
HTN Planning with Quantitative Preferences via Heuristic Search

Shirin Sohrabi Jorge Baier Sheila A. McIlraith
Department of Computer Science,

University of Toronto,
Toronto, Canada.

{shirin, jabaier, sheila}@cs.toronto.edu

Abstract

In this paper, we address the problem of generating preferred
plans by combining the procedural control knowledge spec-
ified by Hierarchical Task Networks (HTNs) with rich user
preferences. To this end, we extend the popular Plan Do-
main Description Language, PDDL3, to support specification
of preferences over HTN constructs. To compute preferred
HTN plans, we propose a branch-and-bound algorithm, to-
gether with a set of heuristics that, leveraging HTN structure,
measure progress towards satisfaction of preferences. Our
preference-based planner,HTNPLAN -P, is implemented as an
extension ofSHOP2. We evaluated a variety of search strate-
gies with respect to the quality of the plans generated. At least
one of our strategies consistently equalled or outperformed
SGPlan5, winner of the 2006 International Planning Compe-
tition preference tracks. While our implementation buildson
SHOP2, the language and techniques proposed here are rele-
vant to a broad range of HTN planners.

1 Introduction
Hierarchical Task Network (HTN) planning is a popular
and widely used planning paradigm, and many domain-
independent HTN planners exist (e.g.,SHOP2, SIPE-2, I-X/I-
PLAN, O-PLAN) (Ghallab, Nau, and Traverso 2004). In HTN
planning, the planner is provided with a set of tasks to be
performed, possibly together with constraints on those tasks.
A plan is then formulated by repeatedly decomposing tasks
into smaller and smaller subtasks until primitive, executable
tasks are reached. A primary reason behind HTN’s success
is that its task networks capture useful procedural control
knowledge—advice on how to perform a task—described in
terms of a decomposition of subtasks. Such control knowl-
edge can significantly reduce the search space for a plan
while also ensuring that plans follow one of the stipulated
courses of action.

While HTNs specify a family of satisfactory plans, they
are, for the most part, unable to distinguish between suc-
cessful plans of differing quality. Preference-based planning
(PBP) augments a planning problem with a specification of
properties that constitute a high-quality plan. For example,
if one were generating an air travel plan, a high-quality plan
might be one that minimizes cost, uses only direct flights,
and flies with a preferred carrier. PBP attempts to optimize
the satisfaction of these preferences while achieving the stip-
ulated goals of the plan. To develop a preference-based HTN

planner, we must develop a specification language that refer-
ences HTN constructs, and a planning algorithm that com-
putes a preferred plan while respecting the HTN planning
problem specification.

In this paper we extend the Plan Domain Description
Language, PDDL3 (Gerevini and Long 2005), with HTN-
specific preference constructs. This work builds on our re-
cent work on the development ofLPH (Sohrabi and McIl-
raith 2008), aqualitativepreference specification language
designed to capture HTN-specific preferences. PDDL3 pref-
erences arestate centric, identifying preferred states along
the plan trajectory. To develop a preference language for
HTN we addaction-centricconstructs to PDDL3 that can
express preferences over the occurrence of primitive actions
(operators) within the plan trajectory, as well as expressing
preferences over complex actions (tasks) and how they de-
compose into primitive actions. For example, we are able to
express preferences over which sets of subtasks are preferred
in realizing a task (e.g.,When booking inter-city transporta-
tion, I prefer to book a flight), preferred parameters to use
when choosing a set of subtasks to realize a task (e.g.,I pre-
fer to book a flight with Air Canada), and so on. To compute
preferred HTN plans, we propose a branch-and-bound algo-
rithm, together with a set of heuristics that leverage HTN
structure.

In Section 2, we review HTN planning, PDDL3, and pro-
vide a definition for HTN PBP. In Section 3, we augment
PDDL3 with HTN-specific preference constructs. Section 4
describes a preprocessing algorithm that transforms a tem-
porally extended PBP problem into one where preferences
are expressed in terms of the final state of the plan. The re-
sultant representation is more amenable to heuristic search.
We discuss our preference-based planner’s algorithm and
heuristics in Section 5 and results of our experimental eval-
uation in Section 6. We discuss related work in Section 7.

2 Background
2.1 HTN Planning
In this section, we provide a brief overview of HTN plan-
ning, following Ghallab, Nau, and Traverso (2004).

Example 1 (Travel Example) Consider a simple HTN
planning problem to address the task of arranging travel.
This task can be decomposed into arranging transportation,

accommodations, and local transportation. Each of these
tasks can again be decomposed based on alternate modes of
transportation and accommodations, reducing eventually to
primitive actions that can be executed in the world. Further
constraints can be imposed to restrict decompositions.
Definition 1 (HTN Planning Problem) An HTN planning prob-
lem is a 3-tupleP = (s0, w0, D) wheres0 is the initial state,w0

is a task network called the initial task network, andD is the HTN
planning domain.P is a total-order planning problem ifw0 and
D are totally ordered; otherwise it is said to be partially ordered.

A taskconsists of a task symbol and a list of arguments.
A task is primitive if its task symbol is an operator name and
its parameters match, otherwise it isnonprimitive. In our
example,arrange-transand arrange-accare nonprimitive
tasks, whilebook-flightandbook-carare primitive tasks.
Definition 2 (Task Network) A task network is a pair w=(U, C)
where U is a set of task nodes and C is a set of constraints. Each
task node u∈ U contains a tasktu. If all of the tasks are ground
then w is ground; If all of the tasks are primitive, then w is called
primitive; otherwise it is called nonprimitive. Task network w is
totally ordered ifC defines a total ordering of the nodes in U.

