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Abstract

A key step for the effective use of local image features
(i.e., highly distinctive and robust features) for recognition
or image matching is the appropriate grouping of feature
matches. Spatial constraints are important in this group-
ing because, during a recognition process, they allow for
the reduction of the number of hypotheses that must be ver-
ified and also reduce the number of false positives present in
each of these hypotheses. A common choice for this group-
ing task is to use the Hough transform on the global spa-
tial transformation parameters of the hypothesized matches.
Here, instead, we use semi-local spatial constraints which
allow for a greater range of shape deformations. A com-
parison with Hough transform shows that our method is
more robust to both rigid and non-rigid deformations. Its
functionality is demonstrated in an exemplar-based object
recognition system that deals well with severe non-rigid de-
formations. We also show the efficacy of our flexible spatial
grouping for long range motion problems.

1.. Introduction

The complexity of the image descriptor (also called in-
dexing primitive) used for image representation in an ob-
ject recognition system has a great impact on the design of
a recognition system (for a thorough discussion, see [7]).
Complex global/semi-local image descriptors (e.g., gener-
alized cylinders [3], geons [2], superquadrics [17], among
others) reduce the complexity of the model by decreasing
the number of descriptors necessary for the representation.
This allows for a sparsely populated database of model fea-
tures, which causes a reduction in the complexity of the
search and verification steps. However, these image descrip-
tors are difficult to extract and sensitive to partial occlu-
sion. Alternatively, simple local image descriptors (e.g., 2D
points [13]) are easy to extract, robust to rigid deforma-
tions and partial occlusion, but sensitive to background clut-
ter and non-rigid deformation. Unfortunately, their low dis-
tinctiveness typically results in an overpopulated database
of model descriptors due to the large number of descrip-
tors necessary to form a model. Therefore, systems based on
simple local descriptors have complex search and verifica-

tion steps, where the latter step depends strongly on global
pose determination.

In this context, there is a recent surge of interest in more
complex local descriptors that aim at finding a good bal-
ance between detectability, robustness to image deforma-
tion, and distinctiveness. The goal is to increase the robust-
ness to background clutter and to reduce the complexity of
the search and verification steps. For example, in the liter-
ature we find descriptors based on: principal components
analysis of image patches [8, 16], Gabor filter responses
[12], wavelet coefficients [23], differential invariants [22],
local phase features [4], and histograms of local filter re-
sponses [14, 20].

Nevertheless, as the size of the database of object mod-
els grows, the false detection rates for correspondences be-
tween test image features and database features also in-
creases. As a result, pose determination is still a neces-
sary step for the grouping and verification stages in systems
based on complex local image descriptors. The use of pose
in the grouping stage stems from the fact that the search for
similar descriptors in the database of models usually returns
a relatively large set of correspondences where the number
of inliers tends to be small. The critical point here is cer-
tainly the explosion of the number of hypotheses generated
due to the large size of the set of possible correspondences.
Furthermore, the detection of multiple instances of an ob-
ject depends on the pose determination (i.e., each different
instance will be grouped separately based on its pose). Fi-
nally, the verification step also uses pose in order to reduce
the number of false positive detections. The overall system
therefore relies on both correspondences and spatial struc-
ture to accept a hypothesis.

Pose can be represented using global and semi-local
models. Global pose determination is based on some un-
derlying transform (e.g., rigid, affine, etc.), where, usually,
the positions estimated for the correspondences are relaxed
a bit so that the system can accept small deformations from
the chosen class of transforms (see [1, 8, 12, 14, 26]). These
methods impose a limitation on the type of objects suitable
for recognition. Specifically, objects that can suffer a greater
range of deformations are not suitable.

An alternative approach to global pose determination is
based on semi-local pose determination, which is capable



of dealing with a larger range of deformations. Thus, it pro-
vides an appropriate framework for both rigid and flexible
objects. In [21, 22], the authors use semi-local geometric
constraints, but its use is limited to the verification stage.
Semi-local constraints are explored in an iterative grouping
stage in [24], but the system relies upon global constraints
for the final verification.

