EXPLORING QUALITATIVE PROBABILITIES FOR IMAGE
UNDERSTANDING

Jennifer Listgarten

A thesis submitted in conformity with the requirements
for the degree of Master’s of Science
Graduate Department of Computer Science
University of Toronto

Copyright (©) 2000 by Jennifer Listgarten

Abstract

Exploring Qualitative Probabilities for Image Understanding

Jennifer Listgarten
Master’s of Science
Graduate Department of Computer Science

University of Toronto

2000

In this thesis we explore and work with a particular probabilistic framework for image
interpretation called Qualitative Probabilities. Introduced by Jepson and Mann, Qual-
itative Probabilities formalize the notion of non-accidentalness, a cornerstone of object
recognition.

First we examine the search space associated with Qualitative Probabilities. We also
experimentally verify one of the underlying principles of the theory, the asymptotic rate
of ’accidents’. Then we incorporate Qualitative Probabilities into a relatively simple
search which we find to be efficient and effective. Comparing search for interpretations
using Qualitative Probabilities to search using a more standard 'cover’ measure, we find
that the former is far superior both in terms of efficiency and quality of block models
found. Lastly, we design and test a new search algorithm, called Cascade search, that

uses Qualitative Probabilities.

1

Contents

1 Introduction
1.1 Contributions

1.2 Thesis OQutline.

2 Background
2.1 View-Based Approaches 0.

2.2 The Search Problem

2.3 Perceptual Grouping

3 Qualitative Probabilities for Image Interpretation
3.1 Bayes Theorem and Model Comparison
3.2 Qualitative Prior Probabilitieso
3.3 Posterior Probabilities and Likelihood

3.4 Can QP be used for Search?

4 Exploring the QP Blocks World
4.1 Basic Vocabulary o
4.2 The QP Hypothesis Space
4.3 Verifying the Asymptotic Natureof QP

4.4 Resolution in Computational Vision

v

14

15

17

21

23

32

5 Searching for Models

5.1 Building Blockso
5.2 Depth-First Search oo
5.3 Alphabet World
5.4 Permutations and Pruningo 0oL
5.5 Example: Search for Alphabet Models

6 Comparison of QP to a Cover Measure

6.1 Can QP be used for Search 7.
6.2 Depth-First Search with Pruning
6.3 Results of the Simple QP Search
6.4 Comparing QP to a Cover Measure
6.5 Summary e e e

7 Cascade Search

7.1 Motivation L
7.2 Overview of Cascade Search
7.3 Enforcing an Increase in the Odds
7.4 Grouping and Culling as a Branch Predictor
7.5 Results and Discussion oo
7.6 Summary e e

8 Conclusion
8.1 Contributions s

8.2 Discussion and Future Directions

52
52
54
58
59
60

64
64
64
68
71
79

80
80
81
82
36
38
91

95

Chapter 1

Introduction

One goal of computational vision is to get machines to arrive at interpretations of the
world that are similar to the ones human observers would have arrived at, given the
same visual stimuli. Photons incident on the retinas spawn a series of synaptic activities
whose pathways and purposes are little understood, though heavily studied. The end
result is that humans look around and know with great certainty what are coherent
objects, how they are positioned relative to one another, how they are moving relative
to one another, and very often, their name and purpose. Qur perception of the world
is near perfect despite noisy and missing data, occlusion of objects and varied lighting
sources. In fact, our visual perception is so finely tuned that most people would be hard
pressed to describe why the task of vision is difficult at all.

The task is amazingly daunting for the computational vision researcher. The specific
problem of object recognition, a major component of the entire vision problem, is far
from being solved.

David Lowe, one of the pioneers of modern day object recognition, nicely defines the
problem of object recognition in his oft-cited, 1985 book on perceptual organization and

visual recognition:

“Recognition implies that a correspondence has been found between elements

CHAPTER 1. INTRODUCTION 2
of the image and a prior representation of objects in the world.” [22]

Thus there are two essential elements involved in computational recognition:
1. sensor data which makes up an image

2. some previously defined notion of which objects exist, in a format suitable to being

matched up with the sensor data, or derivatives thereof.

Some object recognition algorithms use laser range-finder data, while others use inten-
sity images. Sometimes data are processed to form, say, edge-images, or ’line-drawings’,
which are then used to index into the model database. There are myriad combinations
used of image data, data processing and types of models, each with unique advantages
and difficulties with respect to the recognition problem.

The object model may be two-dimensional, three-dimensional, it may be purely ge-
ometric, or it may also include colour and other properties. A typical categorization
of object models is i) CAD-based (i.e. geometric), ii) view-based (e.g. eigenspace), iii)
primitive based (e.g. geon-based). We discuss each of these at greater length in the next
section.

While some object recognition research is oriented toward fairly specific goals, such
as face recognition, or detection of vehicles on a road, the work presented in this thesis
is oriented toward “generic object-recognition”, that is, recognition of previously unseen
objects such as a new coffee cup, or a tree. This thesis explores object recognition from
line drawings derived from real world images of simple objects. That the objects used

are simple is a reflection of the state of the art in this area of research.

1.1 Contributions

In [20], Jepson and Mann introduce ’Qualitative Probabilities’ for image understanding.

They work in the domain of edge images derived from real images, formalizing the notion

CHAPTER 1. INTRODUCTION 3

of non-accidentalness, a cornerstone of object recognition. This thesis builds on this work

in several ways:

e By examining the search space associated with this particular probabilistic frame-
work from the current literature (Qualitative Probabilities/QP [20]), we provide a
deeper understanding of the framework. In doing so, we are also able to experi-
mentally verify one of the underlying principles of the theory, the asymptotic rate

of so-called ’accidents’.

e We compare search for interpretations using Qualitative Probabilities to search
using a more standard ’cover’ measure, and show that Qualitative Probabilities
far outperform the cover measure. This further motivates and justifies use of the

Qualitative Probabilities for the purpose of object recognition.

o We introduce a new search algorithm which uses the Qualitative Probabilities. Ear-
lier searches using the Qualitative Probabilities required some preset, hard thresh-

olds. This new search algorithm is more self-adapting, and no longer requires these

thresholds.

1.2 Thesis Outline

e Chapter 2 This chapter presents relevant background material.

e Chapter 3 This chapter provides a thorough explanation of the Qualitative Prob-

abilities presented in [20].

e Chapter 4 This chapter explores the search space associated with Qualitative
Probabilities in the context of searching for blocks from edge images. We also ex-
perimentally verify the asymptotic nature of the Qualitative Probabilities discussed

in Chapter 3.

CHAPTER 1. INTRODUCTION 4

e Chapter 5 This chapter explains how depth-first search is used to hypothesize
interpretations for line drawings, given a model. Its purpose is to prepare the

reader for Chapter 6.

e Chapter 6 This chapter begins by showing that Qualitative Probabilities can be
incorporated into a search algorithm in an effective, efficient way. We then compare

how QP compares to a more standard ’cover’ measure which is introduced.

e Chapter 7 In this chapter, we discuss a new algorithm that uses QP to search for

interpretations in edge images.

e Chapter 8 This chapter contains a conclusion of the work presented as well as

some future directions.

Chapter 2

Background

2.1 View-Based Approaches

In the introduction we framed the object recognition problem as one where image data are
assigned to object models. For some approaches, usually called view-based approaches,
the object models are derived from a set of training images. For example, eigenspace
approaches approximate the training images with a linear ’object-space’. Then unknown
images are projected into this object space to determine which object forms the closest

match.

Limitation of these methods are that they are sensitive to changes in lighting con-
ditions, and to translation, scaling and rotations [5]. Also, it is often assumed that the
object has been segmented ahead of time, a key problem in generic object recognition.
Lastly, these approaches often produce little or no semantic breakdown of the object being
recognized. However, for tasks that are quite specific in nature, such as face recognition,

eigenspace methods have proven to be very powerful.

For the purpose of this thesis, we leave these methods aside, and assume that our
models are known ahead of time and are specified in terms of simple image features such

as lines.

CHAPTER 2. BACKGROUND 6

2.2 The Search Problem

Given that we know which models are to be used in trying to semantically parse an
image and that these models specify the presence of particular image features, object
recognition can be viewed, fundamentally, as a search problem. We have a set of image
features, and a set of models, and we must search through a hypothesis space to find the
right interpretation.

Sometimes this is posed as a labeling problem [16]. The interpretation space consists
of every possible assignment of image feature to model, in every possible way. Suppose we
have only ten objects in our database, and that each is modeled by describing the relative
position and orientation of only five lines. Suppose that there are only 50 lines in total in
the image. This gives a space of cardinality greater than (10%5)°°, a number so huge that
the problem is already intractable in even such a simplified universe. Clearly some way
of getting to the correct answer, without searching this whole space is necessary. Note
also that the problems of imperfect data due to noise, occlusion, varied illumination,
unknown viewpoint etc. have not even been mentioned yet.

Grimson and Lozano-Perez’s 1987 paper [16] sheds some light on some of the problems
and possible solutions to the search problem in this context. Grimson and Lozano-
Perez try to identify and locate overlapping objects by modeling objects as polyhedra
of up to six sides. The algorithm consists of a generate-and-test loop. Hypotheses
are generated, tested for consistency based on geometric constraints, and discarded if
found to be inconsistent. Thus they use a depth-first search, pruning entire subtrees
when geometric inconsistencies are found. Extraneous data can be assigned to a null
model. Finding this technique to be unacceptable in terms of time, they introduce

several heuristics, including the following two:

1. Hough Clustering — A generalized Hough transform is used to reduce the number

of poses that need to be examined, and thus a good portion of the search space

CHAPTER 2. BACKGROUND 7

is pruned. Hough transforms work by collecting ’votes’ for different poses based
on local geometric constraints. Poses with the most votes are considered the most
likely candidates. The authors find this crucial in reducing the search time, but
note that it causes the algorithm to miss some correct interpretations occasionally.
A theoretical analysis is given in [15, 14], where it is shown that this method is

not reliable in noisy or cluttered scenes, or those scenes that have much occlusion.

A related method to Hough clustering is Geometric Hashing. Geometric Hashing
works by storing transformation invariant properties of objects in a hash table.
By calculating invariants from the image data, the table is then indexed to find
possible corresponding object models. Those models that are indexed most often
are the most likely candidates. Overviews of the technique are given in [14, 30].
Geometric Hashing suffers from the same types of problems as Hough transforms.
In [2], Beis and Lowe try to improve on these indexing schemes by using a modified
k-d tree search algorithm instead of a hash table. In [1], they propose learning a

probabilistic indexing function to help disambiguate among indexed hypotheses.

Overall, it is not clear that these types of subspace localization methods based
on voting for local image features scale up well with the number of models. This
is due to the fact that the feature primitives used to index are relatively simple;
simple features will potentially correspond to many objects. As alluded to in [10],
more complex primitives are required for generic object recognition. More complex
primitives make for less complex object models, and fewer matches to these models.
However, these richer primitives are far more difficult to extract from the original
data. The work in this thesis is a step toward being able to robustly and efficiently

recover sufficiently complex primitives.

2. FEarly termination — When an interpretation is deemed sufficiently 'good’, the search

is terminated. Grimson and Lozano-Perez conclude that this is crucial to an efficient

CHAPTER 2. BACKGROUND 8

solution. Goodness is judged by the total length of image edges in the interpre-
tation. In fact, the key idea to take away from Grimson and Lozano-Perez’s work
is that using a rudimentary and ad hoc measure of 'goodness of interpretations’,
we can more effectively prune the search tree than with consistency alone. This
leads us to believe that with a more rigorous and theoretically sound measure of
goodness, we might be able to do much better. Qualitative Probabilities [20], which

are explained in detail in Chapter 3, are such a measure.

2.3 Perceptual Grouping

The number of subsets of image features that can be formed is responsible for the com-
binatorial explosion of the search space. This in turn is a result of the number of image
features, or in our case, the number of lines. This number could be reduced, if, for in-
stance, we first grouped all collinear line segments that 'belonged together’ into larger
lines, and then only used these to index into the model database. Alternatively, we could
group together lines that formed V’s. This idea of grouping the more primitive features
into higher order features is called perceptual grouping or perceptual organization and
is acknowledged to be a necessary step in the recognition process [25]. Essentially its
purpose is to uncover causal relationships between real world objects and image features,
that is, to find image features that come from the same object in the real world. In the
context of generic object recognition, we would use perceptual grouping to help us pick

out complex primitives.

Finding these higher order features reduces the search in two different ways: i) By
reducing the size of the total search space, ii) By allowing us to abandon certain paths
(and thus subtrees) earlier on, because a more complex feature will match fewer models.
A third reason for performing perceptual grouping is to help overcome noisy data and

occluded objects. If we can correctly determine which image lines belong together, then

CHAPTER 2. BACKGROUND 9

given some prior knowledge about the world such as expectations of continuity, we may
fill in the gaps in intelligent ways. Additionally, perceptual organization allows us to do
some grouping that is independent of which particular object we are looking for.

Much work has gone into finding out what cues are good for perceptual grouping and
how to reliably and efficiently detect them in images. We will next introduce this area

of work with the Gestalt psychologists.

2.3.1 Gestalt Psychology

In the early twentieth century, before its use in machine vision, perceptual grouping
was studied substantially by the Gestalt psychologists. Their main contribution was the
design and execution of a large number of experiments dealing with grouping phenomena
in humans. Their work forms the basis and motivation for much of the work in grouping
by computer vision researchers. The upshot of the Gestaltists work was that grouping

can be broken into six main classes [22]:

1. Proximity — elements that are closer together tend to be grouped together

2. Similarily — elements that are similar in physical attributes, such as color, orienta-
tion or size are grouped together

3. Continuation — elements that lie along a common line or smooth curve are grouped
together

4. Closure — there is a tendency for curves to be completed so that they form enclosed
regions.

5. Symmetry — any elements that are bilaterally symmetric about some axis are
grouped together

6. Familiarity — elements are grouped together if we are used to seeing them together.

It is clear what an impact the Gestaltist’s studies have made in the area of compu-

tational vision, as reference is made to them throughout the computer science grouping

CHAPTER 2. BACKGROUND 10

literature, [17, 22, 18, 26, 11, 29] to name a few. We should be careful not to at-
tribute too special a meaning to these particular features. Though important, they are
most useful as a guide rather than as necessary and sufficient properties for perceptual

organization.

2.3.2 Non-Accidentalness

According to Saund [26], “The challenge facing the modern computational study of Per-
ceptual Organization is to formalize and extend the gestaltists’ intuitive insights in terms
of testable theories and implementable programs.” One way of formalizing the Gestalt
laws is in terms of their non-accidental nature, which is closely related to notions of
genericity and viewpoint invariance.

According to Lowe and many others, the most important property for a feature is
non-accidentalness, that is, the property that the feature is unlikely to have arisen by
accident. For example, we might wish to group image lines together if they are parallel,
as the Gestaltists suggest that humans do. Intuitively we may reason that this is a good
thing to do because if two lines in an image are parallel, they must either be parallel in
the real world, or else we must be viewing the object from one particular view, that is,
from a non-generic viewpoint, which is highly unlikely. One can argue in this way for
each property the Gestaltists mention.

An equivalent way of stating this idea is in terms of viewpoint invariance. Lowe
suggests that only features that are mostly viewpoint invariant should be looked at.
Because a viewpoint invariant structure projects to the same set of image features, these
features are more likely to occur, and when they do, are more likely to have arisen by
some real 3D structure than by accident.

However, as shown formally by Jepson et al in [19], non-accidentalness alone will not
lead to reliable inferences about the real world. One further criterion is that the feature

needs to have a non-zero a priori probability of occurring in the given context. This falls

CHAPTER 2. BACKGROUND 11

out of the Bayesian formulation of the problem.

In [12, 13], Feldman proposes a formal, logical framework for capturing non-accidentalness.
He calls it 'regularity-based’ grouping. ’Grouping interpretations’ are logical expressions,
and a logical inference theory is presented to work with these expressions. Parse trees
store the degrees of genericity present, and those interpretations with the highest gener-
icity are considered the most plausible. These ideas are closely linked with Jepson and
Mann’s Qualitative Probabilities [20]. An entire chapter is devoted to this (Chapter 3),

so it is not discussed further here.

2.3.3 Other Work in Perceptual Grouping

In Lowe’s SCERPO system [22], straight lines are grouped together using collinearity,
proximity of endpoints and parallelism. Only lines that are close enough together have
the possibility of being grouped. A potential group is assigned significance inversely
proportional to the likelihood that it is accidental in origin. This likelihood contains
little information and is simply the ratio of i) the separation of the lines involved, to ii)
the length of the shortest line segment involved.

Jacobs” GROPER system [17] estimates the probability that two convex contours
come from the same object. The estimate is based on the distance separating the two
contours, d, as well as on their relative orientation, t. Let Oy = O, indicate that the
objects that produced groups one and two are the same. Jacobs calculates p(O; = O,]d, t)
through use of Baye’s rule. By making certain assumptions and massaging equations, he
in the end needs only to calculate four fairly simple probabilities (i.e. simpler than the
ones required by Baye’s rule alone). An approximation to these probability distributions
is obtained by generating random polygons, and calculating several statistics.

Jacobs pursues his convex grouping further in [18]. He contends that convex collec-
tions of line segments, in which a large fraction of the convex hull of these segments is

covered, are salient cues for detection of underlying structure. Later in this thesis, we

CHAPTER 2. BACKGROUND 12

show that coverage is actually not a particularly useful property on its own.

