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Chapter 1

Preface

Simulation of deformable elastic solids has evolved into a popular tool for visual
effects, games and interactive virtual environments. The Finite Element Method
has been very popular in this context, especially in applications that can benefit
from its versatility in representing elastic bodies with intricate geometric features
and diverse material properties. Techniques for solids simulation that have been
broadly used in graphics draw upon a rich, decades-long literature in Galerkin
methods, discrete elliptic PDEs and continuum mechanics theory. As many of
these techniques originated in theoretical and engineering disciplines other than
graphics and visual computing, it may be somewhat challenging for a practitioner
with modest theoretical exposure or familiarity with these fields to navigate some
of the most established mechanical engineering or computational physics reference
textbooks, especially if their goal is to acquire a high-level understanding of the basic
tools needed for implementing a simulation system. This document aims to provide
a concise, yet lightweight synopsis of the relevant theory, with adequate attention
to implementation details from the perspective of a graphics developer. Most of the
material referenced in these notes resulted from the author’s long and rewarding
interactions with graduate students at Stanford, UCLA and UW-Madison, as well
as the experience of the graduate class “Introduction to physics-based modeling and
simulation” offered at the University of Wisconsin.

This document assumes minimal to no exposure to continuum mechanics or
finite element discretizations. However, a particular flavor of calculus background
is presumed, including:

• Familiarity with functions of several variables, partial derivaties, volume and
surface integrals.

• Some exposure to numerical techniques for solving linear systems of equa-
tions, and the Newton-Raphson method for finding approximate solutions to
nonlinear problems.
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4 CHAPTER 1. PREFACE

• A good understanding of linear algebra, including concepts such as vectors,
matrices and (higher-order) tensors. Familiarity with determinants, eigen-
value problems and the Singular Value Decomposition is also assumed.

• Although many of the proofs and derivations are treated as optional reading,
the majority of them make heavy use of differentials (linearized tensors) and
reference complex differentiation concepts (such as the derivative of a matrix
function with respect to a matrix argument).

As a supplement to the present introduction to FEM methods for deformable
solids simulation, the following textbooks are highly recommended:

J. Bonet and R. Wood, Nonlinear continuum mechanics for Finite Element
Analysis, (2nd ed.), Cambridge University Press

O. Gonzalez and A. Stuart, A first course in Continuum Mechanics, Cam-
bridge University Press

T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Ele-
ment Analysis, Dover Publications

T. Belytschko, W. Lui and B. Moran, Nonlinear Finite Elements for Con-
tinua and Structures, Wiley

J. Simmonds, A Brief on Tensor Analysis, (2nd ed.), Springer-Verlag

G. Golub and C. van Loan, Matrix Computations, (3rd ed.), Johns Hopkins
University Press

J. Demmel, Applied Numerical Linear Algebra, SIAM

Text in shaded boxes presents theoretical proofs, provides examples or provides
further insight on the preceding topics. This content can be treated as optional
reading, and omitting it should not compromise the understanding of subsequent
topics.



Chapter 2

Elasticity in three dimensions

In this chapter we focus on three-dimensional elastic bodies deforming in space, and
discuss how we can formulate quantitative descriptions for the deformed shape of
an object and the forces resulting from it. To a certain extent, these formulations
are analogous to similar concepts from mass-spring systems, or deformable elastic
strands. However, since a volumetric body is able to alter its shape in more complex
ways than, for example, a one-dimensional elastic strand, many concepts that may
be familiar from simpler mechanical systems will need to be extended and become
more expressive. For the time being, and until chapter 4, we will not concern
ourselves with discretization issues. Our discussion will focus on the continuous
phenomenon of elastic deformation, as if we had infinite resolution at our disposal.

2.1 Deformation map and deformation gradient

Our initial objective is to provide a concise mathematical description of the defor-
mation that an elastic body has sustained. This formulation will lay the foundation
for appropriate representations of other physical properties such as force and en-
ergy. We begin by placing the undeformed elastic object in a coordinate system,
and denote by Ω the volumetric domain occupied by the object. This domain will
be referred to as the reference (or undeformed) configuration, and we follow the con-
vention that capital letters ~X ∈ Ω are used when referring to individual material
points in this undeformed shape. Note that the precise position and orientation of
the undeformed elastic body within the reference space is not important and can be
chosen at will, as long as the shape of the object corresponds to a rest configuration.

When the object undergoes deformation, every material point ~X is being dis-
placed to a new deformed location as seen in figure 2.1 (top) which is, by convention,
denoted by a lowercase variable ~x. The relation between each material point and its
respective deformed location is captured by the deformation function ~φ : R3 → R3

which maps every material point ~X to its respective deformed location ~x = ~φ( ~X).
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6 CHAPTER 2. ELASTICITY IN THREE DIMENSIONS

An important physical quantity derived directly from ~φ( ~X), whose utility will
become apparent in the next sections, is the deformation gradient tensor F ∈ R3×3.
If we write ~X = (X1, X2, X3)T and ~φ( ~X) =

(
φ1( ~X), φ2( ~X), φ3( ~X)

)T
for the three

components of the vector-valued function ~φ, the deformation gradient is written as:

In some cases
we also use
the notation:

~X=

 X
Y
Z


F := ∂(φ1, φ2, φ3)

∂(X1, X2, X3) =

 ∂φ1/∂X1 ∂φ1/∂X2 ∂φ1/∂X3
∂φ2/∂X1 ∂φ2/∂X2 ∂φ2/∂X3
∂φ3/∂X1 ∂φ3/∂X2 ∂φ3/∂X3


or, in index notation Fij = φi,j . That is, F is the Jacobian matrix of the deformation
map. Note that, in general, F will be spatially varying across Ω; in the next sections
we will use the notation F( ~X) if such dependence needs to be made explicit.

Simple examples of deformation fields

The deformation depicted in the top row of figure 2.1 is indicative of ar-
bitrary shape changes that are likely to occur in animation tasks. For such
instances of deformation it would not be possible to write φ( ~X) in closed form,
and simulation would be employed instead to generate a numerical approximation.
We can provide, however, some intuitive closed-form expressions for certain simple
examples of deformation scenarios:

• Figure 2.1(a) depicts a configuration change which is merely a constant trans-
lation, say, by a vector ~t. Here, the deformation map and gradient are:

~x = φ( ~X) = ~X + ~t F = ∂φ( ~X)/∂ ~X = I

• Figure 2.1(b) illustrates a scaling by a constant factor γ, specifically in our
case a dilation by γ = 1.5. depicts a configuration change which is merely a
constant translation, say, by a vector ~t. In this case, we have:

φ( ~X) = γ ~X F = γI

• In figure 2.1(c) the reference shape has been scaled along the horizontal axis
by a factor of 0.7, where the vertical axis is stretched by a factor of 2. Thus:(

x
y

)
= φ( ~X) = φ

(
X
Y

)
=
(

0.7X
2Y

)
F =

(
0.7 0
0 2

)

• The configuration of figure 2.1(d) is the result of a 45◦ counter-clockwise
rotation around the origin. Therefore, we have:(

x
y

)
= φ( ~X) =

(
cos 45◦ − sin 45◦
sin 45◦ cos 45◦

)(
X
Y

)
F =

(
cos 45◦ − sin 45◦
sin 45◦ cos 45◦

)



2.1. DEFORMATION MAP AND DEFORMATION GRADIENT 7

(a) (b)

(c) (d)

Figure 2.1: Top row: Illustration of the deformation map φ from the reference
configuration (left) to the deformed shape (right). Bottom two rows: Sample defor-
mations of (a) translation, (b) uniform scaling, (c) anisotropic scaling, (d) rotation.
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2.2 Strain energy and hyperelasticity
One of the consequences of elastic deformation is the accumulation of potential en-
ergy in the deformed body, which is referred to as strain energy in the context of
deformable solids. We use the notation E[φ] for the strain energy, which suggests
that the energy is fully determined by the deformation map of a given configuration.
However intuitive, this statement nevertheless reflects a significant hypothesis that
led to this formulation: we have assumed that the potential energy associated with
a deformed configuration only depends on the final deformed shape, and not on
the deformation path over time that brought the body into its current configura-
tion. The independence of the strain energy on the prior deformation history is a
characteristic property of so-called hyperelastic materials (which is the only class of
materials we will address in this course). This property of is closely related with
the fact that elastic forces of hyperelastic materials are conservative: the total work
done by the internal elastic forces in a deformation path depends solely on the initial
and final configurations, not the path itself.

