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Noisy function EH2E∆2 , ∇ · n = 0

Fig. 11. Low-order boundary conditions are the de facto standard for smooth-
ing in geometry processing (middle), but they introduce bias at the boundary
(inset). A naïve extension of our discrete Hessian energy to 3D seems to
alleviate this.

Applying a functional variation to V, we immediately see that the
solution must be obtained when V = Λ|Ω , so we can substitute Λ
out:

saddle
u,V

∫
Ω

(
− 1

2V : V − (∇ · V) · ∇u
)
dA (25)

This saddle problem involves only first derivatives. We may use stan-
dard piecewise-linear elements foru and each of the four coordinate
functions of V (with V = 0|∂Ω because Λ = 0|∂Ω). Factoring out
the degrees of freedom corresponding to V, we have a discretization
of the squared Hessian energy with natural boundary conditions:

EH2 (u) ≈ uTGTADM̃−1DTAGu, (26)

where G,A,D, and M̃ are the discrete gradient operator, diagonal
matrix of triangle areas, discrete matrix divergence operator and
discrete mass matrix (see Appendix B).

5.2.1 Alternative discretizations. Many other mixed finite-element
methods have been applied to the biharmonic equation and asso-
ciated energies in the past [Lamichhane 2011; Scholz 1978]. The
Hellan-Herrmann-Johnson mixed formulation (see, e.g., [Comodi
1989] ) has seen recent renewed interest when applied in conjunc-
tion with the discontinuous Galerkin method [Braess et al. 2017;
Hoppe et al. 2016].

Conforming high-order elements are another option. For example,
the Argyris element [Braess 2002] would directly allow second-
order differentiation in R2. Besides introducing a large number of
degrees of freedom, it is dependent on the 2D Cartesian coordinate
system, making it difficult to extend to arbitrary surfaces.

Higher-order smoothing energies have also been discretized with-
out the finite element method. For example, in machine learning,
Kim et al. [2009] discretize the Hessian energy using a nonlinear
fitting approach.

5.3 Triangle meshes in 3D
So far we have only considered flat domains Ω ⊂ R2. First experi-
ments suggest that curved surfaces, and especially those with bound-
aries, might benefit analogously from our analysis of smoothness en-
ergies (see Fig. 11). We can trivially extend our mixed finite-element
discretization of EH2 in Section 5.2 to triangle meshes immersed in
R2 by extending the gradient and matrix divergence operators in

Equation (26) to compute 3D rather than 2D vectors. This amounts
to temporarily treating the Hessian as a 3× 3 matrix. This extension
is inspired by the construction of the discrete Laplacian for surfaces
built by trivially extending the gradient operator to compute per-
face 3D vectors while maintaining the property that: L = GTAG.
Our discretization of the Hessian and squared Hessian matrices is
available open source as part of libigl [2017].

5.3.1 Future work: accounting for curvature.

our EH2E∇2

Fiedler�vectorsOn curved surfaces, the formula-
tion of the Hessian energy is far more
intricate. One striking difference to
the planar case arises from the fact
that the Hessian energy on smooth
surfaces without boundary is in gen-
eral no longer equal to the Laplacian
energy. Indeed, integration by parts
similar to Equation (10) leads to the
so-called Bochner-Laplacian, which
differs from the usual (Hodge-) Laplacian by a term involving Gauss-
ian curvature. Also the naïve extension of our mixed finite element
discretization of EH2 to 3D leads to a different energy than the Lapla-
cian energy (see inset). However, we do not claim this extension to
be a proper discrete version of the smooth Hessian energy.

Another complication arises from the fact that even a weak for-
mulation of the Hessian similar to Equation (24) involves covariant
differentiation in the smooth setting. One future direction might
be to use recent discretizations of the covariant derivative (e.g.,
[Azencot et al. 2015; Liu et al. 2016]) to derive a discrete Hessian
energy while maintaining analogous natural boundary conditions.
The original Green’s identity in Equation (7) does not introduce
curvature terms, allowing discretization of the squared Laplacian
Energy using mixed FEM as used for thin shells [Bergou et al. 2006;
Garg et al. 2007].