In this paper, we present new methods for feature group-
ing and verification based on semi-local spatial constraints.
Hence, we do not use global constraints in any step of our
recognition system. The method involves two components,
namely pairwise constraints and geometric predictions. The
first component represents pairwise geometric constraints
amongst neighboring features. The second component gen-
erates predictions of the location, scale, and orientation
of each feature, based on these pairwise constraints. This
method not only enables the grouping of image descriptors
that underwent severe non-rigid deformation, but it also al-
lows for the verification of multiple instances of the same
object in an image. A comparison with the Hough trans-
form, which is a classical grouping method based on global
spatial coherence, shows that our method provides groups
that are considerably more robust to rigid and non-rigid de-
formation, and typically returns groups with a greater per-
centage of inliers. An exemplar-based recognition system
was developed to demonstrate the efficacy of the semi-local
spatial constraints proposed here, and the results show im-
pressive results with respect to extreme non-rigid deforma-
tions, in addition to robustness to illumination changes, par-
tial occlusion, and rigid deformation. This approach has ap-
plications in other areas, such as long range motion prob-
lems, which is also demonstrated below.

2.. Semi-local Spatial Constraints

Here we introduce the specific semi-local constraints we
use and then, in section 2.2, show how these constraints can
be used to make geometric predictions. The pairwise rela-
tions are used to form groups of features from the corre-
spondences set, and geometric predictions are used to elim-
inate remaining outliers from those groups (see section 3),
and also to verify the correctness of the hypothesis provided
by each group (see section 4).

2.1. Pairwise Relations

Suppose that the local image descriptors are extracted
from interest points ���������
	�� detected in an image �� ac-
cording to a local image feature method. In particular, each
local image descriptor forms a feature vector � 	 ������� 	�� �� � 	�����	�����	��� 
	�! , where � 	 is the interest point location,

� 	
is the model identification from which this feature was ex-
tracted, ��	 is the main orientation, ��	 is the scale, and the
vector  	 contains the feature values. Here, we use the lo-
cal image descriptor proposed in [5], where  	"�$#%	�& �('*)
is the vector of amplitudes # and phases + of bandpass

filter responses. The features extracted from a model im-
age ,� are then stored in the database of model features- �.�/�0�����
	 �21 �
	435�
��� . The similarity between local fea-
tures is computed using normalized phase correlation [9],
as follows:

6 ����	 � ��7 � � 1  
	
8, :97 1;=< # 	>8 # 7 3 � ? � ; �@� (1)

where 8 means dot product, and  A97 is the complex conjugate
of  7 . We wish to know if a subset of

- � is present in the
set of test image features

-CB �����%�D�
	 �21 �
	E3F� B � extracted
from image  B . The set of correspondences is represented byG � B �H����� 	��@I� 	D�21JI� 	 3 - B � � 	 35KL� I� 	�� - ���NMO�@� 6 �D� 	��@I� 	D�QPSR�T � ,
where KU��V � is the top M correspondences between a featureI� 	 3 - B and the database of model features

- � in terms of
phase correlation.

The pairwise geometric relations are computed the same
way for both the test image and the model image. They are
composed of the following 3 measures between pairs of fea-
tures from the same image ��	 � ��7C3 - � (see Figure 2):

scale WX���Y	 � ��7 � �[Z]\ )D^ \�_a`b \*c)Nd \ c_
distance e"��� 	�� � 7�� �gfYh ) ^ h _ fb \*c)Nd \ c_heading ij�D� 	�� � 72� �lkQmn� ��	pojqp	]70�

(2)

where �>r is the scale of image feature � r , � r is the image
position of � r , kUm%��V � 3 � oEsA� < sp! denotes the principal an-
gle, �tr is the main orientation of feature � r for M �vu ��w , andq 	]7x�zya{}| ^
~ ���
	 o ��7 � . The heading measurement consid-
ers the main orientation � 	 of feature vector ��	 relative to the
displacement between � 	 and � 7 .