Different parts of a deforming body undergo shape changes of different severity.
As a consequence, the relation between deformation and strain energy is better de-
fined on a local scale. We achieve that by introducing an energy density function
Ψ[φ; ~X] which measures the strain energy per unit undeformed volume on an in-
finitesimal domain dV around the material point ~X. We can then obtain the total
energy for the deforming body by integrating the energy density function over the
entire domain Ω:

E[φ] =
ˆ

Ω
Ψ[φ; ~X]d ~X

Let us focus on a specific material location ~X∗. Since the energy density Ψ[φ; ~X∗]
would only need to reflect the deformation behavior in an infinitesimal neighborhood
of ~X∗, we can reasonably approximate the deformation map in this tiny region using
a first-order Taylor expansion:

φ( ~X) ≈ φ( ~X∗) + ∂φ

∂ ~X

∣∣∣∣
~X∗

( ~X − ~X∗) = ~x∗ + F( ~X∗)( ~X − ~X∗)

= F( ~X∗)︸ ︷︷ ︸
F∗

~X + ~x∗ − F( ~X∗) ~X∗︸ ︷︷ ︸
~t

= F∗ ~X + ~t

This equation suggests that Ψ[φ; ~X∗] should be expressible as a function of F∗ and
~t, as these values fully parameterize the local Taylor approximation of φ near ~X∗.
Furthermore, we can expect that the value of the vector ~t would be irrelevant in
this expression: different values of this parameter would indicate deformations that
differ only by a constant translation, thus producing the same deformed shape and
the same strain energy. Thus, we expect that the energy density function should be
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expressible as Ψ[φ; ~X] = Ψ(F( ~X)), i.e. a function of the local deformation gradient
alone.

The previous arguments have simply established that the energy density func-
tion is expected to be a function of the deformation gradient. However, we have
not provided specific formulas for Ψ(F). This is intentional as we want the flexi-
bility to accommodate a variety of materials. Ultimately, the precise mathematical
expression for Ψ(F) will be the defining property of the material modeled.

What would a formula for Ψ(F) look like?

Chapter 3 will provide concrete examples of material models and their associated
energy definitions. For the time being we list a few examples of (largely academic
and oversimplified) hypothetical materials. A naturally expected property is that
the energy is bounded from below, thus minimum-energy states exist where the
deforming object can settle to. For example:

Ψ(F) = k

2‖F‖
2
F where k > 0.

This is an interesting hypothetical scenario. We would describe it as a "zero rest-
volume material" in analogy to a "zero rest-length spring": The minimum energy
is attained when F = 0 throughout Ω, which means that φ( ~X) = const, i.e. all
material points have the natural tendency to collapse down to a single point location.
Although such a material might be useful for “glueing” tasks, akin to zero rest-
length springs, it is unnatural in the sense that the reference configuration Ω is not
an equilibrium configuration. In order to preserve such a property, we would expect
that when F = I, corresponding to an undeformed scenario φ( ~X) = ~X, would be a
minimum of the energy. This could be achieved by setting:

Ψ(F) = k

2‖F− I‖2F where k > 0.

This model will have minimum energy when the object is in its reference con-
figuration, or a constant translation away from it. Unfortunately, this model would
not treat a rotation of the undeformed shape as a rest configuration, and the en-
ergy would be nonzero in this case. This lack of rotational invariance serves as
motivation for the material models in the later sections of chapter 3.

2.3 Force and traction

The next physical concept to be addressed is the elastic force incurred by a given
deformation. First, consider a simple case from elementary mechanics: a small body
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(ideally dimensionless, i.e. a point mass) moving in a conservative force field. An
easy example would be the gravitational field, where a body located at ~x = (x, y, z)
has potential energy E(~x) = m~G ·~x = mgz, where ~G = (0, 0, g) is the acceleration of
gravity (the z-axis is assumed to be vertical). We can then obtain the gravitational
force as the negative gradient of the potential energy with respect to the object
position ~x:

g = 9.81m/s2

~f = −∂E(~x)
∂~x

= (0, 0,−mg)

However, when attempting to express a similar relation between force and energy
for deformable bodies we need to be cautious of the fact that, in the absence of a
prior discretization, such bodies form a continuous distribution of material, rather
than a collection of isolated point masses. As a consequence, the appropriate quan-
titative description for elastic forces resulting from deformation would also be via a
distribution. Thus, we use ~f( ~X) to denote force density, or more specifically force
per unit undeformed volume, in an infinitesimal region around ~X. The aggregate
force on a finite region A ⊂ Ω would then be computed by integrating

~faggregate(A) =
ˆ

A

~f( ~X)d ~X. (2.1)

Unfortunately, this description is not appropriate for the force exerted by the
body along its boundary. Consider an elastic body which is uniformly compressed
(e.g. φ( ~X) = α ~X, α < 1) to a lower volume. We would expect the body to react
by pushing back against the apparatus that is causing the compression, and this
restorative force would act along the surface of contact S ⊂ ∂Ω. This time we define
the traction ~τ( ~X) to be the (surface) force density function that measures the force
per unit undeformed area along an infinitesimal region of the boundary surface ~X.
Once again, the aggregate force on a finite boundary region B ⊂ ∂Ω is computed
by integrating:

~faggregate(B) =
˛

B
~τ( ~X)dS. (2.2)

Why treat (interior) force density and (boundary) traction separately? Ultimately,
don’t both of them just refer to standard elastic forces?

In loose terms, the reason is that on a force-per-volume basis, the net elastic force
is quantitatively “stronger” on the boundary than on the interior; the force density
would generally be a bounded function on the interior, but might look like a Dirac
delta function on the boundary. This makes it possible to have a nonzero aggregate
force along boundary patches, even though those would have had zero volume in an
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integral such as (2.1). Instead of dealing with the peculiarities of integrating Delta
functions just for the sake of having a single “force-per-unit-volume” descriptor, it
makes better practical sense to separate force computation into the interior term
of equation (2.1) and the boundary term of equation (2.2), where the integrands in
either case are regular, finite-valued functions.

The question that remains is: how is it physically meaningful for elastic forces
to have this apparent greater strength at the boundary? The important observation
here is that ~f( ~X) is the total force that a point ~X receives from its surrounding
material, from all directions. Although the force exceeded along each individual
direction might be substantial, significant cancellation is to be expected when the
force contributions of all directions are added up. For example, if we stretch a
homogeneous material uniformly, each deformed material point will receive strong,
yet equal (in magnitude) attractive forces along each direction, leading to a zero net
force. Boundary points, on the other hand, only receive an elastic response from
their material side, making it easier to accumulate a larger net force.

Finally, it is important to note that the distinction between force density and
traction largely goes away once a discrete representation of the deformable body is
adopted. In such case, we use nodal forces (instead of densities) as descriptors of
the elastic material response, and their treatment is practically identical regardless
of whether they reside on the boundary or interior of the deforming body.

2.4 The First Piola-Kirchhoff stress tensor
The differences between interior force density and boundary traction suggest that
neither concept is fundamental enough to describe all aspects of the elastic response
of deforming bodies. There is, however, a fundamental force descriptor that both
such quantities can be derived from: the stress tensor. There is a variety of “stress”
descriptors that can be used for this purpose; for our discussion, we will focus on
the 1st Piola-Kirchhoff stress tensor P, a 3×3 matrix with the following properties:

• The internal traction at a boundary location ~X ∈ ∂Ω is given by

~τ( ~X) = −P · ~N (2.3)

where ~N is the outward pointing unit normal to the boundary in the reference
(undeformed) configuration. This can serve as a formal definition for the stress
tensor P: for any interior point ~X ∈ Ω \ ∂Ω we can hypothetically slice the
material with a cut through ~X and perpendicular to ~N , and compute the
traction along such a cut. Then, P would be the unique matrix that relates
~τ and ~N as in equation (2.3) for all possible boundary orientations.
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• The internal force density can also be computed from P, as follows:

~f( ~X) = div ~XP( ~X), or component-wise: fi =
3∑

j=1
Pij,j = ∂Pi1

∂X1
+∂Pi2
∂X2

+∂Pi3
∂X3

.

We emphasize that the divergence operator and/or its component derivatives
are taken with respect to the undeformed/reference coordinates ~X.

