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Abstract. Weintroduceanew type of local feature based on the phaseand ampli-
tude responsesof complex-valued steerablefilters. The design of thislocal feature
is motivated by a desire to obtain feature vectors which are semi-invariant under
commonimage deformations, yet distinctive enoughto provide useful identity in-
formation. A recent proposal for such local features involvescombining differen-
tial invariants to particular image deformations, such as rotation. Our approach
differsin that we consider awider class of image deformations, including the ad-
dition of noise, along with both global and local brightness variations. We use
steerablefilters to make the feature robust to rotation. And we exploit the fact that
phase data is often locally stable with respect to scale changes, noise, and com-
mon brightnesschanges. We provide empirical resultscomparing our local feature
with one based on differential invariants. The results show that our phase-based
local feature leads to better performance when dealing with common illumina-
tion changesand 2-D rotation, while giving comparable effects in terms of scale
changes.

Keywor ds: Image features, Object recognition, Vision systems engineering and
evaluation, Invariant local features, Local phase information.

1 Introduction

View-based object recognition has recently received a great deal of attention in the vi-
sion literature. In this paper we are particul arly interested in approaches based on local
features (e.g. differential invariantsin [20], and local scale-invariant featuresin [13]).
These approaches have demonstrated their unique robustness to clutter and partial oc-
clusion, while keeping the flexibility and ease of training provided by classica view-
based approaches (see [15, 22]). However, to be successful for object recognition, local
features must have the two properties: 1) be robust to typica image deformations; and
2) be highly distinctiveto afford identity information.

We propose a novel local feature vector that is based on the phase and amplitude
responses of complex-valued steerablefilters. Thisbuildson previouswork [3] inwhich
it was shown that the phase information provided by such filtersis often locally stable
with respect to scale changes, noise, and common brightness changes. Here we show it
isalso possibleto achieve stability under rotation by selecting steerable filters.

Theresultsof an empirical study described here show that the phase-based local fea-
ture performs better than local differentia invariantsfor common illumination changes



and 2-D rotation, whilegiving similar resultsfor scal e changes of up to 20%. We are cur-
rently investigating the use of brightnessrenormalization for thelocal differentia invari-
ants, asin [19], in order to reduce the brightness sensitivity of the differentia invariant
approach and provide afairer comparison.

1.1 PreviousWork

Theuseof local featuresisusually associated with the object recognitiontask. Currently,
object recognition methods are of three types, namely: 1) systems that match geomet-
ric features, 2) systems that match luminance data, and 3) systems that match robustly
detectable, informative, and relatively sparse local features. The first type of system,
namely those that utilize geometric features (see [2, 6,9, 12]), are successful in some
restricted areas, but the need of user-input models makes the representation of some
objects, such as paintings or jackets, extremely hard. View-based methods (see [11, 15,
22]) have avoided this problem since they are capable of learning the object appearance
without a user-input model. However they suffer from difficulties such as: 1) illumina
tion changes are hard to be dealt with; 2) pose and position dependence; and 3) partial
occlusion and clutter can damage the system performance (but see [1, 11]).

The third type of object recognition method is based on local image descriptors ex-
tracted from robustly detectableimage locations. Systemsthat are based on this method
show promising results mainly because they solve most of the problemsin the view-
based methods, such asilluminationchanges, clutter, occlusion, and segmentation, while
keeping most of their improvementsin termsof flexibility and simplified model acquisi-
tion. Rao and Ballard[17] explorethe use of local features for recognizing human faces.
The authorsuse principa component analysis (PCA) to reduce the dimensionality of |o-
calized natural image patches at multiple scales rather than PCA of entireimages a a
singlescae. In [16], Nelson presented a technique to automatically extract a geometric
description of an object by detecting semi-invariantsat localized points. A new concept
was presented by Schmid and Mohr [20], where, instead of using geometric features,
the authors use a set of differential invariants extracted from interest points. In [13, 14]
Lowe presentsa novel method based onlocal scal e-invariant features detected at interest
points.

2 Image Deformations Studied

The image deformations considered here are: @) uniform brightness changes, b) non-
uniform local brightness variations, ¢) noise addition, d) scale changes, and €) rotation
changes. The uniform brightness change issimulated by adding a constant to the bright-
ness va ue taking into account the non-linearity of the brightness visua perception, as

follows:
In () = 255 % lmax (07 <%> + k)

where A = 2.2, and k isthe constant the alters the final brightnessvalue. The resulting
imageislinearly mapped to values between 0 and 255, and then quantized.
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Fig. 1. Typical interest points detected on an image (brighter spots on theimage). The right image
shows the original points and the left one depicts the interest points detected after a 30°-degree
rotation.

