HTN Planning with Quantitative Preferences via Heuristic Search

Shirin Sohrabi Jorge Baier Sheila A. Mcllraith
Department of Computer Science,
University of Toronto,
Toronto, Canada.
{shirin, jabaier, sheilp@cs.toronto.edu

Abstract planner, we must develop a specification language thatrefer

In this paper, we address the problem of generating preferre ences HTN constructs, angl a p'a””"?g algorithm that com-
plans by combining the procedural control knowledge spec- ~ Putes a preferred plan while respecting the HTN planning
ified by Hierarchical Task Networks (HTNs) with rich user problem specification. _ o
preferences. To this end, we extend the popular Plan Do- In this paper we extend the Plan Domain Description
main Description Language, PDDL3, to support specification Language, PDDL3 (Gerevini and Long 2005), with HTN-
of preferences over HTN constructs. To compute preferred specific preference constructs. This work builds on our re-
HTN plans, we propose a branch-and-bound algorithm, to- cent work on the development gfP (Sohrabi and Mcll-
gether with a set of heuristics that, leveraging HTN streestu raith 2008), aqualitative preference specification language
measure progress towards satlsfact!orj of preferences. Our designed to capture HTN-specific preferences. PDDL3 pref-
preference-based plannBMNPLAN -p, is implemented as an erences arstate centri¢ identifying preferred states along
extension olSHOP2. We evaluated a variety of search strate- .

the plan trajectory. To develop a preference language for

gies with respect to the quality of the plans generated. astle . .
one of our strategies consistently equalled or outperfdrme HTN we addaction-centricconstructs to PDDL3 that can

SGPlans, winner of the 2006 International Planning Compe- express preferences over the occurrence of primitive getio
tition preference tracks. While our implementation buitas (operators) within the plan trajectory, as well as expressi
sHoP2, the language and techniques proposed here are rele- preferences over complex actions (tasks) and how they de-
vant to a broad range of HTN planners. compose into primitive actions. For example, we are able to
express preferences over which sets of subtasks are meferr
1 Introduction in realizing a task (e.gWhen booking inter-city transporta-

tion, | prefer to book a flight preferred parameters to use
when choosing a set of subtasks to realize a task (goe;

fer to book a flight with Air Canadaand so on. To compute
preferred HTN plans, we propose a branch-and-bound algo-
rithm, together with a set of heuristics that leverage HTN
structure.

In Section 2, we review HTN planning, PDDL3, and pro-
vide a definition for HTN PBP. In Section 3, we augment
PDDL3 with HTN-specific preference constructs. Section 4
describes a preprocessing algorithm that transforms a tem-
porally extended PBP problem into one where preferences
are expressed in terms of the final state of the plan. The re-
sultant representation is more amenable to heuristic searc
We discuss our preference-based planner’s algorithm and
heuristics in Section 5 and results of our experimental-eval
uation in Section 6. We discuss related work in Section 7.

Hierarchical Task Network (HTN) planning is a popular
and widely used planning paradigm, and many domain-
independent HTN planners exist (e gHOP2, SIPE-2, I-X/I-
PLAN, O-PLAN) (Ghallab, Nau, and Traverso 2004). InHTN
planning, the planner is provided with a set of tasks to be
performed, possibly together with constraints on thodestas

A plan is then formulated by repeatedly decomposing tasks
into smaller and smaller subtasks until primitive, exeblga
tasks are reached. A primary reason behind HTN's success
is that its task networks capture useful procedural control
knowledge—advice on how to perform a task—described in
terms of a decomposition of subtasks. Such control knowl-
edge can significantly reduce the search space for a plan
while also ensuring that plans follow one of the stipulated
courses of action.

While HTNs specify a family of satisfactory plans, they
are, for the most part, unable to distinguish between suc-
cessful plans of differing quality. Preference-based pitag 2 Background
(PBP) augments a planning problem with a specification of 2.1 HTN Planning
properties that constitute a high-quality plan. For exampl
if one were generating an air travel plan, a high-qualitypla
might be one that minimizes cost, uses only direct flights,
and flies with a preferred carrier. PBP attempts to optimize Example 1 (Travel Example) Consider a simple HTN
the satisfaction of these preferences while achievingtthe s planning problem to address the task of arranging travel.
ulated goals of the plan. To develop a preference-based HTN This task can be decomposed into arranging transportation,

In this section, we provide a brief overview of HTN plan-
ning, following Ghallab, Nau, and Traverso (2004).

accommodations, and local transportation. Each of these

Finally, to define the notion gireference-baseplanning

tasks can again be decomposed based on alternate modes ofve assume the existence of a reflexive and transitive ralatio

transportation and accommodations, reducing eventually t
primitive actions that can be executed in the world. Further
constraints can be imposed to restrict decompositions.

Definition 1 (HTN Planning Problem) An HTN planning prob-
lem is a 3-tupleP = (s0, wo, D) wheres is the initial state,wg
is a task network called the initial task network, afds the HTN
planning domain.P is a total-order planning problem ifvo and
D are totally ordered; otherwise it is said to be partially @ebd.