• For hyperelastic materials, P is purely a function of the deformation gradient,
and is related to the strain energy via the simple formula:

P(F) = ∂Ψ(F)/∂F

As described, the 1st Piola-Kirchhoff stress tensor can be used to yield formulas
both for force and tension, and is readily computed from the strain energy density
definition. In fact, there are two equally popular (and, in fact, equivalent) ways to
describe the material properties of a hyperelastic material: (a) an explicit formula
for Ψ as a function of F, or (b) an explicit formula for P as a function of F. We will
provide both types of definitions for all materials discussed in in this document.

Example

In section 2.2 we listed a hypothetical hyperelastic material with energy density
Ψ(F ) = (k/2)‖F− I‖2F . We are now in a position to give quantitative descriptions
for the force and traction such a model would generate in response to deformation.

The Piola stress is computed as follows

δΨ(F ) = (k/2)δ [(F−I) : (F−I)] = k(F−I) :δF = ∂Ψ
∂F :δF

thus P = ∂Ψ/∂F = k(F−I), or component-wise: Pij = k(φi,j − δij)

From this, internal forces are computed as

fi =
∑

jPij,j =
∑

jkφi,jj = k∆φi ⇒ ~f = k∆~φ

Given such a material and appropriate boundary conditions, a rest configuration
would be found by solving ~f = ~0 (in the absence of external forces) or ∆~φ = ~0.

Lastly, let us assume a uniform expansion by a function of 2. Thus φ( ~X) = 2 ~X,
F = 2I, and P = kI. The traction that would result from this stress on a surface
perpendicular to ~N would be ~τ = −k ~N (generating boundary forces that trigger
inwards motion to restore the original shape and volume).
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We note that in much of the relevant literature, a different notational convention
is followed where ~f and ~τ refer to the externally applied force density and traction,
respectively. The relation between these quantities and stress is then expressed by
assuming that the body is in an equilibrium configuration, where such externally ap-
plied forces and tractions balance out exactly the internal elastic force and traction.
The equations obtained under this convention would be:

~f + divP = 0, and ~τ = P · ~N.
In this document, we will retain our original definition where ~f and ~τ refer to

internal forces, along with their respective relations to P from earlier in this section,
as these formulas hold true even if the deforming body is not in an equilibrium
configuration. In cases where we need to refer to any externally applied force or
traction we will use symbols ~fext and ~τext, instead.

~N=

 N1
N2
N3



We provide a brief justification for the formulas relating the Piola stress P to
force and traction. The intent of the derivations that follow is not to give a rigorous
proof, but rather to explain the thought process that gave rise to these definitions.

Consider an arbitrary deformation ~x = ~φ( ~X), and a small perturbation δ~φ( ~X)
away from it. As the deforming body transitions from configuration ~φ to the nearby
configuration ~φ+δ~φ the strain energy will be reduced by a certain amount δE equal
to the work done by the elastic forces:

δE = −
ˆ

Ω
~f( ~X) · δ~φ( ~X)d ~X −

˛
∂Ω
~τ( ~X) · δ~φ( ~X)dS. (2.4)

Note that the work is separately integrated in the interior and boundary regions,
due to the quantitative difference of force and traction. The change in strain energy
can also be expressed as:

δE = δ

[ˆ
Ω

Ψ(F)d ~X
]

=
ˆ

Ω
δ [Ψ(F)] d ~X =

ˆ
Ω

[
∂Ψ
∂F : δF

]
d ~X =

ˆ
Ω

[P : δF] d ~X

=
3∑

i,j=1

ˆ
Ω
PijδFijd ~X =

3∑
i,j=1

ˆ
Ω
Pij ·

∂

∂Xj

[
δφi( ~X)

]
d ~X

Using integration by parts, this is equivalently written as

δE =
3∑

i,j=1

[
−
ˆ

Ω

∂

∂Xj
[Pij ] · δφi( ~X)d ~X +

˛
∂Ω
PijNj · δφi( ~X)d ~X

]

= −
ˆ

Ω
divP · δ~φ( ~X)d ~X +

˛
∂Ω

(P · ~N) · δ~φ( ~X)d ~X (2.5)

From equations (2.4, 2.5) and using the fundamental lemma of variational calculus
we have that ~f( ~X) = divP, and ~τ( ~X) = −P ~N .



Chapter 3

Constitutive models of materials

In this section we survey a number of different simulated materials and describe how
their physical properties are encoded in their respective governing equations. The
mathematical description of the physical traits of a given material is referred to as its
constitutive model and includes the equations that relate stimuli (e.g. deformations)
to the material response (e.g. force, stress, energy) they trigger. In the spirit of
the preceding chapter, two possibilities for what a constitutive equation can be are
given by the formula for the Piola stress P as a function of the deformation gradient
F, or the formula for the energy density Ψ as a function of F. For simplicity, we
will focus on isotropic materials, whose response to deformation is independent of
the orientation that such deformation is applied in.

3.1 Strain measures

In principle, an explicit formula that relates Ψ and F (or P and F) would be perfectly
adequate as a constitutive equation: think of the formula Ψ(F) = ‖F−I‖2F from the
previous chapter as an example of this fact. The challenge, however, with designing
constitutive models in this fashion is that using the raw elements of the matrix F
can be a very unintuitive way to argue about the flavor and severity of a given
deformation. Perhaps a certain material’s response is dominated by its affinity for
volume conservation, while a different material might prioritize resistance to shear.
One would imagine that metrics such as “the ratio of volumetric expansion” or “the
shear angle” would be much more effective in expressing the severity of the types
of deformation that are most relevant to such materials. As a consequence, it is
common for the design process for constitutive models to define certain intermediate
quantities (examples of which are strain measures and invariants, discussed in this
chapter) which are derived from F, yet capture the specific traits of the deformation
that the energy or stress values depend on more concisely than the deformation
gradient itself.

14
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A strain measure is intended to be a quantitative descriptor for the severity
of a given deformation, i.e. a way to gauge how far this configuration is from a
rest configuration. For this reason, although strain measures are derived from the
deformation gradient, they strive to retain as much information from it that is
relevant to assessing deformation magnitude while disregarding any information
contained in it that is unrelated to shape change. Consider the Green strain tensor
E ∈ R3×3, defined as:

E = 1
2
(
FT F− I

)
. (3.1)

The Green strain tensor exemplifies many of the properties that we would ask for in
a strain measure. When the body is in its reference configuration, i.e. ~φ( ~X) = ~X,
we have F = I and thus E = 0. The Green strain would also be zero if the elastic
body is merely rotated and translated from its reference position, without changing
its shape; in such a case ~φ( ~X) = R ~X+~t (where R is a rotation matrix), thus F = R
and E = 0 since RT R = I.

More generally, even for non-rigid motions, the deformation gradient can be
decomposed as F = RS into the product of a rotation matrix R, and a symmetric
factor S via the polar decomposition. As a 3D rotation matrix R encapsulates three
degrees of freedom, while the symmetric S has 6 independent degrees of freedom.
Substituting the polar decomposition into equation (3.1) we obtain:

E = 1
2
(
S2 − I

)
.

Thus, the Green strain succeeds in discarding the rotational degrees of freedom,
which have no bearing on the severity of deformation, and retains the stretch/shear
information in the 6-DOF symmetric factor S. This is also accomplished without
explicitly forming the polar decomposition.

The price one has to pay for the useful properties the Green strain offers, is that
the expression of equation (3.1) is a nonlinear (quadratic) function of deformation.
This increases the complexity of constitutive models that are constructed based
on it and, as we will see next, will lead to discretizations with nodal forces being
nonlinear functions of nodal positions. In an effort to remedy this, we construct a
linear approximation of equation (3.1) by forming a Taylor expansion around the
undeformed configuration F = I.

E(F) ≈ E(I)︸ ︷︷ ︸
=0

+ ∂E
∂F

∣∣∣∣
F=I

: (F− I)

The derivative ∂E/∂F is most conveniently defined via the differential δE:

∂E
∂F : δF = δE = 1

2
(
δFT F + FT δF

)
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Thus

∂E
∂F

∣∣∣∣
F=I

: (F− I) = 1
2
[
(F− I)T I + IT (F− I)

]
= 1

2
(
F + FT

)
− I

The matrix resulting from this linear approximation of E(F) is denoted by ε, where:

ε = 1
2
(
F + FT

)
− I

and called the small strain tensor, or the infinitesimal strain tensor. This strain
tensor will give rise to a computationally lightweight constitutive model called linear
elasticity, described in the next section, and enable discretizations which have a
linear mapping between nodal positions and nodal elastic forces. As expected,
this convenience comes with a certain limitation: the small strain tensor can be
considered a reliable measure of deformation for small motions only (hence the
name) while pronounced artifacts will occur if used in a large deformation scenario.