2.3.4 Primitive-Based Recognition

One class of approaches to the recognition /grouping problem that falls under the heading
of primitive-based recognition is motivated by Biederman’s Recognition-by-Components
theory [4]. Biederman contends that “primal access, the first contact of a perceptual input
from an isolated, unanticipated object to a representation in memory” is edge-based. He
posits that humans understand images by parsing objects into their component shapes,
‘geons’, and conducts studies to back his theory. The geons are simple, parameterized, 3D
shapes that he postulates are recognized by their 2D edges alone, based on qualitative
measures, such as curved versus straight. He reasons that surface characteristics of
objects play only a secondary role because they are generally less efficient for indexing
into the human model base. He even goes so far as to say that the parsing into visual
primitives “does not appear to depend on our familiarity with the particular object being
identified”, that is, it does not depend on context.

Some of the attempts to put this theory into practice can be found in [3, 7, 10], and a
discussion of the successes and problems encountered in some of these attempts are given
in [9]. In this panel discussion paper, the consensus is that Biederman’s idea of parsing
images into a finite number of visual primitives is extremely valuable. However, it is
argued that many parts of the real world cannot be represented by geons alone. Also, the
problem of extracting good line drawings from real images is considered to be extremely
difficult, and many of the attempts at implementing Recognition-By-Components start
with images that are completely noise-free.

Primitive-based object recognition is perhaps the method best suited to the task of
generic object recognition, as it allows for very loosely defined classes of objects. An
object is defined as consisting of several, of a finite group, of generic primitives, as well as

a qualitative description of how these are interconnected. Though geons themselves might

CHAPTER 2. BACKGROUND 13

not be the basis required to represent prototypical objects, work in trying to recover them
from images and ensuing object recognition has been enlightening, especially in terms of
the types of algorithms used, which are mostly independent from the geons themselves
(especially for the latter task of ’gluing’ the primitives together).

In this thesis, we are on one level preoccupied with searching for blocks, however,
the underlying goal and incentive is to provide a robust and efficient method of extract-
ing complex primitives from real images, pushing us toward the goal of generic object

recognition.

Chapter 3

Qualitative Probabilities for Image

Interpretation

In the previous chapter it was shown that the property of non-accidentalness plays a
central role in object recognition. It helps one deduce which image features are likely
to belong to the same object in the real world, and therefore helps to make the search
in object recognition more tractable. In Jepson and Mann’s Qualitative Probabilities for
Image Interpretation [20], the notion of non-accidentalness is formalized from a Bayesian
point of view. The qualitative probabilities (QP) act as a measure of goodness for

hypothesized image interpretations.

The theory is introduced in a ’card-world” domain, that is, line images are interpreted
as a combination of sticks and convex, opaque polygons. For example, Figure 3.1a
shows the input image of straight line segments, while (b), (c¢), and (d) show different
global interpretations of the image. Using the QP metric, it is found that of the three
hypothesized interpretations, (b) is preferred. This interpretation also corresponds to
what we would intuitively describe as a correct interpretation of the scene, a property

clearly desired from any metric in this context.

In this chapter we review the details of these Qualitative Probabilities and consider

14

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 15

their application to simple images.

3.1 Bayes Theorem and Model Comparison

From a Bayesian point of view, in order to deduce correct interpretations for an image,
one wants to be able to calculate the probability of an interpretation or scene model
given the image data, p(M|I), where M is a given interpretation or scene model and [is
the image data. Models that produce a high value for this expression should correspond
to the 'good’” models. Examples of different M for the same I can be seen in Figure 3.1,
where in (b), M describes the lines as a triangle in front of a quadrilateral, as well as a
stick, whereas in (d), M describes each line as a simple stick, independent from the other
line segments.

For the purpose of calculation, we must appeal to Bayes theorem:

p(I|M)p(M)
p(1)

where, p(M|I) is termed the posterior, p(I|M), the likelihood of the model, and p(M),

p(M|I) = (3.1)

the prior for the model.
Often, one is comparing different models for the same set of data, I, and thus the

denominator is not needed. This is a lucky thing since

p(I) = _pI[M)p(M), (3.2)

M

that is, the probability of the image is equal to the summation over the probability of
the data, given every possible model in the universe, a usually intractable calculation.

When this term can be ignored, one computes instead the unnormalized posterior,

q(M|I) = p(I|M)p(M). (3.3)

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 16

Figure 3.1: Example of image edges and three hypothesized 'card-world” models Legend:
Thin black lines — image segments, Thick grey lines — sticks, Shaded grey regions — opaque
polygonal card, Crosses — breakpoints in the image segments for sticks and polygon edges.
(a) image edges (b) model consists of a triangle in front of a quadrilateral, and a stick (c)
model consists of a triangle behind a quadrilateral, and a stick (d) model consists of 10
different sticks. Using the Qualitative Probabilities introduced in this chapter, we find

that (b) is the preferred interpretation. (Figure courtesy of Allan Jepson [20])

Before explaining the details of QP, it would be nice to understand this equation on
an intuitive level. We will do so by means of an example.

Suppose for instance that the image data we are looking at is (a) in Figure 3.1, and
that the underlying true scene is shown in (b), a triangle in front of a quadrilateral,
and a stick. As a first stab at finding the correct model for this scene, we might try to
maximize the match between scene model and image data, that is, we would choose the
model which maximizes the likelihood of the model, P(1|M). Of all possible models, the
one which would be selected in this case is the one in Figure 3.1d — a perfect match.

But we know that cameras produce images with missing and noisy data and that edge

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 17

detectors are imperfect. What is in the image is not a mirror reflection of reality. If
we were to select a model based on the maximum likelihood criterion, we would need to
select a very complex model, in fact, an overly complex model that could account for all
of the noise. What we really need is a way of balancing the fit of the data to the model,
with the complexity of the model. This is exactly what p(M) in equation 3.1 does. It is
the prior of the model, and reflects how probable the model is in its own right. Under
normal circumstances, the more complex the model, the more unlikely it is, a principle
sometimes referred to as Occam’s Razor. This concept is closely related to ideas in coding

theory, such as minimum description length. !

3.2 Qualitative Prior Probabilities

A common criticism of Bayesian statistics is that it is impossible to choose the correct
prior. However, in practice the prior need not be specified perfectly. Priors that are
‘guesses’ and that may only be correct to within an order of magnitude still prove to
be extremely useful. In their Qualitative Probabilities paper [20], Jepson and Mann de-
fine a wide equivalence class of prior probability densities, instead of selecting particular
quantitative prior probabilities. From this class of densities, they are able to asymptot-
ically analyze prior probabilities, resulting in a qualitative prior probability. They also
show how to compute a qualitative likelihood to use with this prior. The qualitative
probabilities presented are both intuitively pleasing and easy to compute.

First they set out the conditions imposed on the prior probability density for the
occurrence of a single line segment. From this all prior probabilities for models in the

specified domain follow.

1Curve fitting real, noisy data is similar. If we fit the curve that best matches the data, that is, the
least squares solution, then we may end up with a very bad estimate of the underlying function because
we will have chosen a curve of very high order to ensure that it goes through every point. We need to
balance the fit of the data with the complexity of the curve in order to get a truly meaningful model of
the data.

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 18

3.2.1 Prior Probabilities from the Probability Density

Let p(L(#1,72)) denote the prior probability density for a particular line segment with
independent endpoints 7y and 73. The conditions imposed on this density are that it is

bounded away from zero and that it is bounded from above. That is, for some dy and d;:

0 <do < p(L(Z1,) < d (3.4)

Since the #;’s are continuous and since the density is bounded from above, integrating

over any one set of line endpoints gives a probability of zero:

[p(L(@, 7)) i d7y = 0 (3.5)

where Sy denotes a particular pair of endpoints, (71, #3) = (Z4,7p). In other words,
the prior probability of a line whose endpoints have been specified to infinite precision
is zero. To get a non-zero probability for a particular line, one can only specify it to
some finite precision. Furthermore, because the density is bounded away from zero, any
line segment specified with finite precision has non-zero probability of occurring. Both
of these results satisfy our intuition about the problem.

To find out the prior probability of a line segment specified with finite precision, one
integrates over the region of uncertainty. Suppose that one specifies the precision of a
line segment with ¢, that is, the position of each of the endpoints is known to within a
radius €. Then the prior probability of this line, given this resolution, follows from the
bounds imposed on the density in Equation 3.4 (the bracketed expressions are squared

because the uncertainty of each of the two endpoints must be integrated over):
0 < (wédy)? < / p(L(E1, 7)) d, dF, < (néd,)? (3.6)
S

where S§ denotes the set of line endpoints (#1,#3) such that #; and Z lie within a disk

of radius € centered on ¥4 and Zp respectively (see next page)

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 19

(i-e. S5 = {(@,) [(|71 = Zal| < €]),
and ([|72 = Z5|| < €|)}).

Let us denote a model, M, specified to resolution € to be M*, and the prior probability
of this model, obtained by integration as in Equation 3.6, to be p(M®). In particular,
denote the prior probability of a line segment, specified to precision € to be p(L (%1, 7)),
or simply p(L°). When no power of epsilon is shown, it will mean that the expression is

a probability density rather than a probability. In this notation Equation 3.6 becomes:

0 < (me¥dp)? < p(L°) < (mérdy)? (3.7)

According to the standard terminology in Computer Science [6], Equation 3.7 indicates

that p(L) is tightly bound by €*:

p(L) € O(") (3.8)

Similarly, one can show that the prior probability of a single endpoint, specified to reso-
lution ¢, is tightly bound by €.

For the remainder of this thesis, we say that events that have probabilities tightly
bound by some power of epsilon are “of order” that power of epsilon. For example,
we will say that the prior probability of a line segment is of order ¢*. This makes for
less cumbersome phrasing. Similarly, we will often omit the epsilon in p(M*®) when it is
obvious from the context, and instead write only p(M).

They key ideas needed in deriving the prior probability for a single line segment were
i) the bounds placed on the probability density and ii) integrating over each area of
uncertainty. As presented, each area of uncertainty actually corresponds to two degrees
of freedom in the model, each having the same resolution (proportional to €). Each point
in a plane has two degrees of freedom. Thus two independent points specifying a line
have four degrees of freedom. This is intuitively very satisfying since our epsilon order

estimates were just these numbers. Furthermore, this indicates that these QP’s might

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 20

be extended to more complex objects. This is done by keeping the same bounds on the

probability densities, but integrating over the appropriate number of degrees of freedom.

To specify a convex n-gon to resolution €, Cf, one must specify n points in the plane
at this same resolution. Following the analysis described above, it is found that the prior
probability for such an n-gon, p(C:) € ©(*").

What about complex objects, such as the projection of a block, where the number
of degrees of freedom does not correspond to the number of vertices as is the case in a
polygonal world? The orthographic projection of a 3D block is fully specified by four
points in the plane. These four points are not unique, but this is unimportant for the QP
analysis which tells us that the prior probability for a block, p(B¢) € ©(c**?) = O(?).
Again, one need only integrate over each degree of freedom, regardless of whether we

know where specifically in the image they are located.

For a scene model consisting of multiple objects, Jepson and Mann take the shape and
position of each object to be independent. Thus simply multiplying the prior probabilities
of each object together gives the ’composite’ prior probability for the entire scene model.
For example, in Figure 3.1b, the prior for the entire scene is calculated by multiplying
together the the prior for the triangle, p(T¢) € ©(€°), the quadrilateral, p(Q°) € O(c®),
and the stick, p(L°) € O(€*), producing a result of p(T“Q°L®) € O('®).

The issue of depth ordering of objects in the scene has so far been ignored. Since
objects in the specified domain are opaque and convex, depth layerings are reduced to
binary choices between pairs of overlapping objects. Suppose we had a scene consisting
of n objects, with m possible depth orderings. Suppose that the prior, before we take
these depth possibilities into account is p(M). Then the prior reflecting the number of
depth orderings is p(M)/m, assuming that every depth ordering is equally likely. But

since m is independent of the resolution, the € order estimate remains unchanged.

Thus, from the simple assumption that the prior probability density of a line segment

is bounded from above, and from below, away from zero, we obtain a simple but elegant

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 21

qualitative expression for the prior probability of any scene model in the given domain.
In the next section we will describe how these qualitative probabilities are extended so
that the second term in Equation 3.1, the likelihood, can be computed, and thus the

posterior.

3.3 Posterior Probabilities and Likelihood

In order to assess the likelihood of a scene model, p(I|M), an imaging model [20] is
needed. The imaging model should embody the types of errors that are typically made
by either the camera or the edge detector, or both. Obviously one could have an imaging
model at any level of detail. One might choose to physically model the camera’s lens
for example. However, in the given domain, the imaging process can be treated very
simply. In fact, so that the likelihood and the prior may be combined in a meaningful
way, one needs to make sure that their descriptions are of the same currency. Thus
it would prove fruitless to have a more quantitative model than is set out in the prior
probability calculations.

One of the errors accounted for in the imaging model presented in [20] is that various
segments may be missing entirely, or in part, from the output of the edge detector.
Jepson and Mann refer to these missing pieces as 'drop-outs’. Analogously to the prior
calculations, the endpoint(s) of the drop-out must be specified. If an entire segment is
missing, then, no additional points need to be specified (Figure 3.2b). If a single, middle
segment is missing, two additional points need to be specified, each at a cost of €' (since
each is constrained to lie on the line) for a total of €. If an end of a segment is missing,
one additional point needs to be specified at a cost of €' (Figure 3.2¢).

The probability of a drop-out error is not only dependent on the probability of the
endpoints, but also on the image contrast needed by the edge detector, which Jepson and

Mann call §. For every missing section of a line, the probability of that line is decreased

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 22

/

‘ J

Figure 3.2: (a) (b) (c) (d)

Use of the imaging model to account for noise. (a) Perfectly imaged line: p(I/|M) = €°6°,
) = €%t

(
(M) = €', p(M|I) = ¢*¢" (c¢) End of segment missing: p(I|M) = ¢'6', p(M) = €,
p(M|I) = 6" (d) Middle and end of segment missing: p(I|M) = €*6*, p(M) = €,
(M|I) = €62, (Figure courtesy of Allan Jepson|[20])

by a factor 4. Note that d is independent of the length of the missing segment. Intuitively
this makes sense since if an image edge does not have enough contrast over some length
of the segment, it it likely due to shadow or poor lighting. There is no reason to believe
that up to a certain size, the probability of a large shadow has a different asymptotic
order than that of a smaller one. One can argue similarly for poor lighting. However,
to get two drop-outs along the same line segment, one would need two processes, such
as two shadows, which should be less likely than a single shadow. Thus each further
drop-out becomes less likely. See Figure 3.2 for a few simple examples.

Another error accounted for by the imaging model is that there is only limited res-
olution. Because of this fact, two image lines resulting from say two different blocks,
may by accident be extremely close and nearly collinear (see Figure 3.3). Thus the image
line-finder will identify them as a single line segment, and we need to be able to 'use’ only
part of a line segment. A part of a line segment not being used to explain a particular
model (when the rest of that segment is being used) is called a tail. In Section 5.5 we
will show an example that discusses how tails affect computation of probabilities.

Lastly, errors in position and orientation are accounted for by the concept of a cover.

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 23

Figure 3.3: (a) (b)
(a) Two blocks abut, their edges forming a single image edge. (b) An example of a "cover’:
angular tolerance is dictated by 74, while tolerance of perpendicular extent is governed

by 7,. The baseline is the middle horizontal line. (Picture courtesy of Allan Jepson [20])

A cover is defined to be a rectangular box, of any length, and some pre-specified width.
Associated with the cover is a baseline (see Figure 3.3b). A cover is a model for a real-
world straight line; the model "covers’ the various imaged line segments that make up the
true line (or vice versa). If several image line segments can fit inside of a cover, and the
angle they form with the cover baseline is not larger than some maximum allowed angle,
75, then they are considered to be a single line. This allows us to robustly group together
image segments into single lines, tolerating errors in position and orientation. Note also
that this definition allows parallel, or nearly parallel line segments to be grouped together,
provided they are sufficiently close together.

An important and nice feature that comes out of the definition of covers is the fol-
lowing: no matter what order image segments are added to a cover, we will obtain the
same result — yes they form a cover, or no they do not form a cover. Thus the 'growing’

of covers, through the inclusion of additional image segments, is transitive.

3.4 Can QP be used for Search?

As alluded to at the start of this chapter, scene models with high QP values, correspond

well to intuitively 'correct’ models. Thus what QP has provided so far is a measure of

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 24

the 'quality’ of different global scene models for a particular set of image data. To see
which model best fits the data, one needs to find, of all possible scene models, the one
which maximizes the posterior.

But how can such a measure help in the search for the correct interpretation? As
presented, one would first need to generate all possible scene models in order to find
the maximal values of the posterior and the corresponding models. This is exactly the
problem that must be avoided, since these hypothesis spaces are combinatorial, and a
complete search through them is intractable. What is required is a means of evaluating
partial hypotheses. Given such a mechanism, one could build hypotheses bottom-up,

keeping around only the better interpretations to explore further.