In our example, we could have a task network(U, C)
whereU = {u1, u2}, u1 =book-car, andu2= pay, andC is
a precedence constraint such thatu1 must occur beforeu2

and a before-constraint such that at least one car is available
for rent beforeu1.

A domain is a pairD = (O, M) whereO is a set of op-
erators andM is a set of methods. Operators are essentially
primitive actions that can be executed in the world. They
are described by a tripleo =(name(o), pre(o), eff(o)), corre-
sponding to the operator’s name, preconditions and effects.
Preconditions are restricted to a set of literals, and effects
are described as STRIPS-like Add and Delete lists. An op-
eratoro can accomplish a ground primitive task in a states
if their names match ando is applicable ins. In our exam-
ple, ignoring the parameters, operators might include:pay,
book-train, book-car, book-hotel,andbook-flight.

A method,m, is a 4-tuple (name(m), task(m),subtasks(m),
constr(m))corresponding to the method’s name, a nonprim-
itive task and the method’s task network, comprising sub-
tasks and constraints. A method istotally orderedif its task
network istotally ordered. A domain is a total-order domain
if everym ∈ M is totally ordered. Methodm is relevant for
a taskt if there is a substitutionσ such thatσ(t) =task(m).
Several different methods can be relevant to a particular non-
primitive taskt, leading to different decompositions oft. In
our example, the method withname by-flight-transcan be
used to decompose thetask arrange-transinto thesubtasks
of booking a flight and paying, with the constraint (constr)
that the booking precede payment.
Definition 3 (Solution to HTN Planning Problem) Given an
HTN planning problemP = (s0, w0, D), a planπ = (o1, ..., ok)
is a solution forP iff one of the following cases hold.Case 1: w0 is
primitive and there exists a ground instance of (U ′, C′) of (U, C)
and a total ordering(u1, ..., uk) of the nodes inU ′ such that for
all 1 ≤ i ≤ k, name(oi) = tui

, the planπ is executable in the
states0, and all the constraints hold.Case 2:w0 is nonprimitive,
and there exists a sequence of task decompositions that can be
applied tow0 to produce a primitive task networkw′, whereπ is a
solution forw′.

Finally, to define the notion ofpreference-basedplanning
we assume the existence of a reflexive and transitive relation
� between plans. Ifπ1 andπ2 are plans forP andπ1 � π2

we say thatπ1 is at least as preferred asπ2. We useπ1 ≺ π2

as an abbreviation forπ1 � π2 andπ2 6� π1.
Definition 4 (Preference-based HTN Planning)An HTN plan-
ning problem with user preferences is described as a 4-tupleP =
(s0, w0, D,�) where� is a preorder between plans. A planπ is a
solution toP if and only if: π is a plan forP ′ = (s0, w0, D) and
there does not exists a planπ′ for P ′ such thatπ′ ≺ π.

The� relation can be defined in many ways. Below we
describe PDDL3, which defines� quantitatively through a
metric function.

2.2 Brief Description of PDDL3
The Plan Domain Description Language (PDDL) is the de
facto standard input language for many planning systems.
PDDL3 (Gerevini and Long 2005) extends PDDL2.2 by en-
abling the specification of preferences and hard constraints.
It also provides a way of defining ametric functionthat de-
fines the quality of a plan. The rest of this section briefly
describes these new elements.

Temporally extended preferences/constraints PDDL3
specifies temporally extended preferences (TEPs) and tem-
porally extended hard constraints in a subset of lin-
ear temporal logic (LTL). Both are declared using the
:constraints construct. Preferences are given names
in their declaration, to allow for later reference. By way of
illustration, the following PDDL3 code defines two prefer-
ences and one hard constraint.
(:constraints
(and

(preference cautious
(forall (?o - heavy-object)
(sometime-after (holding ?o)

(at recharging-station-1))))
(forall (?l - light)
(preference p-light (sometime (turn-off ?l))))

(always (forall ?x - explosive)
(not (holding ?x)))))

Thecautious preference suggests that the agent be at a
recharging station sometime after it has held a heavy object,
whereasp-light suggests that the agent eventually turn
all the lights off. Finally, the (unnamed) hard constraint es-
tablishes that an explosive object cannot be held by the agent
at any point in a valid plan.

When a preference isexternally universally quantified,
it defines a family of preferences, containing an individual
preference for each binding of the variables in the quantifier.
Therefore, preferencep-light defines an individual pref-
erence for each object of typelight in the domain. Prefer-
ences that are not quantified externally, likecautious, can
be seen as defining a family containing a single preference.

Temporal operators cannot be nested in PDDL3. Our ap-
proach can however handle the more general case of nested
temporal operators.

Precondition Preferences
Precondition preferences are atemporal formulae expressing
conditions that should ideally hold in the state in which the

action is performed. They are defined as part of the action’s
precondition. For example, the preference labeledecon be-
low specifies a preference for picking up objects that are not
heavy.
(:action pickup :parameters (?b - block)
(:precondition

(and (clear ?b)
(preference econ (not (heavy ?b)))))

(:effect (holding ?b)))

Precondition preferences behave something like conditional
action costs. They are violated each time the action is ex-
ecuted in a state where the condition does not hold. In the
above example,econ will be violated every time a heavy
block is picked up in the plan. Therefore these preferences
can be violated a number of times.

