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Abstract

The recognition of human gestures inimage sequences
isanimportant and challenging problemthat enablesa
host of human-computer interactionapplications. This
paper describes an incremental recognition strategy
that is an extension of the “ Condensation” algorithm
proposed by Isard and Blake (ECCV' 96). Gestures
aremodel ed astemporal trajectoriesof someestimated
parameter over time (in this case velocity). The con-
densationalgorithmisused to incremental ly match the
gesturemodel sto theinput data. The methodisdemon-
strated with an example of an augmented office white-
board in which a user makes simple hand gestures to
grab regions of the board, print them, save them, etc.

1 Introduction

The recognition of human gestures in image sequences is
an important and challenging problem that enables a host
of human-computer interaction applications. The dominant
paradigminvolvescomputing low-level featureinformation
at each frame derived from motion or model matching. The
parameters of these low level features evolve over timeand
form temporal trajectories. Recognition is typically per-
formed using these trgjectories via Hidden Markov Models
(HMM'’s) or Dynamic Time Warping (DTW).

DTW explicitly matches a stored trgjectory with in input
trajectory whilealowinglocal deformationsof thecurvesto
produce abest match. HMM’stypically do not maintain de-
tailed trajectory information but rather break thetrajectories
up into discrete states that are represented by the mean and
covariance of the parametersin that state. One advantage of
HMM'’s is that they provide a probabilistic framework for
gesture recognition.

Our godl is to combine the best features of DTW and
HMM'’s; that iswe seek arecognition method that can cap-
ture the detailed trgjectory information asin DTW and yet
has a probabilitic framework as in HMM’s. Our method
probabilistically matches model trajectories to input trajec-
tories in an “on-line” fashion. The proposed method ex-
ploitsthe CONDENSATION (CONDitional dENSity prop-
agATION) agorithm proposed by Isard and Blakein[2] and

recently extendedin[3]. A variety of parameters must bees-
timated to match amodel trajectory and theinput trajectory.
The probability distributionover all the match parametersis
represented by discrete random samples. This distribution
evolves over time as the input data changes. The condensa-
tion algorithm uses stochastic dynamics and random sam-
pling techniquesto “track” thisdistributionas it evolves.

In [3], the authors used a very simple temporal model
that represented the mean and covariance of the velocity of
atracked object. Thisisan impoverished temporal model
and the authors demonstrated only simple forms of gesture
recognition. The method proposed here alows much more
powerful temporal models and hence can be used to recog-
nize more complex gestures. |nour experimentswe useges-
ture data gathered by a computer vision system that is ob-
serving an office whiteboard. We describe a vocabulary of
gesturesthat a user can perform at the whiteboard to extend
itsfunctionality. The system could a so be used to recognize
other sorts of gestures as well as on-line handwriting.

In the following section we describe our extended Con-
densation algorithm. Section 3 presents the whiteboard ap-
plication and experimental results.

2 Condensation Algorithm

Our godl istotakeaset of M model trajectories {m(#) | ;1 =
1,..., M} and match them against an input trajectory (see
Figure 1). The models are taken to be discretely sampled
curves (thoughthey may be continuousaswell) with aphase
parameter ¢ € [0, ¢.ax] representing the current positionin
themodd. The model valuesat position ¢ are avector of N
values m;“) = (mfﬂ, - mgfj)\,) where the stored discrete
curveislinearly interpolated at phase ¢. At timet theinput
trajectory isan observation vector z; = (z; 1, ..., 2t N).

The parameters we need to estimate to match a model to
thedata are:

w1 aninteger indicating which model is being matched,

¢: the position (or phase) within the modd that aigns the
model with the data at time,

a: an amplitude parameter that is used to scale the model
vertically to match the data, and
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Figure 1: Our goa isto incrementally match A, multiple-
parameter, trajectory models to input data.

p. arate parameter that isused to scale themodel inthetime
dimension.