We can build the same pairwise relations between I� 	 andI��7 such that ���Y	 �@I��	 �@� ����7 �@I��7 � 3 G � B , thus forming WX� I�Y	 �@I��7 � ,e"� I�Y	 �@I��7 � , and ij� I�Y	 �@I��7 � . The pairwise semi-local spatial
similarity is then based on

scale kxW 	]7 � G � B � ��WC�D� 	�� � 7��:o WC� I� 	�� I� 7��
distance kxe 	]7 � G � B � ��e"�D� 	�� � 72�:o e"� I� 	�� I� 72�
heading kxi�	�7t� G � B � �5i��D�Y	 � ��7 �:o i�� I�Y	 �@I��7 � (3)

Given that small values denote high similarities, we can de-
fine the weight of the connection between I�Y	 , I��7C3 -�B in the
test image based on the connection of their respective cor-
respondences � 	�� � 7 3 - � , as follows:� ��u ��wt� ���2�E)�� _ s 	]7,� ���� � kxe�	]7}� G � B �,� kxi�	]7%� G � B �@� kxW�	]7}� G � B ��!��L�N�����Q�

(4)
where

� 	 is the model index of feature � 	 matched to de-
formed feature I� 	 and similarly for

� 7 , and � �E)�� � _ � ;
if� 	 � � 7 and

?
otherwise. Also, s�	]7,� � ��& ^���� ��� cN��� )�� � _a�� c� �   is

the pairwise weight, which means that neighboring points to� 	 within a range of roughly �>¡¢� � pixels in the model have
higher weight in the geometric pairwise similarity, where� ¡¢� � is determined based on the maximum model diame-
ter (in pixels). Finally, � ��V � is the unnormalized Gaussian



function defined as � �  n�N� � � & ^ ���������	��
�
, where the co-

variance matrix � � is a ����� diagonal matrix with dis-
tance, scale, and heading variances, namely � �� , � �� , and� �T , respectively, such that � �� , � �T are pre-defined constants,
and � �� ������|.��� � �(T��@� �L{��
��� � ��T � e"�D� 	�� � 7��@� ? V ; ��� depends on
the scaled original distance between features in the model
database (i.e., � 	�� � 7 3 - � ), which means that points that
are far from each other in the model have a proportionally
larger standard error for their relative distances.

2.2. Geometric Predictions

Consider again the set of correspondences
G � B be-

tween
- � , and

- B
, and that ��� 	��@I� 	D�,� ��� 7}�@I� 7�� 3 G � B

where � r � ����� r%� � � � r����*r ����r �� �r0! , andI��r � I��� I��r � � � I� r �¢I� r � I� r � I r ! with M � u �aw . The idea
is to predict I��r , I� r , and I� r for each feature I��r 3 -�B

us-
ing the information available in the correspondences set
and the semi-local spatial constraints for the database of
model features. Moreover, points that are close to the fea-
ture being predicted should have a higher influence on
this prediction than features far from it. In general, note
that the following relations are true if the correspon-
dence is correct: I! �	]7 � I�
	 o I��7 �#" $ �
	 o ��7 $ , whereI! 	]7.� %h )�^ %h _f %h )�^ %h _ f , I� 	 o�Iq 	]7 "z� 	 o q 	�7 , and %\ )D^ %\�_%\ _ " \ )�^ \0_\ _ .
For position prediction, we therefore build the lin-
ear system s�	]7,� & I! �	]7 � I� 9	 o I� 7�� � s�	]7@� &'$ � 	 o � 7�$ for all�D��7 �@I��7 � 3 G � B o ���Y	 �@I�Y	 � and solve it for I� 9	 , which is the pre-
diction of feature position I� 	 . Here, ! 	]7 � h )�^ h _fYh ) ^ h _ f ,
and s�	]7,� & �g& ^>�2� � � c ��� )�� � _ �� c� � ( , is the pairwise weight, mean-
ing that neighboring points to � 	 within a range of roughly��¡¢� & pixels have higher weight in predicting the posi-
tion of the test feature. We set the value of �>¡ � & as a
small fraction of the model diameter in pixels. Simi-
larly, the main orientation and scale predictions are de-
fined as I��9	 � ~) _+*, ) ¡ ) _ � (.- 70/1 	 s�	]7@� & � ��	UoHq>	�7 < Iqp	]7��
and I��9	 � ~) _+*, ) ¡�) _ � ( - 72/1 	 s�	]7,� & � \ )D^ \ _\0_ < ; � I��7 , respec-

tively.
The similarity between the predicted and observed posi-

tion, main orientation and scale is computed as follows (see
Fig. 1): � �D�Y	 �@I�Y	 � � � � � I�
	 ��I� 	 � I� 	 !Fo � I� 9	 �¢I��9	 � I��9	 !Y�@� � � ,
where � ��V � is the Gaussian function, and �3� �
diag � �54 � I�Y	 �,��� �6 � I�Y	 �,��� �7 � I�Y	 ��� . Here, �98 � I�Y	 � is an esti-
mate for the spatial variance of the predicted location I� 9	 ,
namely � 8 � I� 	�� ��:<;>= ? � � � �4 �D� 	�� � 72��� : � �
where@

