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Abstract

The recognition of human gestures in image sequences
is an important and challengingproblem that enables a
host of human-computer interaction applications. This
paper describes an incremental recognition strategy
that is an extension of the “Condensation” algorithm
proposed by Isard and Blake (ECCV’96). Gestures
are modeled as temporal trajectories of some estimated
parameter over time (in this case velocity). The con-
densation algorithm is used to incrementally match the
gesture models to the input data. The method is demon-
strated with an example of an augmented office white-
board in which a user makes simple hand gestures to
grab regions of the board, print them, save them, etc.

1 Introduction
The recognition of human gestures in image sequences is
an important and challenging problem that enables a host
of human-computer interaction applications. The dominant
paradigm involves computing low-level feature information
at each frame derived from motion or model matching. The
parameters of these low level features evolve over time and
form temporal trajectories. Recognition is typically per-
formed using these trajectories via Hidden Markov Models
(HMM’s) or Dynamic Time Warping (DTW).

DTW explicitly matches a stored trajectory with in input
trajectory while allowing local deformations of the curves to
produce a best match. HMM’s typically do not maintain de-
tailed trajectory information but rather break the trajectories
up into discrete states that are represented by the mean and
covariance of the parameters in that state. One advantage of
HMM’s is that they provide a probabilistic framework for
gesture recognition.

Our goal is to combine the best features of DTW and
HMM’s; that is we seek a recognition method that can cap-
ture the detailed trajectory information as in DTW and yet
has a probabilistic framework as in HMM’s. Our method
probabilistically matches model trajectories to input trajec-
tories in an “on-line” fashion. The proposed method ex-
ploits the CONDENSATION (CONDitional dENSity prop-
agATION) algorithm proposed by Isard and Blake in [2] and

recently extended in [3]. A variety of parameters must be es-
timated to match a model trajectory and the input trajectory.
The probabilitydistributionover all the match parameters is
represented by discrete random samples. This distribution
evolves over time as the input data changes. The condensa-
tion algorithm uses stochastic dynamics and random sam-
pling techniques to “track” this distribution as it evolves.

In [3], the authors used a very simple temporal model
that represented the mean and covariance of the velocity of
a tracked object. This is an impoverished temporal model
and the authors demonstrated only simple forms of gesture
recognition. The method proposed here allows much more
powerful temporal models and hence can be used to recog-
nize more complex gestures. In our experiments we use ges-
ture data gathered by a computer vision system that is ob-
serving an office whiteboard. We describe a vocabulary of
gestures that a user can perform at the whiteboard to extend
its functionality. The system could also be used to recognize
other sorts of gestures as well as on-line handwriting.

In the following section we describe our extended Con-
densation algorithm. Section 3 presents the whiteboard ap-
plication and experimental results.

2 Condensation Algorithm
Our goal is to take a set ofM model trajectories fm(�); � =1; : : : ;Mg and match them against an input trajectory (see
Figure 1). The models are taken to be discretely sampled
curves (though they may be continuous as well) with a phase
parameter � 2 [0; �max] representing the current position in
the model. The model values at position� are a vector of N
values m(�)� = (m(�)�;1; : : : ;m(�)�;N ) where the stored discrete
curve is linearly interpolated at phase �. At time t the input
trajectory is an observation vector zt = (zt;1; :::; zt;N).

The parameters we need to estimate to match a model to
the data are:�: an integer indicating which model is being matched,�: the position (or phase) within the model that aligns the

model with the data at time t,�: an amplitude parameter that is used to scale the model
vertically to match the data, and



Third IEEE Int. Conf. on Automatic Face and Gesture Recognition, April ’98, Nara, Japan, c IEEE’98 2

Input Trajectories

. . . 

Models:

Model µ

Scale Amplitude α Scale Rate ρ

 Match at φ

tt - w

z

z

t,1

t,2

p(Z     | s  )
t,1 t

State  s  = (µ, φ, α, ρ)t

p(Z     | s  )
t,2 t

Time

Figure 1: Our goal is to incrementally match M , multiple-
parameter, trajectory models to input data.�: a rate parameter that is used to scale the model in the time

dimension.