A taskconsists of a task symbol and a list of arguments.
Atask is primitive if its task symbol is an operator name and
its parameters match, otherwise itrisnprimitive In our
example,arrange-transand arrange-accare nonprimitive
tasks, whilebook-flightandbook-carare primitive tasks.
Definition 2 (Task Network) A task network is a pair w=(U, C)
where U is a set of task nodes and C is a set of constraints. Each
task node ue U contains a task,,. If all of the tasks are ground
then w is ground; If all of the tasks are primitive, then w idled
primitive; otherwise it is called nonprimitive. Task netkav is
totally ordered ifC' defines a total ordering of the nodes in U.

In our example, we could have a task netwdtk C)
whereU = {u1,us}, u1 =book-car andus= pay, andC is
a precedence constraint such thatmust occur before:,
and a before-constraint such that at least one car is alailab
for rent beforeu; .

A domain is a pairD = (O, M) whereO is a set of op-
erators and/ is a set of methods. Operators are essentially
primitive actions that can be executed in the world. They
are described by a triple =(name(0), pre(o), eff(o)xorre-
sponding to the operator’s name, preconditions and effects
Preconditions are restricted to a set of literals, and &ffec
are described as STRIPS-like Add and Delete lists. An op-
eratoro can accomplish a ground primitive task in a state
if their names match andis applicable ins. In our exam-
ple, ignoring the parameters, operators might inclyskey,
book-train, book-car, book-hotedndbook-flight

A method,m, is a 4-tuple fame(m), task(m),subtasks(m),
constr(m))corresponding to the method’s name, a nonprim-
itive task and the method’s task network, comprising sub-
tasks and constraints. A methodddally orderedif its task
network istotally ordered A domain is a total-order domain
if everym € M is totally ordered Methodm is relevant for
a taski if there is a substitutiom such tha(t) =taskm).
Several different methods can be relevantto a particular no
primitive taski¢, leading to different decompositions ofin
our example, the method withame by-flight-trangan be
used to decompose ti@sk arrange-trangnto thesubtasks
of booking a flight and paying, with the constrairb(st)
that the booking precede payment.

Definition 3 (Solution to HTN Planning Problem) Given an
HTN planning problenP = (so, wo, D), a plant = (o1, ..., 0)

is a solution forP iff one of the following cases hol€ase 1wy is
primitive and there exists a ground instance &f (C”) of (U, C)

and a total ordering(us, ..., ux) of the nodes iU’ such that for

all 1 <13 < k, nameg;) = t.,, the planz is executable in the
stateso, and all the constraints holdCase 2:wq is nonprimitive,

and there exists a sequence of task decompositions that &an b
applied towy to produce a primitive task network’, wherer is a
solution forw’.

=< between plans. i, andn, are plans fofP andm; < 7o
we say thatr; is at least as preferred as,. We user; < mo
as an abbreviation far; < 7o andwy £ 7.
Definition 4 (Preference-based HTN Planning)An HTN plan-
ning problem with user preferences is described as a 4-tfipte
(s0,wo, D, =) where= is a preorder between plans. A plaris a
solution toP if and only if: 7 is a plan forP’ = (so, wo, D) and
there does not exists a plari for P’ such thatr’ < .

The < relation can be defined in many ways. Below we
describe PDDL3, which defines quantitatively through a
metric function.

2.2 Brief Description of PDDL3

The Plan Domain Description Language (PDDL) is the de
facto standard input language for many planning systems.
PDDL3 (Gerevini and Long 2005) extends PDDL2.2 by en-
abling the specification of preferences and hard conssaint
It also provides a way of definingraetric functionthat de-
fines the quality of a plan. The rest of this section briefly
describes these new elements.

Temporally extended preferences/constraints PDDL3
specifies temporally extended preferences (TEPs) and tem-
porally extended hard constraints in a subset of lin-
ear temporal logic (LTL). Both are declared using the
:constrai nts construct. Preferences are given names
in their declaration, to allow for later reference. By way of
illustration, the following PDDL3 code defines two prefer-
ences and one hard constraint.

(:constraints

(and
(pref erence cautious
(forall (?0 - heavy-object)

(sonetime-after (holding ?0)
(at recharging-station-1))))

(forall (2?1 - light)

(preference p-light (sonetine (turn-off ?1))))
(always (forall ?x - explosive)
(not (holding ?x)))))

Thecaut i ous preference suggests that the agent be at a
recharging station sometime after it has held a heavy gbject
whereag- | i ght suggests that the agent eventually turn
all the lights off. Finally, the (unnamed) hard constraist e
tablishes that an explosive object cannot be held by thetagen
at any pointin a valid plan.

When a preference iexternally universally quantified,
it defines a family of preferences, containing an individual
preference for each binding of the variables in the quantifie
Therefore, preferenge | i ght defines an individual pref-
erence for each object of typé ght in the domain. Prefer-
ences that are not quantified externally, lideut i ous, can
be seen as defining a family containing a single preference.

Temporal operators cannot be nested in PDDL3. Our ap-
proach can however handle the more general case of nested
temporal operators.

Precondition Preferences
Precondition preferences are atemporal formulae expgssi
conditions that should ideally hold in the state in which the

action is performed. They are defined as part of the action’s
precondition. For example, the preference labeledn be-
low specifies a preference for picking up objects that are not
heavy.
(:action pickup :paraneters (?b - bl ock)

(:precondition

(and (clear ?b)
(preference econ (not (heavy ?b)))))

(:effect (holding ?b)))
Precondition preferences behave something like condition
action costs. They are violated each time the action is ex-
ecuted in a state where the condition does not hold. In the
above examplegcon will be violated every time a heavy
block is picked up in the plan. Therefore these preferences
can be violated a number of times.