� �BADC.A � � ^
~ ADC , A � � 8�828 ! 	]7:8�828�! ,
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Figure 1. Example of position prediction. Given
the features from the model MONQPSR and their corre-
spondences M2TN P R , for UWVXM2Y0Z\[�Z\]�R , we want to esti-
mate the position of TN�^ . Its probable location (rep-
resented by a dotted ellipsoid) is based on a Gaus-
sian distribution computed using the position of
the correspondences in the test and model images
and the pairwise variances _a`b9c N P Z�N�dfe estimated in
the learning stage.

Also, the variances of the heading and scale estimates

are � �6 � I� 	�� � � ~) _*, ) ¡*) _ � ( �
� - 72/1 	 s �	]7,� & � �6 ��� 	�� � 72� , and

� �7 � I� 	�� � � ~) _+*, ) ¡ ) _ � ( �
� - 70/1 	 s �	]7@� & � �7 �D� 	�� � 72� . The pair-

wise variances � �4 ����	 � ��7 � , � �6 ���Y	 � ��7 � , and � �7 �D�Y	 � ��7 � are
estimated by the sample variances obtained by deform-
ing the model image  � with the set of deformations e<g
defined in [6].

3.. Grouping Based on Pairwise Relations

Given a set of test image features, the set of correspon-
dences formed from the search for matching features in the
database (e.g., using nearest neighbor) usually generates a
large hypothesis space for the recognition system. Typical
grouping and verification stages rely on the global spatial
configuration of features to constrain this hypothesis space.
An example of such a grouping method is RANSAC [25],
which estimates the global spatial deformation of features.
This is a poor choice for our purposes here due to the ex-
tremely low ratio between inliers and outliers in the corre-
spondences set, as also noted in [15]. This issue is rarely
addressed in object recognition systems which use complex
local features, with the exception of [15], where Lowe se-
lects the generalized Hough transform for the task. The key
problem is that the Hough space which is used is a simi-
larity transform space (i.e., a global spatial constraint) with
large bin sizes selected to accommodate other spatial defor-
mations. Due to the large bin sizes, Hough clustering for
local features usually produces a large number of groups,
where each group has a low number of true inliers (espe-
cially given a non-rigid deformation). Here, we propose a
new grouping approach that is more robust to a broader
class of deformations, which aims at reducing the number
of groups, where each group has a higher number of in-
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Figure 2. Grouping based on pairwise relations.
Notice in the figure that correspondences Y�� � are
semi-locally connected, while correspondence � is
not. Therefore, we form 2 clusters, ��� and � ` .

liers. This approach involves connected component analy-
sis on an affinity matrix based on the pairwise relations de-
scribed in (2). Given the correspondences

G � B between the
database of model features

- � and the set of test image fea-
tures

- B
, we proceed as follows (see Fig. 2):

1. Build the affinity matrix based on the pairwise similar-
ity measures �x��u ��wt� as defined in (4).

2. Perform a Connected Component Analysis (CCA).
The strategy here is to select a weak threshold R CCA

and connect every pair of points u and w for which� ��u ��wt�	� R CCA, thus forming 1 
�1 connected clusters
represented by the submatrix

� � (see Fig. 2). We have
then the sub-group of correspondences � � � G � B � 3 G � B
composed of the features grouped in

� � . Note that a
specific cluster of correspondences can only belong to
a single model

- � due the term ���E)D� � _ in (4).

Finally, an intermediate step between the group-
ing and verification procedures is a deletion of fea-
tures that are loosely clustered to a group

� � . This
is done by checking the geometric predictions com-
puted in section 2.2, and thresholding � �D��	 �@I�Y	 � , thus
forming the final sets of feature correspondences:I� � � G � B � � ����� 	��@I� 	D�21 �D� 	��@I� 	D� 3 G � B � � �D� 	��@I� 	���P5R+& � .