3.4.1 Evaluating Partial Hypotheses

Can QP be directly applied to partial hypotheses to produce a meaningful metric? Sup-
pose there is a line image in which it is desired to find all block interpretations (for
example, see Figure 4.9). Building hypotheses bottom-up, one will at some point en-
counter two hypothesized interpretations, each consisting of a different set of lines. Let
us call the two sets of lines, I; and [, where Iy, 1 C [I. If applied directly, QP tells
us to compute the posterior as in Equation 3.1 for each of the two hypotheses. Since
the two sets of image lines are not the same, p(/;) and p([3) must each be computed as
in Equation 3.2. These are unwieldy and practically speaking, impossible calculations.
To overcome this hurdle, Jepson and Mann 'normalize’ the posterior by other means.
Strictly speaking it is not a normalization, but its desired functionality is the same, the
desired functionality being that it allows one to compare different hypotheses of different
data “fairly’. How fairly is another question, one which is addressed for the specific case
of a blocks world in Section 3.4.3.

Instead of taking the ratio of the unnormalized posterior to the probability of the data

(i.e. the posterior), they take the ratio of the unnormalized posterior to the unnormalized

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 25

posterior of the same subset of data, I, under the most simple of scene interpretations —
one which considers each tmage line to be a ’stick’. The value of this ratio corresponds to
the following: how much more likely is it that this subset of image data, [;, was generated

by a scene, M, as compared to a scene consisting entirely of sticks, 57

_pM|L) p(L|M)p(M) p(h) p(hL|M)p(M)
OddstM) =Ty = (1) p(h9)e(S) ~ p(h]5)w(S)

(3.9)

Toward the end of this section, we will use a detailed example in the blocks domain to

demonstrate what a full computation might look like.

If the odds were an ideal metric, the most intuitively plausible interpretation would
be the one with the highest odds. However, QP does not model all of reality, and consists
of only order estimates. Furthermore, the odds are an approximation made to overcome
the difficulties of calculating the posterior. In particular, they consider only one subset of
image data, I, and not any further evidence that might be obtained from the remainder
of the image data. Thus in practice, one cannot expect that the odds be ideal. Instead,
it is important to note that if the intuitively correct model lies in the top percentage of
all models, as ordered by QP odds, then a good heuristic will have been found. If this
is not the case, all hope can be abandoned for this approach. In their experiments in
a blocks world domain, Jepson and Mann find that the correct block interpretations do
normally lie in the top one percent of block hypotheses [20]. This issue is also explored

further in Chapter 6 and Chapter 7.

Given a small set of interpretations in which the correct one is known to exist, further
quality checks can then be used to select the best among these top interpretations. Since
the combinatorial explosion of the search space will have been battled and won, one can
then spend the time and resources on more quantitative models. The beauty of QP is

that it is simple, general, elegant and easy to compute.

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 26

Figure 3.4: Example of image edges and a hypothesized block model Legend: Solid bold
line — Block model (i.e. the baseline of the cover for each edge is shown), Solid line —
Actual image edge Arrow — Indicates that the end position of that model edge is not

known (i.e. it is not constrained, it is a free endpoint)

3.4.2 Example Computation of QP Odds for a Block

We will now show a full computation of the odds of a particular block model and partic-
ular image line segments; these are shown in Figure 3.4.

First we will calculate the asymptotic unnormalized posterior probability of a block
model, given the image data, then we will calculate the asymptotic unnormalized poste-
rior probability of an all sticks model, and, finally, the odds for the block model. In what
follows we will call asymptotic probabilities just plain probabilities.

To obtain the prior probability of the block model, we note that there is one free
parameter in the model shown — downward length, and that a fully specified block model

has 8 known parameters. Thus the prior probability, p(B) is given by:
p(B) € O(&7) = 0(¢") (3.10)

Now we need to use the imaging model to find the likelihood of this block model, p(I|B).

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 27

How many gaps are there? There is one at the end of each of model edges 2 and 6,
and 2 gaps on edges 4 and 3. Thus there are 6 gaps, contributing a factor of §° to the
likelihood. Furthermore, each of the gaps in edge 3 each have one endpoint that needs
to be specified, costing €' each, as do the ’end’ gaps on edges 2, 4, and 6. This adds a
cost of €, while the gap in edge four needs two endpoints specified, adding €. Thus the

likelihood for the model that we have calculated so far is:
p(I1B) € ©("6°) (3.11)
and the unnormalized posterior,
q(B|I) = p(I|B)p(B) € 6(""8°) (3.12)

However, note that one of the image edges projects beyond the end of model edge
1 — the model edge has what we call a tail. How do we account for this tail in our
computation? We must add something to our model so that the tail is accounted for.
Thus we must add a term to both our prior and our likelihood. In other words, we need
to multiply the unnormalized posterior in equation 3.12 by the unnormalized posterior
for a ’tail model’.

Going back to our polygonal world, we could explain the tail by saying that it came
from a stick with an uncertain left endpoint, lying along the image line in the sub-segment
covered by the baseline. This is the worst case/highest cost scenario (barring gaps in

> €2 for

the tail), and the unnormalized posterior would be of order €* — we would ’charge
the known endpoint,and €' for the uncertain endpoint. Alternatively, the tail could be
explained by it belonging to some polygon. Since a polygon with n sides has unnormalized
posterior €*”, the prorated unnormalized posterior of any one side of a polygon can be
said to be €2. Yet another alternative is that the tail can be explained by it belonging

to part of another block model, or some other kind of model entirely, unspecified and

unknown. The higher the ratio of model edges to degrees of freedom of this model, the

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 28

higher the prorated unnormalized posterior of a single edge, and the less of a 'penalty’
incurred.

Clearly the problem is intractable - we do not know what to charge for the tail. The
best we can do is take a guess at an appropriate choice. For the images we are using, not
very many spurious edges (those not actually belonging to a true underlying block) are
present. Since most edges in the images we use belong to a block, the prorated cost of
an edge is, on average, (68)%, because a block has 9 model edges. Thus, throughout this
thesis, we will use a tail cost of €!.

Our final unnormalized posterior probability for the block model then, is,
q(B|I) € ©(c"°6%) (3.13)

One last computation needed before we can obtain the odds, is the unnormalized
posterior probability of the ’sticks’ model, where each image edge is explained by a
different stick. Using this model, each image edge has unnormalized posterior ¢, and the

whole image has unnormalized posterior ¢#*number of edges

. However, using this formulation,
the probability of the stick model is relatively small when many image edges are present,
and thus the odds of a block model can be relatively high for images where in fact
little block structure is observed. The problem is that collinear image line segments, by
themselves, are providing evidence of blocks, because there are no other linear processes
in the domain. However, intuitively, we know that while a few collinear line segments
provide some evidence of a block, this evidence should be at most incrementally more
than the evidence provided by a single image line segment.

To remedy this situation, we introduce a second linear process. We do this by re-
vamping our definition of “sticks”. Sticks are now a new type of scene object, modeled
in the same way as other scene objects. Rather than treating each individual image line
segment as a stick, we now allow several collinear (or close and parallel) line segments to

model a stick, accounting for gaps with the imaging model previously described. Some

examples are shown in Figure 3.3.

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 29

To calculate our odds then, we use the best, all sticks model for the denominator in
Equation 3.9. By best we mean the model that has the highest, asymptotic probability.
This results in each set of collinear line segments being treated as a stick object, possibly
with interior gaps (gaps that do not extend to an endpoint of the stick object). In turn,
this means that any set of collinear line segments, on their own, provide no evidence for
the existence of a block.

In our particular example, there are seven sets of collinear lines, two of which have
interior gaps, thus the unnormalized posterior for the best all sticks interpretation is,
q(S|T) € O(e**7e%) = O(e%6).

Thus, the equation we’ve been waiting for, the odds of the block model shown in

Figure 3.4, for the image edges shown is:

Odds(B) = Z((l;";)) - Z((?"g) co (i;f;) = O(c7156%) (3.14)

Now that we have our odds, how can we use them? What meaning does an € term

have? In order to use the odds, we must be able to compare different odds and say which

one is bigger. A simple way of doing this is to say that for some constant, ¢ > 0, as ¢ — 0:
€ = 0(d7) (3.15)

As it turns out, the specific value of ¢ turns out not to matter in practice [20]. Thus for
the remainder of this thesis, we treat ¢ << § (since the power of € is negative in almost
all cases, and since both ¢ and § are less than one). In this thesis, we will actually ignore
0 altogether. Also, since almost all block models will have odds of zero or lower, we will
drop the negative sign on the epsilon odds throughout the remainder of this thesis. With

this notation, the higher the power of epsilon, the more evidence we have for a block.

3.4.3 0Odds for Single Block Interpretations

At the start of Section 3.4.1 it was mentioned that calculating the odds of the probability

of some model to the probability of a sticks model serves as a sort of normalizing factor,

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 30

Maximum Epsilon Odds vs. Model Complexity for Block Model
T T T T T

N
3]

N
)]
T
I

N
N
T
i

N
N
T
I

N
o
T
I

=
®
T
I

i
o
T
I

i
N
T
I

=
o
T
I

Maximum Epsilon Odds Possible for a Block Model (power of epsilon is shown)
IN
T
Il

0 I I I I I I I
1 2 3 4 5 6 7 8 9

Model Complexity (number of filled edges)

Figure 3.5: The maximum possible odds (power of epsilon) is shown, for blocks instan-

tiated to different degrees, that is, one edge only, two edges only ...).

allowing for comparisons between different hypotheses of different data, in what is hoped,
a fair way. Let us look a little more closely at how the odds behave for a blocks world to

see just how fair this measure is.

Figure 3.5 shows the maximum possible epsilon odds for single, partial block hypothe-
ses instantiated to different degrees, that is, for blocks that have only one model edge
filled, two model edges filled ete. (A description of how to calculate the maximum possi-
ble odds is provided in Section 3.4.4). Immediately it is obvious that this normalization’
is not fair. Clearly one cannot compare the quality of two hypotheses if they do not have
the same number of block edges filled. Based on the definition of the odds, this intuitively
makes sense; a hypothesis that consists of only one or two block edges can never be as
convincing as the best one with five or six, no matter how good a two-edge hypothesis
is present. This imposes some restrictions on how a search for true interpretations can

proceed, which is discussed at greater length in Chapter 4.

CHAPTER 3. QUALITATIVE PROBABILITIES FOR IMAGE INTERPRETATION 31

3.4.4 Calculating the Maximum Possible Block Odds

The maximum odds in Figure 3.5 can be calculated in two ways, one by hand, the
other automatically. To calculate the maximum odds by hand, we must realize that the
maximum odds for a block model with a given number of edges occurs when the block
is perfectly imaged. Thus it has no tails or gaps and p(/|M) € (1) and all junctions
are perfectly co-terminating. Given these facts, the problem of maximizing the odds is
reduced to maximizing p(M) (with a specified number of edges). To maximize p(M),
one needs to reduce the number of free ends, and have as non-generic a set of edges as
possible. Thus by coming up with block models (i.e. hand drawing some 'image edges’
in particular locations and orientations) that satisfy these constraints, one can determine
the maximum possible odds. Alternatively, one can give an exhaustive search algorithm
an image consisting of a perfect block, such as the one in Figure 4.1, run the algorithm,
and then extract the highest QP odds blocks at each level of filled edges, noting the QP
odds.

For this thesis, we calculated the odds by hand, and the double-checked the values

using the search algorithm method.

Chapter 4

Exploring the QP Blocks World

From Jepson and Mann’s results [20] it is clear that the Bayesian framework of qualitative
probabilities can be used to efficiently explore the huge space of all hypothesized block
models. Different algorithms can be used to traverse this space. In order to use QP to
its potential and discover how large is this full potential, it would be instructive to take
a look at the model space from the point of view of QP. In this chapter we do just that
by contrasting the QP block hypothesis space for random line images, to the space for
images containing blocks. In this framework, we are also able to experimentally prove

the asymptotic nature of QP.

4.1 Basic Vocabulary

In this section we will introduce some basic vocabulary in order to facilitate later discus-
sion.

Let In denote an input image consisting of N line segments (for example, Figure
4.9, or Figure 4.2). Let a subset of this input image be [,,, that is, a subset of n line
segments. Let a block model, b;,, be an eight parameter model of a block (fully or

partially constrained), which is a least-squares fit to line segments /,,, for n > 1. The line

32

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 33

segments associated with the model must be consistent with a block. ! A block model also
specifies which edges in the model have been instantiated (since a block model may be
only partial), and assigns labels to these edges. A formal definition of the labels appears
later in this section. Figure 4.1 shows a fully instantiated block model with labels for
each edges. Denote the set of all unique block models for image In as 3;. Sometimes
we will call this the model space for an image.

In order to understand what constitutes a unique model in this context we need to
understand the symmetries that exist in a projected block model. Looking at Figure
4.1 which shows the edges of a block model as directed line segments, we see that there
are essentially three classes of edges: those edges that point into a triple junction where
the two other edges point away ({0,3,6}), those whose edges point into a triple junction
where the two other edges also point into this junction ({1,4,7}), and those whose edges
point into a double junction, where the other edge points out of the junction ({2,5,8}).
These are the single-edge symmetry classes of directed block edges. Analogously, we see
that pairs of edges may be formed into symmetry classes. For example, the pair {0,2} is
equivalent to the pairs {3,5} and {6,8}. In fact, all of the symmetry is captured by the

labelling presented in Figure 4.1. In the following we will formally define symmetry.

Definition of Symmetric Block Labellings

A block labelling is an assignment of numbers and directions to image edges, as in Figure
4.1, and is represented mathematically as a function,

L : image edge — (edge label, direction). For better clarity in the definition to follow,
we break down the labelling function into two functions, L; : image edge — edge label,

and Ly : tmage edge — direction. The domain of a labelling is the set of image edges

!Consistency is determined by criteria such as Robert’s criterion, which states that the three edges
forming the triple junction in the orthographic projection of a block must all form angles which are
obtuse or right with one another[24]. The other constraints are collinearity of line segments along a
given edge, up to some tolerance, as described in Section 3.3, and that the least squares fit is sufficiently
good.

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 34

Figure 4.1: Single-edge symmetry classes of directed block edges: {0,3.6}, {1,4,7},

{2,5,8}

which it labels, and the range of L; is an integer between 0 and 8, while the range of
L is {0,1}. Two block labellings, L;, and L, with edge domains {e11, €12, .., €1,} and
{€21, €22, ..., €2 } Tespectively, are said to be symmetriciff i) their domains are identical,

and ii) 3¢ € {0,3,6} such that ¥j < n,

((Lu(elj) + Z) mod 9) = Lgl(egj) and le(elj) = Lgd(egj) (41)

Without loss of generality we have assumed in ii) that the domains are the same and
that the orders of the edges in the domains of the two functions are identical. Note that

the labelling function, L, is not one-to-one; several image edges may map to the same

edge label.

Uniqueness of Block Models

Two block models are the same if they have symmetric block labellings. Thus if two
block models are the same, they have the same set of labelled image edges, and these
edges are either labelled in exactly the same way, or in a way that is symmetric with
respect to each other. A block model is unique if it is not the same as any other block

model.

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 35

4.2 The QP Hypothesis Space

A rigorous, experimental method to explore how QP behaves is, for a given image I, to
conduct a full depth-first search through 3r,, thereby encountering every possible model
for this set of images. In the first part of this section we will report on the results from
such an experiment, using ten randomly generated line images (see Section 4.2.1) such
as the one shown in Figure 4.2. During the course of the depth-first search through 3y,
the number of image lines added to a model increases with the depth of the search tree.
At each depth step, another line segment is added. To be more precise, at each depth
step, each remaining line segment is added in every possible way consistent with a block
model. Thus an image edge could be added up to 18 (9 edges x 2 directions) different
ways to a given block model, depending on how many of these ways were consistent with

a block model. Tolerances on the errors allowed were the same as was used in [20].

What is important to understand at this point is not so much the details of this search
algorithm, which is in no way proposed as an efficient search. Rather, we would like to
emphasize that the end result of the search in this section is a list of every possible block
model, (which, recall, includes both fully and partially instantiated blocks) for the image
line segments on which the search was conducted. We use this complete set of block
models to investigate how QP breaks it down according to different criteria through
the use of histograms and graphs. We hope that by doing this we will gain a better
understanding and intuition of QP in this domain, and perhaps this information will
motivate an efficient search. A more detailed explanation of the search in this section

can be found in Chapter 5, while a more sophisticated search is described in Chapters 6

and 7.

All results reported in this section are from aggregate data (i.e. summing the data

from the set of ten random images).

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 36

4.2.1 Random Line Images and QP

The random lines were generated by first selecting a single endpoint, uniformly, at ran-
dom over the image area. Then an orientation was selected uniformly over 360 degrees.
Lengths of image lines were selected from a uniform distribution of lengths from 20 to
220 pixels (similar to the lengths of the lines in [20]). If the randomly selected length
took the line outside of the image area, the line was not used. The size of the image
was the same as those of the block images in [20], namely, 640x480 pixels. Each image
contained 30 line segments, again, a number comparable to the images found in [20].
Figure 4.3 shows a bird’s eye view of the full 3D F;-space in several formats, on a
normal scale as well as a log,, scale. Figure 4.4 shows slices through the 3D space. Figure
4.5 shows the same data yet again, this time collapsed along the epsilon odds axis so that

the number of models at each number of filled edges can be seen.

4.2.2 Observations and Implications

A few observations should be noted about the plots just described:

1. From Figure 4.3 we see that the data is consistent with Figure 3.5 which shows the

maximum possible epsilon odds for each number of filled edges in a model.

2. No real blocks are present in the random images used, yet there are still 218,899
models found, with epsilon odds going up to a power of 7. This indicates that
accidents do happen. QP formalizes the notion of non-accidentalness, and tries to
filter ’good’ from ’bad’ based on this property, but accidents will happen no matter
how good a measure of non-accidentalness is used. This is not a problem specific

to QP, rather one that is inherent in the property we are measuring.