Simple Preferences

3 PDDL3 Extended to HTN

In this section, we extend PDDL3 with the ability to ex-
press preferences over HTN constructs. As argued in Sec-
tion 1, supporting preferences over how tasks are decom-
posed, their preferred parameterizations, and the condgiti
underwhich these preferences hold, is compelling. It goes
beyond the traditional specification of preferences over th
properties of plan trajectories to provide preferences ove
non-functional properties of the planning problem. This is
particularly compelling when HTN methods are realized us-
ing web service software components, because these ser-
vices have many non-functional properties that distinguis
them (e.g., credit cards accepted, country of origin, wast
thiness, etc.) and that influence user preferences (Sohrabi
Prokoshyna, and Mcllraith 2006).

In designing a preference specification language for HTN

Simple preferences are atemporal formulae that express aplanning, we made a number of strategic design decisions.

preference for certain conditions to hold in the final stdte o

the plan. They are declared as part of the goal. For example,

the following PDDL3 code:
(:goal
(and (delivered pckl depotl)

(preference truck (at truck depotl))))
specifies both a hard goapg¢kl must be delivered at
depot 1) and a simple preference (thatruck is at
depot 1). Simple preferences can also be externally quan-
tified, in which case they again represent a family of indi-
vidual preferences.

Metric Function

We first considered adding our preference specifications di-
rectly to the definitions of HTN methods. This seemed like a
natural extension to the hard constraints that are already p
of method definitions. Unfortunately, this precludes easy
contextualization of methods relative to the task the meétho
is realizing. For example, in the travel domain, many meth-
ods may eventually involve the primitive operationpy-

ing, but a user may prefer different methods of payment de-
pendent upon the high-level task being realized (&\hen
booking a car, pay with amex to exploit amex’s free collision
coverage, when booking a flight, pay with my Aeroplan-visa
to collect travel bonus pointetc.). We also found the option

The metric function defines the quality of a plan, generally of including preferences in method definitions unappealing
depending on the preferences that have been achieved by thebecause we wished to separate domain-specific, but user-

plan. To this end, the PDDL3 expressipns- vi ol at ed
nane) , returns the number of individual preferences in the
nane family of preferences that have been violated by the
plan. Whennane refers to a precondition preference, the
expression returns theumber of timeghis precondition
preference was violated during the execution of the plan.
The quality metric can also depend on the function

total -ti me, which returns the plan length. Finally, it
is also possible to define whether we want to maximize or
minimize the metric, and how we want to weigh its different
components. For example, the PDDL3 metric function:
(:metric minimze (+ (total-tine)

(* 40 (is-violated econ))

(* 20 (is-violated truck))))

specifies that it is twice as important to satisfy preference
econ as to satisfy preferende uck, and that it is less im-
portant, but still useful, to find a short plan.

Since it is always possible to transform a metric that re-
quires maximization into one that requires minimizatiom, w
will henceforth assume that the metric is always being-
imized

Finally, the formal definition for HTN planning with
PDDL3 preferences is an instance of our previous definition:
Given a PDDL3 metric function\/ the HTN preference-
based planning problem with PDDL3 preferenéedefined
by Definition 4, where the relatiort is defined by:

m X my ifandonly if M (my) < M(ma).

independent knowledge, such as method definitions, from
user-specific preferences. Separating the two, enables use
to share method definitions but individualize preferences.
We also wished to leverage the popularity of PDDL3 as a
language for preference specifications.

This work builds on our recent work oPH (Sohrabi
and Mcllraith 2008), aqualitative preference specifica-
tion language designed to capture HTN-specific preferences
LPH supports specification of action-centric preferences
(i.e., preferences over the occurrence of actions, anden th
case of HTNs, tasks) as well as state-centric preferences,
whereas PDDL3 is strictly state centric. FurthéRH ag-
gregates preferences into one (qualitative) preference fo
mula using Boolean connectives, whereas PDDL3 aggre-
gates preferences into a (quantitative) metric functiom. |
this paper, we capture some of the merits of both languages
by extending PDDL3 to incorporate the action-centric pref-
erences o£LPH. This gives users the ability to express pref-
erences over certain parameterization of a task (e.gempref
ring one task grounding to another), over a certain decom-
position of nonprimitive tasks (i.e., prefer to apply a aért
method over another), and a soft version of the before, after
and in between constraints.

To support preferences over task occurrences (primitive
and nonprimitive) and task decompositions, we added two
new constructs to PDDL3)cqt) andapply(n), wheret is
a task andn is the name of a methodocdt) states that
the taskt occurs in the present state, aapply(n) states

that a method whose namerisis applied to decompose a 4.1 Preprocessing HTN-PDDL3 Preferences

nonprimitive _task. For a given problem, this phase compiles away many of
The following are a few temporally extended preferences the HTN-PDDL3 elements, generating an equivalent prob-

from our travel domain that use of the above extension. lem that does not contain temporally extended or precondi-

tion preferences. Some of the techniques below are specific

(- constraints to HTN-PDDL3 preferences, whereas others are borrowed

(?B?ef erence pl from previous approaches.
(al ways (not (occ (pay MasterCard))))) Preprocessing Tasks and Methods HTN-PDDLS3 prefer-
(preference p2 (sonetine (occ ences can refer to the occurrence of tasks and the appticatio
(book-flight SA Eco Direct WndowSeat)))) of methods. In order to reason about task occurrences and
(preference p3 method applications, we preprocess the methods of our HTN
(sonetime (apply (by-car-local SW Avis)))) problem. In the compiled problem, for each non-primitive
(preference p4 taskt that occurs in some preference of the original prob-
(sometinme-before (occ (arrange-trans)) lem, there is a new predicateecuting-t. If aga; - - - a,, is
(haveHot el Reservati on))) aplan for the problem, and anda; are respectively the first
(preference p5 and last primitive actions that resulted from decomposjng
(sonetinme-before (occ (arrange-trans)) thenezecuting-t is true in all the states in between the ap-

