstract. We introduce a new type of local feature based on the phase and ampli-
tude responses of complex-valued steerable filters. The design of this local feature
is motivated by a desire to obtain feature vectors which are semi-invariant under
common image deformations, yet distinctive enough to provide useful identity in-
formation. A recent proposal for such local features involves combining differen-
tial invariants to particular image deformations, such as rotation. Our approach
differs in that we consider a wider class of image deformations, including the ad-
dition of noise, along with both global and local brightness variations. We use
steerable filters to make the feature robust to rotation. And we exploit the fact that
phase data is often locally stable with respect to scale changes, noise, and com-
mon brightness changes. We provide empirical results comparing our local feature
with one based on differential invariants. The results show that our phase-based
local feature leads to better performance when dealing with common illumina-
tion changes and 2-D rotation, while giving comparable effects in terms of scale
changes.

Keywords: Image features, Object recognition, Vision systems engineering and
evaluation, Invariant local features, Local phase information.

1 Introduction

View-based object recognition has recently received a great deal of attention in the vi-
sion literature. In this paper we are particularly interested in approaches based on local
features (e.g. differential invariants in [20], and local scale-invariant features in [13]).
These approaches have demonstrated their unique robustness to clutter and partial oc-
clusion, while keeping the flexibility and ease of training provided by classical view-
based approaches (see [15, 22]). However, to be successful for object recognition, local
features must have the two properties: 1) be robust to typical image deformations; and
2) be highly distinctive to afford identity information.

We propose a novel local feature vector that is based on the phase and amplitude
responses of complex-valued steerable filters. This builds on previous work [3] in which
it was shown that the phase information provided by such filters is often locally stable
with respect to scale changes, noise, and common brightness changes. Here we show it
is also possible to achieve stability under rotation by selecting steerable filters.

The results of an empirical study described here show that the phase-based local fea-
ture performs better than local differential invariants for common illumination changes



and 2-D rotation, while giving similar results for scale changes of up to 20%. We are cur-
rently investigating the use of brightness renormalization for the local differential invari-
ants, as in [19], in order to reduce the brightness sensitivity of the differential invariant
approach and provide a fairer comparison.

1.1 Previous Work

The use of local features is usually associated with the object recognition task. Currently,
object recognition methods are of three types, namely: 1) systems that match geomet-
ric features, 2) systems that match luminance data, and 3) systems that match robustly
detectable, informative, and relatively sparse local features. The first type of system,
namely those that utilize geometric features (see [2, 6, 9, 12]), are successful in some
restricted areas, but the need of user-input models makes the representation of some
objects, such as paintings or jackets, extremely hard. View-based methods (see [11, 15,
22]) have avoided this problem since they are capable of learning the object appearance
without a user-input model. However they suffer from difficulties such as: 1) illumina-
tion changes are hard to be dealt with; 2) pose and position dependence; and 3) partial
occlusion and clutter can damage the system performance (but see [1, 11]).

The third type of object recognition method is based on local image descriptors ex-
tracted from robustly detectable image locations. Systems that are based on this method
show promising results mainly because they solve most of the problems in the view-
based methods, such as illuminationchanges, clutter, occlusion, and segmentation, while
keeping most of their improvements in terms of flexibility and simplified model acquisi-
tion. Rao and Ballard [17] explore the use of local features for recognizing human faces.
The authors use principal component analysis (PCA) to reduce the dimensionality of lo-
calized natural image patches at multiple scales rather than PCA of entire images at a
single scale. In [16], Nelson presented a technique to automatically extract a geometric
description of an object by detecting semi-invariants at localized points. A new concept
was presented by Schmid and Mohr [20], where, instead of using geometric features,
the authors use a set of differential invariants extracted from interest points. In [13, 14]
Lowe presents a novel method based on local scale-invariant features detected at interest
points.