Regardless, first experiments suggest that our naïve extension
to 3D might enable our main results concerning free boundaries
to operate on surface meshes. We leave an analysis of our naïve
extension to 3D for future work.

5.4 L1 minimization
Instead of minimizing the L2-norm of the Hessian, the squared
Hessian energy, we can also minimize its L1-norm:∫

Ω

|Hu |F dA (27)

This L1-type energy exhibits different properties from the ones
of the squared Hessian energy (see Section 6).

A detailed description the dizcretization can be found in Appen-
dix C. This is a simple discretization; other discretizations of the L1

norm are discussed in works such as [Bronstein et al. 2016].

6 EXPERIMENTS & APPLICATIONS
Smoothness energies are a fundamental ingredient in geometry
processing algorithms. We tour applications using the Hessian to
define smoothness. We solve the resulting sparse linear systems
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…minimizingEH2…minimizingE∆2

bounded biharmonic weights…

Fig. 12. Both weights are constrained to agree on the outer boundary. On
the interior holes, EH2 causes less distortion than E∆2 .

using MATLAB and quadratic programs using Mosek [Andersen
and Andersen 2000]. We verified that both our discretizations (see
Section 5) converge toward the analytic minimizer of EH2 on an
annular domain with radially symmetric fixed value and third-order
natural boundary conditions (see, e.g., Fig. 10). The computational
complexity of minimizing EH2 is equivalent to minimizing E∆2 : in
both cases the number of non-zeros per-row is less than or equal to
the size of the corresponding vertex’s two-neighborhood.

The simplest demonstration of these energies is to reconstruct a
smooth function while interpolating values at specific points. For
flat domains with interpolated values and normal derivatives along
the boundary, the reconstructions minimizing E∆2 and EH2 will
agree (see Fig. 6). If the boundary is left unconstrained or partially
constrained then natural boundary conditions will appear for each
respective energy (see Fig. 2). In all examples, differences are best
identified by observing how isolines meet with the boundary: zero
Neumann boundary conditions cause the isolines to be perpendicu-
lar to the boundary, while high-order natural boundary conditions
do not force this behavior (see Fig. 8).

Linear subspace design for cartoon deformation is a special case
of scattered data interpolation. Instead of interpolating colors or
temperatures, displacements are interpolated over a 2D cartoon or
surface (ref., [Jacobson et al. 2014]). Minimizing EH2 with its natural
boundary conditions and Kronecker delta values at specified point
handles, we can define a linear basis for smooth deformation inter-
polation displacements at these points. Like previous approaches
[Wang et al. 2015], the minimizing functions of EH2 are linearly pre-
cise and therefore form a form of cage-free generalized barycentric
coordinates (“Hessian coordinates”). In contrast to previous work,
like the coordinates of Wang et al., Hessian coordinates are defined
by a smooth energy where it is easy to show that all and only linear
functions exist in its null space (see Fig. 7). Fig. 9 shows that the
deformation behavior is similar that of Wang et. al. [2015]

Similarly, automatic methods for computing linear blend skinning
weights have employed smoothness energies [Baran and Popović
2007]. Classic bounded biharmonic weights minimize E∆2 subject
to zero Neumann boundary conditions [Jacobson et al. 2011] and
bound constraints. Restricting EH 2 to the same value as classic
bounded biharmonic weights on the outside of the shape, but not
on interior holes leads to weights that preserve the characteristic
shape of holes withough much distortion. As can be seen in Fig. 12,
bounded biharmonic weights based on E∆2 distort the interior holes

Noisy function EH2E∆2 , ∇ · n = 0

Fig. 13. Smoothing on a noisy domain. Compared to previous methods (left),
the natural boundary conditions of EH2 (right) better model ignoring the
non-salient boundaries when smoothing data on a partial surface scan.

of the pants significantly under deformation, while EH 2 alleviates
the effect.