(occ (arrange-acc)))))) plication ofa; anda;. This is accomplished by adding new

Thepl preference states that the user never pays by Mas- actions at the beginning and end of each task network in the
tercard. Thep2 preference states that at some point the user methods that decompose
books a direct economy window-seated flight with a Star Al- Further, for each primitive task (i.e., operatodccurring
liance carrier.P3 states that at some point, thg-car-local in the preferences, we extend the compiled problem with a
method is applied to book an SUV from AviB4 states that newocc-t predicate, such thatc-t is true iff ¢ has just been
the hotel is reserved before transportation is arranged. Fi performed.
nally P5 states that tharrange-trangask occurs before the Finally, we modify each methoth whose name: (i.e.,
arrange-acctask. n = name(m)) occurs in some preference. We introduce
a new fluenhasBeenApplied which is true iff methodn
. has been applied to decompose a task. To achieve this, we
4 Preprocessing HTN problems add special actions to the beginning of the task networks

Before searching for a most preferred HTN plan, we prepro- associated with each method.
cess the original problem. The resulting problem fac#isgat Preprocessing occ and apply Modal Operators Now that
the exploitation of our heuristics and our PBP algorithm. we have theexzecuting and thehasBeen Applied fluents,
The preprocessing is done in two phases. In the first We replace each occurrencear(t) by executing-t when
phase we convert the problem into a more standard one, in t is non-primitive and bycc-t whent is primitive. Occur-
the sense that it contains fewer elements that are not seenrences oipply(n) are replaced bhasBeenApplied.
in classical planning problems. In our preprocessed prob- Up to this point all our HTN-PDDL3 preferences exclu-
lems, for example, all temporally extended preferences are sively reference fluents of the HTN problem, enabling us to
transformed into final-state preferences, and thus, reason apply standard techniques to simplify the problem further.
ing about temporally extended preferences is no different Temporally Extended Preferences We use an existing
from reasoning about standard predicates. Thus, we do not compilation technique (Baier and Mcllraith 2006) to en-
need to implement specialized algorithms to reason about code the satisfaction of temporally extended preferemtes i
LTL formulae such as the progression algorithm used by predicates of the domain. For each LTL preferepda the
TLPLAN (Bacchus and Kabanza 1998), and which we also original problem, we generate additional predicates fer th
exploited in (Sohrabi and Mcllraith 2008). Also the compi- compiled domain that encode the various ways in which
lation enables our heuristic functions to be defined only in can become true. Indeed, the additional predicates ragrese
terms of domain predicates, rather than being based on non-a finite-state automaton far, where the accepting state of
standard evaluations of an LTL formulae, such as the ones the automaton represents satisfaction of the preferemce. |
used by other approaches (e.g. Bienvenu, Fritz, and Mcll- our resulting domains, we axiomatically definesrtepting
raith, 2006). In the second phase of the preprocessing, we predicate forp, which represents the accepting condition of
extract a subset of the effects from recursive tasks, and gen 's automaton. The accepting predicate is true at a stite
erate a set of extfaeuristic operatorshat have those effects. and only ify is satisfied as.
These new heuristic operators are not used during searchto |n the case of quantified preferences, the predicates are
decompose a task, but are exploited by our heuristics as anparametric. By way of illustration, consider tpel i ght
abstraction of the tasks. Now we describe in more detail preference defined above. For this quantified preference, ou
each of these phases. compiled problem will contain @- | i ght - sati sfi ed
predicate, such the fa¢tp-1i ght-satisfied 11) is
To simplify the examples many parameters have been sup- trueiffl 1 has been turnedon. The operators in the compiled
pressed. domain are modified in such a way that the predicate will be

updated correctly. In the case of our example, as soon as 1 function HTNPLAN -P(so, wo, D), METRICFN,HEURISTICEN)
the actionswitch-onis applied on a light, the accepting g J;m”mr — INITFRONTIER(50, wo, #) b initialize frontier

. . . . estMetric <— worst case upper bound
pred|cate_ fop- 1 i ght is updated accordingly fof, and 4: while frontier is not emptydo
will remain true thereafter. 5: current — Extract best element froffrontier
Precondition Preferences Precondition preferences are 6: (s, w, partial P) < current
encoded as conditional costs for actions. For each precondi 7 lbound < METRICBOUNDFN(s)
tion preference, we associate a counter function in the com- 8 if tbound < bestMetric then > pruning by bounding
piled domain, that is incremented whenever an action has ° if w =) andcurrent’s metric < bestMetric then
been performed violating some of its precondition prefer- 19- Output plarpartial P
ences. This process is exactly the same as the one used irﬁgj enbde‘?]fMemc METRICEN(s)
theHPLAN -P planner (Baier, Bacchus, and Mcllraith 2007). 73 suce « SUCCESSOS ofurrent