Simple Preferences
Simple preferences are atemporal formulae that express a
preference for certain conditions to hold in the final state of
the plan. They are declared as part of the goal. For example,
the following PDDL3 code:
(:goal

(and (delivered pck1 depot1)
(preference truck (at truck depot1))))

specifies both a hard goal (pck1 must be delivered at
depot1) and a simple preference (thattruck is at
depot1). Simple preferences can also be externally quan-
tified, in which case they again represent a family of indi-
vidual preferences.

Metric Function
The metric function defines the quality of a plan, generally
depending on the preferences that have been achieved by the
plan. To this end, the PDDL3 expression(is-violated
name), returns the number of individual preferences in the
name family of preferences that have been violated by the
plan. Whenname refers to a precondition preference, the
expression returns thenumber of timesthis precondition
preference was violated during the execution of the plan.

The quality metric can also depend on the function
total-time, which returns the plan length. Finally, it
is also possible to define whether we want to maximize or
minimize the metric, and how we want to weigh its different
components. For example, the PDDL3 metric function:
(:metric minimize (+ (total-time)

(* 40 (is-violated econ))
(* 20 (is-violated truck))))

specifies that it is twice as important to satisfy preference
econ as to satisfy preferencetruck, and that it is less im-
portant, but still useful, to find a short plan.

Since it is always possible to transform a metric that re-
quires maximization into one that requires minimization, we
will henceforth assume that the metric is always beingmin-
imized.

Finally, the formal definition for HTN planning with
PDDL3 preferences is an instance of our previous definition:
Given a PDDL3 metric functionM the HTN preference-
based planning problem with PDDL3 preferencesis defined
by Definition 4, where the relation� is defined by:

π1 � π2 if and only if M(π1) ≤ M(π2).

3 PDDL3 Extended to HTN
In this section, we extend PDDL3 with the ability to ex-
press preferences over HTN constructs. As argued in Sec-
tion 1, supporting preferences over how tasks are decom-
posed, their preferred parameterizations, and the conditions
underwhich these preferences hold, is compelling. It goes
beyond the traditional specification of preferences over the
properties of plan trajectories to provide preferences over
non-functional properties of the planning problem. This is
particularly compelling when HTN methods are realized us-
ing web service software components, because these ser-
vices have many non-functional properties that distinguish
them (e.g., credit cards accepted, country of origin, trustwor-
thiness, etc.) and that influence user preferences (Sohrabi,
Prokoshyna, and McIlraith 2006).

In designing a preference specification language for HTN
planning, we made a number of strategic design decisions.
We first considered adding our preference specifications di-
rectly to the definitions of HTN methods. This seemed like a
natural extension to the hard constraints that are already part
of method definitions. Unfortunately, this precludes easy
contextualization of methods relative to the task the method
is realizing. For example, in the travel domain, many meth-
ods may eventually involve the primitive operation ofpay-
ing, but a user may prefer different methods of payment de-
pendent upon the high-level task being realized (e.g.,When
booking a car, pay with amex to exploit amex’s free collision
coverage, when booking a flight, pay with my Aeroplan-visa
to collect travel bonus points, etc.). We also found the option
of including preferences in method definitions unappealing
because we wished to separate domain-specific, but user-
independent knowledge, such as method definitions, from
user-specific preferences. Separating the two, enables users
to share method definitions but individualize preferences.
We also wished to leverage the popularity of PDDL3 as a
language for preference specifications.

This work builds on our recent work onLPH (Sohrabi
and McIlraith 2008), aqualitative preference specifica-
tion language designed to capture HTN-specific preferences.
LPH supports specification of action-centric preferences
(i.e., preferences over the occurrence of actions, and in the
case of HTNs, tasks) as well as state-centric preferences,
whereas PDDL3 is strictly state centric. Further,LPH ag-
gregates preferences into one (qualitative) preference for-
mula using Boolean connectives, whereas PDDL3 aggre-
gates preferences into a (quantitative) metric function. In
this paper, we capture some of the merits of both languages
by extending PDDL3 to incorporate the action-centric pref-
erences ofLPH. This gives users the ability to express pref-
erences over certain parameterization of a task (e.g., prefer-
ring one task grounding to another), over a certain decom-
position of nonprimitive tasks (i.e., prefer to apply a certain
method over another), and a soft version of the before, after,
and in between constraints.

To support preferences over task occurrences (primitive
and nonprimitive) and task decompositions, we added two
new constructs to PDDL3,occ(t) andapply(n), wheret is
a task andn is the name of a method.occ(t) states that
the taskt occurs in the present state, andapply(n) states

that a method whose name isn is applied to decompose a
nonprimitive task.

The following are a few temporally extended preferences
from our travel domain1 that use of the above extension.