For the non-uniform local brightness variations, a highlight at a specific location of
theimageis simulated by adding a Gaussian blob in the following way:

In(®) = I(®) + 255« G(x — ®o; 0), 2

whereos = 10, =z isaspecific positionintheimage, and G(z; o) = exp (—z?/(20?)).
Again, the resulting image is mapped to values between 0 and 255, and then quantized.

For noise deformations, we simply add Gaussian noise with varying standard devi-
ation (o = 255 * [10~3,1071]), followed by normalization and quantization, as above.
Thelast two deformationsinvolvespatial imagewarps. |n particular, we consider 2D ro-
tations (from 0° to 1807 in intervalsof 30?) and uniform scale changes (with expansion
factorsintherange [0.63, 1.58]). Every image used in these deformation experimentsis
blurred, down-sampled and mapped to va ues between 0 and 255 in order to reduce high
frequency artifacts caused by noise.

3 Interest Points

In the literature, view-based recognition from loca information always relies on inter-
est points, which represent specific placesin an image that carry distinctive features of
the object being studied. For example, in [13], interest points are represented by local
extrema, with respect to both image |ocation and scale, in the responses of difference of
filters. Alternatively, a detector that uses the auto-correl ation functionin order to deter-
mine locations where the signal changes in two directionsis used in[20]. A symmetry
based operator is utilized in [10] to detect local interest pointsfor the problem of scene
and landmark recognition. In [16], a contour detection is run on the image, and points
of high curvature around the shape are selected as interest points.

Here we consider the Harris corner detector (see [7]) used in [20], where a matrix
that averages the first derivatives of the signal in awindow is built as follows:

24,2 2 I
C(z) =exp—t @ [ T xdy:| ’ ©)
() 20 I 1, [Z



Fig. 2. The four images used for testing interest point detection. The right three images are also
used for evaluating the local feature vectors.

wheres = 2.0, and ® isthe convolutionoperation. Here I, = G, ® I, where G, isthe
z-derivative of a Gaussian with standard deviation 1, and similarly for 7,,. The eigen-
vectorsof thismatrix encodes edge directions, whilethe eigenvalues, A, () and Az (x),
represent edge strength. Corners, or interest points, can then be defined as locations at
which Ay (%) > Az(x) > t, wheret is athreshold. Given the fact that the threshold
function described in [ 7] does not produce ava ue between 0 and 1, we have found the
following function to provide a more convenient threshold criterion:

/\2(33)
¢+ (1/2) x (M (=) + Aa(2))’

wherec isset based onthehistogramof R(x) of varioustypesof images. Here, we select
¢ = 1, and every point that has R(x) > 0.5 isconsidered an interest point. Fig. 1 shows
the corners detected for the Einstein image.

Two measures are computed to assess the performance of the interest point detec-
tor, namely the true positiverate and reliability. Given a point «; in the original image
space, and an image deformation specified by amatrix A and atrand ation vector b, the
transformed image location is

R(x) = (4)

;= Mz; +b. 5)
Let us consider the set of interest points detected in an image /;:
In(I;) = {@i|R(z;) > 0.5}, (6)

wherez; € I;.
The true positive (TP, 4. ) rate of interest point detection, between the original im-
age I; and the transformed image I, is based on the following measure:

{xi|Fejs.t.||[Mx; +b—xj|| < e}

TP gte =
‘ [In(Z;)]

(")

wherez; € In(I;), z; € In(l;), || - || denotesthe Euclidean norm, and e = 1.5 pixels.
However, thismeasure does not account for extraneousinterest pointsin thetransformed
image. Therefore, we also measure the reliability of L,.,:. by caculating:

(8)
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Fig. 3. Interest point repeatability. The graphs show the true positive (solid line) and reliability
(dotted line) rates for the four types of image distortion.

where the maximum valuefor L, 4. iSconstrained to be 1.

In Fig. 3, we can see common type of image deformations, the true positiverate and
thereliability rate for the interest point detector (note: from I eft to right, image number
2isextracted from the COIL database [18], and image number 4 isextracted from[21]).

4 Local FeatureVector

Ideally, thelocal features used to describe an object should have the foll owingtwo prop-
erties: a) be complex enough to provide astrong information about a specific | ocation of
animage; and b) berelatively stable to changesin the object configuration, so that small
transformationsdo not affect the efficiency of the correl ation process. In this section we
consider the problem of finding good candidates for such local features.