A comparison between our approach and the generalized
Hough transform is provided next. Here the feature corre-
spondences between the features of 2 images 0� and  B are
given by the set

G � B , where M �� , and R0T � ? V���� (see
first paragraph, sec. 2.1). The parameters for our grouping
method are � �� � ? V�� , � �T � ? V�� , � � �(T�� ��� , � � ��T�� � ? V � ,R CCA � ? V�� , and ��¡¢� � � �L{��
������� � ; ? � , where � is the
maximum model diameter. The parameters for the geomet-
ric prediction are: R &�� ; ? ^
~�� , and � ¡¢� &.���L{��
������� ? � � � .

For Hough clustering, we used the same parameters de-
scribed in [15], where bin sizes are set as follows: � ? 7 for
rotation, factor of 2 for scale, and

? V���� times the maxi-
mum model diameter for translation, and each hypothesis
is hashed into the 2 closest bins in each dimension in or-
der to reduce bin boundary effects. For both cases, the min-
imum number of correspondences to form a group is set at
��� of the total number of features extracted from the model.

The comparisons are presented in Fig. 3, where the
model image is presented either on top or left of the im-
age, while the bottom/right image shows the test image.
The table titled ‘Pairwise Clustering’ shows the results for
our method, and the ‘Hough Transform’ table presents the
result for the same image pair using the Hough cluster-
ing method. We show the correspondences formed by each
grouping method as lines between the model and test im-
ages. For all the cases, we only show the group that clus-
tered the highest number of features.

Fig. (3-a) shows the robustness of our method to de-
formations produced by articulated objects. Note that the
Hough transform only matches a piece of the object whose
deformation is close to a similarity transformation. Fig. (3-
b) shows an example with the articulated model ‘hedvig’
(see Fig. 6). Notice that while the Hough transform can
only deal with roughly rigid transform (upper part of the
Hedvig’s body), our method is capable of clustering Hed-
vig’s foot in the same group as the upper part of her body.
We also show in Fig. (3-c) the robustness of our method
to non-rigid deformation with the model ‘kevin’ (Fig. 6).
Here, the Hough transform is unable to correctly cluster the
face’s features in the group with the highest number of fea-
tures.

In order to show the efficacy of our approach with re-
spect to rigid deformation, we considered the long range
motion problem using the Wadham and Merton college se-
quences downloaded from the U. Oxford’s Visual Geome-
try Group’s web page. In this problem, we considered the
groups formed by our approach and Hough transform to
compute the F matrix [10]. We use RANSAC [25] in or-
der to estimate F, and apply the following error measure to
calculate the number of inliers: a feature is considered an in-
lier if its location is within 4 pixels of the epipolar line com-
puted with the F matrix.

Fig. 4 illustrates an example of the epipolar lines com-
puted from the image pair Wadham 1 and 5 using both clus-
tering methods. In Fig. 5, we present the proportion of in-
liers in terms of the set size produced by each grouping



Pairwise Clustering Hough Transform

(a)

(b)

(c)

Figure 3. Comparison between our grouping
method (left column) and Hough clustering (right
column). The lines represent the feature corre-
spondences that were grouped together by each
method. (a) Note that while almost all features be-
tween the model (top) and the deformed model
(bottom) can be clustered in the same group us-
ing our method, Hough clustering can only group
features that suffered a roughly rigid deformation.
(b) Our method is able to cluster the foot features
of the model (left) in the same group as the upper
body features. Since Hough transform assumes a
roughly rigid deformation, it fails to place the foot
features in the same group as the upper body fea-
tures. (c) While our method is capable of cluster-
ing the features in the same group, Hough cluster-
ing fails.

method. The curves were obtained by varying all the pa-
rameters of our grouping method and varying the bin sizes
of the Hough transform. Notice that for sets of equal size,
the use of pairwise clustering for rejecting outliers generally
provides a higher inlier ratio than Hough transform, which
indicates a better robustness to rigid deformations.

Finally, it is worth noting that the time complexity of
our clustering algorithm is �U��� � � , where � is the maximum
number of correspondences between features in the test im-
age with features in a single model, and for Hough cluster-
ing, the complexity is �U�����+=�� 6 � . For the examples shown
above, we had ���+=�� 6 " � �

, and both grouping algorithms
exhibited comparable running times.