(:constraints
(and

(preference p1
(always (not (occ (pay MasterCard)))))

(preference p2 (sometime (occ
(book-flight SA Eco Direct WindowSeat))))

(preference p3
(sometime (apply (by-car-local SUV Avis))))

(preference p4
(sometime-before (occ (arrange-trans))

(haveHotelReservation)))

(preference p5
(sometime-before (occ (arrange-trans))

(occ (arrange-acc))))))

Thep1preference states that the user never pays by Mas-
tercard. Thep2preference states that at some point the user
books a direct economy window-seated flight with a Star Al-
liance carrier.P3 states that at some point, theby-car-local
method is applied to book an SUV from Avis.P4states that
the hotel is reserved before transportation is arranged. Fi-
nally P5 states that thearrange-transtask occurs before the
arrange-acctask.

4 Preprocessing HTN problems

Before searching for a most preferred HTN plan, we prepro-
cess the original problem. The resulting problem facilitates
the exploitation of our heuristics and our PBP algorithm.

The preprocessing is done in two phases. In the first
phase we convert the problem into a more standard one, in
the sense that it contains fewer elements that are not seen
in classical planning problems. In our preprocessed prob-
lems, for example, all temporally extended preferences are
transformed into final-state preferences, and thus, reason-
ing about temporally extended preferences is no different
from reasoning about standard predicates. Thus, we do not
need to implement specialized algorithms to reason about
LTL formulae such as the progression algorithm used by
TLPLAN (Bacchus and Kabanza 1998), and which we also
exploited in (Sohrabi and McIlraith 2008). Also the compi-
lation enables our heuristic functions to be defined only in
terms of domain predicates, rather than being based on non-
standard evaluations of an LTL formulae, such as the ones
used by other approaches (e.g. Bienvenu, Fritz, and McIl-
raith, 2006). In the second phase of the preprocessing, we
extract a subset of the effects from recursive tasks, and gen-
erate a set of extraheuristic operatorsthat have those effects.
These new heuristic operators are not used during search to
decompose a task, but are exploited by our heuristics as an
abstraction of the tasks. Now we describe in more detail
each of these phases.

1To simplify the examples many parameters have been sup-
pressed.

4.1 Preprocessing HTN-PDDL3 Preferences
For a given problem, this phase compiles away many of
the HTN-PDDL3 elements, generating an equivalent prob-
lem that does not contain temporally extended or precondi-
tion preferences. Some of the techniques below are specific
to HTN-PDDL3 preferences, whereas others are borrowed
from previous approaches.
Preprocessing Tasks and Methods HTN-PDDL3 prefer-
ences can refer to the occurrence of tasks and the application
of methods. In order to reason about task occurrences and
method applications, we preprocess the methods of our HTN
problem. In the compiled problem, for each non-primitive
task t that occurs in some preference of the original prob-
lem, there is a new predicateexecuting-t. If a0a1 · · ·an is
a plan for the problem, andai andaj are respectively the first
and last primitive actions that resulted from decomposingt,
thenexecuting-t is true in all the states in between the ap-
plication ofai andaj . This is accomplished by adding new
actions at the beginning and end of each task network in the
methods that decomposet.

Further, for each primitive task (i.e., operator)t occurring
in the preferences, we extend the compiled problem with a
newocc-t predicate, such thatocc-t is true iff t has just been
performed.

Finally, we modify each methodm whose namen (i.e.,
n = name(m)) occurs in some preference. We introduce
a new fluenthasBeenApplied-n which is true iff methodm
has been applied to decompose a task. To achieve this, we
add special actions to the beginning of the task networks
associated with each method.
Preprocessing occ and apply Modal Operators Now that
we have theexecuting and thehasBeenApplied fluents,
we replace each occurrence ofocc(t) by executing-t when
t is non-primitive and byocc-t whent is primitive. Occur-
rences ofapply(n) are replaced byhasBeenApplied-n.

Up to this point all our HTN-PDDL3 preferences exclu-
sively reference fluents of the HTN problem, enabling us to
apply standard techniques to simplify the problem further.
Temporally Extended Preferences We use an existing
compilation technique (Baier and McIlraith 2006) to en-
code the satisfaction of temporally extended preferences into
predicates of the domain. For each LTL preferenceϕ in the
original problem, we generate additional predicates for the
compiled domain that encode the various ways in whichϕ
can become true. Indeed, the additional predicates represent
a finite-state automaton forϕ, where the accepting state of
the automaton represents satisfaction of the preference. In
our resulting domains, we axiomatically define anaccepting
predicate forϕ, which represents the accepting condition of
ϕ’s automaton. The accepting predicate is true at a states if
and only ifϕ is satisfied ats.

In the case of quantified preferences, the predicates are
parametric. By way of illustration, consider thep-light
preference defined above. For this quantified preference, our
compiled problem will contain ap-light-satisfied
predicate, such the fact(p-light-satisfied l1) is
true iff l1 has been turned on. The operators in the compiled
domain are modified in such a way that the predicate will be

updated correctly. In the case of our example, as soon as
the actionswitch-onis applied on a lightℓ, the accepting
predicate forp-light is updated accordingly forℓ, and
will remain true thereafter.
Precondition Preferences Precondition preferences are
encoded as conditional costs for actions. For each precondi-
tion preference, we associate a counter function in the com-
piled domain, that is incremented whenever an action has
been performed violating some of its precondition prefer-
ences. This process is exactly the same as the one used in
theHPLAN -P planner (Baier, Bacchus, and McIlraith 2007).