3. Figure 4.5 and Figure 4.4 show that the most block interpretations occur when the

number of edges filled is 2, 3 or 4. With fewer than 2 edges, the combinatorics of

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 37

Figure 4.2: (a) (b)

Example of one of the random line input images. Shown are two different block hypothe-
ses which clearly do not correspond to true blocks. Legend: Green lines are input data
consisting of line segments. Red lines are those lines that have been assigned to a partial
block hypothesis (some are covered in blue). Blue lines correspond to the portion of
the hypothesized block model that is constrained. (Note that Roberts criterion (Section
4.1) did not need to be met exactly; the angle constraints were enforced, up to some

predefined tolerance.)

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD

Epsilon Odds (power of epsilon)

Interpolated Bird's-Eye View of Model Space for Block's World
Random Line Input

4 5 5 7 8 9
Model Complexity (number of filed edges)

(a)

Bird's-Eye View of Model Space for Block's World - Random Line Input X 10°
25
5
20
€
2 4
7
4
&
s
815
:
= 3
2
b}
s
o
510
2 2
w
5
1
. ! !
\ \ .

3 4 5 6 7
Model Complexity (number of filled edges)

(c)

Epsilon Odds (power of epsilon)

Y

)

5

0

38

Interpolated Bird's-Eye View of Log, Model Space for Block's World
Random Line Input

Epsilon Odds (power of epsilon)

Model Complexity (number of filed edges)

(b)

Bird's-Eye View of Log, ; Model Space for Block's World — Random Line Input

-1

(d)

Figure 4.3: Number of models in 31, for aggregate data of ten random line images, broken

down according to number of edges filled and epsilon odds. The top two images show

interpolated versions, while the bottom two show the actual discrete data. The right

most plots are log,, versions. Their bins have been forced to a minimum of -1.

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD

Number of Models

Number of models

4

ndom Line Input

3

9

Log of Number of Models vs. Epsilon Odds for Number Edges = X — Random Line Input

Model Complexity (number of filled edges)

Figure 4.5: Same data as in 4.3, but

Model Complexity (number of filled edges)

collapsed along the epsilon odds axis.

x 10 Number of Models vs. Epsilon Odds for Number Edges = X - Ral
6 T 5
1 edge 1 edge
—— 2 edges —— 2 edges
—— 3edges —— 3edges
—— 4 edges —— 4 edges
5 5 edges |- 4r 5edges |-
6 edges 6 edges
—— 7 edges —— 7 edges
8 edges 8 edges
— 9edges » — — 9edges
ar - 3 3F B
5]
=
S
9]
8
3t e E 2p B
z
@
s
5
2
2r B g 1 R
3
1r B or B
0 . I I I I I -1 I I I I
-5 5 10 15 20 25 30 35 10 15 20 25 30
Epsilon Odds Epsilon Odds
Figure 4.4: Same data as in Figure 4.3, but shown as slices of the 3D space.
x10° Number of Models For Each Number of Filled Edges — Random Line Input Log Number of Models For Each Number of Filled Edges — Random Line Input
12 T T T T T T T T T T T T T T
ml »n
3]
<
3 i
£
S
o
8
B £
E] i
=4
S
S
=)
S
i 3
o I I I I & & _1 I I I I I I I
1 2 3 5 6 7 8 1 2 3 5 6 8 9

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 40

selecting k image edges don’t come into full swing, while with more than 5 edges,
it becomes extremely difficult to find a large collection of lines that are consistent

with a block model. In fact, no collections of size greater than 6 are found.

4. The test images used had only 30 lines. The number of accidents that occur should
scale up in a very nasty way. We can see this by looking at the combinatorics. If
we double the number of lines in the image from 30 to 60, the number of three-edge
subsets goes from 30C3 = 4,060 to gCs = 34,220, ? increasing by a factor of 8.
The number of four-edge subsets changes from 30Cy = 27,405 to ¢y = 487,640,
increasing by a factor of 17. Since all three-edge sets and a large percentage of
four-edge sets are consistent with a block model, this means that the number of
interpretations should scale in a similar way to the number of subsets — an extremely

worrisome prospect.

5. When we do the same analysis on images that actually contain blocks, we will see
that there are still, relatively speaking, many accidental models with 2, 3, and 4
edges, and thus these are quite difficult to sift through. However, we also see that
the high-odds tails of the curves in the right-most plot of Figure 4.4 extend further

to the right since true blocks should score higher epsilon odds.

One might ask how sensitive these result are to changes in the tolerance of the block

consistency check. This issue will be addressed in Section 4.3.

4.2.3 Block Images and QP

Using the six block images from [20] (shown in Figure 4.10), we ran the same experi-
ment as in Section 4.2.1. An example of one of the input images along with two block
hypotheses is shown in Figure 4.9. Figures 4.6, 4.7 and 4.8 are analogous to the plots

presented Section 4.2.1.

n!
ri(n—r)t"

?Here yC, is the standard notation for ‘N choose R’, where xC, =

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 41

Interpolated Bird's-Eye View of Log, Model Space for Block's World

Interpolated Bird's-Eye View of Model Space for Block's World

Epsilon Odds (power of epsilon)

Epsilon Odds (power of epsilon)

1 2 3 4 5 5 7 8 9 1 2 3 4 5 5 7 8
Model Complexity (number of filed edges) Model Complexity (number of filed edges)

(a) (b)

Bird's-Eye View of Model Space for Block's World x 10" Bird's-Eye View of Log, ; Model Space for Block's World
9
25 8 25
F 4
7 I
20 20
s 6 g 3
4 s —
i s
815 5 5
g g1 [— |
g g 2
o o
§10 H
& 3 2 1
5 2
0
1
0
\ \ \ 0 4
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Model Complexity (number of filled edges) Model Complexity (number of filled edges)

() (d)

Figure 4.6: Number of models in 3;, for aggregate data from six images from [20]. Data is
broken down according to number of edges filled and epsilon odds. The top two images
show interpolated versions, while the bottom two show the actual discrete data. The

right most plots are log,, versions. Their bins have been forced to a minimum of -1.

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD

x 10" Number of Models vs. Epsilt

ndom Line Input

42

on Odds for Number Edges = X - Rar
T T T

Log of Number of M
T

odels vs. Epsilon Odds for Number Edges = X
T

30

10 T T T T 5 T T
1 edge 1 edge
—— 2 edges — 2edges
9 —— 3edges [—— 3edges
—— 4edges — 4 edges
5 edges 4 5 edges
8- 6 edges |- 6 edges
—— 7 edges —— 7edges
8 edges 8 edges
7+ — — Yedges |4 » — — 9edges
o 3 i
1
s \ e
o &L il \
3° s ‘ /
= 2
S 5 E 2 ‘ / |
5 z
£ 2
2 ab i Z ‘
)
g1 = 1
3L N - N
‘ | / A
_
y; \
2+ - L/ \
0 v i
i |
1 4 ,‘ I
| |
| ‘ |
0 R I I I -1 I I I I I
-5 10 15 20 25 30 35 5 15 20 25
Epsilon Odds Epsilon Odds
Figure 4.7: Same data as in 4.6, but collapsed along the epsilon odds axis.
x10° Number of Models For Each Number of Filled Edges Log Number of Models For Each Number of Filled Edges
3 * T T T = T T

iy

Number of models

—&— Block Images
—— Random Line Images

I I ~—

Loglo of Number of models

6
Model Complexity (number of filled edges)

o®

5

6

7 8

Model Complexity (number of filled edges)

Figure 4.8: Same data as in Figures 4.6, but collapsed along the epsilon odds axis. Also

shown for comparison is the data for random input images (Figure 4.5), which has been

normalized so that the total number of models found is the same for both plots.

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 43

Figure 4.9: Examples of block line images from [20]. Legend: Green lines are input data
consisting of line segments. Red lines are those lines that have been assigned to a partial
block hypothesis (some are covered in blue). Blue lines correspond to the portion of the
hypothesized block model that is constrained. Note that each of the blocks models has
a ’correct’ subset of block lines, as well as one or more that do not belong to the true

block. Nevertheless, both sets of lines are consistent with a block model.

4.2.4 Observations and Implications

1. Again, the epsilon odds are consistent with Figure 3.5, which shows the maximum

possible epsilon odds for each number of filled edges in a model.

2. We see in Figure 4.8 that there is an enormous concentration of models with 3, 4
and 5 edges, as opposed to 2, 3 and 4 in Figure 4.5. Relatively speaking within
each plot, there are now far more models with more than 5 edges. This is simply an

indication that there are now some true underlying blocks present in the images.

3. As predicted, the tails in the right-most plot of Figure 4.7 are far longer than in
Figure 4.4. This is promising since these high odds interpretations must be a result
of having real blocks in the image. Thus we have evidence to suggest that QP is
working correctly in that it assigns high odds to a significant portion of correct
block models, and that it does not assign very high odds to spurious block models.

Furthermore, it is likely that small variations of the true block models produce

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD

| ~—
oo o
<1

=

(c) (d)

I AL
1 \/A\/I/I

(e) (f)

Figure 4.10: Edge images used in [20] and in this thesis. (a) im4, (b) im5, (¢) im7, (d)

im9, (e) imd, (f) ime

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 45

lower odds models, along with the ’accidents’, thus making for many more models

overall.

4. In Figure 4.7, it is apparent that the number of edges in a block model dictates what
kind of epsilon odds it can have. Distinct windows of odds for each number of edges
is present in the right-most plot. In particular, every window has a distinct lower
bound for the epsilon odds. Why is this? The larger the set of lines that is consistent
with a block model, the less likely this set is to be completely spurious, and thus the
higher the odds. Suppose that we have three edges that instantiate a block model,
and that they are neither parallel, nor co-terminating with one another (any three
lines are consistent with a block model). Then there are no ’accidents’ occurring
between these lines; they are completely generic. If we add a fourth block edge to
this set, and the resulting set is still consistent with a block model, then it is not
possible that all four lines are generic. There must be some accident, such as that
two of them are parallel or co-terminating. Because of this new non-degeneracy, the
odds will increase by an amount proportional to the ‘degree’ of the non-degeneracy
introduced. Note that if only one accident (loosely speaking) is introduced, like
parallelism, then this new 4-edge block will be the lowest possible odds model, yet
the odds will have systematically gone up from the 3-edge interpretation. Similar
arguments can be made for larger groups of lines, based on how constrained a block
model is at a particular number of edges. Any block that has six or more edges is
fully constrained. Adding another edge necessarily introduces more non-degeneracy
(provided the edge is consistent with a block), and thus the lowest possible odds
are increased. In practice, the ’tail-costs’” mentioned in Section 3.3 make some of

the lower bounds lower than one might actually think.

5. The distinct windows of odds further corroborate our earlier point that only hy-

potheses with the same number of instantiated edges can be fairly compared for

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 46

the purposes of search.

6. The window for the three edge interpretations is one of the narrowest, indicating
that the different three edge-interpretations do not differ significantly in quality,
according to QP. Since the most number of interpretations have three edges, and
since many "accidents’ occur with three edges, this makes them even harder to sift

through.

4.3 Verifying the Asymptotic Nature of QP

Recall that in Section 3.4, the spatial resolution parameter, €, was introduced. We said
that the position of planar model points was known to within a disk or radius €. From this
we were then able to calculate e-order estimates of the posterior probability of various
models, given the image data. In this section we set out to experimentally verify the
asymptotic predictions made by QP.

The prior probability of a block model, B, in a random line edge image, according
to QP, is proportional to its epsilon odds (Equation 4.2). The reason this should be is
that the odds are directly related to estimates of how often certain accidents are likely
to occur, such as two lines coterminating, etc.. Thus, if we randomly generate lines, we
would hope to observe these accidents with the prescribed probability, and hence block

models with probability proportional to the epsilon odds.

p(B°) € O(c") (4.2)

How can we verify that this is so? Suppose we had a camera with different resolution
settings. Then if we captured the same images at several different resolutions and did
a full depth-first search through the models, we could see exactly how the number of
models changes with changed resolution. Equivalently, we could use the same random

line images used in Section 4.2.1, changing the resolution parameters in the search code

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 47

rather than the resolution of the actual images. Such parameters would include the
tolerance allowed for two line segments to be collinear, the angle tolerance for two lines
to be parallel, the tolerance for the least-squares fit, and the tolerance for co-terminating
lines. Each of these parameters is either a linear function of ¢ or can be approximated
as such. Thus by changing ¢, we change each of them by an amount proportional to e.
Since the images were randomly generated and have no inherent resolution (the random
lines had real-valued endpoints), the results should be the same as if we had captured the
images at different resolutions. This second experiment is the one we opted for because

of its convenience, and will now be discussed.

4.3.1 Theoretical Predictions

As the resolution increases our intuition tells us that the number of models found should
decrease. QP predicts exactly how this number should decrease, in the limit as ¢ — 0.
Let the number of block models with epsilon odds of order ¢* be denoted by N(¢*), then

in the limit € — 0,

N(e") o p(B*) € O("). (4.3)

Therefore, so long as ¢ is sufficiently small, 3

e < N(F) < O, (4.4)

for some ¢, (', such that 0 < ¢ < . In order to experimentally verify the asymptotic

behaviour, it will be convenient to have the log of this expression:

logyyc < 10%10(N(6k)) — klog,ye <log,, C (4-5)

3Equation 4.4 is obtained as follows. Since, for some m, N(c¥) = mp(B¢), and for some dg, d1, where
0 < dy < ds, doe® < p(B€) < dyc®. Thus it follows that mdoe® < N(e*) < mdye®. Setting ¢ = mdy, and
C = md;, we obtain Equation 4.4

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 48

Now suppose we change the resolution, €, by a factor of p, so that ¢ = pe, and let

d = logyo(cc®) and D = log,(C€*), then
d < 10%10(N(6/k)) —klogiop < D (4.6)

Thus, if we conduct the experiment described above, and then plot for a given epsilon
odds, log;o(N(€’*)) as a function of logio(p), we should obtain a result bounded above
and below by straight lines with slope equal to k. Next we will discuss exactly how we

conducted the experiment.

4.3.2 Analysis and Results

Figure 4.11 shows the results of the experiment described at the start of this section. The
data for this figure was generated as follows: Ten line images were generated randomly as

described in Section 4.2.1. A depth-first search was performed on each of these images,

111
1914780

for values of p =1 in order to obtain all possible models (as described in Section
4.2). Then, for the results of each of these fourty searches, histograms were calculated,
with each bin counting the number of models for a given epsilon odds, ignoring how many
edges were present. We will call the bins counting the number of odds = z models, the
‘odds = z-bins’. We will call searches that were performed with the resolution scaled by
a factor p = k, the 'p = k-searches’.

To calculate, for example, the left-most point from the red line in Figure 4.11, the
odds = 0-bins from each of the ten histograms that resulted from p = l-searches were
averaged. Call this average value, avg. The data point then is log,,(avg). The error

bars on each data point is calculated as follows (see [23] for details): First calculate the

standard error of the mean of avg and call this value stderr. Then the error on the

b
lerrorbar| — stderr‘ Fach
2 avg

plotted data point is the fractional error of the average, that is,
line drawn in Figure 4.11 is a weighted least-squares fit, using the inverse error as a

weight ([23]). The slopes presented in the figure are the slopes of the fitted lines, and

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 49

Log Number of Models vs. Log rho

3.5

/

2+ £ — Epsilon Odds=-1 |
N\ x slope=0.7 err:1.7
Epsilon Odds= 0
N % slope= 0.1 err:0.02
Epsilon Odds= 1
151 N x slope=1.1err:0.1 []
AN Epsilon Odds= 2

\ﬂ slope= 2.0 err:0.3

Iog10 Number of Models

Epsilon Odds= 3
x slope=29err:0.6 ||
Epsilon Odds= 4

x : slope= 4.0 erri1.4

0 0.2 0.4 0.6 0.8 1 1.2
Iog10 rho

Figure 4.11: Results confirming the asymptotic behaviour of QP. Each line corresponds
to the number of models found, at different resolutions, for a given epsilon odds. The

slopes match the epsilon odds as predicted, except for epsilon odds of zero..

the errors on these slopes fall out of the weighted least-squares formulation ([23]).

Data points that have fewer than three models are not shown, nor are lines that have
fewer than two data points. Though the odds do not go very high because random line
images were used, we nevertheless have excellent agreement with theory. All lines except
for epsilon odds of zero have slopes within error of their predicted values as dictated
by Equation 4.6. For epsilon odds of both 4 and -1, there are not very many models,
and the error bars are thus larger. Note that the odds -1 line is only just within error.
Any model that has an odds of -1 necessarily has been penalized a tail cost (see Section
5.5). The part of the QP theory involving tail-costs is not as clean as the rest of the
theory. Recall that the tail cost used was a bit of a guess — it was derived from guessing
what the underlying explanation might be, on average, for the tail. Thus any theoretical
predictions for models where the tail cost dominates should be taken with a grain of salt

(just a small one). Only when the ratio of tails used to accidents present(i.e. parallelism,

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 50

co-termination, collinearity) is small, can the tail cost dominate in this way. This happens
in only a small percentage of cases and thus we needn’t worry too much if our predictions
are off in such circumstances. Though the error for the odds 4 line is also high, notice
that the slope matches the theory without even taking the error into account. In other
words, our experimental points with odds equal to 4 bounced around quite a bit, but

they always bounced around the true theoretical value.