We define a state at time t to be a vector of parameters st =(�; �; �; �).
We would like the find the state st that is most likely to

have given rise to the observed data Zt = (zt; zt�1; : : :).
Let Zt;i = (zt;i; z(t�1);i; z(t�2);i; : : :) be the vector of ob-
servations of a particular trajectory, i, over time. We define
the probability of an observation zt given the state st asp(ztjst) = �Ni=1p(Zt;ijst); (1)

wherep(Zt;ijst) = 1p2��i exp �Pw�1j=0 (z(t�j);i � �m(�)(���j);i)22�i(w � 1)
and where w is the size of a temporal window backwards
in time over which we want the curves to match. The �i
are estimates of the standard deviation for curve i. Also�m(�)(���j);i is simply the the value of trajectory i in model� interpolated at time �� �j and scaled by �.
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Figure 2: We sample from the distributionover the states by
constructing a cumulative probability distribution and sam-
pling it uniformly. Choosing r from a uniform distribution
over [0; 1] gives us a corresponding state.

Given a definition for p(ztjst), we can construct a discrete
representation of the entire probability distribution over the
possible states. Initially, we sample uniformly form� 2 [0; �max]� = 1�pypy ; where y 2 [0; 1]� 2 [�min; �max]� 2 [�min; �max]:
Note that the prediction for the initial phase � is biased to-
wards small values. We then compute the probability of
the state p(ztjst). We can do this for S samples where we
take S on the order of 1000. This gives us a set fs(n)t ; n =1; : : : ; Sg of samples. We normalize these probabilities so
that they sum to one, producing weights �(n)t�(n)t = p(ztjs(n)t )PSi=1 p(ztjs(i)t ) (2)

The condensation algorithm [2, 3] uses this information
(the sample states and their weights) to predict the entire
probability distribution at the next time instant. Unlike tra-
ditional tracking methods (e.g. Kalman filtering) this ap-
proach can deal well with ambiguous data since a distribu-
tion of possible matches is propagated in time. The algo-
rithm has three stages (selection, prediction, updating). Be-
low we outline how to construct a new probability distribu-
tion with S samples at time t given the the distribution at
time t� 1.

1. Selection: First we choose a state from time t � 1 ac-
cording to the probability distribution at time t � 1. That
is, we use the current probability distribution over states to
choose likely states to predict into the future.

This is done by constructing a cumulative probabilitydis-
tribution using the �(n)t�1 as illustrated in Figure 2. Let the
cumulative probabilities bec(0)t�1 = 0c(n)t�1 = c(n�1)t�1 + �(n)t�1:
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We sample this distribution by uniformly choosing a value,r, between zero and one. We then find the smallest c(n)t�1 such

that c(n)t�1 > r. The state s(n)t�1 is then selected for propaga-
tion to the next time instant.

With this sampling method, states will be selected accord-
ing to their estimated probability. To avoid getting trapped
in local maxima and to deal with sudden changes in the in-
put data, we randomly choose some fraction of the states
to be replaced by random initial guesses (initialized as de-
scribed above). We typically take these random guesses to
be 5� 10% of the samples.

2. Prediction: Given a state s(n)t�1 we predict the parame-

ters of the new state s(n)t at time t to be�t = �t�1�t = �t�1 + � +N (��)�t = �t�1 +N (��)�t = �t�1 +N (��)
where N () is a normal distribution and the �� represent
uncertainty in the prediction. Note that prediction can
be viewed as sampling from the probability distributionp(s(n)t js(n)t�1) [3]. For the time being, � does not change over
time; we will extend the method below to allow transition
probabilities to take � to a new state.

During prediction if �t > �max then that model has been
recognized and the state is initialized as described above.
For the other parameters, we draw samples fromN until the
predicted value of the parameter is within its allowed range.

It is interesting to note that the �� are used as a tool for
locally searching the parameter space. They can be thought
of as “diffusion” parameters that blur the probability distri-
bution as it is predicted in time. They provide a way of per-
forming a local search about a state. They also allow local
deformations of the trajectories within the moving window
of size w.

3. Updating: Given a new state we evaluate the probabil-
ity, p(ztjs(n)t ), that it generated the data at time t using Equa-
tion (1). If the likelihood is zero (or below a threshold) then
we return to step 2 for a new prediction. We repeat this for
a fixed number of tries. If no prediction from s(n)t�1 has suffi-
cient probability then we generate a random initial sample.

After S new states have been generated, we compute the
normalized weights, �(n)t , using Equation (2) and repeat the
process for the next time instant.