. . 14: frontier < mergesucc into frontier
4.2 Abstracting Recursive Tasks 15 end if
16: end while

For each recursive tagkin the original problem we gener-
ate an additional, heuristic operatott. The new operator
captures onlysomeof the effects oft, and is used by our
lookaheadechnique to quickly estimate an upperbound on
the quality of decomposing a task with a certain method.
Our technique can currently preprocess a subclass of re-
cursive tasks: those that aself-recursiveand that have a
single, void endpoin{SRSVE) tasks. An SRSVE tagkis
such that the methods that decomposan only use as a
non-primitive task, and such that there is only one primaitiv
decomposition, which is also empty. More formally,

Definition 5 (SRSVE) Lett be a non-primitive task, and let
M; be the set of methods that may decompose it. Then,
is self-recursiveand has asingle, void endpoin{SRSVE)

iff M, is such that (1) it contains one and only one method
with no tasks (i.e., a void method) which may only contain
a precondition; and (2) all its remaining methods contain
the (non-primitive) task and no other non-primitive task
(self-recursive).

Example 2 Thenove- r obot -t 0- depot task — shown
below in SHOP2 syntax — can be decomposed by two meth-
ods. One of them is self-recursivegse?2), and the other
one Casel) is void (does not contain any tasks). This task
is thus SRSVE.

(: met hod nove-robot -t o-depot

casel ((at robot depot)) robot at depot?

@) ; do not hing
case2 ((at robot ?x)

(cl osest-to-depot ?x ?y))

((rmove ?x ?y)

(nmove-robot -t o-depot)))

Here the precondition associated with methoakel is
(at robot depot). g

The h-t operator is a relaxation af which has as an ef-
fect the condition that has to be satisfied in order to end the
decomposition of, which is generally the intended effect
of the taskt. Formally, lett(Z) be an SRSVE task, and let
C(Z) be the precondition associated with the void method

;recursive call

17: end function

Figure 1: A sketch of our HTN PBP algorithm.

5 Preference-based Planning with HTN

We address the problem of finding a most preferred decom-
position of an HTN by performing a best-first, incremental
search in the plan search space induced by the initial task
network. The search is performed in a serieepisodes
each of which returns a sequence of ground primitive op-
erators (i.e., a plan that satisfies the initial task netyork
During each episode, the search performs branch-and-bound
pruning—a search node is pruned from the search space, if
we can prove that it will not lead to a plan that is better than
the one found in the previous episode. In the first episode
no pruning is performed. In each episode, search is guided
byinadmissible heuristicglesigned specifically to guide the
search quickly to a reasonably good decomposition. The re-
mainder of this section describes the heuristics we use, and
the planning algorithm.

5.1 Algorithm

Our HTN PBP algorithm outlined in Figure 1, performs a
best-first, incremental search in the space of decompnsitio
of a given initial task network. It takes as input an initial
planning states,, an initial task networkvy, an HTN plan-
ning domainD, a metric function METRICFN, and a heuris-
tic function HEURISTICFN.

The main variables kept by the algorithm grentier and
bestMetric. frontier contains the nodes in the search fron-
tier. Each of these nodes is of the form w, partial P),
wheres is a plan statew is a task network, angartial P
is a partial plan. Intuitively, a search node w, partial P)
represents the fact that task netwarkremains to be de-
composed in state, and that state is reached from the
initial state of the planning probleny, by performing the
sequence of actionsurtial P. frontier is initialized with a

that decomposes it. Then, our preprocessing phase generatesingle node(sg, wo, #), where() represents the empty plan.

the operatoh-t(Z), with a positive effecC(Z), no negative
effects, and with no preconditions (i.e, always execudable
Sinceh-t is a new operator, and is not a member of any task,
it will never be used to construct a plan; only our heuristic
techniques will use it.

Its elements are always sorted according to the function
HEURISTICFN. On the other handjestMetric is a vari-
able that stores the metric value of the best plan found so
far, and it is initialized to a high value representing a wors
case upper bound.

Search is carried out in the mawihile loop. In each
iteration, HTNPLAN -P extracts the best element from the
frontier and places it incurrent. Then, an estimation
of a lowerbound of the metric value that can be achieved
by decomposingurrent’s task network,w, is computed
(Line 7) using the function MTRICBOUNDFN. Function
METRICBOUNDFN will be computed using theptimistic
metricfunction described in the next subsection.

The algorithmprunescurrent from the search space if
lbound is greater than or equal testMetric. Otherwise,
HTNPLAN -P checks whether or naturrent corresponds to
a plan (this happens when its task network is empty). If
current corresponds to a plan, the sequence of actions in its
tuple is returned and the value &fst Metric is updated.

ably violated (regardless of future actions) as satisfietl]
regards anything that is not provably satisfied (regardiéss
future actions) as violated. Its value is computed by evalua
ing the metric function irs but assuming that (1) no further
precondition preferences will be violated in the future), (2
temporally extended preferences that are satisfied and that
can be proved to be true in any successos afe regarded

as satisfied, (3) all remaining preferences are regarded as v
olated. To prove that a temporally extended preferenise

true in any successor of we check whether in the current
state of the world the automaton fprwould be in an ac-
cepting state that is also a sink state, i.e., from which it is
not possible to escape, regardless of the actions performed
in the future.