Thus we have convincingly shown that QP is asymptotic in practice as well as in
theory, and that the theory and ensuing predictions form a sound basis upon which one
may build. Moreover, the resolution used (i.e. for p = 1) appears to be within the

asymptotic regime both in [20] and in subsequent sections of this thesis.

4.4 Resolution in Computational Vision

In Section 4.2 we showed that accidents happen — lots of them! We claimed that no
matter how careful a measure of non-accidentalness can be found, that accidents will
occur. Why then doesn’t the human visual system have ’accidents’? Is it that we
do have such accidents but that somehow we have evolved such a fantastically good
measure for sifting through interpretations that we efficiently and effectively sift out
these accidents? Perhaps. There is also another possibility, one not often discussed in
the vision community.

The resolution in typical computational vision systems is far worse than human foveal
resolution. If we used images with resolution as high as the human fovea, we could cut
down tremendously on spurious hypotheses. However, this would be at a cost of increased
computational time because of the increased number of edges that results from increased
resolution. Presumably a human with full cognitive capabilities, in particular visual
attention ([27, 28]), can avoid this trade-off by seeing in a more intelligent way, looking

where it needs to when it needs to.

CHAPTER 4. EXPLORING THE QP BLOCKS WORLD 51

An interesting study of exactly how resolution affects false target rates can be found
in [8]. By individually varying a number of "basic parameters’ related to resolution, such
as focal length of the camera, separation of object points, ete., Dickinson et al show how
view degeneracy increases with decreased resolution. They also compare their table-top
vision system view degeneracy rates with human view-degeneracy rates, showing that

the two are order of magnitudes apart.

Chapter 5

Searching for Models

Chapter 4 briefly talked about using a depth-first search in order to generate all possible
block models for a given image. Since search is a central part of the object recognition
problem, we feel it is worthwhile to devote an entire chapter to properly describing how
a simple depth-first search can be used to find block models from image line segments.
Understanding this search is also crucial because it forms the basis for all other searches
presented in this document.

In this chapter we will discuss how a depth-first search can be used to build up block
models from image line segments, and exemplify this search in a simple, alphabet world

domain.

5.1 Building Blocks

Recall from Section 4.1 that a block model consists, in part, of a labelling of some image
edges describing which part of the block model the edges belong to, as for example in
Figure 4.1. Keep in mind also that a block model may be only partially instantiated, that
is, some edge labels between 0 and 8 may be missing because no image line segments
have been assigned to these parts of the block model. Thus a block model may have

anywhere between zero and nine block edges present, as a result of assigning any number

52

CHAPTER 5. SEARCHING FOR MODELS H3

of image edges to the nine block model edges.

One way of building up a block model from image line segments is to choose some
image edge, assign it to some part of the empty block model (a model that has no
edges assigned to it), and then to try adding, one after another, other image edges, in
every possible way (i.e. every possible labelling), checking to make sure that the set of
labelled edges is consistent with a block. At each step of this building process we have,
by definition, a block model. When no further image edges may be added to a particular
block model, (because of either a lack of consistency or a lack of further edges) the block
model is said to be a mazimal block model. If we start building from one particular edge,
we may arrive at several different maximal block models, though it is unlikely that more

than one of them corresponds to a true underlying block in the image. !

In the building up process of a block model, we said that all edges are added in
every possible way to a particular model, so long as they are consistent. But during the
control of the building process, how can we know which image edges have been tried and
rejected, and which ones have simply not been tried yet? We do this by keeping a list
of frozen edges with every block model that we build. A frozen edge is defined to be
any edge that we have not yet tried to add to the model, and is defined in relation to a
particular model, in the context of the building up process. Thus a particular model will

have associated with it a frozen list, consisting of possibly many frozen edges.

The simplest (though not efficient) way to systematically build up block models from
a given set of image line segments is to use a depth-first search to control the building
process. In Section 5.2 we will write down an algorithm for depth first search for models,

introducing new terms and concepts along the way.

1To get two maximal, correct block models, starting with the same initial edge segment, the two
blocks would need to share an image edge, as would happen if the two blocks abutted one another, for
example see Figure 3.3.

CHAPTER 5. SEARCHING FOR MODELS H4

5.2 Depth-First Search

Algorithm 1 Depth-First Search with a Stack
stack.push(root)
while stack.notEmpty() {
currentNode:=stack.pop()
visit (currentNode)
for every child, u, of currentNode {

stack.push(u)
}

A standard way of implementing a depth-first search and one convenient for describing
the task at hand is to use a stack ([21]). Recall that a stack is a first-in-last-out data
structure. To place an item on the stack, we say that we push the item on to the stack.
To remove an item from the stack, we say that we pop the item from the stack. Any
recursive algorithm can be written non-recursively using a stack; in particular, depth-first
search can be written using a stack. For a tree (a directed, acyclic graph [6]), we conduct
such a search starting at the root as shown in Algorithm 1. Later in this chapter we will
show a picture of this algorithm in action.

When searching for block models from a set of image line segments, each node of
the search tree consists of a block model and an associated frozen list. The first node
that we push onto the stack is the node consisting of the empty model, and a frozen list
consisting of all image line segments (since we have not yet tried to add any of them to
this empty model). This starting node is the 'seed’ of all other nodes, from which the
depth-first search promises to deliver all possible models.

In our case, the function visit, in Algorithm 1, would add the model associated with
the current node, to a list of models already visited during the search, so that we have a
record of these for analysis. Also, during the course of the search, we want to keep a [list
of maximal block models that have so far been found. To do the second task we need the

notion of a shadowed model.

CHAPTER 5. SEARCHING FOR MODELS HH

Shadowed Model

A shadowed block model is a block model that is a sub-model of a model already en-
countered during the search. By sub-model we mean the following: Block model A is a
sub-model of B, if, when all image edges that are in B and are not in A are removed
from B to form B’, then A is the same as B’, as defined in Section 4.1. Put another way,
Ais a sub-model of B, if it does not contain any image edges that B does not, and if the
labelling of its image edges is equivalent under symmetric relabelling to the labelling of

those same image edges in B.

Instead of thinking about whether or not a given block model is shadowed by a known
block model, it might be easier to understand the concept by thinking of all possible block
models that a given block model can shadow. Suppose for example that we have a block
model such as the one in Figure 5.1a. Then to find out which block models this block
model has the potential to shadow, we systematically remove image edges. Thus a block
model with & image edges shadows 2* unique block models. These are shown in Figure
5.1b through (o) for the model in Figure 5.1a. Note also that blocks (b) through (o) can
be called sub-models of the block model shown in (a). Of course, the same is true if block

(a) is relabelled symmetrically.

With this definition in hand, we can now describe how to maintain the list of maximal

block models.

CHAPTER 5. SEARCHING FOR MODELS H6

o 87 83 o 84 So o 85 Sl o 82 So
8 \8 8 \8 8 \8 8 \3
(a) (b) () (d) (e) (f) () (h)
2 2 2 /2

Figure 5.1: (a) shows a block model, while (b) through (o) show all block models that
are shadowed by the model in (a). Additionally, we note that (b) shadows (d), that (i)

shadows (m), ete. To the right of each figure is the asymptotic epsilon odds.

CHAPTER 5. SEARCHING FOR MODELS Y4

Updating the List of Maximal Models
To maintain an on-line list of maximal block models, we must update the list of maximal
blocks when visiting each node during the search. We do this as follows: Upon visiting

a node, check to see if the current model is either:

1. the same, is shadowed by any model in the list of maximal models that we have to
date. If it is, then do not add it to the list. If it is not, then add it to the list of

maximal models.

2. shadows any of the models in the list of maximal models (this can only happen if it
was added to the list of maximal blocks). For every model that it shadows, remove

that model from the list so that we may maintain the maximal property.

5.2.1 Finding the Children

An important detail of Algorithm 1 was glossed over; we did not specify how to get the
children of currentNode. This is a key point as this is how we build new models from

old ones.

Generating a child involves generating a new model, as well as an associated frozen
list. The frozen list associated with a model contains the information telling us which
line segments we should try adding to form a new model. To get a child model from a
given node, we need to take an edge from the frozen list associated with this node, and
add it in some way that is consistent with the model of the given node. For block models,
there are up to 18 ways we can try (9 edges x 2 directions). To get the new frozen list
associated with this model, we need to do one more thing — impose an ordering on the
initial list of image segments. Then the frozen list associated with this new model is the
frozen list associated with the original node, except without any edges that are smaller
(according to the ordering we imposed) than the frozen edge we used to construct the

child model. We use a function called keepBigger(edge, edgeList) to do this. If we

CHAPTER 5. SEARCHING FOR MODELS He

were only to remove the edge we used, and no others, we would end up checking many
more nodes than we need, as will be discussed in Section 5.4.
Pseudo-code for the depth-first search algorithm is shown in Algorithm 2. In the next

section we will demonstrate how the search algorithm works in a simple alphabet world.

Algorithm 2 Function to get children for depth-first search
function childrenlist = getChildren(aNode) {
model :=aNode.model
frozenList:=aNode.frozenlList
childrenList:=[]
newChild:=null, newModel:=null, newFrozen:=null
for each frozen item, fz, in frozenList {
for each possible labelling, 1b, of fz in model {
newModel :=model+fz (according to labelling, 1b)
if isConsistent(newModel) {
newChild.model:=newModel
newFrozen:=frozenlList-fz
newFrozen:=keepBigger(fz, frozenList)
newChild.frozenlList:=newFrozen
childrenlList:=childrenlList + newChild

by

return childrenlList

5.3 Alphabet World

For illustrative purposes we will now introduce an alphabet world, analogous to our
blocks world. The analogue to a set of input image edge lines will be the set of letters
{A, B,C, D, E}. Instead of block models, we will have ’alphabet models’, each consisting
of a string of letters. Instead of searching for maximal block models, we will search
for maximal alphabet models. Alphabet model consistency is defined by fiat: the set

of maximal, (consistent) alphabet models is: {ACD, AE}. (Order is unimportant in

CHAPTER 5. SEARCHING FOR MODELS 59

the strings, thus ACD = ADC = CDA ete.) We will say that if a set of letters is
consistent, then so too are all subsets of this set. Thus the set of all consistent alphabet
strings is {ACD, AC,AD,CD,A,C,D,AE, E}. * These are the only alphabet models
in our world, since so far in this document we have called models only those sets that are
consistent (it doesn’t make sense to hypothesize a block model made up of edges that
are inconsistent with a block).

Definitions for a frozen letter and a shadowed alphabet model are directly analogous
to definitions for edges and block models described above. A frozen letter is one that
we have not yet tried to add to the alphabet model in question. One alphabet model
shadows another model if it contains all of the same letters (in any order) as the other

model, and possibly more.

5.4 Permutations and Pruning

Note that as written, Algorithm 2 will search through only one one permutation of model
edges/alphabet letters because of the way we create the new frozen list. Suppose we had
only 3 letters, A, (', and D. Then the algorithm described above, would try only one
of the following sequences (we assume that the three letters are consistent with one

another):

A— AC — ACD
A— AD — ADC
C —-CA—CAD
C—-CD—CDA
D — DC — DCA
D — DA — DAC

SRR S e

For the tasks described so far this is perfect — we do not need to go through every one
of these permutations, and to do so would be a waste of time. This is because if three

letters are consistent with an alphabet model, then so too is any subset of those three

2The empty string is also considered to be consistent.

CHAPTER 5. SEARCHING FOR MODELS 60

letters. Likewise, if any three edges are consistent with a block model, then any subset
of these edges must also be consistent with a block model. Thus only one of the six
sequences above need be attempted. A search that goes through all permutations would
be O(n!), when in fact, it need be only ®> O(2"), as it is in the pseudo-code presented.

(where n is the number of input items: edges or letters).

Is there any reason that we might want to have a search that can go through all
permutations? Yes. Suppose we wanted to make our search more efficient, and that we
wanted to prune the search tree not only when a model that is inconsistent is found, but
also when a model that is implausible, according to some criteria, is found. Depending
on the criteria, we might need pursue all of the permutations, since many more will be
pruned. This will be explained in more detail in Section 5.5, and we will come back to
this point in Chapter 6. However, we now show the reader how the algorithm is changed

so that it searches through all permutations.

We adjust our algorithm by changing our getChildren function ever so slightly —
we no longer remove the smaller items from the frozen list in order to generate the new
frozen list. This change is shown in Algorithm 3, where the only difference is that one
line of code has been commented out. If the distinction between the two algorithms is

not entirely clear yet, the example that follows will be helpful.

5.5 Example: Search for Alphabet Models

In this section we will trace through an example of a depth-first search to find all maximal
alphabet models.
We remind the reader that consistency of an alphabet model has the same property

as consistency of a block model. If a set of letters is consistent, then so too is every

Shah!

CHAPTER 5. SEARCHING FOR MODELS 61

Algorithm 3 Modified Algorithm 2 so that all permutations are searched
function childrenlist = getChildren2(aNode) {
model : =aNode.model

frozenList:=aNode.frozenlList
chidrenList:=[]
newChild:=null, newModel:=null, newFrozen:=null
for each frozen item, fz, in frozenList {
for each possible labelling, 1b, (of fz in model) {
newModel :=model+fz (according to labelling, 1b)
if isConsistent(newModel) {
newChild.model:=newModel
newFrozen:=frozenlList-fz

// COMMENT OUT THIS LINE
//newFrozen:=keepBigger(fz, frozenList)

newChild.frozenlist :=newFrozen
childrenlList:=childrenlist + newChild

3

return List

subset. Thus we do not need to search all permutations. This is an important point that
we will revisit in Section 6.2.1. We nevertheless will show both algorithms to reinforce
in the reader’s mind the difference between them. Figure 5.2 shows the search trees that
result from each search. *

At the end of the search we are left with a list of all models visited, as described in
Section 5.2. For the searches shown in Figure 5.2a, this would simply be the list of all
the models shown in the diagram (i.e. models from nodes 1) through 17)). We are also
left at the end of the search with a list of maximal models. For Figure 5.2, both (a) and

(b), this list of maximal models is built in the following order:

*Note that each letter can be added to a given alphabet model in only one way, as opposed to a
block model, where an edge can be added in up to eighteen different ways (nine model edges time two
directions).

CHAPTER 5.

SEARCHING FOR MODELS 62

1)[]: ABCDE
2) [A]:BCDE 10)[B:CDE 11) [C]:DE 15) [D]:E 17) [E]:
X/\ \
[AB] CDE 4)[AC]:DE [AD]E 9) [AE]: 12) [CD]:E 14) [CE): 16) [DE]:
/\ X X
5) [ACD]:E 7 [Aca 13) [CDE]:
X
6) [ACDE]:
X
(a)

2) [A]:BCDE

3)[AB]:CDE 4) [AC|:BDE

2N

5)[ACB]:DE 6) [ACD]:BE 9) [Aca BD

N

[ACDB] E 8 ACDE] B

1) [ADB] CE 2) [ADC]:B

1) [:ABCDE

20) [B]:ACDE 21) [Cl:ABDE
X PEAN
,
/
,
Z 13 N EN
10) [AD]:BCE 16)[AE]:BCD

15) ADE] BC 17)[AEBJ:CD 18)[AEC]:BD 19) [AED]:BC

/\ X X X

13) [ADCB] E 14) [ADCE] B

(b)

Figure 5.2: Alphabet World Depth-First Search for ACD and AF

a) not all permutations, using Algorithm 2 b) all permutations using Algorithm 3

Legend: FEach node in the search tree is drawn as i) the number of the node, representing

when the node was visited, ii) the proposed model, denoted by square brackets, iii) the

associated frozen list, following the colon. For example, the twelfth node visited in (a) is

model C'D, with associated frozen list (£). A dashed line indicates that the subtree is

not shown (due to lack of space). An ’X’ below a proposed model denotes that the string

of letters is not consistent. Note that if we were searching for blocks in an image, then

we could never assume that a model was complete since at any stage it might be possible

to add an extra image edge to a model edge, even if the model is fully constrained.

CHAPTER 5. SEARCHING FOR MODELS 63

maximal List=[]

maximalList=[A]

maximalList=[AC]

maximalList=[AC D]
[

maximalList=[ACD, AF]

Of course use of Algorithm 2 will compile this list much more quickly, and with less
redundancy. So why would we want to use Algorithm 37 Suppose that want to make
the search more efficient by pruning certain hypotheses that we deem to be implausi-
ble. In particular, suppose that in the specified alphabet example, that only subsets
{A,B,C,D,E,CD, AE, AC D} are considered to be plausible (order is unimportant). If
we do not use the all permutations search, we will cut out some intermediate nodes that
we need to get to our final models. In particular, we would cut out the whole branch
rooted at node 4) in Figure 5.2a, and thus end up missing AC' D, a maximal alphabet
model. In other words, some subsets of AC'D are less plausible than others. Thus, using
Algorithm 2, we might generate a non-plausible interpration first, pruning the branch at
this interpretation, and never encountering the more promising one.

It is possible that the trade-off between increased computation due to searching all
permutations and decreased computation due to implausibility pruning can have a net
beneficial result. We revisit this point in Section 6.2.1.

Having seen how the depth-first search works in the alphabet world, we hope that
the reader is now more comfortable with how a depth-first search can be used to look
for block models from a set of image edges. In the next section, we will describe a more
efficient search that uses QP, and is based on the depth-first search presented here. We

will introduce yet another search, also dependent on the depth-first search, in Chapter 7.