We define a state at time ¢ to be avector of parameters s, =
(/’L’ ¢a O[, p)

We would like the find the state s, that is most likely to
have given rise to the observed data 7; = (z,z-1,. . .).
Let Z;i = (20,0, 2(¢—1),6, 2(t—2) 4> - - -) be the vector of ob-
servations of a particular trgjectory, i, over time. We define
the probability of an observation z; giventhe state s; as

p(z:ls) = L p(Zeils), (1)
where
w—1 (w) 2
- i—o \B(t=j) i —amyg =
p(Ziils) = ! exp 2i=0 (i=i) (¢ m),)
, 2oy 20'2'(10— 1)

and where w is the size of a tempora window backwards
in time over which we want the curves to match. The o;
are estimates of the standard deviation for curve i. Also
ozmgg)_pj) ; iIssmply the the value of trgjectory 7 in model
1 interpoléted attime¢ — pj and scaled by «.
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Figure2: We samplefromthe distributionover the states by
constructing a cumulative probability distribution and sam-
pling it uniformly. Choosing » from a uniform distribution
over [0, 1] gives usacorresponding state.

Givenadefinitionfor p(z;|s;), we can construct adiscrete
representation of the entire probability distribution over the
possible states. Initially, we sample uniformly form

JUS [0, F‘maX]
11—y
¢ = —= wheeyel0,1
N [0, 1]
a € [amina amax]
pP € [pmina pmax] .

Note that the prediction for the initial phase ¢ is biased to-
wards small values. We then compute the probability of
the state p(z;|s). We can do thisfor S samples where we

take S on the order of 1000. This givesus a set {sﬁ”), n=
1,...,5} of samples. We normalize these probabilities so

that they sum to one, producing weights wi")

()
" z
™ = 5( tls: )(i) @
2z P(zlsT)

The condensation algorithm [2, 3] uses thisinformation
(the sample states and their weights) to predict the entire
probability distribution at the next time instant. Unlike tra-
ditiona tracking methods (e.g. Kaman filtering) this ap-
proach can deal well with ambiguous data since a distribu-
tion of possible matches is propagated in time. The algo-
rithm has three stages (sel ection, prediction, updating). Be-
low we outline how to construct a new probability distribu-
tion with S samples at time ¢ given the the distribution at
timet — 1.

1. Selection:  First we choose a state fromtime¢ — 1 ac-
cording to the probability distribution at time¢ — 1. That
is, we use the current probability distribution over states to
choose likely states to predict into the future.
Thisisdoneby constructing acumulative probability dis-

tribution using the wi’_l)l asillustrated in Figure 2. Let the

cumulative probabilitiesbe
(0)

¢, = 0

(n)  _

n—1 n
Ce1 = Cg—l)‘i'ﬂ'i—)r
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We sampl e this distribution by uniformly choosing avalue,
7, between zero and one. Wethenfind thesmallest cﬁ)l such

that ¢!, > r. The state s\, isthen selected for propaga-
tion to the next timeinstant.

With thissampling method, stateswill be sel ected accord-
ing to their estimated probability. To avoid getting trapped
in loca maximaand to deal with sudden changes in thein-
put data, we randomly choose some fraction of the states
to be replaced by random initial guesses (initialized as de-
scribed above). We typically take these random guesses to
be5 — 10% of the samples.

2. Prediction: Givenastate sﬁ)l we predict the parame-
ters of the new state s\ at timet to be

He = He—1

b = i1+ p+N(oy)
ar = a1+ N(oy)

P = pPr—1 +N(‘7p)

where N () is a normal distribution and the o, represent
uncertainty in the prediction. Note that prediction can
be viewed as sampling from the probability distribution
p(s™1¢™) ) [3]. For thetime being, 1 does not change over
time; we will extend the method below to alow transition
probabilitiesto take p to anew state.

During predictionif ¢; > ¢,.x then that model has been
recognized and the state is initialized as described above.
For the other parameters, we draw samplesfrom A until the
predicted val ue of the parameter iswithinitsallowed range.

It is interesting to note that the o, are used as atool for
locally searching the parameter space. They can be thought
of as“diffusion” parameters that blur the probability distri-
bution asitispredicted intime. They provideaway of per-
forming alocal search about a state. They aso alow local
deformations of the traj ectories within the moving window
of sizew.

3. Updating: Givenanew state we eval uate the probabil -
ity, p(z |s§") ), that it generated thedataat timet using Equar
tion (1). If thelikelihoodis zero (or bel ow athreshold) then
we return to step 2 for a new prediction. We repest thisfor
afixed number of tries. If no predictionfrom sﬁ’j)l has suffi-
cient probability then we generate arandom initial sample.