3.2 Linear elasticity
The simplest practical constitutive model is linear elasticity, defined in terms of the
strain energy density as:

Ψ(F) = µε :ε + λ

2 tr
2(ε) (3.2)

where ε is the small strain tensor and µ, λ are the Lamé coefficients, which are
related to the the material properties of Young’s modulus k (a measure of stretch
resistance) and Poisson’s ratio ν (a measure of incompressibility) as:

µ = k

2(1 + ν) λ = kν

(1 + ν)(1− 2ν)
The relation between the Piola stress P and F can be derived as follows:

Sym{A} is
the symmetric
component of
matrix A

Due to the
symmetry of
ε and I

Since P = ∂Ψ
∂F

δε = 1
2
(
δF + δFT

)
= Sym{δF}

ε :δε = ε :Sym{δF} = ε :δF tr(δε) = I :Sym{δF} = I :δF

δΨ = 2µε :δε + λtr(ε)tr(δε) = [2µε + λtr(ε)I]︸ ︷︷ ︸
=∂Ψ/∂F

: δF

Thus P = 2µε + λtr(ε)I

or, after one final substitution for ε (and a few algebraic reductions):

P(F) = µ(F + FT − 2I) + λtr(F− I)I.
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These expressions allow us to make the following observations:

• The stress P is a linear function of the deformation gradient. As we will see
in chapter 4 this would also result on the nodal elastic forces having a linear
dependence on nodal positions. As a consequence, this constitutive model is
characterized by a significantly lower computational cost than other, nonlinear
materials.

• Since the small strain tensor was designed to be accurate exclusively in a small
deformation scenario, it would only be advisable to use linear elasticity when
the magnitude of motion is small. For example, a rigid motion ~φ( ~X) = R ~X+~t
would generally produce a non-zero strain ε = 1

2(R + RT )− I and ultimately
a nonzero stress, even though no shape change has taken place.

φj,ij = φj,ji

Summation
variables j
and k are in-
terchangable

The Partial Differential Equation form of linear elasticity

For this simple material model it is relatively straightforward to derive the dif-
ferential equation that defines an equilibrium configuration. Assume an externally
applied force distribution ~fext( ~X). When the object has settled to an equilibrium
(rest) configuration, the deformation function will satisfy:

divP+ ~fext = 0⇒
3∑

j=1
Pij,j +f

(i)
ext = 0⇒ [for i = 1, 2, 3]

⇒ −
3∑

j=1

∂

∂Xj

[
µ(φi,j + φj,i − 2δij) + δi,j

3∑
k=1

λ(φk,k − 1)
]

= f
(i)
ext ⇒

⇒ −
3∑

j=1

[
µ(φi,jj + φj,ij) + δi,j

3∑
k=1

λφk,kj

]
= f

(i)
ext ⇒

⇒ −
3∑

j=1
[µ(φi,jj + φj,ji)]−

3∑
k=1

λφk,ki = f
(i)
ext ⇒

⇒ −
3∑

j=1
[µφi,jj + (µ+ λ)φj,ji] = f

(i)
ext ⇒

⇒ −µ∆φi − (µ+ λ) ∂

∂Xi
[∇ · ~φ] = f

(i)
ext ⇒

⇒ −µ∆~φ− (µ+ λ)∇[∇ · ~φ] = ~fext

Which is a linear, second order Partial Differential Equation.
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3.3 St. Venant-Kirchhoff model
With the understanding that the small strain tensor is a mere approximation of the
rotationally invariant Green strain E, it makes sense to attempt an improvement of
the linear elasticity model by using E in the place of ε in equation (3.2):

Ψ(F) = µE :E + λ

2 tr
2(E)

The resulting constitutive model is called a St. Venant-Kirchhoff material, and is
the first truly nonlinear material we will examine. The first Piola-Kirchhoff stress
tensor can be computed via a process similar to the one followed for linear elasticity:

Due to the
symmetry of
E and I

δE = 1
2
(
δFT F + FT δF

)
= Sym{FT δF}

E :δE = E :
{
FT δF

}
= {FE} :δF tr(δE) = I :

{
FT δF

}
= F :δF

δΨ = 2µE :δE + λtr(E)tr(δE) = F [2µE + λtr(E)I]︸ ︷︷ ︸
=∂Ψ/∂F

: δF

Thus P(F) = F [2µE + λtr(E)I] . (3.3)

This is a rotationally invariant model; deformations that differ by a rigid body
transformation are guaranteed to have the same strain energy. As a consequence
a St. Venant-Kirchhoff material exhibits plausible material response in many large
deformation scenarios where linear elasticity would not be applicable. Equation
(3.3) indicates that stress is a 3rd degree polynomial function of the components of
F; after discretization, nodal forces will likewise be expressed as cubic polynomials
of nodal positions.

Although the St. Venant-Kirchhoff model offers significant benefits over a linear
elastic model, its scope is limited to a certain degree due to its poor resistance
to forceful compression: as a St. Venant-Kirchhoff elastic body is compressed,
starting from its undeformed configuration, it reacts with a restorative force which
initially grows with the degree of compression. However, once a critical compression
threshold is reached (≈ 58% of undeformed dimensions, when compression occurs
along a single axis) the strength of the restorative force reaches a maximum. Further
compression will be met with decreasing resistance, in fact the restorative force will
vanish as the object is compressed all the way down to zero volume (an indication
of this is that when F = 0 we also have P = 0). Continued compression past the
point of zero volume (forcing the material to invert) will then create a restorative
force that pushes the body towards complete inversion (reflection) along one or more
axes. In practical computer simulation examples this behavior often manifests itself
as a tendency of the material to locally tangle and invert itself when subjected to
strong compressive forces or kinematic constraints.
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3.4 Corotated linear elasticity
The use of the quadratic Green strain in the St. Venant-Kirchhoff guaranteed the
rotational invariance of the constitutive model. At the same time, the increased
complexity inherent in highly nonlinear materials leads to unintended side effects,
such as the non-physical zero stress configurations of St. Venant-Kirchhoff materials
under extreme compression. Corotated linear elasticity is a constitutive model that
attempts to combine the simplicity of the stress-deformation relationship in a linear
material with just enough nonlinear characteristics to secure rotational invariance.

Using the polar decomposition F = RS we construct a new strain measure as
εc = S − I, which is linear on the symmetric tensor S obtained by factoring away
the rotational component of F. Replacing the small strain tensor in equation (3.2)
we obtain the energy for corotational elasticity:

Ψ(F) = µεc :εc + λ

2 tr
2(εc) = µ‖S− I‖2F + (λ/2)tr2(S− I)

which can also be equivalently written in any of the following ways:

Ψ(F) = µ‖F−R‖2F + (λ/2)tr2(RT F− I)
Ψ(F) = µ‖Σ− I‖2F + (λ/2)tr2(Σ− I) (3.4)

where Σ is the diagonal matrix with the singular values of F, from the Singular
Value Decomposition F = UΣVT . We can show that the 1st Piola-Kirchhoff stress
tensor for corotated linear elasticity is given by:

P(F) = R [2µεc + λtr(εc)I] = R [2µ(S− I) + λtr(S− I)I]
= 2µ(F−R) + λtr(RT F− I)R (3.5)

Proof of the stress formula

Taking differentials of the Singular Value Decomposition F = UΣVT we have:

δF = (δU)ΣVT + U(δΣ)VT + UΣδVT ⇒
⇒ UT (δF)V = (UT δU)Σ︸ ︷︷ ︸

(∗)

+δΣ + Σ(VT δV)T︸ ︷︷ ︸
(∗∗)

(3.6)

For any orthogonal matrix Q we have

QT Q = I⇒ δ(QT Q) = 0⇒ (δQ)T Q + QT δQ = 0⇒ (QT δQ)T = −QT δQ

Thus, the matrices marked with (∗) and (∗∗) above are column- and row-scaled
versions of skew symmetric matrices, and consequently have zero diagonal elements.
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This implies that if we restrict equation (3.6) to its diagonal component only,
terms (∗) and (∗∗) will vanish to yield the final expression for the differential of Σ:

δΣ = Diag{UT (δF)V}

Using this result, the differential of equation (3.4) becomes:

δΨ = 2µ(Σ− I) :δΣ + λtr(Σ− I)tr(δΣ)

= 2µ(Σ− I) : (UT δFV) + λtr
[
V(Σ− I)VT

]
tr(UT δFV)

= 2µ
[
U(Σ− I)VT

]
:δF + λtr(S− I)tr

[
(UVT )T δF

]
= 2µ(F−R) :δF + λtr(S− I)R :δF = P : δF

from which equation (3.5) follows.