Note that the condensation algorithmis a probabilistichy-
brid of depth-first and breadth-first search. When no good
match to the input data is found, the method resorts to uni-
form sampling (breadth-first). When the probability mass
is centered around a set of parameters, more resources will
automatically be spent to explore the neighborhood around
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Figure 3: Gestures.

these parameters (depth-first). Also, note that a “simulated
annealing” method could be used in the search to start with
high values of �i in Equation (1) and lower them over time.

2.1 Finite State Extension

We have also extended the method to allow compound mod-
els that are very like Hidden Markov Models in which each
state in the HMM is one of our trajectory models. LetM =f�1; �2; : : : ; �ig be a “parent state” which consists of a set
of event, or model, types �i along with transition proba-
bilities p(�tjM; �t�1; �t�1) between states. In the predic-
tion step above, �t is chosen by sampling from the transition
probabilities. When initializinga new random state, we first
chose the parent type M from a uniform distribution. The
initial event type � is defined by the parent. The remaining
parameters are chosen as described above.

3 Gesture Models
To test the condensation-based trajectory recognition algo-
rithm we consider the problem of recognizing a set of ges-
tures in the context of an augmented whiteboard. A number
of authors have looked at problem of scanning whiteboards
at high resolution using mosaicing [6] and interacting with
the board by making hand-drawn marks [5]. Here we look
at the problem of recognizing dynamic gestures. Isard and
Blake [3] used the condensation algorithm to recognize very
simple drawing gestures. Our extension to temporal trajec-
tories allows more complex gestures to be recognized.

In our scenario, when the user wants to perform a com-
mand, they pick up a gesture “phicon” (or physical icon)
[4] that has a distinctive color that makes it easy to locate
and track. The motion of the phicon is tracked using a color
histogram tracker [1] in real time. Tracking is performed at
roughly 30Hz. Since the tracking rate varies slightly, we re-
sample the phicon locations at fixed time instants using lin-
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ear interpolation. The horizontal and vertical velocity of the
phicon are used for gesture recognition.

We define the following set of gestures which are useful
for such a purpose (see Figure 3):� Start: The start gesture tells the system to “pay attention”

and start recognizing gestures. This gesture is simply a
waving motion similar to what a person might do to get a
human’s attention.� Cut Region: The cut gesture is used to indicate a region
of the whiteboard to be scanned (possibly at higher reso-
lution). This gesture consists of three primitive gestures
with pauses in between of arbitrary duration. We refer to
the complete cut gesture as a “parent” gesture that is made
up of “events”.

– Cut-On: The gesture begins with an upside-down
“check mark.” The end of this cut-on gesture marks the
upper left corner of the scanning region.

– Cut: The user then moves the phicon in a relatively
straight line to the lower right corner of the region.

– Cut-Off: To end the gesture and cut the image region
the user makes a right-side-up “check mark”.� Print: To send a cut region to the printer, the user makes

a gesture like the letter “P”.� Save: To save the region to a file, the user makes a gesture
like the letter “S”.� Clear: A sharp diagonal motion “clears” the current
stored whiteboard region. One can think of a cut region as
being “stored” in the phicon. The gesture can be thought
of as “throwing” the cut region away.� Quit: The user makes a mark like an “X” when they wish
to stop the gesture recognition function.� Stationary: In addition to the gesture models we also
represent when the phicon is stationary.

To construct models for the gestures, each gesture was
performed approximately half a dozen times and the trajec-
tories were saved. For a given gesture the training trajecto-
ries were manually aligned and the mean trajectories were
computed. A standard deviation from the mean trajectory
was also computed for each curve. The trajectory models
for each gesture are shown in Figure 4. The initial alignment
of the curves could be performed using DTW. In addition to
computing just the mean curve, we could compute “Eigen-
Curves” as in [7].

In our experiments we take �max = 9 (there are nine
primitive events), �max = 1:3, �min = 0:7 (we allow a30% scaling), �max = 1:3, �min = 0:7 (a 30% temporal
scaling). The standard deviations, �i, for the model trajec-
tories were taken to be 1:0. Finally, the diffusion parameters

Figure 5: Example of a “Cut” gesture. The user makes a
gesture with the phicon. The image on the right is the region
that is cut out of the larger image.

were taken to be �� = 0:01 �� = 0:05 �� = 0:01, and the
temporal window was w = 10.