After S new states have been generated, we compute the
normalized weights, wi”) , using Equation (2) and repesat the
process for the next time instant.

Notethat thecondensation algorithmisaprobabilistichy-
brid of depth-first and breadth-first search. When no good
match to the input data is found, the method resorts to uni-
form sampling (breadth-first). When the probability mass
is centered around a set of parameters, more resources will
automatically be spent to explore the neighborhood around

Start Cut\
\iause
/ ~~ EndCut
Cut

Start
Print Save
Quit Clear

Figure 3: Gestures.

these parameters (depth-first). Also, notethat a“simulated
annealing” method could be used in the search to start with
high values of o; in Equation (1) and lower them over time.

2.1 Finite State Extension

We have a so extended the method to alow compound mod-
elsthat are very like Hidden Markov Modelsin which each
stateinthe HMM isone of our trgjectory models. Let M =
{p1, p2, ..., pi } bea“parent state” which consists of a set
of event, or moddl, types p; aong with transition proba-
bilitiesp(p: | M, pe—1, ¢:—1) between states. In the predic-
tionstep above, p; ischosen by sampling fromthetransition
probabilities. When initializinganew random state, we first
chose the parent type M from a uniform distribution. The
initial event type p is defined by the parent. The remaining
parameters are chosen as described above.

3 Gesture Models

To test the condensation-based trajectory recognition algo-
rithm we consider the problem of recognizing a set of ges-
turesin the context of an augmented whiteboard. A number
of authors have looked at problem of scanning whiteboards
at high resolution using mosaicing [6] and interacting with
the board by making hand-drawn marks [5]. Here we look
at the problem of recognizing dynamic gestures. Isard and
Blake[3] used the condensation algorithmto recognize very
simple drawing gestures. Our extension to temporal trgjec-
tories allows more complex gestures to be recognized.

In our scenario, when the user wants to perform a com-
mand, they pick up a gesture “phicon” (or physical icon)
[4] that has a distinctive color that makes it easy to locate
and track. The motion of the phicon istracked using acolor
histogram tracker [1] inreal time. Tracking is performed at
roughly 30Hz. Sincethetracking rate variesdlightly, were-
sampl e the phicon locations at fixed timeinstantsusing lin-
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ear interpolation. The horizontal and vertical velocity of the
phicon are used for gesture recognition.

We define the following set of gestures which are useful
for such a purpose (see Figure 3):

e Start: Thestart gesturetellsthesystemto “pay attention”
and start recognizing gestures. This gesture is simply a
waving motion similar to what a person might do to get a
human'’s attention.

¢ Cut Region: The cut gestureis used to indicate aregion
of the whiteboard to be scanned (possibly at higher reso-
[ution). This gesture consists of three primitive gestures
with pauses in between of arbitrary duration. Werefer to
thecompletecut gestureasa*“ parent” gesturethat ismade
up of “events’.

— Cut-On: The gesture begins with an upside-down
“check mark.” Theend of thiscut-on gesturemarksthe
upper left corner of the scanning region.

— Cut: The user then moves the phicon in a relatively
straight line to the lower right corner of the region.

— Cut-Off: To end the gesture and cut the image region
the user makes aright-side-up “check mark”.

o Print: To send a cut region to the printer, the user makes
agesture likethe letter “P".

e Save: Tosavetheregiontoafile theuser makesagesture
likethe letter “S’.

e Clear: A sharp diagona motion “clears’ the current
stored whiteboard region. Onecan think of acut region as
being “stored” in the phicon. The gesture can be thought
of as“throwing” the cut region away.

e Quit: Theuser makesamark likean “X” when they wish
to stop the gesture recognition function.

e Stationary: In addition to the gesture models we aso
represent when the phicon is stationary.

To construct models for the gestures, each gesture was
performed approximately half a dozen times and thetrajec-
torieswere saved. For agiven gesture the training trajecto-
ries were manually aligned and the mean trgectories were
computed. A standard deviation from the mean tragjectory
was also computed for each curve. The trgjectory models
for each gestureare showninFigure4. Theinitial alignment
of the curves could be performed using DTW. In additionto
computing just the mean curve, we could compute “Eigen-
Curves’ asin[7].