The motivation behind corotational elasticity is to mimic what linear elasticity
would have been, if the undeformed configuration had been rotated in the same
way as encoded in the rotational factor R from the polar decomposition. Of course,
in typical deformations where the value of R varies across the domain, making the
transition from linear to corotated elasticity more complex than a change of variables
due to a (constant) rotation of the undeformed configuration. From a computational
cost perspective, the overhead of corotated vs. linear elasticity includes the cost of
the polar decomposition, and the need to employ nonlinear solvers for certain types
of simulation.

3.5 Isotropic materials and invariants
The constitutive models of St. Venant-Kirchoff and Corotated linear elasticity have
been constructed to be rotationally invariant. We can formally define this property
by considering a pair of deformations, denoted by their deformation maps ~φ1( ~X)
and ~φ2( ~X), that differ only by a rigid body transform, specifically:

~φ2( ~X) = R~φ1( ~X) + ~t, where R is a 3× 3 rotation matrix. (3.7)
A constitutive model is rotationally invariant if and only if it guarantees that

the strain energy will satisfy E[φ1] = E[φ2] for any such deformation pair. For
hyperelastic materials, an equivalent definition can be stated in terms of the strain
energy density function. By taking gradients, we can see that any two deformations
that satisfy equation (3.7) will have deformation gradients related as F2 = RF1.
The energy density associated with these deformations must satisfy Ψ(F1) = Ψ(F2),
leading to the following equivalent definition of rotational invariance:
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Definition: A hyperelastic constitutive model is rotationally invariant if and
only if the strain energy density satisfies

Ψ(RF) = Ψ(F)

for any value of the deformation gradient F and any 3× 3 rotation matrix R.

A consequence of this definition is that the strain energy in rotationally invariant
models can be expressed solely as a function of the symmetric factor S from the
polar decomposition of F = RS, since:

Ψ(F) = Ψ(RS) = Ψ(S)

Although some model may be define Ψ directly as a function of S (corotated
elasticity was presented this way), we may avoid the need to compute the polar
decomposition, if we are able to express Ψ as a function of some other intermediate
quantity, which is a function of S, yet also computable without an explicit polar
decomposition. For example, St. Venant-Kirchhoff materials defined the energy
density as a function of the Green strain E = 1

2(S2 − I), which although fully
determined by S can also be computed without an explicit polar decomposition as
E = 1

2(FT F− I).
A similar, yet distinct property of certain constitutive models (including St.

Venant-Kirchhoff and Corotated linear elasticity) is that of isotropy. In plain terms,
a material is isotropic if its resistance to deformation is the same along all possi-
ble orientations that such deformation may be applied. Rubber and metal would
be examples of isotropic materials, as they do not exhibit any particular direc-
tion/orientation along which are softer or stiffer. Steel-reinforced concrete would be
an example of an anisotropic material, as its resistance to deformation is notably
different along the direction of the steel supports, compared to a direction perpen-
dicular to them. Human muscles are also quoted as an anisotropic structure, as a
distinct material response is observed along the direction aligned with muscle fibers.

Isotropy is a property that needs to be assessed on a local scale, as it is always
possible to generate directional features in larger structures by arranging material
in specific ways (think of suspension bridges built from otherwise isotropic steel).
In terms of a quantitative criterion for isotropy, we can think of an infinitesimal
spherical volume of material dV , and consider the strain energy resulting from a
prescribed deformation. Now, consider the scenario where we first transform the
sphere dV by rotating it about its center and then apply the same deformation. If
the material is isotropic, both scenarios would lead to the same strain energy. This
is concretely expressed using the strain energy function, as follows:
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Definition: A hyperelastic constitutive model is isotropic if and only if the
strain energy density satisfies

Ψ(FQ) = Ψ(F)

for any value of the deformation gradient F and any 3 × 3 rotation matrix Q.
A material that is both rotationally invariant and isotropic would satisfy

Ψ(RFQ) = Ψ(F)

for arbitrary rotations R and Q.

Using the Singular Value Decomposition F = UΣVT we conclude that rota-
tionally invariant, isotropic materials satisfy:

Ψ(F) = Ψ(UΣVT ) = Ψ(Σ).
While the strain energy for rotationally invariant materials was a function only

of 6 out of 9 degrees of freedom in F (those captured in the symmetric S), for
materials that are also isotropic the energy density is actually only a function of
the three singular values of F. Equation (3.4) reveals that this is certainly the case
for corotated linear elasticity. St. Venant-Kirchhoff can also be shown to satisfy all
criteria for isotropy, after some simple algebraic manipulations. An example of a
material that is rotationally invariant but not isotropic is described by the energy:

Ψ(F) = k

2 ~w
T FT F~w

where ~w is a given constant vector. This material behaves like a zero-restlength
spring along the direction ~w, while it does not have any resistance to deformation
along directions perpendicular to ~w.

Although it is possible to define an isotropic material by a relation between
Ψ and Σ (which encodes the only 3 relevant degrees of freedom in F), this is not
necessarily the preferred approach, since the overhead of an SVD computation would
be necessary when evaluating any of these quantities. St. Venant-Kirchhoff materials
avoided the need for an explicit polar decomposition, by using the Green strain E
to convey (qualitatively) the same information as S, while using a computationally
inexpensive formula. For isotropic materials, the purpose is served by the three
isotropic invariants of the deformation gradient, which are equally expressive as
the singular values, but can be computed inexpensively. Invariants are denoted by
I1, I2, I3 (or I1(F), etc., to emphasize the dependence on F) and defined as:

I1(F) = tr(FT F), I2(F) = tr
[
(FT F)2

]
, I3(F) = det(FT F) = (det F)2
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Their relation to Σ is revealed by replacing F with its SVD in the previous
expressions, where (after extensive cancellation) we obtain:

I1 = tr(Σ2) =
3∑

i=1
σ2

i , I2 = tr(Σ4) =
3∑

i=1
σ4

i , I3 = det(Σ2) =
3∏

i=1
σ2

i

Also of use are the derivatives of the invariants with respect to the F:

δI1 = δ[tr(FT F)] = 2tr(FT δF) = (2F) :δF ⇒ ∂I1
∂F = 2F

δI2 = δ[tr(FT FFT F)] = 4tr(FT FFT δF) = (4FFT F) :δF ⇒ ∂I2
∂F = 4FFT F

δI3 = δ[(det F)2] = 2 det F · δ[det F] = 2(det F)2F−T :δF ⇒ ∂I3
∂F = 2I3F−T

When the common practice of defining an isotropic constitive model via invari-
ants is followed, the strain energy density is provided as a function Ψ(I1, I2, I3). In
such case, we can use the chain rule to compute the stress P as:

P = ∂Ψ(I1, I2, I3)
∂F

= ∂Ψ
∂I1

∂I1
∂F

+ ∂Ψ
∂I2

∂I2
∂F

+ ∂Ψ
∂I3

∂I3
∂F

, or, after substitution:

P(F) = ∂Ψ
∂I1
· 2F + ∂Ψ

∂I2
· 4FFT F + ∂Ψ

∂I3
· 2I3F−T (3.8)

Finally, we note the additional invariant J = det F =
√
I3 that is often used in

replacement of I3 while defining certain constitutive models. This quantity has an
important physical interpretation as it represents the fraction of volume change due
to deformation: a value of J = 1 implies that volume is preserved exactly while,
J = 2 would indicate an expansion to twice the undeformed volume and J = 0.2
would be a compression down to 20% of the rest volume.