4.. Verification

In order to assess the hypothesis that a particular object is
present in an image, we propose a verification stage based

Pairwise Clustering

Hough Transform

Figure 4. Epipolar lines computed from the algo-
rithm described in [10] using the initial set of cor-
respondences given by each clustering method
(i.e., pairwise clustering and Hough).
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Figure 5. Proportion of inliers from the sets (of
varying size) provided by each of the clustering
methods.

on a probabilistic framework that uses not only the corre-
spondences in terms of phase correlation, but also the semi-
local spatial constraints. The object recognition method can
be divided into the training and testing modes. Assume that
there is a pool of images �0�� ���
	N~N�J�J�J�J� �
� that is divided into 2
sets, namely the model and random image sets. The model
images set is �� � � ���
	N~N�J�J�J�J� �� , while the random images set
is �0 � � ���
	� d ~@�J�J�J�J� ��� . During the training mode, we take each
model image and learn the following feature distributions:
a) � on � 6 �D� 	�� � 72�@� � 	�� , i.e., the probability of observing phase
correlation 6 ���Y	 � ��7 � given that the feature ��7 is a true match
for the feature �Y	 ; b) � off � 6 ����	 � ��7 �,� �Y	 � , i.e., the probability of
observing phase correlation 6 �D� 	�� � 72� given that the feature� 7 is a false match for the feature � 	 ; and c) feature position,
main orientation, and scale uncertainties. We also learn the
feature detectability � det �D� 	�� , which is the probability that
an interest point is detected in the test image at the same
object neighborhood location ��	 of feature �Y	 . � on, � det, and
the uncertainties are learned using a set of image deforma-



tions as described in [6], while � off is learned using the ran-
dom images set.

From the training mode, we build the database of mod-
els, namely � � 1 ~ - � , where the model features are formed
by the filtered set of features � 9� (see [6]), for example- � � �0� 	 ��� 	Y�21 � 	 3 � 9� � . In the testing mode, we take a
test image  B , where ���3v� ; � � � V]V�V � �:� (i.e.,  B is not in the
pool of images used in the learning stage), extract its lo-
cal features

-�B ���0�Y	����
	 ��1 �
	:3L� B � , search for similar local
features in the database of features, thus forming the set of
correspondences � � 1 ~ G B � . Given the correspondences, we
perform the grouping procedure forming the set of clusters� I� �¢� G B � � ��� ���� 1 ~ . Each cluster is a hypothesis that a particu-
lar object is present in the image, so our goal is to determine
if any of the clusters I� � represents an instance of the object- � . From the computation of the affinity matrix (4), we
know that all the features clustered in the same group match
features from the same object

- � . We only process groupsI� � � G B �.� with a minimum number of correspondences. Let
us first define the set of pairings for all model features� 7 3 - � from group I� � � G B �.� , as � � � I� � �L�¢��� � � 7,�21 � 7 3- �x�
	�� � r 3 - B s.t. �D� r¢� � 7�� 3 I� � � . Therefore, we want to
define the posterior �L� - �U1 � �¢��X� , where  represents the
geometric configuration of features (i.e., their position � ,
scale � , and main orientation � ), which can be defined as
(using Bayes rule):

�L� - �U1 � �¢��X� ��� Z��   � � � ��� ` � Z � � ��� ` � Z ��� `� Z��   � � � ��� ` � Z � � ��� ` � Z ��� ` d � Z��   � � � ����� ` � Z � � ����� ` � Z ����� ` �(5)
where �L� - � � means our prior expectation that a specific
model is present, and �L� 	 - � � � ; o �L� - � � . Notice that
�L� 41 - � � represents the global spatial configuration given- � , which we treat to be similar to �L� Q1 	 - �C� and cancel
these terms from (5). The probabilistic formulation, based
on [18], is as follows:

1. �L���¢� 1  � - � � "�� Z�� � �(_�` � �   �L���D� � ��7 �21  � - � � , where
we have the following 2 cases:

(a) ��� � � 7�� 3�� � :
�L����� � ��7 � 3��¢� 1  � - � � "� ; o � det ����7 ��� < � det �D��7 � � on � 6 � R T � ��7 �,�

(6)