The search then continues by computing all the successors For reasonable metric functions (i.e., functions that are

to current using the Partial-order Forward Decomposition
procedure (PFD) (Ghallab, Nau, and Traverso 2004). The
successors afurrent will be a new list of nodes in the form
(s',w', partial P'), one for each legal task decomposition
that can be reached by performingrrent’s task network
using a PFD procedure. Then the successorsofent will

be merged into théontier. The algorithm terminates when
frontier is empty.

5.2 Heuristics

Our algorithm searches for a plan in the space of all possible
decompositions of the initial task network. HTNs that have
been designed specifically to be customizable by user pref-

non increasing in the number of satisfied preferendesy,

is monotonically decreasing as more actions are added to
partial P. PM can provide good guidance because it is a
measure of assured progress towards the satisfaction of the
preferences.

Lookahead Pessimistic Metric Function {.A) This func-
tion is an estimate of the pessimistic metric of test suc-
cessorto the current node. To compute this we do a looka-
head search, in which we search for all possiblaxedde-
compositions of the current task netwark up to a certain
depthk. Decompositions ofv are relaxed because when de-
composing some of the non-primitive tasksunwe do not
use their methods but the heuristic operators introduced pr

erences may contain tasks that could be decomposed by ayjously in Section 4.2. By doing this, we allow the search

fairly large number of methods. In this scenario, it is essen
tial for the algorithm to be able to evaluate which methods to

use to decompose a task in order to get to a reasonably good

solution quickly. The heuristics we propose in this section
are specifically designed to address this problem. All lseuri
tics are evaluated in a search nddew, partial P).

Optimistic Metric Function (OM) This function is an
estimate of the best metric value achievable by any plan
that can result from the decomposition of the current task
networkw. Its value is computed by evaluating the metric
function in s but assuming that (1) no further precondition
preferences will be violated in the future, (2) temporaity e

tended preference that are violated and that can be proved

to be unachievable from are regarded as false, (3) all re-

maining preferences are regarded as satisfied. To prove that

a temporally extended preferengés unachievable from,
OM uses a sufficient condition: it checks whether or not the
automaton fop is currently in a state from which there is no

path to an accepting state. Recall that an accepting state is

reached when the preference formula is satisfied.

OM provides a lower bound on the best plan extending
the partial plarpartial P assuming that the metric function
is non-increasing in the number of achieved preferences. It
can therefore be safely used as thettICBOUNDFN func-
tion in our algorithm. In fact, we us®@M as a bounding
function in our experiments.

OM is a variant of “optimistic weight” (Bienvenu, Fritz,
and Mcllraith 2006; Sohrabi and Mcllraith 2008).
Pessimistic Metric Function (PM) This function is the
dual of OM . While OM regards anything that is not prov-

to introduce some of the effects bin one step, instead of
having to perform several decompositiong of

Once we have obtained all the relaxed successors of the
current node up to depth, LA evaluates the pessimistic
metric (PM) in each node, and returns the lowest value.

Depth (D) We use the depth as another heuristic to guide
the search. This heuristic does not take into account tHe pre
erences. Rather, it encourages the planner to find a decom-
position soon. Since the search is guided by the HTN struc-
ture, guiding the search toward finding a plan using depth
is natural. Other HTN planners such sis0P2 (Nau et al.
2003) also use depth or depth-first-search to guide thelsearc
to find a plan quickly.

The HEURISTICFN function we use in our algorithm cor-
responds to @rioritized sequencef the above heuristics,
in which D is always considered first. As such, when com-
paring two nodes we look at their depths, returning the one
that has a higher depth value. If the depths are equal, we use
the other heuristics in sequence to break ties. Figure 2 out-
lines the three prioritized sequences we have experimented
with. For example, LA-First breaks a tie between two nodes
at equal depth by first comparing tied function of those
nodes, then by comparing the valuetat/, and if still tied,
by comparing the value aP M.

5.3 Optimality and Pruning

Since we are using inadmissible heuristics, we cannot guar-
antee that the plans we generate are optimal. The only way
to do this is to run our algorithm until the complete HTN

Strategy Check whether If tied If tied # No-LA | LA-First | LA-Last || SGPlarns
No-LA OM, < OM2> PM; < PM, - 1 58.93 47.58 47.58 68.49
LA-First LAy < LAs OM; < OMs PM; < PM> 2 38.11 23.33 21.78 35.00
LA-Last OM; < OMs PM; < PM> LA; < LAs 3 34.11 23.40 23.39 39.31
4 48.85 37.99 37.99 43.43

Figure 2: Three strategies to determine whether a nedeis 5 362.95 | 266.85 155.54 317.82
better than a noda.. OM is the optimistic-metricPM is the 6 128.13 46.18 46.18 83.41
pessimistic-metric, and. A is the look-ahead heuristic. All three 7 88.58 79.49 50.17 85.61
strategies us®, the depth, as their first criteria for the comparison. 8 932.00 | 782.00 716.00 736.00
9 981.62 538.44 516.18 981.63