3.6 Neohookean elasticity
An example of an isotropic constitutive model defined via isotropic invariants is
Neohookean elasticity:

Ψ(I1, J) = µ

2 (I1 − 3)− µ log(J) + λ

2 log2(J), or equivalently

Ψ(I1, I3) = µ

2 (I1 − log(I3)− 3) + λ

8 log2(I3)
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From this definition, we can easily compute

∂Ψ
∂I1

= µ

2 and ∂Ψ
∂I3

= − µ

2I3
+ λ log(I3)

4I3
Thus, using equation (3.8) we obtain:

P(F) = µF− µF−T + λ log(I3)
2 F−T

or P(F) = µ(F− µF−T ) + λ log(J)F−T .

The Neohookean model has the following notable characteristics:

• By construction, the material exhibits a very strong reaction to extreme com-
pression. Due to the logarithmic term log2(J) in the energy, as J → 0 we
have Ψ→∞. This constructs a powerful energy barrier that strongly resists
extreme compression. This is the only constitutive model we have seen so far
that has this property; models discussed earlier in this chapter will allow the
material to compress to zero volume, even invert, while only absorbing a finite
amount of energy.

• Modeling materials as strongly incompressible amounts to using a very large
value for the second Lamé coefficient (λ). Doing so in the case of Neohookean
elasticity would emphasize the log2(J) energy term, and strongly enforce J = 1
which produces an volume-preserving formulation. Incidentally, setting a high
value for λ in the earlier constitutive models does not quite have the desired
effect, as their respective terms scaled by λ do not correspond to true volume
change (as J does). For example, a high λ value for linear elasticity would
enforce

tr(F− I) = 0⇒ div
[
~φ( ~X)− ~X

]
= 0

i.e. this will ensure that the displacement field ~x( ~X) − ~X is divergence free.
This condition approximates volume preservation only for small deformations.

• The fact that the strain energy defines a (theoretically) impassable barrier at
compression magnitudes leading to zero volume J = 0 implies that there is
no mechanism for handling what happens when, accidentally, the simulated
model is forced into a (theoretically impossible) inverted configuration. In
such cases, energy and stress are undefined, since J < 0. We note that such
inversions (although theoretically impossible) can easily occur in practice, as
a result of nonphysical kinematic constraints, instability of time integration
techniques, or inadequate convergence of numerical solvers. Should such a
scenario arise, it is advised that the deformation gradient F be temporarily
replaced by the nearest physically plausible value F̃ (with det F̃ > ε).



Chapter 4

Discretization

The preceding chapters detailed a variety of physical laws that may be used to
describe the response of elastic materials to deformation. Up to this point, these
laws were expressed relative to a continuous deformation in space. Naturally, in
order to enable numerical simulation all such laws have to be discretized; physical
quantities such as the deformation map, the elastic strain energy, stress tensors and
elastic forces all have to be reformulated as functions of our discrete state variables.

4.1 Energy and force discretization

When modeling a deformable body on the computer we only store the values of the
deformation map φ( ~X) on a finite number of points ~X1, ~X2, . . . , ~XN , corresponding
to the vertices of a discretization mesh. The respective deformed vertex locations
~xi = φ( ~Xi), i = 1, 2, . . . , N are our discrete degrees of freedom, and we can write
x = (~x1, ~x2, . . . , ~xN ) for the aggregate state of our model. As a first step, we need
to specify a method for reconstructing a continuous deformation map φ̂ from the
discrete samples ~xi = φ( ~Xi). In essence this is just a choice of an interpolation
scheme. For example, if a tetrahedral mesh is used to describe the deforming body,
barycentric interpolation will extend the nodal deformations to the entire interior
of the mesh. Trilinear interpolation would be a natural choice for lattice discretiza-
tions. At any rate, we denote the interpolated deformation map by φ̂( ~X; x) which
emphasizes that this interpolated deformation is dependent on the discrete state x.

For a hyperelastic material, the strain energy of any given deformation φ(~x) is
computed by integrating the energy density Ψ over the entire body Ω:

E[φ] :=
ˆ

Ω
Ψ(F)d ~X

We can now define a discrete energy, expressed as a function of the degrees of
freedom x, by simply plugging the interpolated deformation φ̂ into the definition of

25
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the strain energy

E(x) := E
[
φ̂( ~X; x)

]
=
ˆ

Ω
Ψ
(
F̂( ~X; x)

)
d ~X (4.1)

where F̂( ~X; x) := ∂φ̂( ~X; x)/∂ ~X is the deformation gradient computed from the
interpolated map φ̂. It is understandable that equation (4.1) may appear quite
cryptic at this point, since both the energy Ψ(F) and the interpolated φ̂ are likely
defined via complex formulas. In this chapter we will focus on two common spatial
discretizations (tetrahedral meshes and Cartesian hexahedral lattices) and explain
how the energy in equation (4.1) and all its derived quantities can be evaluated
systematically and efficiently.

Having defined the discrete energy E(x) we can now compute the elastic forces
associated with individual mesh nodes, by taking the negative gradient of the elastic
energy with respect to the corresponding degree of freedom:

~fi(x) = −∂E(x)
∂~xi

or, collectively f := (~f1, ~f2, . . . , ~fN ) = −∂E(x)
∂x

Outline of a brief (albeit over-simplified) “proof” . . .

For simplicity, let us assume that (a) the deforming body is not subject
to any internal friction forces which would reduce its overall energy, and (b) the
mass of the body is distributed exclusively to the mesh nodes. The total energy of
the body is the sum of strain energy (E) and kinetic energy (K) as follows:

Etotal = E(x) +K(v) = E(x) +
N∑

i=1

1
2mi‖~vi‖2

Since no friction forces are in effect the total energy is conserved over time, thus:

∂

∂t
Etotal = 0⇒

N∑
i=1

[
∂E(x)
∂~xi

· ~vi +mi~ai · ~vi

]
= 0

Since the last equality holds for any value of the velocities {~vi}, we must have:

∂E(x)
∂~xi

+mi~ai = 0⇒ ~fi = mi~ai = −∂E(x)
∂~xi

for all i = 1, 2, . . . , N

In practice, prior to computing each force, we first separate the energy integral
of equation (4.1) into the contributions of individual elements Ωe (e.g. triangles,
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hexahedra, etc.) as follows:

E(x) =
∑

e

Ee(x) =
∑

e

ˆ
Ωe

Ψ
(
F̂( ~X; x)

)
d ~X

Subsequently, the force ~fi on each node can be computed by adding the contributions
of all elements in its immediate neighborhood Ni:

~fi(x) =
∑

e∈Ni

~fe
i (x), where ~fe

i (x) = −∂E
e(x)
∂~xi

For simplicity, the following sections will focus on computing the nodal forces on
an element-by-element basis, with the understanding that the aggregate forces are
computed by accumulating the contributions from all elements in the mesh.

4.2 Linear tetrahedral elements

Tetrahedral meshes are among the most popular discrete volumetric geometry rep-
resentations. At the same time, they offer one of the most straightforward options
for constructing a discretization of the elasticity equations. The convenience of
tetrahedral discretizations is largely due to the simple interpolation method they
imply; the reconstructed deformation map φ̂ can be defined to be a piecewise linear
function over each tetrahedron. Specifically, in every tetrahedron Ti we have

φ̂( ~X) = Ai
~X +~bi for all ~X ∈ Ti (4.2)

where the matrix Ai ∈ R3×3 and the vector ~bi ∈ R3 are specific to each tetrahe-
dron. The interpolation scheme implied by equation (4.2) is no other than simple
barycentric interpolation on every element. Differentiating (4.2) with respect to ~X
reveals that the deformation gradient F = ∂φ̂/∂ ~X = Ai is constant on each ele-
ment, and as a consequence so will be any discrete strain measure and stress tensor;
this justifies why linear tetrahedral elements are also referred to as constant strain
tetrahedra.