2 Image Deformations Studied

The image deformations considered here are: a) uniform brightness changes, b) non-
uniform local brightness variations, c) noise addition, d) scale changes, and e) rotation
changes. The uniform brightness change is simulated by adding a constant to the bright-
ness value taking into account the non-linearity of the brightness visual perception, as
follows: ���������
	���
�
������������������ ��� �����
�
"!$#�%'&)(+*-,. �

(1)

where / 	0��12�
, and & is the constant the alters the final brightness value. The resulting

image is linearly mapped to values between 0 and 255, and then quantized.



Fig. 1. Typical interest points detected on an image (brighter spots on the image). The right image
shows the original points and the left one depicts the interest points detected after a ����� -degree
rotation.

For the non-uniform local brightness variations, a highlight at a specific location of
the image is simulated by adding a Gaussian blob in the following way:� � � �
��	 � ����� % ��
�
���� ����� �
	���
�� �

(2)

where

�	�� �

,
� 	

is a specific position in the image, and
� � ����
��
	�� ���"��������� ����
�� � �

.
Again, the resulting image is mapped to values between 0 and 255, and then quantized.

For noise deformations, we simply add Gaussian noise with varying standard devi-
ation (


�	 ��
�
������ � �"!��#� �$�&%('
), followed by normalization and quantization, as above.

The last two deformations involve spatial image warps. In particular, we consider 2D ro-
tations (from

��)
to
�#*���)

in intervals of + ��) ) and uniform scale changes (with expansion
factors in the range

� � 1-, + �#��12
�*.' ). Every image used in these deformation experiments is
blurred, down-sampled and mapped to values between 0 and 255 in order to reduce high
frequency artifacts caused by noise.

3 Interest Points

In the literature, view-based recognition from local information always relies on inter-
est points, which represent specific places in an image that carry distinctive features of
the object being studied. For example, in [13], interest points are represented by local
extrema, with respect to both image location and scale, in the responses of difference of
filters. Alternatively, a detector that uses the auto-correlation function in order to deter-
mine locations where the signal changes in two directions is used in [20]. A symmetry
based operator is utilized in [10] to detect local interest points for the problem of scene
and landmark recognition. In [16], a contour detection is run on the image, and points
of high curvature around the shape are selected as interest points.

Here we consider the Harris corner detector (see [7]) used in [20], where a matrix
that averages the first derivatives of the signal in a window is built as follows:/ � ���
	�� ���0�2143�5"6�3�87 3:9 ; ���1 � 1 � 6� 1 � 6 ���6=< �

(3)



Fig. 2. The four images used for testing interest point detection. The right three images are also
used for evaluating the local feature vectors.

where

�	���12�

, and 9 is the convolution operation. Here
� 1 	 � 1 9 �

, where
� 1 is the�

-derivative of a Gaussian with standard deviation 1, and similarly for
� 6 . The eigen-

vectors of this matrix encodes edge directions, while the eigenvalues, / % �����
and / � �����

,
represent edge strength. Corners, or interest points, can then be defined as locations at
which / % ���
� � / � ���
� ���

, where
�

is a threshold. Given the fact that the threshold
function described in [7] does not produce a value between 0 and 1, we have found the
following function to provide a more convenient threshold criterion:

�"���
��	 / � � ���
� % �8������� �$� / % � �
� % / � ����� � �

(4)

where � is set based on the histogram of
� � �
�

of various types of images. Here, we select� 	��
, and every point that has

�"� ��� � � 1 

is considered an interest point. Fig. 1 shows

the corners detected for the Einstein image.
Two measures are computed to assess the performance of the interest point detec-

tor, namely the true positive rate and reliability. Given a point
���

in the original image
space, and an image deformation specified by a matrix � and a translation vector 	 , the
transformed image location is ��
 	 � � � % 	 1

(5)

Let us consider the set of interest points detected in an image
�
�

:���
� � � �
	��4� ��� �"����� � � ��12
��)�
(6)

where
� ��� ���

.
The true positive ( ����� ��!#" ) rate of interest point detection, between the original im-

age
� �

and the transformed image
�%$

, is based on the following measure:

��� � ��!&" 	 � ��� � � ' �(
�)�1 � 1 �*� � � � % 	 � ��
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� � � � � 1

(7)

where
�/� � �0�
����� �

,
� $1� ���
��� $ �

,
�2�43��*�

denotes the Euclidean norm, and
- 	���12


pixels.
However, this measure does not account for extraneous interest points in the transformed
image. Therefore, we also measure the reliability of 5 � ��!&" by calculating:

56����!&" 	 � ���
� ��� � �
� ���
���7$ � � � (8)
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Fig. 3. Interest point repeatability. The graphs show the true positive (solid line) and reliability
(dotted line) rates for the four types of image distortion.

where the maximum value for 5 � � !&" is constrained to be
�
.

In Fig. 3, we can see common type of image deformations, the true positive rate and
the reliability rate for the interest point detector (note: from left to right, image number
2 is extracted from the COIL database [18], and image number 4 is extracted from [21]).

4 Local Feature Vector

Ideally, the local features used to describe an object should have the following two prop-
erties: a) be complex enough to provide a strong information about a specific location of
an image; and b) be relatively stable to changes in the object configuration, so that small
transformations do not affect the efficiency of the correlation process. In this section we
consider the problem of finding good candidates for such local features.



A recent proposal for local features described in [20] uses a set of derivatives, coined
the “Local-Jet”, that is invariant to rotation and is defined as follows:
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where we use the tensor summation convention,
- � $

is the 2-D anti-symmetric epsilon
tensor defined by

- % � 	�� - �.% 	 �
and

- %�% 	 - ��� 	0�
, and 5 ��	 �� 1�� � � � ��
��
� �

is the
element of the local jet such that

� ��� ��
��
is a Gaussian function, and

�
is the image.

Alternatively, in [13], after detecting interest points, the image is locally character-
ized by a set of Scale Invariant Feature Transform (SIFT) features that represents a vec-
tor of local image measurements.

4.1 Phase and Amplitude Information

We use a local feature approach, similar to the ones described above, but with a new type
of feature using phase information. The phase-based local feature is a complex represen-
tation of local image data that is obtained through the use of quadrature pair filters, tuned
to a specific orientation � and scale



. More specifically, we use the steerable quadrature

filter pairs described in [5] as follows: Let� ��� ��
 � � � 	�� � � 
 � � � � ����� ���� ��� ��
�� � �
	�� � � 
 � � � � ����� ��� (10)

where
� � �(
�� � � is the second derivative of a Gaussian,

� � � 
�� � � is the approximation of
Hilbert transform of

� � , and



is the standard deviation of the Gaussian kernel used to
derive

� � and
� � . A complex polar representation can be written as:� ��� ��
�� � � %�� � � � ��
 � � �
	�� ��� ��
�� � ��� �! #"�$&% 7 % ')( � (11)

where
� � � ��
 � � � is the local amplitude information and * ��� ��
�� � � is the local phase in-

formation.

4.2 Saturating the Amplitude Information

The amplitude saturation is similar to contrast normalization (see [8]) and to the con-
straint on a minimum absolute amplitude (see [4]). It is desirable to allow the amplitude
to saturate in order to reduce the system’s sensitivity to brightness change. Therefore,
whenever the local amplitude is high enough the saturated amplitude should be roughly
constant. Here we use +� � � ��
�� � �
	 � ���-,/. 3�021	3 453 6�7398 4 3. � (12)



where

���	0��12


. As a result,

+�
is roughly

�
for

�
over

��
��
, and near

�
for small ampli-

tudes.