Chapter 6

Comparison of QP to a Cover

Measure

6.1 Can QP be used for Search ?

Chapters 3 and 4 suggested that QP might be useful in the search for block interpre-
tations, but did not directly address the issue. It was shown how QP breaks down the
set of all block models, but not how to traverse this set using QP. In Chapter 5, we
described how a depth-first search can be used to find block models. In this chapter, we
will show that using QP for search is feasible by using it in a simple search based upon
the depth-first search. We will then go on to compare QP to another heuristic in the

context of this simple algorithm.

6.2 Depth-First Search with Pruning

The simple search used in this chapter is a depth-first search (as described in Chapter 5,
using some metric (either QP, or a cover measure which we will introduce) as a pruning
measure. We will now describe pruning the search tree with QP.

Recall from Section 3.4.1 that the odds of a block model is a number that reflects

64

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 65

Maximum Epsilon Odds vs. Model Complexity for Block Model
T T T T

T T
—A— Maximum Epsilon Odds
—6— Half-Max Odds
25 B

20 : . 4

151 q

10

Maximum Epsilon Odds Possible for a Block Model (power of epsilon is shown)

od I I I I I I I
1 2 3 4 5 6 7 8 9

Model Complexity (number of filled edges)

Figure 6.1: Plot of both the maximum QP odds possible for a block model, as well as

the ’half-max’ QP odds used as a search heuristic.

how much more likely the underlying set of image lines are of belonging to a block, B,
as compared to independent sticks, 5.
(B|1)

Odds(B) = s € O(e"5™) (6.1)

=

The asymptotic odds are expressed as a power of epsilon times a power of delta. In
this section we look only at the power of epsilon, but still refer to it as the odds. Roughly
speaking, the higher the power of epsilon, the more promising a block model (recall that
we dropped the negative sign on the power of epsilon in Chapter 3).

The pruning heuristic can be described as follows: during the search, whenever a node
is reached that has a model with less than the minimum ’half-max’ odds for a model with
the same number of filled edges (shown in Figure 6.1), then the sub-tree rooted at this

node is not explored further. ! We will call this search, the QP Half~-Max Odds search.

In terms of implementation, the change is very simple. Recall that a depth-first step

1Strictly speaking, it is not exactly half.

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 66

involves removing a node from the stack, adding an image edge to the corresponding
model, altering the frozen list, and then placing this new model on the stack. With
pruning, the only thing that changes is that before placing the new model on the stack,
we first check to see if it satisfies our Half-Max criterion. Thus, we would add one line
to Algorithm 1 as is shown in Algorithm 4, where halfMax0dds(aNode) is a boolean
function returning whether or not the model associated with aNode has at least half the

maximum possible odds for a block model with the same number of edges.

6.2.1 Permutations, Subset-Independent Property and Shadow-

Depth

In Section 5.4 we talked about how consistency of a block or alphabet model has a
nice property that allows us to search more efficiently; we did not need to search all
permutations. When we start pruning the search tree with QP, can the same thing be
said? To answer this question we will now introduce the notion of a subset independent
property.

A subset independent property is one, which, if the property holds for any model
(block or otherwise), then it holds for all sub-models (models formed by removing for
example image edges, such as in Figure 5.1).

Thus, as already mentioned, consistency of a block model or alphabet model is a
subset independent property. The QP Half-Max odds property is not. If a block model
has more than half the maximum possible odds for a given number of edges, this is not
necessarily so for sub-models of this block model. Consider the block models in Figure
5.1, where (b) through (o) are all sub-models of the model shown in (a). Sibling models
(those occurring at the same depth in the search tree) have different epsilon odds. Thus,
if we follow only certain paths in the search tree, we are not guaranteed to end up with

the same models as if we had followed all paths (i.e. all permutations). For example,

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 67

according to the Half-Max function shown in Figure 6.1, models (b), (d) and (f) in Figure

5.1 will be pruned.

The implication this has on our search is that we must, if we want to use the QP
Half Max property to prune, use the all permutations search, Algorithm 3. Is the loss
larger than the gain? As it turns out, for the examples we consider, the pruning power
of QP Half Max Odds is so effective, that it completely dominates the need to search all
permutations. We can make it dominate even more if we add one little twist — keep track

of the shadow-depth.

The shadow-depth of a model is a number, representing, how long, in terms of depth-
first steps, this model has been shadowed by another known model (one that has already
been generated during the course of the search). For example, in Figure 5.2b, node 10)
has a shadow-depth of 1 (it is shadowed by node 6), while node 12) has a shadow-depth
of 2 (it is shadowed by nodes 10) and 6)). In Figure 5.2a, there are also models with

non-zero shadow-depths, for example nodes 11) and 12), but there are far fewer of them.

If a branch in the search tree terminates with a shadowed model (such as the branch
2-10-12 in Figure 5.2b, then nothing will have been gained by exploring that branch. In
retrospect, we see that it was a waste of time. Is there some way to predict this ahead
of time? There is no guaranteed way, but we can take a guess. The longer a model
is shadowed, the less freedom it has to differentiate itself from the shadowing model,
because it has fewer and fewer frozen edges associated with it. Thus we can make a guess
as follows: if a model has a shadow-depth larger than some maximum shadow depth
parameter, then we will not pursue that branch any further. In practice, by adjusting
this parameter we can achieve a much more efficient search, while still obtaining the

desired models. (This will be shown in the next section.)

What determines how large a shadow-depth is needed? Larger shadow-depths are
needed when the same image edge plays a role in many plausible (as deemed by, say,

QP Half-Max Odds) models. This in turn is related to the resolution of the image (see

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 68

Section 4.4), among other factors.

If one could find a property that is effective at filtering the good from the bad inter-
pretations, and was subset independent, then one could cut down an even larger portion
of the search space. Is such a subset independent property likely to exist 7 Given that we
want our algorithm to work on noisy and incomplete data, we can probably answer no.
In the general case, imperfect data (i.e. missing edge segments, imperfect co-termination
of line segments, line segments not exactly placed due to aliasing ...) can only be built
up a small proportion of ways to form the correct model, if we maintain at each step of
the building process a minimum criterion of 'goodness’. However, the better we are at

guessing which branches will be useful, the less important it is to find such a property.

6.3 Results of the Simple QP Search

The QP Half-Max Odds search was run, using a maximum shadow-depth of 2, on each of
the six images in [20], and the results aggregated. So that we may describe the results,
we will now introduce a few more terms.

Recall from Section 5.2 that during the search, we keep a list of all of the models
visited, as well as a list of the maximal models found. During the course of the search,
some models are visited more than once. We call these duplicate models and make note
of this in our list of models visited. For example, in Figure 5.2b, nodes 6) and 12) are
duplicates. We will call the list of models visited containing no duplicates, unique models,
and the whole set, containing unique and duplicate models, simply as all models. Note

that the list of maximal models contains no duplicates.

6.3.1 Number of Nodes Visited

In Section 4.2.3, there were 592,952 unique models visited (over all six images). Using

the QP Half-Max Odds search, the number of unique models visited was 7,346, only 1%

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 69

of the total number of unique models. Thus in terms of cutting down the search space,
QP Half-Max Odds is doing an excellent job. The number of all models visited was
11,468, thus the search is not as efficient as one might like (because of the duplicates),
but is still doing extremely well in terms of numbers.

Figure 6.2 (the blue lines) shows how how many nodes there are for each number of
filled edges. Note that in contrast to Figure 4.8, the 3 and 4 edges interpretations no
longer dominate. In fact, there is a visible dip in the graph for these numbers of filled
edges. QP Half-Max Odds is managing to cut a swath through the densest portion of

the search space. We will see shortly whether or not it is doing so with a compass. ?

6.3.2 Quality of Nodes Visited

In order to discuss the quality of the results, we need the notion of a true block. True
blocks for each image used are those block models deemed by the author to correspond
to real-world blocks. This is in fact far less subjective than it might seem, as agreement
was easily obtained from several people. There is a one-to-one correspondence between
a given block and its true model.

Given this definition, there are four ways to assess the quality of the search results:

1. False Positive Rate: Of the unique models visited, the percentage that were not
either sub-models of a true block model or equivalent to a true block model. This
is calculated by examining the list of unique models visited, checking each one.
(We compared this measure, using both the unique models visited, and all models

visited, and found little difference — thus we use only the one.)

2. True Positive Rate: Each image has either three of four true blocks in it (see for

example Figure 4.9). The True Positive Rate is the ratio of the number of true block

24.e. is the algorithm wandering around in no particular direction, or is it following paths in the tree

that lead to the desired solution?

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 70

models visited to the total number of true blocks. This is calculated by examining
the list of models visited, and, anytime we encounter a block model that is the same
as a true block model (not a sub-model of a true block), we count it. (Obviously if

a true block is found more than once, it is only counted a single time.)

3. True and Mazimal Positive Rate: In order for the search to be most useful, we
would like at the end of the search to look at the list of maximal blocks found, not
at all the nodes visited. The True Positive Rate does not take this into account.
Thus the True and Maximal Positive Rate is the ratio of the number of true blocks
found in the maximal list to the total number of true blocks. It is calculated by
examining the list of maximal blocks, and, when we encounter a true block model

(or equivalent), then it is counted.

4. Position of True Blocks: Not only is the presence (or lack thereof) of a true block
an important issue, but so too is where in the final list of maximal blocks the true
blocks lie. If QP is indeed a good metric, then if we order the list of maximal blocks

according to their QP odds, the true blocks will lie near the top.

The first three of these values, for the QP Half-Max Odds search, appear in the first
row of Table 6.2. > Clearly QP is finding the true blocks most of the time, and is also
finding many other blocks, which is reasonable because of the enormous search space
(of course we would like to do better). The positions of the true blocks can be seen in
Table 6.3. The last column of the table shows how many maximal blocks are found by
the exhaustive search in Section 4.2.3 (i.e search with no pruning). With the exception
of “im4”, all of the blocks lie in the top 25 blocks of the maximal blocks list. This is
tremendous given the number of nodes in the search space, and the number of possible

maximal models that can be found! As noted in [20], one of the blocks in “im4” is not

3All of the data presented in this chapter are aggregate data, that is, the data for the six images used
were added together. For the rates described above, this means that the denominators and numerators
were each aggregated separately, and then the division carried out.

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 71

Table 6.1: Number of Nodes Visited for Different Search Heuristics

Search Heuristic Number of Unique Nodes Visited | Total Number Nodes Visited

QP Half Max Odds 7,346 11,468
Cover=70% 68,918 105,224
Cover=80% 51,647 64,539

fully constrained, and even a human observer is unable to fully describe the underlying

true block. It is this block that causes the 115 rank in Table 6.3.

Having demonstrated that QP shows promise in helping the search for interpretations,

we will compare QP to another metric in the next section.

6.4 Comparing QP to a Cover Measure

Images such as those used in [20] are simple. There are not too many extraneous lines.
Blocks are simple objects. Sure a few of the lines are broken or missing, and some are
not perfectly aligned, or coterminating, but take a look at Figure 4.9, and note that the
blocks virtually pop out to the human observer. Do we really need something like QP
to get a machine to see the same blocks that we do 7 Maybe our brains aren’t cavorting

among fanciful priors and perverse normalizing constants ... maybe they are.

At present we may not know what our brains are computing, but we can demonstrate
that seemingly easy problems are in fact quite hard. For the specific problem domain
discussed in this thesis, block interpretations, one might argue that a much simpler
measure than QP could be used. For example, one might argue that a simple cover
measure will suffice, such as one motivated by Jacob’s convex hull heuristic[18]. In this

section, we describe such a cover measure, and then systematically compare it to QP.

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 72

. x 10% Collapsed Model Space for Block’s World
T T

I I I
—— Cover=70% (unique nodes)
—— Cover=80% (unique nodes)
-~ —— QP Half Max Odds (unique nodes)

3.5 e \\ — — Cover=70% (all nodes) M
| N — — Cover=80% (all nodes)
/ \ — — QP Half Max Odds (all nodes)
3 ! > 4

[\
o

Number of models
N

1.5

0.5

0
9
Model Complexity (number of filled edges)
Collapsed Log Model Space for Block’s World
5 T T T T T
451 T TT TS — - g
i N N
’ N N
/ ~ AN
4 [~ // N ~ N N N _
/ N N
/, N N
35 N .
@ Y, PN ~ - =
@ ~ - - i < N S <
=} ~ —~ N ~
o | o~ — AN ~ B
g 3 -7 \ AN 'l
= N ~
o N h ~ >
2 L \ N N i
g 25 N g N
~ AN
z NS - N \
S) | > ~ \ i
3 2 ~ \
8’ ~ N N\
- > SN
15 ~ N ~
\ N
\ N
_ \
1 —— Cover=70% (unique nodes) <
—— Cover=80% (unique nodes) \
—— QP Half Max Odds (unique nodes) \
0.5 — — Cover=70% (all nodes) N\
— — Cover=80% (all nodes) \
— — QP Half Max Odds (all nodes)
0 T T T | | | |
1 2 3 4 5 6 7 8 9

Model Complexity (number of filled edges)

Figure 6.2: Number of models for each number of filled edges. Data generated from
depth-first search using three different pruning heuristics, i) cover=80%, ii) cover=70%,

iii) QP half-max odds. Top: normal Bottom: log,, scale

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE

Table 6.2: True Positive and False Positive Rates for Different Search Heuristics

73

Search Heuristic

True Positive Rate

True and Maximal
Positive Rate

False Positive Rate

QP Half Max Odds 0.95 0.90 0.78
Cover=70% 0.76 0.76 0.97
Cover=80% 0.33 0.33 0.97

6.4.1 Definition of Cover Measure for a Block

Recall that a block model, b;,,, has associated with it a set of image line segments, [,, (see
Section 4.2.3), as well as a least squares fit to an eight-parameter block model. There
are some cases where the eight parameters of a block model are fully specified, while
in others, some are free. For example, in Figure 4.9, the left-most image has a block
model with one free parameter — downward length, while the right-most image has a
block model that is fully constrained.

For the model in the right-most image, we know the endpoints of every model edge —
we say that each model edge has no free endpoints, rather, each has two fixed endpoints.
In contrast, for the model in the left-most image, where there is one free block model
parameter, there are three model edges, 2, 4, and 6 for which we do not know an endpoint
(in each case, the bottom-most endpoint). We will say that each of these three model
edges has one free endpoint and one fixed endpoint. It is possible that some models have
an edge with two free endpoints, such as a model consisting of only a single line segment
assigned to some model edge. In such a case, we don’t know where either of the two
model edge endpoints might be. Also, we will say that if a model edge has no image
edges assigned to it, then the model edge is not instantiated.

Now we can define cover fraction for a block model, which varies continuously in the
range [0,1]. An example is shown in Figure 6.3.

Amount acutally covered

(6.2)

Cover Fraction = . .
Mazimum potential cover

The Amount actually covered is calculated as follows:

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 74

Algorithm 4 Depth-First Search with QP Half-Max Odds Pruning
stack.push(root)
while stack.notEmpty() {

currentNode:=stack.pop()

visit (currentNode)
for every child, u, of currentNode {
if halfMax0dds(u) {
stack.push(u)
t

(a) (b)

Figure 6.3: Calculating the Cover Fraction (a) Legend: Solid bold line — Covered segments
of model edges Dashed line — Maximum potential cover, Solid line — Actual image edge
Arrow — Indicates a free endpoint. (b) Blow-up of model edge 3, showing the projected

endpoints and the covered segment of the model edge.

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 75

o Add up the lengths of all the covered segments of model edges.

The Maximum potential cover is calculated as follows:
For each model edge do the following, and then add up the values from all of the model

edges:

o If the model edge is not instantiated, ignore it.

o If the model edge has no free endpoints, then add the length of the model edge.
This would be the case for model edges 0, 1, 3, 7 in Figure 6.3.

o [f the model edge has only one free endpoint, then add the following: the length of
the model edge, from the fixed endpoint, to the furthest projected endpoint from

this fixed endpoint. This would be the case for model edges 2, 4, 6 in Figure 6.3.

o If the model edge has two free endpoints then add the following: the length of the
model edge between the two projection endpoints that are furthest away from one

another.

6.4.2 Experimental Results

In order to compare how a cover measure compares to QP Half Max Odds, we ran the
search described in Section 6.2, with maximum shadow depth of 2, except that each of
three different pruning heuristics were used, on the same data set (the six images from
20))

1. QP Half-Max Odds — call this QPHM for brevity
2. Pruning whenever the cover fraction is less than 0.7 — call this C70 for brevity

3. Pruning whenever the cover fraction is less than 0.8 — call this C80 for brevity

Pruning with the cover measure is directly analogous to pruning with QP — we do not
pursue branches of the search tree when the 'pruning’ measure is not satisfied for the

root of that branch.

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE

Table 6.3: Positions of True Blocks Found in QP Half Max Search

Image Positions of Actual Number | Number of Maximal Blocks
True Blocks Found True Blocks from Exhaustive Search

im4 {2,9,115} 4 9,785

imb {1,3,5} 3 5,649

im7 {1,3,12} 4 13,922

im9 {1,2,12} 3 15,728

imd {1,2,3} 3 10,499

ime {1,2,10,22} 4 11,272

(These are the positions of true blocks found in the list of mazimal blocks)

Table 6.4: Positions of True Blocks Found in Cover=80% Search

Image Positions of Actual Number | Number of Maximal Blocks
True Blocks Found True Blocks from Exhaustive Search
im4 {1} 4 9,785
imb {1} 3 5,649
im7 {1,2,6,21} 4 13,922
im9 {} 3 15,728
imd {} 3 10,499
ime {2} 4 11,272
Table 6.5: Positions of True Blocks Found in Cover=70% Search
Image Positions of Actual Number | Number of Maximal Blocks
True Blocks Found True Blocks from Exhaustive Search
im4 {4,6} 4 9,785
imb {1,3,4} 3 5,649
im7 {1,2,8} 4 13,922
im9 {1,2,10} 3 15,728
imd {1,2,4} 3 10,499
ime {1,2} 4 11,272

76

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 77

Number of Nodes Visited

Table 6.1 shows how many nodes (with and without duplicates) were visited by each of
the three searches. QPHM visits 10% the number of unique nodes that C70 does, and
14% that C80 does. For all nodes visited, the numbers are respectively 11% and 17%.
Thus QPHM explores far less of the search space then either of C70 or C80.