We now turn our attention to another common use for a smooth-
ness energy: dense data denoising or fairing. To do so, we can opti-
mize a function u that minimizes the weighted sum of a data term
(L2-norm of difference between u and a noisy input function f ) and
the L2 smoothness energy (e.g., E∆2 or EH2 ). When using E∆2 for
data smoothing on domains with free boundaries, previous methods
(e.g., [Weinkauf et al. 2010]) enforce low-order boundary conditions
to ensure that noisy boundary values are not simply interpolated
(see Fig. 3).

The biasing effect of these low-order conditions is apparent: the
heavier the smoothing, the more the solution becomes constant near
the boundary regardless of the data there. In contrast, smoothing
with EH2 allows the solution to vary near the boundary (see Fig. 11).

In Fig. 13, we smooth a noisy simulation of heat diffusion on a
range scan of a Nokia cellphone [Godil et al. 2009]. The abundance
of free boundaries due to missing data highlights the effect of zero
Neumann boundary conditions compared to the natural boundary
conditions of EH2 .

The energies E∆2 and EH2 measure the L2-norm of the Laplacian
/ Hessian respectively. Minimization of such energies prefers to
distribute energy smoothly over the domain. In contrast, L1 mini-
mization prefers to concentrate high energy at sparse locations. At

noisy input EH1EH2

Fig. 14. Smoothing using the L2-norm also removes salient creases. Mini-
mizing the L1-norm of the Hessian produces a piecewise-planar solution.
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E∆1EH1

Fig. 15. The Bunny flows along L1-minimization of the Hessian (local energy density in pseudocolor). Energy concentrates at creases and the bunny develops
smooth, nearly flat regions. This minimization achieves crease-aware smoothing of surface geometry. Minimizing the L1-norm of the Laplacian leads to
energy concentration at points and a prickly appearance.

these locations we see the behavior of natural boundary conditions
of the smoothness energy. Effectively, they become boundaries be-
tween low-energy regions. In Fig. 14, we smooth a toy function (a
triangle wave plus noise). While L2 smoothing EH2 also rounds the
peaks, L1 smoothing EH1 smooths away the noise but maintains the
sharp creases.

In Fig. 16, we smooth the noisy height data of a cathedral rooftop.
Minimizing the L1-norm of the Laplacian (E∆1 ) concentrates energy
at isolated points, producing a circus tent appearance. In contrast,
minimizing the L1-norm of the Hessian (EH1 ) concentrates energy
along creases, producing a piecewise planar rooftop.

Under the L1-norm, the difference between minimizers does not
rely on the presence of a boundary. Indeed, even for closed surfaces
with no boundary, we see very different behavior. In Fig. 15, we treat
the surface’s geometry as the input data f and take smoothing steps
where the data-versus-smoothness weight acts as an implicit time-
step parameter controlling a geometric flow. The EH1 flow of the
Bunny forms 1D creases bounding smooth, near-developable (low
Gaussian curvature) patches. This application is inspired by image
smoothing with sparse norms [Xu et al. 2011] and as such the results
are reminiscent of surface contrast enhancing methods (e.g., [He
and Schaefer 2013]). In contrast, the E∆1 flow quickly concentrates
energy at isolated points suspended in a near-minimal (low mean
curvature) surface.

7 CONCLUSION & FUTURE WORK
Energies built with the Hessian rather than the Laplacian unlock
high-order boundary conditions that are especially useful when
boundaries are to be conceptually ignored during problem modeling.