For simplicity of notation we write

φ( ~X) = F ~X +~b

where we dropped the tetrahedron index, and replaced matrix Ai with its equal
deformation gradient. Interestingly, it is possible to determine F (and ~b, if de-
sired) directly from the locations of the tetrahedron vertices, without involving
any reasoning related to barycentric interpolation. Let us denote with ~X1, . . . , ~X4
the undeformed (reference) locations of the tetrahedron vertices, and let ~x1, . . . , ~x4
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Figure 4.1: Reference (left) and deformed (right) shape of a linear tetrahedron

symbolize the respective deformed vertex locations as illustrated in figure 4.1. Each
vertex must satisfy ~xi = φ( ~Xi), or

~x1 = F ~X1 +~b

~x2 = F ~X2 +~b

~x3 = F ~X3 +~b

~x4 = F ~X4 +~b

⇒

~x1 − ~x4 = F

(
~X1 − ~X4

)
~x2 − ~x4 = F

(
~X2 − ~X4

)
~x3 − ~x4 = F

(
~X3 − ~X4

)


where the last system was derived by subtracting the equation ~x4 = F ~X4+~b from the
three others, to eliminate the vector ~b. It is possible to group the last three (vector)
equations as a single matrix equation, by placing each one into the respective column
of a 3× 3 matrix:[
~x1 − ~x4 ~x2 − ~x4 ~x3 − ~x4

]
=

[
F
(
~X1 − ~X4

)
F
(
~X2 − ~X4

)
F
(
~X3 − ~X4

) ]
[
~x1 − ~x4 ~x2 − ~x4 ~x3 − ~x4

]
= F

[
~X1 − ~X4 ~X2 − ~X4 ~X3 − ~X4

]
Ds = FDm (4.3)

where

Ds :=

 x1 − x4 x2 − x4 x3 − x4
y1 − y4 y2 − y4 y3 − y4
z1 − z4 z2 − z4 z3 − z4

 (4.4)

is the deformed shape matrix and

Dm :=

 X1 −X4 X2 −X4 X3 −X4
Y1 − Y4 Y2 − Y4 Y3 − Y4
Z1 − Z4 Z2 − Z4 Z3 − Z4


is called the reference shape matrix (or “material-space” shape matrix).
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We note that Dm is a constant matrix, as it only depends on the vertex coor-
dinates in the reference (undeformed) configuration; Furthermore, the undeformed
volume of the tetrahedron equals W = 1

6 |det Dm|; assuming that the reference
shape of the tetrahedron is non-degenerate (i.e. nonzero volume, W 6= 0), the
matrix Dm is nonsingular and equation (4.3) can be solved for F as:

F = DsD−1
m or F(x) = Ds(x)D−1

m (4.5)

where the last expression emphasizes that the deformed degrees of freedom appear
only in the expression for Ds; while the constant D−1

m is precomputed and stored.
Since F is constant over the linear tetrahedron, the strain energy of this element

reduces to:

Ei =
ˆ

Ti

Ψ(F)d ~X = Ψ(Fi)
ˆ

Ti

d ~X = W ·Ψ(Fi) or E(x) = W ·Ψ(F(x)) (4.6)

We may subsequently use Equation (4.6) to derive the contribution of element Ti

to the elastic forces on its four vertices as ~f i
k = −∂Ei(x)/∂~xk. In fact, the forces on

all four vertices can be collectively computed via the following equations:
P(F) is the
Piola stress
defined in
section 2.4

H =
[
~f1 ~f2 ~f3

]
= −WP(F)D−T

m and ~f4 = −~f1 − ~f2 − ~f3 (4.7)

Proof

Define x
(1)
i , x

(2)
i , x

(3)
i to be the x-, y- and z- coordinates of the vertex ~xi.

Likewise for the components of the nodal force ~fi = (f (1)
i , f

(2)
i , f

(3)
i )

Lemma For i = 1, 2, 3
∂F/∂x(j)

i = ejeT
i D−1

m

Proof From equation (4.3) we have ∂Ds/∂x
(j)
i = ejeT

i . The Lemma follows
directly from this equation and F = DsD−1

m .

We proceed to compute the force component:

Hji = f
(j)
i = −∂E(x)

∂x
(j)
i

= −W ∂Ψ(x)
∂F : ∂F

∂x
(j)
i

= −WP(F) :
(
ejeT

i D−1
m

)
=

= −W tr
[
P(F)D−T

m eieT
j

]
= −WeT

j P(F)D−T
m ei =

[
−WP(F)D−T

m

]
ji

Thus H = −WP(F)D−T
m . The equation ~f4 = −~f1 − ~f2 − ~f3 can be proved in a

directly similar fashion, but is also a consequence of conservation of momentum; if
the sum of all four nodal forces (which are internal to the body) did not sum to
zero, this would violate conservation of linear momentum.
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The computation of all elastic forces in a tetrahedral mesh is summarized in
pseudocode as follows:

Algorithm 1 Batch computation of elastic forces on a tetrahedral mesh
1: procedure Precomputation(x,Bm[1 . . .M ],W [1 . . .M ])
2: for each Te = (i, j, k, l) ∈M do . M is the number of tetrahedra

3: Dm ←

 Xi −Xl Xj −Xl Xk −Xl

Yi − Yl Yj − Yl Yk − Yl

Zi − Zl Zj − Zl Zk − Zl


4: Bm[e]← D−1

m

5: W [e]← 1
6 det(Dm) . W is the undeformed volume of Te

6: end for
7: end procedure
8: procedure ComputeElasticForces(x, f ,M,Bm[],W [])
9: f ← 0 .M is a tetrahedral mesh

10: for each Te = (i, j, k, l) ∈M do

11: Ds ←

 xi − xl xj − xl xk − xl

yi − yl yj − yl yk − yl

zi − zl zj − zl zk − zl


12: F← DsBm[e]
13: P← P(F) . From the constitutive law
14: H← −W [e]P (Bm[e])T

15: ~fi += ~h1, ~fj += ~h2, ~fk += ~h3 . H =
[
~h1 ~h2 ~h3

]
16: ~fl += (−~h1 − ~h2 − ~h3)
17: end for
18: end procedure

4.3 Force differentials
We have seen how discrete nodal forces (f) can be computed for an arbitrary con-
stitutive model, given nodal positions (x) as input. This is all that is necessary to
implement an explicit (e.g. Forward Euler) time integration scheme; however im-
plicit methods such as Backward Euler will also require a process for computing
force differentials, i.e. linearized nodal force increments around a configuration x∗,
relative to a small nodal force displacement δx. We denote this by:

δf = δf(x∗; δx) := ∂f
∂x

∣∣∣∣
x=x∗

· δx

Although in this expression we used the stiffness matrix ∂f/∂x to aid in the defi-
nition of the force differential, in practice it may be preferable to avoid constructing
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this matrix explicitly, as the construction cost and memory footprint associated
with it may impact performance. Instead, we aim to compute the force differentials
δf directly, using only the information in the current state x∗, the displacement δx
and a small amount of additional meta-data.

As was the case with force computation, we evaluate the force differential vector
δf = (δ ~f1, δ ~f2, . . . , δ ~fN ) on an element-by-element basis, accumulating the contri-
bution of each element to the aggregate value of each of its nodes. Consequently,
we only focus on the process for computing differentials of nodal forces for a sin-
gle tetrahedron. As before, we can pack the differentials of the first three vertices
(δ ~f1, δ ~f2 and δ ~f3) in a single matrix representation:

δH =
[
δ ~f1 δ ~f2 δ ~f3

]
Once δH has been evaluated, the force differential for the fourth node can be

computed as δ ~f4 = −δ ~f1 − δ ~f2 − δ ~f3. Taking differentials on equation (4.7) we
obtain the following expression for δH:

δH = −WδP(F; δF)D−T
m

Thus, the computation of nodal force differentials has been reduced to a computa-
tion of the stress differential δF. There are two steps in completing this evaluation:
(a) we need to construct the deformation gradient increment δF (the deformation
gradient F itself is computed as detailed in the previous section) and (b) we need
to provide a usable formula for δP(F; δF).