We can get even more information if we show how many nodes occur at each number
of filled edges, for each of the three searches. This is shown in Figure 6.2. A few points
should be noted:

e Again, we note that the number of nodes visited by QPHM is far less than either
of C70 or C80. C70 has the most nodes visited, and also has the largest, absolute
duplication in nodes. However, the fraction of duplicate nodes visited is roughly

the same for each of the searches, as can be seen on the log scale.

e The shapes of the curves for C70 and C80 strongly resemble those in Figure 4.8 —
they have a large concentration of 3 and 4 edge models. In contrast, the QP curve

is far flatter, and in fact has more 5 and 6 edge models than 3 and 4 edge models.

e That QPHM found more nodes than C70 and C80 for models with more than 6
edges can likely be explained by the fact that QPHM is missing far fewer of the

true blocks than C70 and C80. We will see this in the next section.

Quality of Nodes Visited

Table 6.2 and Tables 6.3, 6.4, 6.5 show how the measures of quality set out in Section 6.3.2
compare for each of the three searches. Additionally, Figure 6.4 shows the breakdown of

false positives for each number of filled edges. Some important points follow:

e From Table 6.2, we see that QPMH finds far more of the true blocks than either

C70 or C80, and also finds significantly fewer false targets. In light of the fact that

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 78

QPMH explores an order of magnitude fewer nodes than do C70 and C80, these
results are all the more striking. One point of interest here is that the True Positive
Rate and the True and Maximal Positive Rate are the same for both C70 and C80,
but not for QPMH. This means that QPMH is incorrectly 'growing’ some of the
true blocks, while C70 and C80 are not. In other words, once a true block model is
found, there are still other image edges that can be added to the model, while still
satisfying the QP Half Max Odds criterion, even thought they don’t ’truly’ belong
to the model. However, we do need to keep in mind that C70 and C80 are finding

far fewer of the true blocks to start with, and thus have fewer to 'grow’.

e Tables 6.3, 6.4, 6.5 show the positions of the true blocks in the list of maximal
blocks. Overall, QPMH is finding more of the true blocks, and is doing no worse in
ordering them. Note that for im7, using C80, all 4 blocks are found, while neither
QP or C70 find the fourth block. How is it possible that C80 found blocks that
C70 did not, given that C80 should filter out more models? The answer lies with
the shadow-depth (which was set to 2 for all of C70, C80 and QPMH). Somewhere
during the search, C70 must have abandoned a particular path because the shadow-
depth of a model became too large. However, C80 could very well have arrived at
this same model with a smaller shadow-depth, because C80 may have filtered out
some of the models which shadow this model, which C70 did not filter out. Thus
the shadow-depth would have been smaller, and we could have continued to explore
this path. Though counter-intuitive at first, and probably a very rare event, this

actually makes perfect sense.

e Figure 6.4 shows how the false positive rate changes for models with different
numbers of filled edges. QPMH has a lower rate than do C70 and C80 for 3
and 4 edge interpretations. This is a crucial point since we showed that this is

where the search space is most dense, and needs the most pruning. For 6 to 9 edge

CHAPTER 6. COMPARISON OF QP TO A COVER MEASURE 79

False Positive Rate in Search for Blocks

T T T
p==" TR L —A— QP Half Max Odds
7 Sl T~ A Cover=80%
09f /7 <« X —x— Cover=70% H

o
0

o o
o X

False Positive Percentage
[=} =}
> o

o
w

o

N
T

7
x
i

o
o
T
i

I I I I I I I
1 2 3 4 5 6 7 8 9
Number of Block Edges Filled

Figure 6.4: False Positive Rate for Each Number of Filled Edges

o

models, C70 and C80 have a lower false positive rate, but we must keep in mind
that they are not finding many of the correct blocks — thus we are likely witnessing

the trade-off between false positives and true positives.

6.5 Summary

In this chapter we demonstrated two important ideas. We showed that QP can be
incorporated into a relatively naive search algorithm, and produce pleasing results, in
terms of both the number of nodes visited, and the quality of the results. Secondly,
we showed that QP as a pruning heuristic compares very favorably to the simpler cover
measure. [t visited roughly an order of magnitude fewer nodes than the cover measure,
while at the same time producing higher quality results. This indicates that QP is on
the right track, and that the simpler cover measure does not suffice. In the next chapter,

we discuss how to use QP in a more sophisticated search algorithm.

Chapter 7

Cascade Search

In this chapter we will present a search algorithm that we call Cascade Search. First we
will motivate its development, then we will explain the algorithm in detail, and lastly,

we will present experimental results with discussion.

7.1 Motivation

Both the search used in [20], and the QP Half-Max Odds search presented in Chapter
6 use the Half-Max Odds function shown in Figure 6.1. Though both of these searches
work extremely well, and prove that QP can be effectively used with search, they are not
ideal, as we will now explain.

Recall that in Chapter 3 and Chapter 4 we showed how block models that have dif-
ferent numbers of edges filled cannot be compared fairly. Models with different numbers
of filled edges create different 'windows’ of odds (see Figure 4.7). The way we make use
of this fact in the Half-Max Odds search in Chapter 6 is to use a pruning measure that is
dependent on the number of edges filled for the model in question. Specifically, we said
that if a given model had less than ’half” the maximum odds, then we would not explore
the search branch rooted at this model. What’s not ideal about this?

The fact that we have to derive/deduce the Half-Max Odds function is a little un-

80

CHAPTER 7. CASCADE SEARCH 81

palatable. If we wanted to search for more complex models, or many different models,
we would in each case need to re-derive this function. Furthermore, in Chapter 4 we
did not use exactly half the maximum possible odds, rather, we tweaked it a little for
more optimal results. It would be both more elegant and more practical if instead the
algorithm were self-adapting. That is, we would like an algorithm that does not need
to know ahead of time what kind of cut-off measures are needed for models at different
stages (7.e. with different numbers of filled edges). We want an algorithm that can adapt
on the fly, to different models, at different stages of development. The Cascade search

presented in this chapter is a first attempt at achieving this goal.

7.2 Overview of Cascade Search

The cascade search operates by first building all 1-edge block models, using the depth-
first search described in Chapter 5. ! Once all 1-edge models have been found, it uses
these models as ’seeds’ 2 for another search, this time looking for all 2-edge models. This
process continues, from one level to the next, until we have all 9-edge models. However,
at each stage, after the search for k-model edges is complete, we filter some of these
k-edge models, based on a QP criterion, before continuing onto the & + 1-edge model
search. We call the algorithm that filters, Grouping and Culling. As in Chapter 6, we
keep around a list of maximal models found, as well as lists of all models, and unique
models visited during the course of the search.

In essence, we are cascading from window to window, only filtering out models from
within one window at a time. Thus we call it Cascade Search. A pictorial representation

of the search can be seen in Figure 7.1, though some of the elements have not yet been

!The basic depth-first search used in this chapter is searching for all permutations, using a shadow-
depth of 0 (see Section 6.2.1). This is discussed at greater length in Section 7.4.1.

2We call them seeds because we build/grow other models from these models. These seed models are
the only models upon which we build at the next stage. That is, we do not allow the depth-first search
to build upon the empty model, except at the first stage, where the seed models consists of a single
model, the empty model.

CHAPTER 7. CASCADE SEARCH 82

CASCADE SEARCH

result models result models result models result models
@ Depth-First Depth-First Depth-First Depth-First
Search Search Search e o o Search
ford forci forci (ertford ng
i(;mugt;;gigwds) i(sgrggleggodds) i(;mug;:algigwds) increased odds)
7 7
seed models seed models seed models seed models

9-EDGE MODELS
1-EDGE MODELS 2-EDGE MODELS 3-EDGE MODELS

Figure 7.1: Schematic of Cascade Search — The search starts off looking for 1-edge models,
starting from the empty model. It does so using no pruning criteria other than enforcing
an increase in odds, as explained in Section 7.3. This produces a set of 1-edge result
models. These result models are grouped and culled (G&C), as explained in Section
7.4, producing a smaller list of models which are then used as seeds/starting models for
the next level of search. Note that at each stage, the depth-first search is looking for
all k-edge models from all (k-1)-edge models. Several depth-first steps may be needed

because collinear image segments can be added to existing model edges.

discussed.

In addition to the motivation set out at the start of this chapter for Cascade search,
there are a few more minor ones, stemming from characteristics of QPHM that can be
improved upon. We will now delve in to these, after which point Cascade search should

be clear in its entirety.

7.3 Enforcing an Increase in the Odds

If we look at the bottom-most plot in Figure 6.2, showing the number of models for
different numbers of filled edges resulting from QPMH, we note that the graph dips down

at 3-edge models and then curves back up, peaking at 5-edge models before dipping down

CHAPTER 7. CASCADE SEARCH 83

again. Why is the number of models found increasing from the 3-edge models through
to the 5-edge models? Part of the explanation has to do with the combinatorics, as
explained in Section 4.2.2. That is, with more image edges, there are in general more
ways to build blocks. However, a more interesting part of the explanation has to do with
the Half-Max Odds function we use for pruning, shown in Figure 6.1. Using this function
to prune the search tree restricts us to models with odds that lie above the Half-Max
Odds curve in Figure 6.1. However, having shown in Table 6.3 that true blocks typically

lie in the top fraction of all block interpretations, we could potentially do even better.

Instead of restricting the search to an entire area above the curve, we might be able
to restrict the search to a band above the curve, thereby cutting out even more of the
search space. How can we do this intelligently? Can we simply shift the Half-Max Odds
curve upward, or warp it upward? No, this will not do — we would likely prune block
hypotheses that we need. Furthermore, this makes the whole Half-Max Odds function
even more ad hoc, something we were trying to avoid in the first place. What other
approach might we take?

Consider that during the course of the QPHM search, we may come across a 4-edge

model that has close to the maximum possible odds of €%, say, &,

Then, proceeding
along in the QPHM search, we might add some very ’bad’ image edges to this model,
while maintaining the necessary Half-Max criterion, since we had such high odds to start
with. Thus block models that are actually quite bad are kept around and built upon,
when in fact, we can actually deduce that they are bad. By simply stating that we will
not accept a new block model unless it has higher odds than its parent model, we can
help to eliminate this particular problem. In doing this, we will very likely reduce the
larger area explored above the Half-Max Odds curve, to some sort of band, still bounded

above by the maximum possible odds, and below by the Half-Max Odds function. This

also helps us achieve our goal of a self-adapting algorithm.

If we enforce an increase in odds, as described, we would hope at best that the same

CHAPTER 7. CASCADE SEARCH 4

number of true blocks would be found, with lower false positive rates for block models
with more than 3 edges, while visiting fewer nodes during the course of the search.
However, since we have also changed the underlying control of the search to a cascade,

we may not get all that we hope for. In Section 7.5 we will see the outcome.

For the results presented in this chapter, we enforced an increase in epsilon odds of
at least a power of 1. That is, given any particular block model, we only accept it (i.e.
pursue the branch rooted at this model) if its epsilon odds are at least a power of one
greater than its parent model in the search tree. This has the effect of allowing us to add

only image edges that:

1. are collinear with one of the instantiated block model edges. ® (For example see

Figure 7.2a)

2. meet with the line defined by the base/cover of one of the instantiated block model
edges, if the image line were to be extended. We call this a type 1 endpoint on line.

(For example see Figure 7.2b)

3. have an endpoint that is on the extended line defined by the base/cover of one the
instantiated block model edges. (For example see Figure 7.2c) We call this a type

2 endpoint on line.

Of course a perfect 'V’ (between image edge and model edge) is either case 2 or 3. Also,
we have a maximum gap allowed for the endpoint on lines (Figure 7.2b,c). Lastly, we

also allow any image edge to be added to an empty model.

3By instantiated block model edge, we mean a model edge that either has at least one image segment
assigned to it, or is fully constrained (i.e. has no free endpoints).

CHAPTER 7. CASCADE SEARCH 85

7 - —
6
1 A 6
/ :
i 2 2
colinear
image edge endpoint-on-line
4 im‘age edge (type 1)
s
(a) R (b)
v’ .

endpé)i nt-on-line
4 image edge (type 2)

()
Figure 7.2: Examples of the only three types of image edges that can be added to a

current model such that the increase in odds is sufficient. (a) image edge is collinear with
model edge 1 (b) model edge 7 (and, incidentally, model edge 1) has endpoint on image
line (c¢) image edge has endpoint on line formed by model edge 4 (and, incidentally, a

type 1 endpoint on line with model edges 0 and 2)

CHAPTER 7. CASCADE SEARCH 86

7.4 Grouping and Culling as a Branch Predictor

Recall that in Section 6.2.1 we talked about using the shadow-depth to estimate how
fruitful a particular branch of the search tree might be. * We said that the larger the
shadow-depth, the less useful a particular branch would likely turn out to be. Because
the control process during the Cascade search is fundamentally different, we are able to

do a similar thing in a quite different way, one which leaves more room for improvement.

7.4.1 Maximum Shadow-Depth of Zero

Note that during the cascade search we have all of the k-edge models that will be explored
during the search, on hand at the same time (as opposed to QPHM, which is in essence
depth-first, and has a list of models at any stage of development at any given time). This
is the case because we are cascading from one level to the next, only moving on to the
search for k-edge models when we have found all of the (k-1)-edge models. Because of
this fact, we can simply set the maximum shadow-depth parameter to 0. It is best to
think of this in an inductive way — not as a formal proof, but as a convincing argument:

Initially, we are looking for 1-edge models from the empty model. There is clearly no
need to have a non-zero shadow depth since we do not need 1-edge models that subsume
one another. Then, assume we are looking for k+1-edge models, from a sufficient set
of k-edge models (i.e. this is our inductive assumption — we did not prune any vital
models at the previous level). Again, it is clear that we do not need to have a non-zero
shadow-depth, since we do not need shadowed models if we are only adding at most one
edge.

In other words, QPHM needs to, conceivably, guess if some 3-edge model, which is
shadowed by some 4-edge model, or 5-edge model, will lead to a better model than the

4-edge or H-edge model. In contrast, Cascade search needs to guess if some 3-edge model

*Of course any time we prune the search tree in any way, we are attempting to make such a prediction.

CHAPTER 7. CASCADE SEARCH 87

will lead to a better model than only other 3-edge models. Rather than using shadow-
depth to make this guess, it instead uses the Grouping and Culling algorithm that we
will now explain.

Note that it is still possible for us to miss some needed models by setting the shadow-
depth to zero. This is because we might need several depth-first steps in forming a(k+1)-
edge model from a k-edge model, since collinear edges can be added to an existing model
edge. However, with the images used, it is unlikely; in practice, it is not a significant

problem.

7.4.2 Grouping and Culling

When we are finished searching for all k-edge models, having used the 'best’ (k-1)-edge
models as seeds, we are left with a group of maximal k-edge block models. Call these
models the k-edge resull models (see Figure 7.1). Keep in mind that we have not been
using the Half-Max Odds criterion when building the models from one level to the next,
though we have been enforcing an increase in odds.

By grouping together k-edge models that are similar (definition to follow), and then
keeping only the best of these (i.e. culling the bad ones), according to their QP odds, we
are predicting which k-edge models will be useful for building up the true blocks, without
the need to play around with a shadow-depth parameter.

We will now present our similarity definition. The culling and grouping algorithm

will follow.

Similarity Definition for Two Block Models

Firstly, the similarity measure takes a parameter, called the similarity fraction. Thus,
we say that two block models are k-similar, for & = 0.8 if they are 80% similar according
to our definition. The similarity is basically a measure of how many image line segments

two block models have in common. Now we will formally define k-similarity.

CHAPTER 7. CASCADE SEARCH 88

Let 11 = {li1,l12,---,l1, } be the image segments that have been assigned to one
block, By. Similarly, let Iy = {ls1,1l22,...,l2,,} be the image segments that have been
assigned to another block, B;. Now let S = |I; N I;|. Then, B; and B, are said to be
k-similar iff either i) % >k or ii) i) % > k. Clearly 0 < k < 1. Now we are ready to

describe how grouping and culling works.

The G&C Algorithm

The Grouping and Culling algorithm requires that the initial list of models be sorted by
non-increasing epsilon odds. Then, starting with the first model in the list, it looks for all
other models that are k-similar, grouping them together. Then, it keeps some predefined
topFraction of these (according to their epsilon odds), ensuring that no fewer than
minGroupSize are kept around, unless the group is not large enough (in practice, we set
k=0.6, minGroupSize=10 and topFraction=0.10). We do this iteratively, until every
model has been placed in a group. No model is assigned to more than one group, even if
it is culled from this group. Pseudo-code is given in Algorithm 5.