4.3 Local Image Description

Since a single pixel does not provide a distinctive response we consider several sample
points, say

� � � � � ����	�&% , taken from a region around each interest point,
� �

. We use the
sampling pattern depicted in Fig. 4, with the center point

� � ��
 denoting the specific in-
terest point

� �
(the reasons for selecting this particular sampling pattern are discussed

further below). At each spatial sample point
� � � � the filters are steered to

�
equally

spaced orientations, namely

��
 ��� � ��	 � � ��� � � % �#� � � � ��*���)
� ����������	 ��� 1 1 1 ����1

(13)

Here � � ��� � �
is the main orientation of the pixel computed as described in [5], except

we use the sign of the imaginary response of the filter steered to this orientation to re-
solve a particular direction (i.e. mod + ,��$)

) from this orientation. Notice that this main
orientation � � ��� � �

therefore determines both the orientations that the filters are steered
to and the positions of the sample points along circle centered on the interest point

� �
(see Fig. 4).

The feature vector � � � � �
has individualcomponents specified by the saturated com-

plex filter responses. We use

+� � �#�
��� ���  � " 
 % � ( to denote the filter response evaluated at� � � � and steered to orientation ��
 ����� �
, for

��	���� 1 1 1 ���
, and

� 	���� 1 1 1 � � . Together
these responses form the

� � -dimensional complex feature vector � ��� � �
.

4.4 Phase Correlation

The similarity between local features is computed using phase correlation since this is
knownto providesome stability to typical image deformations such as brightnesschanges
and near identity image warps. The similarity measure for our feature vector is the nor-
malized phase correlation

� � � � � � ��� � ����
)� ��	 �����
� ����&% ���
 �&% +� � �#�
��� � +�4$��&�
����� � � "  � " 
 % � ( �  � 5" 
 % � ( (� % � ����&% ���
 �&% +��� �&�
����� +� $ �&�
����� �����

1
(14)

The reason for adding the
�

in the denominator above is to provide a low-amplitude cut-
off for the normalization. This results in similarity values

� � � � ��� � � � � � 
 � � � �2� ��� '
.

4.5 Feature Vector Configuration

An empirical study was conducted to select the remaining parameters of the local fea-
ture vector. These are: a) the number of steering directions,

�
; b) the number of sample

points � 	 � ���
on the circle surrounding the interest point

���
; and c) the radius, ! ,

of the circle. Each of these parameters represents a compromise between stability (bet-
ter for small values of the parameters), and expressiveness (better at larger values). By
evaluating the detection rates and false target rates (in the manner described for the ex-
periments below) we selected � 	#"

,
� 	%$

, and ! 	 + as providing a reasonable
trade-off between expressiveness and stability.
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Fig. 4. Configuration of local descriptor.

5 Experiment Setup

In order to compare our feature with the differential invariant feature in (9), 3 test images
were selected (see Fig. 2), and 5 image databases (see Fig. 5) were selected consisting
of 12 images each. None of the test images were included in these databases. Some of
the images inserted into the databases were selected due to appearance similarities with
the test images, and other images were just natural scenes.

Given the 5 types of image deformations studied (see Section 2), the comparison is
based on the Receiver Operating Characteristics (ROC) curves where the detection rate
vs false positive rate is computed for each of the local feature types. In order to define
these rates, let

� �
be an interest point in a test image. Suppose

� � 	 	 � � � % 	 denotes
the correct position of this interest point in the transformed test image, according to the
spatial deformation used. The detection rate (DT) is then defined to be the proportion of
interest points

���
such that there exists some interest point,

� 

in the transformed image

which is both sufficiently close to the mapped point (i.e.
�*� � 
 � ��� 	 �*�0+.-

) and which has
a similar local feature vector (i.e.

� ��� ���6� ����� ��� 
 � ���	�
). Here

-
was fixed at 1.5 pixels,

while
�

was varied to generate the ROC curves. Similarly, given this same interest point���
in the test image, a false positive is defined by the presence of a similar interest point� 

in the database (i.e.

� ��� ����������� ��� 
 � �
�	�
). The false positive rate (FP) is defined to

be the number of these false positives divided by the total number of test image interest
points evaluated.

The threshold for both similarity functions is varied as follows: for the phase cor-
relation, that has values in

�2� ��� '
, the variation step is

��1��
; the differential invariant fea-

ture uses the Mahalanobis distance, as described in [20], which can have practically any
value above 0, so the variation step is 1 until � � � ��!&" � ��1 " "

. The actual curves are com-
puted using intervals of

��12� + for the false positive rate, and these are plotted using linear
interpolation.