We start with the differential of the deformation gradient δF, which is easily
computed by taking the differentials on equation (4.5) to obtain:

δF = (δDs)D−1
m

Matrix δDs itself is simply computed by arranging the nodal displacements in the
same fashion as nodal positions were for Ds:

δDs :=

 δx1 − δx4 δx2 − δx4 δx3 − δx4
δy1 − δy4 δy2 − δy4 δy3 − δy4
δz1 − δz4 δz2 − δz4 δz3 − δz4


The one remaining task is to provide a concise formula for δP(F; δF). By

necessity, this will be a process that depends on the constitutive model itself. Here,
we provide examples of this derivation for the St. Venant-Kirchhoff, and Neohookean
material models:



32 CHAPTER 4. DISCRETIZATION

Stress differentials for St. Venant-Kirchhoff materials

We start by assessing the differential of the Green strain tensor:

E = 1
2(FT F− I)⇒ δE = 1

2(δFT F + FT δF)

We then proceed to compute the differential of the stress tensor itself:

P(F) = F [2µE + λtr(E)I]⇒

δP(F; δF) = δF [2µE + λtr(E)I] + F [2µδE + λtr(δE)I]

Stress differentials for Neohookean materials

We will use without proof the following two expressions for the differential
of the matrix inverse and matrix determinant:

δ[F−1] = −F−1δFF−1, also δ[F−T ] = −F−T δFT F−T

δ[det F] = det F · tr(F−1δF)

With these results, the differential of P is computed as

P(F) = µ(F− F−T ) + λ log(J)F−T ⇒

⇒ δP(F; δF) = µ(δF + F−T δFT F−T ) + λ
δ[det F]

J F−T − λ log(J)FT δFT F−T

⇒ δP(F; δF) = µδF + [µ− λ log(J)] F−T δFT F−T + λtr(F−1δF)F−T

The force differential computation is summarized in pseudocode as Algorithm (2).

4.4 An implicit time integration scheme
We are now in a position to describe a complete, implicit-time integration scheme
for nonlinear elastic bodies. The formulation that follows is based on the Backward
Euler method, and thus is unconditionally stable for any timestep ∆t (subject to
the nonlinear equations involved being solved to satisfactory accuracy). We will
first introduce some notation:

• fe(x∗) : Elastic forces at configuration x∗, as defined in previous sections.



4.4. AN IMPLICIT TIME INTEGRATION SCHEME 33

Algorithm 2 Batch computation of elastic force differential on a tetrahedral mesh.
Assumes that the precomputation routine from algorithm 1 is also available.

1: procedure ComputeForceDifferentials(x, f , δx, δf ,M,Bm[],W [])
2: f ← 0 .M is a tetrahedral mesh
3: for each Te = (i, j, k, l) ∈M do

4: Ds ←

 xi − xl xj − xl xk − xl

yi − yl yj − yl yk − yl

zi − zl zj − zl zk − zl


5: δDs ←

 δxi − δxl δxj − δxl δxk − δxl

δyi − δyl δyj − δyl δyk − δyl

δzi − δzl δzj − δzl δzk − δzl


6: F← DsBm[e]
7: δF← (δDs)Bm[e]
8: δP← δP(F; δF) . From the stress derivative formula
9: δH← −W [e](δP) (Bm[e])T

10: δ ~fi += δ~h1, δ ~fj += δ~h2, δ ~fk += δ~h3 . δH =
[
δ~h1 δ~h2 δ~h3

]
11: δ ~fl += (−δ~h1 − δ~h2 − δ~h3)
12: end for
13: end procedure

• K(x∗) = − ∂fe
∂x

∣∣∣
x∗

: This is the elasticity stiffness matrix evaluated around
the configuration x∗. In most cases, the matrix K will never be explicitly
constructed; interative solvers that involve this matrix will only require the
evaluation of matrix-vector products of the form Kw. These products can be
computed in a matrix-free fashion by calling the force differential computation
procedure detailed in Algorithm (2) with an argument δx← (−w)

• fd(x∗,v∗) = −γK(x∗)v∗ : Damping forces at position x∗ and velocity v∗
according to the Rayleigh damping model. The parameter γ does not have a
predetermined range (it is not confined to an interval such as [0, 1]) and can
be spatially varying, or constant for simplicity.

• f(x∗,v∗) = fe(x∗) + fd(x∗,v∗) : The aggregate forces, including elastic and
damping components.

• M : The mass matrix. We shall assume M is lumped to diagonal form.

In order to define a backward Euler integration scheme, we will need to main-
tain both the position (xn) and the velocity (vn) of the deforming body at time tn.
Alternatively, it would have been possible to maintain just the two previous posi-
tions xn and xn−1. The Backward Euler scheme computes the positions xn+1 and
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velocities vn+1 at time tn+1(:= tn + ∆t) as the solution of the (nonlinear) system
of equations:

xn+1 = xn + ∆tvn+1 (4.8)
vn+1 = vn + ∆tM−1f(xn+1,vn+1)

= vn + ∆tM−1
(
fe(xn+1) + fd(xn+1,vn+1)

)
(4.9)

Since the Backward Euler system is nonlinear due to equation (4.9), we shall
define an iterative process to compute the unknowns xn+1 and vn+1. We will con-
struct sequences of approximations xn+1

(0) ,x
n+1
(1) ,x

n+1
(2) , . . . and vn+1

(0) ,v
n+1
(1) ,v

n+1
(2) , . . .

respectively, such that xn+1
(k)

k→∞−→ xn+1 and vn+1
(k)

k→∞−→ vn+1 respectively. We will
use the positions and velocities at the previous time step as initial guesses, i.e.
xn+1

(0) = xn,vn+1
(0) = vn.

We introduce the position and velocity correction variables, defined as

∆x(k) := xn+1
(k+1) − xn+1

(k) and ∆v(k) := vn+1
(k+1) − vn+1

(k) .

In most cases, unless there is risk of ambiguity, we will drop the subscript and de-
note these corrections simply as ∆x,∆v. At every step of our iterative scheme for
the nonlinear Backward Euler system, we will linearize equations (4.8) and (4.9)
around the current iterate xn+1

(k) ,v
n+1
(k) , and the solution of the linearized system will

define the next iterate xn+1
(k+1),v

n+1
(k+1).

Lemma 1. ∆x = ∆t∆v.

Proof. Equation (4.8) is in fact linear. Therefore, at every iteration it will
simply linearize to itself, i.e.

xn+1
(k) = xn + ∆tvn+1

(k) , for all k.

Subtracting the above equations for iterations k and k + 1, we obtain

xn+1
(k+1) − xn+1

(k) = ∆t(vn+1
(k+1) − vn+1

(k) )

or ∆x = ∆t∆v

The linearization of equation (4.9) around (xn+1
(k) ,v

n+1
(k) ) yields:
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vn+1
(k) + ∆v = vn + ∆tM−1

(
fe(xn+1

(k) ) + ∂fe

∂x

∣∣∣∣
xn+1

(k)

·∆x

−γK(xn+1
(k) )(vn+1

(k) + ∆v)
)

Note that this equation is not quite an exact linearization, because in the damp-
ing term we fixed the stiffness matrix at the value it had around configuration xn+1

(k)
instead of performing a first-order Taylor expansion. This modification leads to a
much simpler (modified) Newton scheme for the Backward Euler system, and prac-
tically doesn’t affect the convergence of the Newton scheme. We further manipulate
the previous equation as follows:

1
∆t2 M∆x = 1

∆tM(vn − vn+1
(k) ) +

(
fe(xn+1

(k) )

−K(xn+1
(k) )∆x− γK(xn+1

(k) )(vn+1
(k) + 1

∆t∆x)
)

[(
1 + γ

∆t

)
K(xn+1

(k) ) + 1
∆t2 M

]
∆x =

= 1
∆tM(vn − vn+1

(k) ) +
(
fe(xn+1

(k) )− γK(xn+1
(k) )vn+1

(k)

)
= 1

∆tM(vn − vn+1
(k) ) +

(
fe(xn+1

(k) ) + fd(xn+1
(k) ,v

n+1
(k) )

)
= 1

∆tM(vn − vn+1
(k) ) + f(xn+1

(k) ,v
n+1
(k) ) (4.10)

The system described by equation (4.10) is symmetric and positive definite,
and can be solved efficiently with a Krylov subspace method such as Conjugate
Gradients. We also note that equation (4.10) only determines the update for the
positions at time tn+1. Velocities should be updated at each iteration using the
relation vn+1

(k+1) = vn+1
(k) + 1

∆t∆x.
As a final observation, equation (4.10) can be modified to yield a quasistatic

simulation, where every configuration over time is the result of a rest configura-
tion (subject to the imposed kinematic constraints and boundary conditions). We
achieve this by setting ∆t → ∞, effectively indicating that at every simulated
instance we allow infinite time for the elastic body to settle into an equilibrium
configruation. The Newton iteration for this quasistatic problem simply becomes:

K(xn+1
(k) )∆x = f(xn+1

(k) )

after which positions are updated as xn+1
(k+1) ← xn+1

(k) + ∆x.