Figure 5 illustrates the performance of a “cut” gesture.
We use a bright red block as our gesture phicon. The black
dots in the figure represent tracked locations of the phicon.
The image on the right is the region that is cut out by our
algorithm.

Figure 6a shows the horizontal and vertical velocities of
the phicon as a function of time. This is our input data to
which we will incrementally match the gesture models.

The estimated value of the horizontal and vertical veloc-
ity is taken to be

ut = SXn=1�(n)t (�m(�)� )
where �m(�)� is the estimated velocity for sample state s(n)t .
This represents the fit of the models to the data and is shown
in Figure 6b.

Figure 6c shows the probability of each individual event
as a function of time. Similarly Figure 6d shows the proba-
bility for the composite, parent, gestures. The probability of
a particular event, �, is taken to be the sum of the normal-
ized probabilities �(n)t for which � 2 s(n)t .

Figures 6e and f show the probability that the events or
parent gestures have completed respectively. This probabil-
ity is given byp(��) = SXn=1� �(n)t if� 2 s(n)t and �+ 1 > �max0 otherwise

where a sample is considered completed if the estimated
phase � parameter is within one time instant of the maxi-
mum phase for that event/parent. The figures show clear
spikes when the individual events (“Cut On”, “Cut,” and
“Cut Off”) end. Similarly there is a spike when the parent
cut gesture ends. If p(��) > 0:1we consider � to be recog-
nized.

To actually cut the region (Figure 5) from the original im-
age we must carry along with each state the time at which
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Figure 4: Gesture Models. Temporal trajectories of horizontal (solid) and vertical (broken) velocity.

each primitive event ended. This information is used at the
end of the gesture to determine where the stationary mark
points are located. The enclosed region of pixels is then ex-
tracted.

3.1 Multiple Gesture Experiment
We consider a more complex experiment that involves a

series of gestures

Cut – Save – Clear – Cut – Print – Clear.

The input curves represent 850 samples of the horizontal an
vertical velocities of the phicon (Figure 7 top). In this se-
quence, in addition to the actual gestures, the user moves the
phicon between the gestures.

There are nine possible event types and six possible ges-
tures. The input data at every frame is matched against
these models and the data must be explained by some model.
The normalized probabilities in Figure 7 (bottom) show that
some of the non-gesture motions receive high normalized
probabilities as we would expect. But using the probability
for those gestures that actually are completed (p(��) > 0:1)
we successfully recognize the completion of the gestures as
shown along the bottom of Figure 7.

4 Conclusions
We have described an extension to the Condensation algo-
rithm that performs probabilistic matching of model curves
to input curves. This method allows the recognition of more
complex gestures than is possible with the standard Conden-
sation algorithm. We have also described an application of
the method for gesture recognition for an office whiteboard
scanner.

Note that while here we use the condensation algorithm
to perform recognition given the gesture trajectories, the al-
gorithm can be extended to actually perform the tracking as
well [2, 3].

Currently the method is significantly slower than real
time. Blake and Isard, however, have demonstrated real-
time versions of a similar algorithm which suggests that our
method might be suitable for real-time recognition (with ap-
propriate optimizations).

In our current work, segmented and aligned training data
was provided. Transition probabilities were set by hand.
While the method has very few parameters, it would be
worth exploring how learning techniques could be used to
generate the models automatically.

Acknowledgements. We thank Francois Bérard for pro-
viding the real-time phicon tracking and Gudrun Socher for
discussions about whiteboards and gesture interfaces.
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Figure 6: “Cut” gesture. (a), Input horizontal and vertical velocity; (b), Estimated horizontal and vertical velocity; (c), Prob-
ability of each event type; (d), Probability of each parent gesture type; (e), Probability that the current state is the completion
of an event; (f), Probability that the current state is the completion of a parent.

Cut

Clear

Print

Save

Probability

Time0.00

0.20

0.40

0.60

0.80

1.00

0.00 200.00 400.00 600.00

x velocity

y velocity

Input Velocity

0.00

5.00

10.00

C
ut

S
av

e

C
le

ar

C
ut

P
ri

nt

C
le

ar

Cut
166

Save
276

Clear 
438

Cut 
589

Print
677

Clear
726

Recognized
Gestures:

Figure 7: Multiple-gesture experiment. top: Input horizontal and vertical velocity; bottom: Probability of each parent gesture
type. The frame number at which the recognized gesture completes is given.