In our experiments we take jimax = 9 (there are nine
primitive events), apax = 1.3, amin = 0.7 (we dlow a
30% scaing), pmax = 1.3, pmin = 0.7 (2 30% temporal
scaling). The standard deviations, o, for the model trgjec-
toriesweretakento be1.0. Finaly, thediffusion parameters

Figure 5: Example of a “Cut” gesture. The user makes a
gesturewith thephicon. Theimage ontherightistheregion
that iscut out of the larger image.

weretakentobes, = 0.01 64 = 0.05 ¢, = 0.01, and the
tempora window was w = 10.

Figure 5 illustrates the performance of a “cut” gesture.
We use a bright red block as our gesture phicon. The black
dotsin thefigure represent tracked locations of the phicon.
The image on the right is the region that is cut out by our
algorithm.

Figure 6a shows the horizontal and vertical velocities of
the phicon as a function of time. Thisis our input data to
which we will incrementally match the gesture models.

The estimated value of the horizontal and vertical veloc-
ity istaken to be

where am;“) isthe estimated vel ocity for sample state si™.
Thisrepresentsthefit of themodelsto thedataand is shown
in Figure 6b.

Figure 6¢ shows the probability of each individua event
as afunction of time. Similarly Figure 6d showsthe proba-
bility for the composite, parent, gestures. The probability of
aparticular event, u, istaken to be the sum of the normal-
ized probabilities =" for which p € s™.

Figures 6e and f show the probability that the events or
parent gestures have compl eted respectively. Thisprobabil-
ity isgiven by

i 5 )
b =3 {
n=1

where a sample is considered completed if the estimated
phase ¢ parameter is within one time instant of the maxi-
mum phase for that event/parent. The figures show clear
spikes when the individua events (“Cut On”, “Cut,” and
“Cut Off”) end. Similarly there is a spike when the parent
cut gestureends. If p(p*) > 0.1 we consider y to berecog-
nized.

To actually cut theregion (Figure5) fromthe original im-
age we must carry along with each state the time at which

|f/,L S Sgn) and¢+ 1> ¢max
otherwise
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Figure 4: Gesture Models. Temporal trajectories of horizonta (solid) and vertical (broken) velocity.

each primitiveevent ended. Thisinformationisused at the
end of the gesture to determine where the stationary mark
pointsarelocated. The enclosed region of pixelsisthen ex-
tracted.

3.1 Multiple Gesture Experiment

We consider a more complex experiment that involvesa
series of gestures

Cut — Save — Clear — Cut — Print — Clear.

The input curves represent 850 samples of the horizontal an
vertical velocities of the phicon (Figure 7 top). In this se-
guence, in additionto theactual gestures, the user movesthe
phicon between the gestures.

There are nine possible event types and six possible ges-
tures. The input data a every frame is matched against
thesemodel s and the datamust be explained by some model.
The normalized probabilitiesin Figure 7 (bottom) show that
some of the non-gesture motions receive high normalized
probabilities as we would expect. But using the probability
for those gesturesthat actually are completed (p(p*) > 0.1)
we successfully recognize the completion of the gestures as
shown aong the bottom of Figure 7.

4 Conclusions

We have described an extension to the Condensation algo-
rithm that performs probabilistic matching of mode curves
toinput curves. Thismethod allowsthe recognition of more
complex gesturesthan ispossiblewith the standard Conden-
sation algorithm. We have also described an application of
the method for gesture recognition for an office whiteboard
scanner.

Note that while here we use the condensation agorithm
to perform recognition given the gesture trgjectories, theal -
gorithm can be extended to actualy perform the tracking as
well [2, 3].

© 200 Time -

Cut-Off

Save

Print

Currently the method is significantly slower than real
time. Blake and Isard, however, have demonstrated real-
timeversionsof asimilar a gorithm which suggests that our
method might be suitablefor real-time recognition (with ap-
propriate optimizations).

In our current work, segmented and aligned training data
was provided. Transition probabilities were set by hand.
While the method has very few parameters, it would be
worth exploring how learning techniques could be used to
generate the model s automatically.

Acknowledgements. We thank Francois Bérard for pro-
viding the real -time phicon tracking and Gudrun Socher for
discussions about whiteboards and gesture interfaces.
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