10 || 1020.18| 566.80 181.66 559.73

. . . 11 || 1270.98| 847.28 840.06 1003.57

search_space is exhausted. I_n this case, the final plan re- 12 | 70681 | 46505 256 .31 361,52

turned is guaranteed to be optimal. _ 13 || 3899.50| 4965.31 | 1516.46 | 2873.85
Exhaustively searching the search space is not reasonable 14 || 828.33 | 411.31 388.23 507.96

in most planning domains, however here we are able to ex- 15 || 3466.00| 2619.64 | 2233.52 || 2243.96

ploit properties of our planning problem to make this achiev 16 || 2507.00| 2825.00 | 1449.00 || 1973.00

able much of the time. Specifically, most HTN specifica- 17 || 4228.33 - 2467.40 || 2443.80

tions severely restrict the search space so that, relatiae t 18 || 4700.00 - 2679.00 || 3348.00

classical planning problem, the search space is exhalystive
searchable, much of the time. Further, in the case where
our preference metric function is additive, cui/ heuris-

tic function enables us to soundly prune partial plans from
our search space. Specifically, we say that a pruning syrateg
is sound if and only if whenever a node is pruned (line 8) the
metric value of any plan extending this node will exceed the
current boundestMetric. This means that no state will be
incorrectly pruned from the search space. Soundly pruning
the search space of an HTN PBP problem with an additive
metric function for preferences guarantees that if seanch t
minates, the final plan returned is optimal.

6 Implementation and Evaluation

Figure 3: The metric value of the solutions generated by
SGPlans and 3 strategies fof TNPLAN -P on 18 Rover problems.

The problems used in our tests are a modified version of
the ones used in IPC-5. After careful consideration, we re-
alized that in order to have a fair comparison we needed to
remove some of the preferences from some of the problems.
This is because these problems contain preferences that wil
never be satisfied because of how HTN methods for this do-
main are defined. For example, if the goal is to only collect
rock from locationwaypoint3 a preference indicates rock
collection from other locations will never be met becauge th
HTN structure will never consider sampling rock from other

We implemented our proof-of-concept preference-based non-specified locations. The modified problems still have a
HTN planner,HTNPLAN -P. HTNPLAN -P has two mod- fairly high number of preferences. For example, problems 9,
ules: a preprocessor and a preference-based HTN planner.13, and 18, have 71, 129, and 133 preferences respectively.
The preprocessor reads PDDL3 problems and generates a Figure 3 shows the metric values of the last plan returned

SHOP2 planning problem with only simple (final-state) pref-
erences. Additionally, it generates the relaxed operditors
recursive tasks, and th@ M, PM, and LA functions de-
scribed in Section 5.2. On the other hand, the planner is
a modified version of the LISP version efHor2 (Nau et

al. 2003) that is able to compute the heuristic functions and
implements the algorithm described in Section 5.1.

We evaluated the effectiveness of our various heuristics
shown in Figure 2 in obtaining plans with good quality (i.e.,
with low metric value). We tested the planners onRowers
domain from the qualitative preferences track of the 5th In-
ternational Planning Competition (IPC-5). We have used
a modified version of the HTN Rovers specification used
by sHoP2 in IPC-2. Our modification ensures true non-
determinism: if a task can be decomposed using two dif-
ferent methods, then both of these methods are considered
not just the first applicable one. In the Rovers domain, the
goal is to sample scientific data such as rock and soll, or take
images from different objects by navigating rovers between
the different surfaces. However, a rover can only traveese b
tween different waypoints if there is a visible path from the
source to the destination. In addition, each rover is eqdpp
for either soil, rock, image, or some combination of them.

by our planner under each of our heuristics. It also shows the
metric value of the plans returned BGPlan;, the winner

of IPC-5. We ran both planners for 60 minutes, and with a
limit of 2 GB per process. The dash entries indicate that no
plan was found within the time and memory limit.

Under the LA-Last heuristic, our planner consistently
found plans with better quality than those found by
SGPlars. The LA-Last heuristic, which uses the lookahead
heuristic as the last criterion for breaking ties seems te ou
perform other strategies. We conjecture that this is partly
because the lookahead heuristic may guide the search away
from good quality plans by ignoring some of the precondi-
tions of the operators (i.e., by relaxing the methods). laaok
head is more effective if it's used by giving it a lower prigri
than the optimistic and pessimistic metrics.

, Our planner is not able to solve the two most complex
problems (19 and 20). The poor performance in these two
instances can be explained by two main reasons. First, the
current version of our planner is not optimized for speed or
memory (it is a LISP prototype). Second, because we have
focused our efforts on addressing the problem of finding
high-quality plans, the current version of our planner does
not implement any heuristics orientedhard goalsatisfac-

tion, an arena in whicBGPlan; currently excels. a task. Hence users may write different versions of a do-

In many cases,SGPlan, generates a plan signifi- main description to specify simple preferences. However,
cantly faster than HTNPIlan-P. This is not surprising since unlike HTNPLAN -P the user constraints are treated as hard
HTNPIan-P’s code has not been optimized. Optimization of constraints and (partial) plans that do not meet these con-

HTNPIlan-P is possible. straints will be pruned from the search space.
_] Finally, the ASPEN planner (Rabideau, Engelhardt, and
7 Discussion and Related Work Chien 2000) performs a simple form of preference-based