A recent proposal for local features described in [20] usesaset of derivatives, coined
the“Local-Jet”, that isinvariant to rotation and is defined asfollows:

L
L;L;
LZ'LZ']'LJ'
Li;
V= Lij Lji e R’ 9)
€ij(LjmiLiLy Ly — Ljgk Li L1 Ly)
LiijLi Ly Ly — Liju Li Ly Ly,
—€;; Ljni Li L Ly
LijkLiLij

where we use the tensor summation convention, ¢;; is the 2-D anti-symmetric epsilon
tensor defined by ¢15 = —e31 = land ey = €95 = 0,and L; = %G(m,o) x I isthe
element of thelocal jet such that G(x, o) isa Gaussian function, and 7 istheimage.

Alternatively, in [13], after detecting interest points, the imageislocally character-
ized by aset of Scale Invariant Feature Transform (SIFT) features that represents avec-
tor of local image measurements.

4.1 Phaseand Amplitude Information

We use alocal feature approach, similar to the ones described above, but with anew type
of feature using phase information. The phase-based local featureisacomplex represen-
tation of local image datathat isobtai ned through the use of quadraturepair filters, tuned
toaspecific orientation 8 and scale o. More specifically, we use the steerable quadrature
filter pairs described in [5] as follows: Let

g(xe,0,0) = Ga(o,0) x I(x),

h(z,0,0) = Ha(o,0) * I(z), (10)

where G5 (o, §) isthe second derivative of aGaussian, H. (o, §) isthe approximation of
Hilbert transform of G5, and o isthe standard deviation of the Gaussian kerndl used to
derive G; and H,. A complex polar representation can be written as:

g(®,0,0)+ih(e,0,0) = p(e,o, 9)6i¢(m’0’9), (11)

where p(x, o, 8) isthelocal amplitude information and ¢(x, o, ) istheloca phasein-
formation.

4.2 Saturatingthe Amplitude Information

The amplitude saturation is similar to contrast normalization (see [8]) and to the con-
straint on a minimum absolute amplitude (see [4]). Itisdesirableto allow theamplitude
to saturate in order to reduce the system’s sensitivity to brightness change. Therefore,
whenever thelocal amplitudeis high enough the saturated amplitude should be roughly
constant. Here we use

—p2%(=,5,6)

ple,o,0)=1—¢ =9 | (12)




wheres, = 2.5. Asaresult, g isroughly 1 for p over 2¢,, and near 0 for small ampli-
tudes.

4.3 Local Image Description

Since asingle pixel does not provide a distinctiveresponse we consider several sample
points, say {®;,m }_,, taken from aregion around each interest point, ;. We use the
sampling pattern depicted in Fig. 4, with the center point «;,1 denoting the specific in-
terest point x; (the reasons for selecting this particular sampling pattern are discussed
further below). At each spatial sample point ;. ., the filters are steered to N equally
spaced orientations, namely

On(2;) = Opr(25) + (n— 1) 1?\(])0

, forn=1,...,N. (13)

Here 6 (x;) isthe main orientation of the pixel computed as described in [5], except
we use the sign of the imaginary response of thefilter steered to this orientation to re-
solve a particular direction (i.e. mod 360°) from this orientation. Notice that thismain
orientation s () therefore determines both the orientationsthat the filters are steered
to and the positions of the sample points along circle centered on the interest point x;
(seeFig. 4).

Thefeaturevector F'(x;) hasindividua components specified by the saturated com-
plex filter responses. We use g; (n, m)e?: (") to denote thefilter response eval uated at
x;m and steeredto orientationd,, (z;),forn =1,...,N,andm = 1,..., M. Together
these responses form the V M -dimensiona complex feature vector F'(x;).

4.4 Phase Correation

The similarity between local features is computed using phase correlation since thisis
knownto providesome stability totypical image deformationssuch as brightnesschanges
and near identity image warps. The similarity measure for our feature vector isthe nor-
malized phase correlation

Sy S i (n,m) (n, m)e (44 m) =6 m)

1 + Z%:l Zil\[:l ﬁl(n7 Tn)p’}(n7 m)
Thereason for adding the 1 in the denominator aboveisto provide alow-amplitude cut-
off for the normalization. Thisresultsin similarity values S(F'(z;), F'(x;)) € [0, 1].

S(F(2:), F(z5)) = (14)

45 Feature Vector Configuration

An empirica study was conducted to select the remaining parameters of the local fea-
turevector. These are: @) the number of steering directions, NV ; b) the number of sample
points P = M — 1 on thecircle surrounding the interest point «,; and c) the radius, /,
of the circle. Each of these parameters represents a compromi se between stability (bet-
ter for small values of the parameters), and expressiveness (better at larger values). By
evaluating the detection rates and fal se target rates (in the manner described for the ex-
periments below) we sdlected M = 9, N = 4, and ! = 3 as providing a reasonable
trade-off between expressiveness and stability.
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Fig. 4. Configuration of local descriptor.