4.2 Abstracting Recursive Tasks
For each recursive taskt in the original problem we gener-
ate an additional, heuristic operatorh-t. The new operator
captures onlysomeof the effects oft, and is used by our
lookaheadtechnique to quickly estimate an upperbound on
the quality of decomposing a task with a certain method.

Our technique can currently preprocess a subclass of re-
cursive tasks: those that areself-recursiveand that have a
single, void endpoint(SRSVE) tasks. An SRSVE taskt is
such that the methods that decomposet can only uset as a
non-primitive task, and such that there is only one primitive
decomposition, which is also empty. More formally,

Definition 5 (SRSVE) Lett be a non-primitive task, and let
Mt be the set of methods that may decompose it. Then,t
is self-recursiveand has asingle, void endpoint(SRSVE)
iff Mt is such that (1) it contains one and only one method
with no tasks (i.e., a void method) which may only contain
a precondition; and (2) all its remaining methods contain
the (non-primitive) taskt and no other non-primitive task
(self-recursive).

Example 2 Themove-robot-to-depot task – shown
below in SHOP2 syntax – can be decomposed by two meth-
ods. One of them is self-recursive (case2), and the other
one (case1) is void (does not contain any tasks). This task
is thus SRSVE.

(:method move-robot-to-depot
case1 ((at robot depot)) ; robot at depot?

() ; do nothing
case2 ((at robot ?x)

(closest-to-depot ?x ?y))
((move ?x ?y)
(move-robot-to-depot))) ;recursive call

Here the precondition associated with methodcase1 is
(at robot depot). §

Theh-t operator is a relaxation oft, which has as an ef-
fect the condition that has to be satisfied in order to end the
decomposition oft, which is generally the intended effect
of the taskt. Formally, lett(~x) be an SRSVE task, and let
C(~x) be the precondition associated with the void method
that decomposes it. Then, our preprocessing phase generates
the operatorh-t(~x), with a positive effectC(~x), no negative
effects, and with no preconditions (i.e, always executable).
Sinceh-t is a new operator, and is not a member of any task,
it will never be used to construct a plan; only our heuristic
techniques will use it.

1: function HTNPLAN -P(s0, w0,D, METRICFN,HEURISTICFN)
2: frontier ← INITFRONTIER(s0, w0, ∅) ⊲ initialize frontier
3: bestMetric ← worst case upper bound
4: while frontier is not emptydo
5: current ← Extract best element fromfrontier
6: 〈s, w, partialP 〉 ← current
7: lbound ← METRICBOUNDFN(s)
8: if lbound < bestMetric then ⊲ pruning by bounding
9: if w = ∅ andcurrent ’s metric< bestMetric then

10: Output planpartialP
11: bestMetric ← METRICFN(s)
12: end if
13: succ← successors ofcurrent
14: frontier ←mergesucc into frontier
15: end if
16: end while
17: end function

Figure 1: A sketch of our HTN PBP algorithm.

5 Preference-based Planning with HTN
We address the problem of finding a most preferred decom-
position of an HTN by performing a best-first, incremental
search in the plan search space induced by the initial task
network. The search is performed in a series ofepisodes,
each of which returns a sequence of ground primitive op-
erators (i.e., a plan that satisfies the initial task network).
During each episode, the search performs branch-and-bound
pruning—a search node is pruned from the search space, if
we can prove that it will not lead to a plan that is better than
the one found in the previous episode. In the first episode
no pruning is performed. In each episode, search is guided
by inadmissible heuristics, designed specifically to guide the
search quickly to a reasonably good decomposition. The re-
mainder of this section describes the heuristics we use, and
the planning algorithm.

5.1 Algorithm
Our HTN PBP algorithm outlined in Figure 1, performs a
best-first, incremental search in the space of decompositions
of a given initial task network. It takes as input an initial
planning states0, an initial task networkw0, an HTN plan-
ning domainD, a metric function METRICFN, and a heuris-
tic function HEURISTICFN.

The main variables kept by the algorithm arefrontier and
bestMetric. frontier contains the nodes in the search fron-
tier. Each of these nodes is of the form〈s, w, partialP 〉,
wheres is a plan state,w is a task network, andpartialP
is a partial plan. Intuitively, a search node〈s, w, partialP 〉
represents the fact that task networkw remains to be de-
composed in states, and that states is reached from the
initial state of the planning problems0 by performing the
sequence of actionspartialP . frontier is initialized with a
single node〈s0, w0, ∅〉, where∅ represents the empty plan.
Its elements are always sorted according to the function
HEURISTICFN. On the other hand,bestMetric is a vari-
able that stores the metric value of the best plan found so
far, and it is initialized to a high value representing a worst
case upper bound.

Search is carried out in the mainwhile loop. In each
iteration, HTNPLAN -P extracts the best element from the
frontier and places it incurrent . Then, an estimation
of a lowerbound of the metric value that can be achieved
by decomposingcurrent ’s task network,w, is computed
(Line 7) using the function METRICBOUNDFN. Function
METRICBOUNDFN will be computed using theoptimistic
metric function described in the next subsection.

The algorithmprunescurrent from the search space if
lbound is greater than or equal tobestMetric. Otherwise,
HTNPLAN -P checks whether or notcurrent corresponds to
a plan (this happens when its task network is empty). If
current corresponds to a plan, the sequence of actions in its
tuple is returned and the value ofbestMetric is updated.