In future work, we would like to investigate formulations of EH2

for curved surfaces that account for the covariant derivative, as well
as corresponding discretizations (see Section 5.3.1). For flat domains,
it would be interesting to explore boundary-only discretizations
(cf. [Chen and Weber 2015]) or subspace deformation for solid ob-
jects. Initial derivations suggest that point constraints may not lead
to smooth minimizers of second-order smoothness energies for
solids. One possibility, however daunting, may be to consider the
squared Frobenius norm of the three-tensor of third derivatives, an
energy with only quadratic functions in its null space.

E∆1 EH1noisy input

Fig. 16. Smoothing a cathedral roof. Unlike L2 minimization, the behavior
of E∆1 =

∫
|∆u | dA and EH1 =

∫
|Hu |F dA are dramatically different in

the interior.

We hope that our work sheds new light on familiar problems and
provides insights into the power of the natural boundary conditions
of the squared Hessian energy for geometry processing problems.
Many applications that are currently using the squared Laplacian
energy with zero Neumann boundary conditions can potentially
profit by trying the squared Hessian energy with natural boundary
conditions alongside it.
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A FINITE DIFFERENCES
In order to discretize EH2 over a domain Ω embedded in a grid
with n total nodes and n̂ interior nodes, we define a sparse ma-
trix H =

[
HT
xx HT

yy
√

2HT
xy

]T
∈ R3n̂×n so that each row of Hxx

approximates the second derivative of the unknown function at
the corresponding interior grid node: Hi

xxu ≈ ∂2u(xi )/∂x2 and
analogously for rows in Hyy and Hxy .

We use standard, second-order stencils for each term, i.e.,:

Hi
xxu =

ui, j−1 − 2ui, j + ui, j+1
h2 (28)

Hi
yyu =

ui−1, j − 2ui, j + ui+1, j
h2

Hi
xyu = Hi

yxu =
ui−1, j−1 + ui−1, j+1 − ui+1, j−1 + ui+1, j+1

4h2 .

B MIXED FINITE ELEMENTS
Solving the piecewise-linear discretization of Equation (25) by differ-
entiating with respect to all degrees of freedom, we have a system
of linear equations in matrix form:

(
M̃ DTAG

GTAD 0

) ©«
Vxx
Vxy
Vyx
Vyy
u

ª®®®®®¬
= 0 (29)

where M̃ ∈ R4 |i |×4 |i | repeats the mass matrix M(i, i) along the
diagonal, A ∈ R2m×2m is a diagonal matrix containing triangle
areas, and D ∈ R2m×4 |i | computes the matrix divergence defined
by:

D =
(
G(x , i) G(y, i) 0 0

0 0 G(x , i) G(y, i)

)
, (30)

where G ∈ R2m×n is the usual gradient operator and G(x , i) selects
the rows and columns corresponding to the x-compo-nents and
interior vertices respectively. Finally, if we use lumped mass matri-
ces we can efficiently condense this system and use it to define a

discretization of our original energy:
EH2 (u) ≈ uTGTADM̃−1DTAGu. (31)

C L1 MINIMIZATION
In the smooth setting, the L1 Frobenius norm of the Hessian is:∫

Ω

|Hu |F dA (32)

This can be minimized by introducing an auxiliary matrix-valued
variable equal to the element-wise absolute value of the Hessian
Y = |Hu | and solving the constrained optimization problem:

min
u,Y

∫
Ω

1TY1 dA (33)

subject to Hu ≤ Y, Hu ≥ −Y, and Y ≥ 0, (34)
where 1 is a vector of ones (with appropriate length).

Using our discrete matrices, this becomes a linear program
min
u,y

1T M̃y (35)

subject to Hu ≥ −y (36)
Hu ≤ y (37)
y ≥ 0, (38)

where y ∈ R4n̂ is a vectorization of per-vertex 2 × 2 matrices on a
mesh with n̂ interior vertices and H = DTAG.

When combined with other quadratic energies such as a data-
term, this transforms into a quadratic program. We solve such prob-
lems with Mosek [Andersen and Andersen 2000].
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