5 Experiment Setup

In order to compare our featurewith thedifferential invariant featurein (9), 3 testimages
were selected (see Fig. 2), and 5 image databases (see Fig. 5) were selected consisting
of 12 images each. None of the test images were included in these databases. Some of
theimages inserted into the databases were sel ected due to appearance similaritieswith
the test images, and other images were just natural scenes.

Given the 5 types of image deformations studied (see Section 2), the comparison is
based on the Receiver Operating Characteristics (ROC) curves where the detection rate
vs false positive rate is computed for each of thelocal feature types. In order to define
theserates, let =; be aninterest point in atest image. Suppose z;° = M x; + b denotes
the correct position of thisinterest point in the transformed test image, according to the
spatial deformation used. The detection rate (DT) isthen defined to be the proportion of
interest points ; such that there exists someinterest point, =5 in the transformed image
whichisboth sufficiently close to the mapped point (i.e. ||z ; —;°|| < €) and which has
asimilar local featurevector (i.e. S(F(x;), F(x;)) > 7). Heree wasfixed a 1.5 pixels,
while ~ was varied to generate the ROC curves. Similarly, given thissameinterest point
x; inthetest image, afalse positiveisdefined by the presence of asimilar interest point
xj; inthedatabase (i.e. S(F(x;), F(x;)) > 7). Thefdsepostiverate (FP) isdefined to
be the number of these fal se positives divided by the total number of test image interest
points eval uated.

The threshold for both similarity functionsis varied as follows: for the phase cor-
relation, that has vauesin [0, 1], the variation step is 0.1; the differential invariant fea
ture uses the M ahal anobi s distance, as described in [20], which can have practically any
valueabove0, sothevariationstepis1 until DT, ... > 0.99. Theactua curvesare com-
puted using intervalsof 0.03 for thefalse positiverate, and these are plotted using linear
interpolation.

6 Reaults

Fig. 6 shows the ROC curve for uniform brightness changes. It is clear that the phase-
based feature displays consistently better results, and, due to amplitude saturation, the
feature is almost unaffected by an increase in brightness. However, it is more sensitive



Fig. 5. Database of images.

to decreases in brightness, which is presumably due to the appearance of unsaturated
low amplituderesponses. The differential invariant feature, on the other hand, isseen to
be quite sensitive to these changes. Thisis aso clear from Fig. 7, where we show the
detection rate for thresholds = a which the false positiverate isfixed at 0.1. It is clear
fromthisplot that the phase-based approach ismuch | ess sensitiveto brightnesschanges.
The same istrue for non-uniform brightness changes, as shownin Fig. 8.

The phase-based feature a so gives good results for other types of image deforma-
tions. Asshown in Fig. 9, the performance of both types of featuresisseen to be similar
for additive Gaussian noise. For scale changes, the differential invariant feature is seen
to have a somewhat larger detection rate, for the same level of false positives(see Fig-
ure 10). Thisistrue primarily for the larger scale changes. For scale changes between
+20%, the phase-based local feature provides comparable performance (see Fig. 11).
Finally, the ROC curves show the phase-based feature is somewhat better under image
rotation (see Fig. 12). In order to control for small brightness changes which may have
occurred during the rotation and scal e deformati ons, we computed the ROC curveswith
and without rescaling the transformed image to values between 0 and 255. Both cases
gave similar results to the ones reported here.

7 Conclusionsand Future Work

A new type of local feature based on the phase and amplitude of steerable bandpassfil-
tersis proposed here. An empirical study is conducted in order to demonstrate that it
hasthe basic characteristics necessary for useful local features, that is, they arerobust to
common image deformations and distinctive. Moreover, an empirical comparison with
differential invariant features shows that the phase-based local feature performs better
interms of common illumination changes and 2-D rotation, while giving comparable or
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dlightly worse results when dealing with scale changes. An important area for further
study istheuse of brightnessnormalization in thedifferential invariant features, and the
comparison of the result with our phase-based approach.

The phase-based local feature has obvious applications in object recognition, but a
few issues must be dealt with before exploring its capabilities. The interest point detec-
tor used here can be replaced by another one that provides a better response in terms
of theinformation being studied here, (i.e., phase and amplitude), and presents a better
response to scale changes. The high dimensionality of the vector can represent a bur-
den, so methods for reducing it, or search methodsthat perform well in high dimensions
must be sought. Finally, grouping features before searching the database of modelsisan
important component that should be added.
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