The search then continues by computing all the successors
to current using the Partial-order Forward Decomposition
procedure (PFD) (Ghallab, Nau, and Traverso 2004). The
successors ofcurrent will be a new list of nodes in the form
〈s′, w′, partialP ′〉, one for each legal task decomposition
that can be reached by performingcurrent ’s task network
using a PFD procedure. Then the successors ofcurrent will
be merged into thefrontier . The algorithm terminates when
frontier is empty.

5.2 Heuristics
Our algorithm searches for a plan in the space of all possible
decompositions of the initial task network. HTNs that have
been designed specifically to be customizable by user pref-
erences may contain tasks that could be decomposed by a
fairly large number of methods. In this scenario, it is essen-
tial for the algorithm to be able to evaluate which methods to
use to decompose a task in order to get to a reasonably good
solution quickly. The heuristics we propose in this section
are specifically designed to address this problem. All heuris-
tics are evaluated in a search node〈s, w, partialP 〉.
Optimistic Metric Function (OM) This function is an
estimate of the best metric value achievable by any plan
that can result from the decomposition of the current task
networkw. Its value is computed by evaluating the metric
function in s but assuming that (1) no further precondition
preferences will be violated in the future, (2) temporally ex-
tended preference that are violated and that can be proved
to be unachievable froms are regarded as false, (3) all re-
maining preferences are regarded as satisfied. To prove that
a temporally extended preferencep is unachievable froms,
OM uses a sufficient condition: it checks whether or not the
automaton forp is currently in a state from which there is no
path to an accepting state. Recall that an accepting state is
reached when the preference formula is satisfied.

OM provides a lower bound on the best plan extending
the partial planpartialP assuming that the metric function
is non-increasing in the number of achieved preferences. It
can therefore be safely used as the METRICBOUNDFN func-
tion in our algorithm. In fact, we useOM as a bounding
function in our experiments.

OM is a variant of “optimistic weight” (Bienvenu, Fritz,
and McIlraith 2006; Sohrabi and McIlraith 2008).
Pessimistic Metric Function (PM) This function is the
dual ofOM . While OM regards anything that is not prov-

ably violated (regardless of future actions) as satisfied,PM
regards anything that is not provably satisfied (regardlessof
future actions) as violated. Its value is computed by evaluat-
ing the metric function ins but assuming that (1) no further
precondition preferences will be violated in the future, (2)
temporally extended preferences that are satisfied and that
can be proved to be true in any successor ofs are regarded
as satisfied, (3) all remaining preferences are regarded as vi-
olated. To prove that a temporally extended preferencep is
true in any successor ofs, we check whether in the current
state of the world the automaton forp would be in an ac-
cepting state that is also a sink state, i.e., from which it is
not possible to escape, regardless of the actions performed
in the future.

For reasonable metric functions (i.e., functions that are
non increasing in the number of satisfied preferences),PM
is monotonically decreasing as more actions are added to
partialP . PM can provide good guidance because it is a
measure of assured progress towards the satisfaction of the
preferences.
Lookahead Pessimistic Metric Function (LA) This func-
tion is an estimate of the pessimistic metric of thebest suc-
cessorto the current node. To compute this we do a looka-
head search, in which we search for all possiblerelaxedde-
compositions of the current task networkw, up to a certain
depthk. Decompositions ofw are relaxed because when de-
composing some of the non-primitive tasks inw we do not
use their methods but the heuristic operators introduced pre-
viously in Section 4.2. By doing this, we allow the search
to introduce some of the effects oft in one step, instead of
having to perform several decompositions oft.

Once we have obtained all the relaxed successors of the
current node up to depthk, LA evaluates the pessimistic
metric (PM) in each node, and returns the lowest value.
Depth (D) We use the depth as another heuristic to guide
the search. This heuristic does not take into account the pref-
erences. Rather, it encourages the planner to find a decom-
position soon. Since the search is guided by the HTN struc-
ture, guiding the search toward finding a plan using depth
is natural. Other HTN planners such asSHOP2 (Nau et al.
2003) also use depth or depth-first-search to guide the search
to find a plan quickly.

The HEURISTICFN function we use in our algorithm cor-
responds to aprioritized sequenceof the above heuristics,
in which D is always considered first. As such, when com-
paring two nodes we look at their depths, returning the one
that has a higher depth value. If the depths are equal, we use
the other heuristics in sequence to break ties. Figure 2 out-
lines the three prioritized sequences we have experimented
with. For example, LA-First breaks a tie between two nodes
at equal depth by first comparing theLA function of those
nodes, then by comparing the value ofOM , and if still tied,
by comparing the value ofPM .

5.3 Optimality and Pruning
Since we are using inadmissible heuristics, we cannot guar-
antee that the plans we generate are optimal. The only way
to do this is to run our algorithm until the complete HTN

Strategy Check whether If tied If tied
No-LA OM1 < OM2 PM1 < PM2 -
LA-First LA1 < LA2 OM1 < OM2 PM1 < PM2

LA-Last OM1 < OM2 PM1 < PM2 LA1 < LA2

Figure 2: Three strategies to determine whether a noden1 is
better than a noden2. OM is the optimistic-metric,PM is the
pessimistic-metric, andLA is the look-ahead heuristic. All three
strategies useD, the depth, as their first criteria for the comparison.

search space is exhausted. In this case, the final plan re-
turned is guaranteed to be optimal.