(b) �D��r � ��7 � 3��¢� � � � 9r ��� 9r �a� 9r ! � � ��r ��� r �a� r ! :
�L���D� r � � 7�� 3!� �O1  � - �C� �

�L����� rO� � 72� 3�� � and� � 9r ��� 9r ��� 9r ! � � � r¢���tr¢���>r0!�1  � - �X� "
� det ����7 � � on � 6 ����r � ��7 �,� ��7 � � ����r � ��7 �

(7)
where

� � 9r ���¢9r �a��9r ! is the vector of position, main
orientation, and scale predicted for test image
feature ��r 3 -�B

given its correspondence ��7 3- � such that ����r � ��7 � 3���� .
2. �L���¢� 1  �
	 - � � � � 7 �L����� � ��7 ��1  �
	 - � � , where we

have the following 2 cases:

(a) �"� � � 7�� 3�� � :
�L���"� � � 7�� 3�� � 1 ��#	 - � � "� ; o ? V ? ; � � < ? V ? ; ��� ; o � off � 6 ��� � � 70� � R�T�� � 7����@�

(8)
where the number

? V ? ; � represents the average
number of interest points per test image divided
by the size of the image (see [5]);

(b) ����r � ��7 � 3��¢� � � � 9r ���¢9r �a��9r ! � � ��r ��� r �a� r !
�L���D� r � � 72� 3�� �¢1  �#	 - �C� �

�L������r � ��7 � 3��¢� and� � 9r ����9r ����9r ! � � ��r ��� r ��� r !�1  � - � � "� ? V ? ; � � � off � 6 �D� r¢� � 7��@� � 70� ~T���$&% Z(' ` ~) ~� ¡ V (9)
In the last term, we assume uniform distribution
of position, main orientation, and scale given a
background feature.

Finally, we accept a hypothesis if �L� - �U1 � �¢��X�xP ? V * ,
and the maximum distance between test image features is
bigger than a threshold , i.e., assuming ��	 is the position
of test image feature � 	 with �D� 	�� � &}� 3 I� � , we require�L{��,+0	 � r - fYh )D^ h/.�fb \*c)Nd \*c.10 P RO4 (this is done to avoid a large

number of features all in a small area of the image).

5.. Results

We considered the problem of exemplar-based recogni-
tion using a database of 15 objects shown in Fig. 6, and
we use the same parameter values as described in section 3.
Also, the prior expectation that a specific model is present
�L� - � � � ? V ?}?%? ; , and the maximum distance between test
image features must be at least Rf4 � ? V���� , where � is
the maximum model diameter. Our database has roughly
10,000 features, which were extracted from the objects in
Fig. 6 during the learning stage. Our tests (Fig. 7) were con-
ceived to demonstrate the ability of our system to deal with
non-rigid/rigid deformations, partial occlusion, and bright-
ness changes. Finally, we also show an experiment on the
long range motion problem, where the model ‘fleet’ is be-
ing filmed by a hand held camera. Given the image on the
top-left corner of Fig. 8, we try to find the model through-
out the sequence. In this case, we used the match correspon-
dences to estimate the parameters of the affine transform of
the model silhouette [5], but note that these parameters are
used only for display and not for verification.

6.. Conclusions

We presented novel methods for feature clustering and
verification based on semi-local spatial constraints. The use
of spatial constraints is necessary to reduce the number of
object matching hypotheses to investigate and also to in-
crease the number of inliers in each hypothesis. Although
less restrictive than global spatial constraints, semi-local
spatial constraints are shown to be adequate for systems



Figure 6. Model database. From top to bottom,
left to right: baking soda, kevin, plastic toy [11],
snake of cans, rice snaps [11], nestle shreddies
[11], hedvig, tiger, tetley tea box, fleet, dudek,
torso, vaseline [19], tissue box, and wooden toy
[19].

based on complex local features. Moreover, semi-local con-
straints are able to cope with a broader range of deforma-
tions.

The feature clustering method proposed here is shown to
be consistently better than the Hough transform when deal-
ing with rigid and non-rigid deformations. The functional-
ity of this method is shown with an exemplar-based recog-
nition and long range motion tasks, which illustrate its ro-
bustness in terms of a wide range of image deformations. It
is interesting to note that this system might also be adapted
to categorization problems given the false positive detected
in Fig. (7-e), which will be considered for future research.
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