6 Results

Fig. 6 shows the ROC curve for uniform brightness changes. It is clear that the phase-
based feature displays consistently better results, and, due to amplitude saturation, the
feature is almost unaffected by an increase in brightness. However, it is more sensitive



Fig. 5. Database of images.

to decreases in brightness, which is presumably due to the appearance of unsaturated
low amplitude responses. The differential invariant feature, on the other hand, is seen to
be quite sensitive to these changes. This is also clear from Fig. 7, where we show the
detection rate for thresholds

�
at which the false positive rate is fixed at

��1��
. It is clear

from this plot that the phase-based approach is much less sensitive to brightnesschanges.
The same is true for non-uniform brightness changes, as shown in Fig. 8.

The phase-based feature also gives good results for other types of image deforma-
tions. As shown in Fig. 9, the performance of both types of features is seen to be similar
for additive Gaussian noise. For scale changes, the differential invariant feature is seen
to have a somewhat larger detection rate, for the same level of false positives(see Fig-
ure 10). This is true primarily for the larger scale changes. For scale changes between
� �����

, the phase-based local feature provides comparable performance (see Fig. 11).
Finally, the ROC curves show the phase-based feature is somewhat better under image
rotation (see Fig. 12). In order to control for small brightness changes which may have
occurred during the rotation and scale deformations, we computed the ROC curves with
and without rescaling the transformed image to values between 0 and 255. Both cases
gave similar results to the ones reported here.

7 Conclusions and Future Work

A new type of local feature based on the phase and amplitude of steerable bandpass fil-
ters is proposed here. An empirical study is conducted in order to demonstrate that it
has the basic characteristics necessary for useful local features, that is, they are robust to
common image deformations and distinctive. Moreover, an empirical comparison with
differential invariant features shows that the phase-based local feature performs better
in terms of common illumination changes and 2-D rotation, while giving comparable or
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Fig. 6. Uniform brightness changes. Solid line represents the phase-basedfeature. Dotted line rep-
resents differential invariant feature.
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Fig. 9. Gaussian noise changes. Solid line represents the phase-based feature. Dotted line repre-
sents differential invariant feature.



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Scale Change: 0.63*(original size)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Scale Change: 0.79*(original size)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Scale Change: 1.25*(original size)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Scale Change: 1.58*(original size)

Fig. 10. Scale changes. Solid line represents the phase-based feature. Dotted line represents dif-
ferential invariant feature.
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Fig. 11. Scale changes with a false positive rate fixed at 0.1 and computing the detection rate for
varying amount of change. Solid line represents the phase-based feature. Dotted line represents
differential invariant feature.



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Rotation 30o

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Rotation 60o

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Rotation 90o

False Positive Rate

D
et

ec
tio

n 
R

at
e

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Rotation 120o

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
et

ec
tio

n 
R

at
e

Rotation 150o

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Rotation Angle

D
et

ec
tio

n 
R

at
e

Rotation Change: False Positive Rate = 0.1

Fig. 12. Rotation changes. Solid line represents the phase-based feature. Dotted line represents
differential invariant feature. The graph at the bottom-right corner shows rotation changes with a
false positive rate fixed at 0.1 and computing the detection rate for varying amount of change.



slightly worse results when dealing with scale changes. An important area for further
study is the use of brightness normalization in the differential invariant features, and the
comparison of the result with our phase-based approach.

The phase-based local feature has obvious applications in object recognition, but a
few issues must be dealt with before exploring its capabilities. The interest point detec-
tor used here can be replaced by another one that provides a better response in terms
of the information being studied here, (i.e., phase and amplitude), and presents a better
response to scale changes. The high dimensionality of the vector can represent a bur-
den, so methods for reducing it, or search methods that perform well in high dimensions
must be sought. Finally, grouping features before searching the database of models is an
important component that should be added.
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