Exhaustively searching the search space is not reasonable
in most planning domains, however here we are able to ex-
ploit properties of our planning problem to make this achiev-
able much of the time. Specifically, most HTN specifica-
tions severely restrict the search space so that, relative to a
classical planning problem, the search space is exhaustively
searchable, much of the time. Further, in the case where
our preference metric function is additive, ourOM heuris-
tic function enables us to soundly prune partial plans from
our search space. Specifically, we say that a pruning strategy
is sound if and only if whenever a node is pruned (line 8) the
metric value of any plan extending this node will exceed the
current boundbestMetric. This means that no state will be
incorrectly pruned from the search space. Soundly pruning
the search space of an HTN PBP problem with an additive
metric function for preferences guarantees that if search ter-
minates, the final plan returned is optimal.

6 Implementation and Evaluation
We implemented our proof-of-concept preference-based
HTN planner,HTNPLAN -P. HTNPLAN -P has two mod-
ules: a preprocessor and a preference-based HTN planner.
The preprocessor reads PDDL3 problems and generates a
SHOP2 planning problem with only simple (final-state) pref-
erences. Additionally, it generates the relaxed operatorsfor
recursive tasks, and theOM , PM , andLA functions de-
scribed in Section 5.2. On the other hand, the planner is
a modified version of the LISP version ofSHOP2 (Nau et
al. 2003) that is able to compute the heuristic functions and
implements the algorithm described in Section 5.1.

We evaluated the effectiveness of our various heuristics
shown in Figure 2 in obtaining plans with good quality (i.e.,
with low metric value). We tested the planners on theRovers
domain from the qualitative preferences track of the 5th In-
ternational Planning Competition (IPC-5). We have used
a modified version of the HTN Rovers specification used
by SHOP2 in IPC-2. Our modification ensures true non-
determinism: if a task can be decomposed using two dif-
ferent methods, then both of these methods are considered,
not just the first applicable one. In the Rovers domain, the
goal is to sample scientific data such as rock and soil, or take
images from different objects by navigating rovers between
the different surfaces. However, a rover can only traverse be-
tween different waypoints if there is a visible path from the
source to the destination. In addition, each rover is equipped
for either soil, rock, image, or some combination of them.

No-LA LA-First LA-Last SGPlan5
1 58.93 47.58 47.58 68.49
2 38.11 23.33 21.78 35.00
3 34.11 23.40 23.39 39.31
4 48.85 37.99 37.99 43.43
5 362.95 266.85 155.54 317.82
6 128.13 46.18 46.18 83.41
7 88.58 79.49 50.17 85.61
8 932.00 782.00 716.00 736.00
9 981.62 538.44 516.18 981.63
10 1020.18 566.80 181.66 559.73
11 1270.98 847.28 840.06 1003.57
12 706.81 465.05 256.31 361.52
13 3899.50 4965.31 1516.46 2873.85
14 828.33 411.31 388.23 507.96
15 3466.00 2619.64 2233.52 2243.96
16 2507.00 2825.00 1449.00 1973.00
17 4228.33 - 2467.40 2443.80
18 4700.00 - 2679.00 3348.00

Figure 3: The metric value of the solutions generated by
SGPlan5 and 3 strategies forHTNPLAN -P on 18 Rover problems.

The problems used in our tests are a modified version of
the ones used in IPC-5. After careful consideration, we re-
alized that in order to have a fair comparison we needed to
remove some of the preferences from some of the problems.
This is because these problems contain preferences that will
never be satisfied because of how HTN methods for this do-
main are defined. For example, if the goal is to only collect
rock from locationwaypoint3, a preference indicates rock
collection from other locations will never be met because the
HTN structure will never consider sampling rock from other
non-specified locations. The modified problems still have a
fairly high number of preferences. For example, problems 9,
13, and 18, have 71, 129, and 133 preferences respectively.

Figure 3 shows the metric values of the last plan returned
by our planner under each of our heuristics. It also shows the
metric value of the plans returned bySGPlan5, the winner
of IPC-5. We ran both planners for 60 minutes, and with a
limit of 2 GB per process. The dash entries indicate that no
plan was found within the time and memory limit.

Under the LA-Last heuristic, our planner consistently
found plans with better quality than those found by
SGPlan5. The LA-Last heuristic, which uses the lookahead
heuristic as the last criterion for breaking ties seems to out-
perform other strategies. We conjecture that this is partly
because the lookahead heuristic may guide the search away
from good quality plans by ignoring some of the precondi-
tions of the operators (i.e., by relaxing the methods). Looka-
head is more effective if it’s used by giving it a lower priority
than the optimistic and pessimistic metrics.

Our planner is not able to solve the two most complex
problems (19 and 20). The poor performance in these two
instances can be explained by two main reasons. First, the
current version of our planner is not optimized for speed or
memory (it is a LISP prototype). Second, because we have
focused our efforts on addressing the problem of finding
high-quality plans, the current version of our planner does
not implement any heuristics oriented tohard goalsatisfac-

tion, an arena in whichSGPlan5 currently excels.
In many cases,SGPlan5 generates a plan signifi-

cantly faster than HTNPlan-P. This is not surprising since
HTNPlan-P’s code has not been optimized. Optimization of
HTNPlan-P is possible.