The G&C algorithm is exploiting the fact that image line segments, in general, play
a role in at most one, or very few real world objects. By using the best of the interpre-
tations, as determined by QP, we can hope to eliminate the less useful search paths. We
can only use G&C in Cascade search, and not in QPHM (which is depth-first), because

it requires that we have all k-edge models at the same time.

7.5 Results and Discussion

7.5.1 List of Maximal Block Models

In order to compare our Cascade search results with our QPHM search, it will be useful

to construct a list of maximal blocks from the cascade search.

CHAPTER 7. CASCADE SEARCH 89

Algorithm 5 Grouping and Culling
//precondition: modellList is sorted by non-increasing epsilon odds

//k is the similarity fraction to be used by the similarity function
//topFraction is the fraction of each ’group’ to keep around
//minGroupSize is the minimum number of models to keep in a ’group’

function newModellist = GroupAndCull (modellist, k, topFraction, minGroupSize) {
remainingModels:=modellList //models not yet grouped

modelGroup:= nil //current model group
oneModel:= nil //representative model for a group
while (remainingModels !'= nil) {

oneModel := removeFirst(remainingModels)
modelGroup:=oneModel
remainingModels:=a11ButFirst(remainingModels)
for each model, md, in remainingModels {
if kSimilar(oneModel, md, k)
modelGroup:= modelGroup + md //append to list
//note this keeps them in non-increasing odds order
by
remainingModels:=remainingModels-modelGroup //set difference
if size(keepTopFraction(modelGroup, topFraction))>=minGroupSize
modelGroup:=keepTopFraction(modelGroup, topFraction)
else
modelGroup:=keepMinGroupSize(modelGroup, minGroupSize)
newModelList:=newModelList+modelGroup //append to list

Suppose that a true block is poorly imaged, and that one or more lines are missing.
Then the maximal model for this block will have fewer than 9 model edges. For the
cascade search, we obtain the final list of maximal models by i) concatenating all the
maximal, k-edge models that made it past G&C, for any 1 < k < 9. Then, starting at
level & = 2 edges, and going up to k = 9 edges, we remove all (k-1)-edge models that are
shadowed by k-edge models. This leaves us with a final, maximal list of block models,

analogous to the maximal list found in Chapter 5.

CHAPTER 7. CASCADE SEARCH 90

7.5.2 Experimental Results and Discussion

Again, the same six images used in [20], and shown in Figure 4.10 were used, and again,
the results aggregated.

Results are presented in a similar way to those in Chapter 6.

Table 7.1 shows the positions of true blocks found, and compares these to the QPHM
search. We see that Cascade search is doing very nearly as well as QPHM. In im4, the
right-most block is missed by Cascade, but found by QPHM. This is because one of the
bottom edges does not form an endpoint-on-line with existing model edges (specifically,
the bottom, left-most edge, because the gap is too large). Additionally, Cascade is missing
the bottom-most block in ime, though QPHM is finding it. The same explanation as for
the missing block in im4 is appropriate.

Table 7.2 shows the number of nodes visited. The number visited by QPHM 1is
comparable to those found by Cascade. Thus, two different algorithms, QPHM and
Cascade, though controlling the search very differently, are operating at the same level of
efficiency. This suggests that for this type of search (i.e., not using fragments of blocks
first, but building up blocks in one go), we are doing as well as we could hope.

Table 7.3 shows that the false positive rates are roughly the same for Cascade as
for QPHM. However, looking at Figure 7.3b, we see that the breakdowns according to
number of filled edges are quite different. For models with more than 3 and fewer than
9 edges, Cascade has a much lower false positive rate. This is directly related to our
discussion earlier in the chapter about how QPHM allows us to add 'bad’ image edges
to models that have fairly high odds, thereby producing many ’bad” models. Cascade
search, likely through its use of enforcing an increase in odds, has helped avoid this
problem.

The aberration in this pattern, for models with 9 edges, can be traced back to the
left-most block in im4, which does not have enough data to be properly constrained, even

to the human viewer. Thus quite poor hypotheses are put forth, and built upon. In fact,

CHAPTER 7. CASCADE SEARCH 91

because of the vertical structure in the image, as well as a few accidents, Cascade is able
to form consistent 9 edge block models for this block, that are not very good, but do
not get pruned because there are no better ones. Since there are not very many 9 edge
models found overall, the false-positive rate appears to be very high. In fact, only 2 false

9-edge models are found over all six images.

Table 7.3 also shows the two different true positive rates. The True and Maximal
Positive Rate is lower than the True Positive Rate for both Cascade and QPHM. As
stated in Chapter 6, this is because both algorithms allow us to incorrectly grow blocks,
past the state when they are true blocks. Though both of the positive rates are lower for
Cascade than for QPHM, we should remember that this difference can be explained by

missing only two blocks, over all 21 blocks.

Lastly, Figure 7.3a shows a breakdown of the number of models, by number of edges
filled, visited by both Cascade and QPHM. The increase in models from 3-edge models
to H-edge models that we spoke about at the start of this Chapter has vanished, again,
likely due to the fact that we forced the odds to increase at every depth-first step. Note
that there are more 2 and 3 edge models found by Cascade than by QPHM. This could
be because of the difference in the pruning-during-search that the two algorithms use.
QPHM prunes during search using the Half-Max function, while Cascade demands that
the odds increase. For models with fewer than 3 edges, it is relatively easy to have an
increase in odds from a parent, while having less than the epsilon odds prescribed by the

Half-Max function.

7.6 Summary

The control of the building process in Cascade search allows us to improve upon some of

the less desirable properties of QPHM.

CHAPTER 7.

CASCADE SEARCH

Table 7.1: Positions of True Blocks Found using Cascade Search

Image || Positions of | Actual Number Positions of
True Blocks | True Blocks | True Blocks Using
QPHM Search

im4 {2,16} 4 {2,9,115}
imb {1,3,4} 3 {1,3,5}
im7 {1,2,5} 4 {1,3,12}
im9 {1,2,5} 3 {1,2,12}
imd {1,2,3} 3 {1,2,3}
ime {1,2,12} 4 {1,2,10,22}

(These are the positions of true blocks found in the list of mazimal blocks)

Table 7.2: Number of Nodes Visited

Search Number of Unique Nodes Visited | Total Number Nodes Visited
Cascade 8,244 11,255
QP Half Max Odds 7,346 11,468

Table 7.3: True Positive and False Positive Rates for Different Search Heuristics

Search Heuristic

True Positive Rate

True and Maximal
Positive Rate

False Positive Rate

Cascade

0.86

0.81

0.76

QP Half Max Odds

0.95

0.90

0.78

CHAPTER 7. CASCADE SEARCH 93

Log Number of Models vs. Number of Filled Edges
T T

4 T T T
35 -
4
E
E
Vi
3 i
w
[}
=
=}
E 25 -
é ’ —¥— QP Half Max Odds (all nodes) N
2 —*— QP Half Max Odds (unique nodes)
g —A— Cascade Search (all nodes)
=4 2L —/— Cascade Search (unique nodes)
OS
j=2)
o
15F %
1F 3
1\
0.5 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
Model Complexity (number of filled edges)
(a)
False Positive Rate in Search for Blocks
1 T T T T T
—A— QP Half Max Odds
A A Cascade Search
0.9 -~ -
0.8

0.5

False Positive for Cascade Search
o
IS

o
w

o
N
T
I

o
-
T
I

0 I I I I I I I
1 2 3 4 5 6 7 8 9

Number of Block Edges Filled

(b)
Figure 7.3: Cascade Search Results (a) Number of models for different numbers of filled

edges (b) False positive rate for different number of filled edges.

CHAPTER 7. CASCADE SEARCH 94

e We no longer need to calculate the Half-Max Odds function since Cascade search
is self-adapting. This is more practical because there is less of a need to play
with parameters, and the algorithm has the potential to scale up better with more

models. It is also more elegant.

e Due to the fact that with Cascade search we have all k-edge models on hand at
the same time, we can automatically set the shadow-depth to zero, eliminating the
need to fiddle with yet another parameter. (Of course, we did introduce a few
parameters of our own for Cascade, namely, the similarity fraction, and the group

size).

Additionally, independent from the control process of Cascade search, we tried en-
forcing an increase in odds during the depth-first portion of the search. We found that
this was useful and produced nice results.

The end results of Cascade Search are almost identical to those of QPHM. Though
the results are quite good, there is still much room for improvement in terms of getting
closer to a general purpose search algorithm. However, Cascade search is an important
step toward the goal of achieving an efficient, effective, and self-adapting search algorithm

for line-based object recognition using Qualitative Probabilities.

Chapter 8

Conclusion

8.1 Contributions

We summarize the contributions of this thesis as follows:

1. We explored the search space induced by Qualitative Probabilities in a block world
domain. It was found that the odds calculated using QP were 'windowed’, with
the size and position of the window dependent on how many model edges were
accounted for by image edges. Furthermore, we gained a better understanding of
how the combinatorics of forming geometrically consistent models from image edges

interplays with the QP odds of the corresponding models.

2. We showed that ’accidents’ do happen, and showed that the number of different

types (i.e. degree of genericity) of accidents is correctly modeled by QP.

3. We incorporated QP into a simple search to find block models. The search was
found to be effective and efficient. Additionally, we compared the use of QP in this
search, to a more standard measure of goodness, a cover’ measure. We found that
QP is a much stronger predictor of good interpretations than the cover measure.

That is, search using QP was far more efficient, and produced better block models

95

CHAPTER 8. CONCLUSION 96
than the cover measure.

4. Based on observations in 1, we designed a search algorithm tailored to use of QP.
This search algorithm does not require calculation of a "Half-Max Odds’ function,
as the search in 3 required. This makes for a more elegant and practical search

algorithm.

8.2 Discussion and Future Directions

The work presented in this thesis is only the beginning of how QP can be used to
achieve object recognition. Many additions and extensions can be made, both to the
QP framework, as well as to the search framework. We will now mention a few, ranging
from issues quite specific to work presented in this thesis, to those more loosely associated

with it.

1. The Grouping and Culling function presented in Chapter 7 was useful as a first
attempt, but could potentially be much improved upon. The grouping part of the
algorithm is dependent upon the order of the list of models given to it. We work
around this by insisting that the list is in order of non-increasing odds. However,
it would better if the grouping function was not dependent on order. Rather, it is
desirable for the function to partition the list of models into equivalence classes.
This requires the similarity definition to be reflexive, symmetric and transitive,
the first two of which are currently satisfied. If this was achieved, the grouping
would correspond better to our intuition of grouping as a precursor to culling.
Additionally, the notion of similarity presented is rather rudimentary, and could no

doubt be improved upon in other ways as well.

2. The Grouping and Culling algorithm is an attempt to predict which paths in the

search tree will be useful. It looks only at the current set of models with their

CHAPTER 8. CONCLUSION 97

associated QP odds. As is, the search algorithm does not use the object model
to predict where image edges should be found. We could probably make better
predictions by also taking into account this information. For instance we could do
a ’look-ahead’ of what different hypotheses are likely to lead to. That is, given a
hypothesis, and given some general knowledge of the domain we are working in,
for example, the density of image edges, their average length, efc., as well as which
parts of the hypothesized model have not yet had image edges assigned to them,

we might be able to further distinguish the good hypotheses from the bad.

3. Other cues such as colour/grayscale could to be integrated into the search frame-
work in cooperation with the Qualitative Probabilities. It will be interesting to
see whether a trade-off between added computation due to more calculations, and
less computation due to better pruning power exists, and if so, to what degree.
Moreover, how do we intelligently incorporate the cues? Simply ordering their

importance is likely too naive.

4. QP itself will need to be extended to handle more complex objects made up of
parameterized curves, as well as straight lines. The number of resolved parameters

for a particular curve model should provide the order of the prior probability.

5. The motivation behind the work in this thesis is to develop a method that can be
applied to the extraction of primitives which are sufficiently complex, that with a
large enough, finite group of them we might be able to represent most objects, and
achieve generic object recognition. This extraction method must be robust to many
types of noise, including occlusions, shadows and missing data. A logical next step
would be to find a suitable set of primitives for generic object recognition, and try

to search for them using an extended form of Qualitative Probabilities.

6. In the work presented in this thesis, we only search for one object at a time. How

can we intelligently look for more than one object at a time? Clearly the human

CHAPTER 8. CONCLUSION 98

brain is not running serial computations, nor even parallel ones, as information
about one object reinforces information about other potential objects. We need to

find an computationally efficient way of searching for multiple objects.

Bibliography

1]

J. S. Beis and D. G. Lowe. Learning indexing functions for 3-D model-based object
recognition. In Proceedings of the Conference on Computer Vision and Paltern
Recognition, pages 275-280, Los Alamitos, CA, USA, June 1994. IEEE Computer

Society Press.

J. 5. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, pages 1000-1006, Puerto Rico, 1997. TEEE Com-

puter Society Press.

R. Bergevin and M. Levine. Generic object recognition: Building and matching
coarse descriptions from line drawings. IEFFE Transactions on Pattern Analysis and

Machine Intelligence, to appear, 1993.

. Biederman. Recognition by components. Psychological Review, 94:115-147, 1987.

M. J. Black and A. D. Jepson. Eigen tracking: robust matching and tracking of
articulated objects using a view-based representation. Lecture Notes in Computer

Science, 1064:329, 1996.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT

Press and McGraw-Hill Book Company, 6th edition, 1992.

99

BIBLIOGRAPHY 100

7]

[10]

[11]

[14]

[15]

S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. 3-D shape recovery using dis-
tributed aspect matching. [EFEE Transactions on Pattern Analysis and machine

Intelligence, 14(2):174-198, February 1992.

Sven Dickinson, David Wilkes, and John Tsotsos. A computational model of view
degeneracy. IEFEE Transactions on Pattern Analysis and Machine Intelligence, Au-
gust 1999.

Sven J. Dickinson, Robert Bergevin, Irving Biederman, Jan-Olof Eklundh, Roger
Munck-Fairwood, Anil K. Jain, and Alex Pentland. Panel report: The potential of

geons for generic 3-d object recognition. Technical Report TR-29, 1994.

Sven Josef Dickinson. The recovery and recognition of three-dimensional objects
using part-based aspect matching. Technical Report CAR-TR-572, Center for Au-

tomation Research, University of Maryland, College Park, MD, August 1991.

J. Dolan and R. Weiss. Perceptual grouping of curved lines. In Image Understanding
Workshop (Palo Alto, CA, May 23-26, 1989), pages 11351145, San Mateo, CA,

1989. Defense Advanced Research Projects Agency, Morgan Kaufmann.

Jacob Feldman. Regularity-based perceptual grouping. Computational Intelligence,
13(4):582-623, 1997.

Jacob Feldman. The role of objects in perceptual grouping. Acta Psychologica,
102:137-163, 1999.

E. Grimson. Object Recognition by Computer. MIT Press, May 1990.

W. E. L. Grimson and D. P. Huttenlocher. On the sensitivity of the hough trans-
form for object recognition. In Second International Conference on Computer Vision
(Tampa,, FL, December 5-8, 1988), pages 700-706, Washington, DC,, 1988. Com-

puter Society Press.

BIBLIOGRAPHY 101

[16]

[18]

[19]

[21]

[22]

[24]

[25]

W. E. L. Grimson and T. Lozano-Perez. Localizating Overlapping Parts by Search-
ing the Interpretation Tree. IEFE Transactions on Pattern Analysis and Machine
Intelligence, 9(4):469-482, 1987.

David W. Jacobs. Grouping for recognition. Technical Report AIM-1177, Mas-

sachusetts Institute of Technology, November 1989.

David W. Jacobs. Robust and Efficient Detection of Convex Groups. IEFEE Trans.

on Pattern Analysis and Machine Intelligence, 1995.

A. Jepson, W. Richards, and D. Knill. Perception as Bayesian Inference, chapter 2:

Modal structure and reliable inference, pages 53-92. Cambridge Univ. Press, 1966.

Allan Jepson and Richard Mann. Qualitative probabilities for image interpretation.

In Proc. IEEE Inter. Conference on Computer Vision, Greece, 1999.

Robert L. Kruse. Data Structures and Program Design, Third Fdition. Prentice

Hall, New Jersey, 1994.

D. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Pub-

lishers, Norwell, MA, 1985.

Louis Lyons. A Practical Guide to Data Analysis for Physical Science Students.

Cambridge University Press, 1994.

Lawrence G. Roberts. Machine perception of three-dimensional solids. TR 315,
Lincoln Lab, MIT, Lexington, MA, May 1963.

Sudeep Sarkar and Kim L. Boyer. Computing Perceptual Organization in Computer
Vision. World Scientific, 1994.

Eric Saund. Perceptual organization of occluding contours of opaque surfaces. Com-

puter Vision and Image Understanding: CVIU, 76(1):70-82, October 1999.

BIBLIOGRAPHY 102

[27] John K. Tsotsos. Analysing vision at the complexity level. Behavioral and Brain
Sciences, 13(3):423-496, 1990.

[28] John K. Tsotsos, Sean M. Culhane, Winky Yan Kei Wai, Yuzhong Lai, Neal Davis,
and Fernando J. Nuflo. Modeling visual attention via selective tuning. Artificial

Intelligence, 78(1-2):507-545, 1995.

[29] Lance Williams and Karvel Thornber. A comparison of measures for detecting

natural shapes in cluttered backgrounds. In Furopean Conference on Computer

Vision, LNCS. Springer-Verlag, 1998.

[30] Wolfson and Rigoutsos. Geometric hashing: An overview. CSAFE: Computational

Science & FEngineering, IKEFE Computer Sociely, 4, 1997.