Preference-based planning has been the subject of much in-Planning, focused mainly on preferences over resources. It
terest recently, spurred on by two International Planning can plan with HTN-like task decomposition, but its prefer-
Competition (IPC) tracks on this subject in 2006. A num- €nce language is far less expressive than ours. In contrast
ber of planners were developed, all based on the competi- t0 HTNPLAN -P, ASPEN performs local search for a local
tion’s PDDL3 language. Our work is distinguished in thatit optimum. It does not perform well when preferences are

exploits procedural(action-centric) domain control knowl- interacting, nested, or not local to a specific activity.
edge in the form of an HTN, extending PDDL3 with action-
centric constructs to achieve this objective. References
There is a variety of related work. Most notable is our Bacchus, F., and Kabanza, F. 1998. Planning for temporaily e
recent work (Sohrabi and Mcllraith 2008) in which we simi- tended goals.Annals of Mathematics and Artificial Intelligence

larly extend theC PP (Bienvenu, Fritz, and Mcllraith 2006) 22(1-2):5-27.

qualitative preference language with HTN constructs. The Baier, J. A., and Mcllraith, S. A. 2006. Planning with firsder
resulting languagefPH, is more expressive in that it al- temporally extended goals using heuristic searciPrbteedings
lows arbitrarily nested LTL formulae, but less expressive i of the 21st National Conference on Atrtificial IntelligenéedAl),
that it doesn’t allow counting of violations as do PDDL3 pre- ~ 788-795.

condition preferences. The associated planning algoiighm ~ Baier, J. A;; Bacchus, F.; and Mcllraith, S. A. 2007. A heuris
also fundamentally different. Optimal plans are found gsin tic search approach to planning with temporally extendedepr
heuristic search with aadmissibleheuristic. In contrast to ences. IrProceedings of the 20th International Joint Conference
the work presented here, no heuristics exploited HTN struc- 2" Artificial Intelllgence (CAI) 1808._1815' .
ture, nor was any precompilation performed. Preferences Bienvenu, M.; Fritz, C.; and Mcllraith, S. A. 2006. Planning
were evaluated for (partial) satisfaction using prog@ssi ‘l’r‘g'ttgrggﬁgtnagivgcfﬁgfeorﬂ%rr?flf;ir\:ﬁgzg Hg’g%epergfs”egnst;‘;;:‘];eﬁh
~Ina s_|m|Iar vein, in 2006, we introduced t_he problem_(_)f soning (KR) 134-144.

integrating user preferences into web service composition o .

(Sohrabi, Prokoshyna, and Mcllraith 2006). To that end, Gerevini, A., and Long, D 2005. Plan constraints and prefer
we developed a Golog-based composition engine that also ences for PDDL3. Technical Report 2005-08-07, Departmént o
exploits heuristic search and an admissible heuristic.eOnc Electronics for Automation, University of Bresga, Br_esdntaly.
again, the language used in that work w2BP. In con- Ghallab, M.; Nqu, D.; and Traverso, P 20ierarchical Task.
trast to the work presented here and by Sohrabi and Mcll- '\NA((e)tr\Ng:]kKIZISfr;:;r:]gﬁ Automated Planning: Theory and Practice
raith (2008), there are no web-service or Golog-specific ex- Kutegr U.- Sirin EI' Nau. D. S.: Parsia. B.- and Hendler. J. A
Eﬁﬂ?%g;fe?rsca?ﬁﬁ;iﬁ)(;telc(;nlzr(]tgjacéglc;%gn:':'oh?.%zssg;t;fgﬁ? 2004. Information gathering during planning for web seevic

o . . composition. InProceedings of the 3rd International Semantic
ner are significantly different, but also provide a planhet t Web Conference (ISWC335—349.

can be exploited for web service composition. Lin, N.; Kuter, U.; and Sirin, E. 2008. Web service composi-

Also related is very recent work by Lin, Kuter, and 5 with user preferences. IProceedings of the 5th European
Sirin (2008) which exploits PDDL3, to perform preference- gemantic Web Conference (ESWE20-643.

based HTN planning, applied to web service composi- Nau, D. S.; Au, T.-C.: lighami, O.; Kuter, U.; Murdock, J. W.:
tion. Like Sohrabi, Prokoshyna, and Mcllraith (2006), \yy Db and Yaman, F. 2003. SHOP2: An HTN planning system.
they do not extend their preference language with web ser- journal of Artificial Intelligence Resear@0:379-404.

vice specific/task-specific constructs. Their approach to e oo Engelhardt, B.; and Chien, S. A. 2000. Using
preference-based HTN planning is quite different from ours generic preferences to incrementally improve plan qualitro-

In particular, they translate user preferences into HTN-con ceedings of the 5th International Conference on Artificigelli-
straints and preprocess the preferences to check if additio gence Planning and Scheduling (AIP236—245.

tasks need to be addeditq. Their searchis best-firstsearch gonrapi; S., and Mcllraith, S. A. 2008. On planning with pref

but .usesontollogical reasoning over the user preferelnces. erences in HTN. IrFourth Multidisciplinary Workshop on Ad-
Their reasoning assumes that each method has a fixed set vances in Preference Handling (M-Pref03—109.

of effects or well defined post-conditions associated with i Sohrabi, S.; Prokoshyna, N.; and Mcllraith, S. A. 2006. Web
It is interesting and important to note that the HTN plan- service composition via generic procedures and customizser
nerssHor2 (Nau et al. 2003) an&NQUIRER (Kuter et preferences. IrProceedings of the 5th International Semantic

al. 2004) can be seen to handle some simple user prefer- Web Conference (ISW&97-611.
ences. In particular the order of methods and sorted pre-
conditions in a domain description specifies a user prefer-
ence over which method is more preferred to decompose