7 Discussion and Related Work
Preference-based planning has been the subject of much in-
terest recently, spurred on by two International Planning
Competition (IPC) tracks on this subject in 2006. A num-
ber of planners were developed, all based on the competi-
tion’s PDDL3 language. Our work is distinguished in that it
exploitsprocedural(action-centric) domain control knowl-
edge in the form of an HTN, extending PDDL3 with action-
centric constructs to achieve this objective.

There is a variety of related work. Most notable is our
recent work (Sohrabi and McIlraith 2008) in which we simi-
larly extend theLPP (Bienvenu, Fritz, and McIlraith 2006)
qualitativepreference language with HTN constructs. The
resulting language,LPH, is more expressive in that it al-
lows arbitrarily nested LTL formulae, but less expressive in
that it doesn’t allow counting of violations as do PDDL3 pre-
condition preferences. The associated planning algorithmis
also fundamentally different. Optimal plans are found using
heuristic search with anadmissibleheuristic. In contrast to
the work presented here, no heuristics exploited HTN struc-
ture, nor was any precompilation performed. Preferences
were evaluated for (partial) satisfaction using progression.

In a similar vein, in 2006, we introduced the problem of
integrating user preferences into web service composition
(Sohrabi, Prokoshyna, and McIlraith 2006). To that end,
we developed a Golog-based composition engine that also
exploits heuristic search and an admissible heuristic. Once
again, the language used in that work wasLPP . In con-
trast to the work presented here and by Sohrabi and McIl-
raith (2008), there are no web-service or Golog-specific ex-
tensions for complex actions (the Golog analogues of tasks).
This paper’s HTN-tailored language and HTN-based plan-
ner are significantly different, but also provide a planner that
can be exploited for web service composition.

Also related is very recent work by Lin, Kuter, and
Sirin (2008) which exploits PDDL3, to perform preference-
based HTN planning, applied to web service composi-
tion. Like Sohrabi, Prokoshyna, and McIlraith (2006),
they do not extend their preference language with web ser-
vice specific/task-specific constructs. Their approach to
preference-based HTN planning is quite different from ours.
In particular, they translate user preferences into HTN con-
straints and preprocess the preferences to check if additional
tasks need to be added tow0. Their search is best-first search
but usesontological reasoning over the user preferences.
Their reasoning assumes that each method has a fixed set
of effects or well defined post-conditions associated with it.

It is interesting and important to note that the HTN plan-
ners SHOP2 (Nau et al. 2003) andENQUIRER (Kuter et
al. 2004) can be seen to handle some simple user prefer-
ences. In particular the order of methods and sorted pre-
conditions in a domain description specifies a user prefer-
ence over which method is more preferred to decompose

a task. Hence users may write different versions of a do-
main description to specify simple preferences. However,
unlike HTNPLAN -P the user constraints are treated as hard
constraints and (partial) plans that do not meet these con-
straints will be pruned from the search space.

Finally, the ASPEN planner (Rabideau, Engelhardt, and
Chien 2000) performs a simple form of preference-based
planning, focused mainly on preferences over resources. It
can plan with HTN-like task decomposition, but its prefer-
ence language is far less expressive than ours. In contrast
to HTNPLAN -P, ASPEN performs local search for a local
optimum. It does not perform well when preferences are
interacting, nested, or not local to a specific activity.

References
Bacchus, F., and Kabanza, F. 1998. Planning for temporally ex-
tended goals.Annals of Mathematics and Artificial Intelligence
22(1-2):5–27.

Baier, J. A., and McIlraith, S. A. 2006. Planning with first-order
temporally extended goals using heuristic search. InProceedings
of the 21st National Conference on Artificial Intelligence (AAAI),
788–795.

Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2007. A heuris-
tic search approach to planning with temporally extended prefer-
ences. InProceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI), 1808–1815.

Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Planning
with qualitative temporal preferences. InProceedings of the 10th
International Conference on Knowledge Representation andRea-
soning (KR), 134–144.

Gerevini, A., and Long, D. 2005. Plan constraints and prefer-
ences for PDDL3. Technical Report 2005-08-07, Department of
Electronics for Automation, University of Brescia, Brescia, Italy.

Ghallab, M.; Nau, D.; and Traverso, P. 2004.Hierarchical Task
Network Planning. Automated Planning: Theory and Practice.
Morgan Kaufmann.

Kuter, U.; Sirin, E.; Nau, D. S.; Parsia, B.; and Hendler, J. A.
2004. Information gathering during planning for web service
composition. InProceedings of the 3rd International Semantic
Web Conference (ISWC), 335–349.

Lin, N.; Kuter, U.; and Sirin, E. 2008. Web service composi-
tion with user preferences. InProceedings of the 5th European
Semantic Web Conference (ESWC), 629–643.

Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research20:379–404.

Rabideau, G.; Engelhardt, B.; and Chien, S. A. 2000. Using
generic preferences to incrementally improve plan quality. In Pro-
ceedings of the 5th International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS), 236–245.

Sohrabi, S., and McIlraith, S. A. 2008. On planning with pref-
erences in HTN. InFourth Multidisciplinary Workshop on Ad-
vances in Preference Handling (M-Pref), 103–109.

Sohrabi, S.; Prokoshyna, N.; and McIlraith, S. A. 2006. Web
service composition via generic procedures and customizing user
preferences. InProceedings of the 5th International Semantic
Web Conference (ISWC), 597–611.

