Improving Relaxed-Plan-Based Heuristics

Jorge A. Baier
Department of Computer Science
University of Toronto
Toronto, ON M5S 3G4, Canada

Abstract

Relaxed-plan-based (RPB) heuristics were first proposed by
Hoffmann and Nebel for their FF system and are still used
by current top-performing planners. Their main characteris-
tic is that they are computed by computing a so-called relaxed
plan, which is a plan for a relaxed version of the problem that
ignores negative effects of actions. However, still in some
domains that humans consider simple, they provide bad guid-
ance. Arguably, the reason is that disregarding deletes over-
simplifies those domains. Consequently, relaxed plans ignore
key parts of the domain’s structure. This paper describes pre-
liminary work that attempts to identify how it is possible to
compute better relaxed plans that will better respect the struc-
ture of the original (un-relaxed) problem. To that end, we pro-
pose two techniques for extracting improved relaxed plans.
The first (domain-independent) technique identifies missing
actions that would have to be performed if the relaxed plan
was to be executed in the real (un-relaxed) world. The sec-
ond (domain-dependent) technique uses domain knowledge,
in the form of simple state constraints, to attempt to extract a
relaxed plan that respects key information of the domain. We
prove that the first technique can significantly improve the
performance and quality of solutions obtained with a vanilla
RPB heuristic and enforced hill climbing on a family of sim-
ple blocks-world problems. We experimentally show that
both techniques improve search efficiency in example do-
mains.

Introduction

humans, RPB heuristics are not effective (ebtpcksworld.
Ignoring deletes does not seem to be a good idea in those
cases. More precisely, by relaxing deletes to compute the
heuristic, we lose a key part of the underlying “structuré” o
those domains.

This paper describes work in progress that attempts to
determine how it is possible to find improved relaxed
plans/heuristics. These improved plans are obtained by
changing the relaxed plan extraction phase in such a way
that the resulting plan will take into account some elements
that would have otherwise been ignored by a vanilla RPB
heuristic. The improved relaxed plans are still efficiently
computable.

We propose two techniques to compute improved relaxed
plans. Both are based on the fact that relaxed plans could
be considered aadviceregarding what has to be done at
each state of the search. The first is a domain-independent
technique. It will modify a standard relaxed pldhwhen
it realizes that preconditions of some actionsAnwill be
invalidated 6ccluded by some actions it® no matter how
we executeP in the un-relaxed domain. When precondi-
tions are occluded, we assume they have to be fixesbhye
action, and the heuristic is modified accordingly. The mod-
ified RPB heuristic is then proven more effective than the
vanilla version in an example domain.

Arguably domain-specific knowledge—logical assertions
that are entailed by the domain description—represents
part of the structure of a domain. Our second (domain-

Relaxed-Plan-Based (RPB) heuristics are among the most déPendent) technique proposes to use domain knowledge,

successful in classical planning, being key to systems suc
as FF (Hoffmann & Nebel 2001), and SGPlan (Chen, Wah,
& Hsu 2006). To compute an RPB heuristic one constructs
a plan that solves a relaxed version of the original problem.
Here we focus on RPB heuristics that are computed from
relaxed versions of the problem where negative effects of
actions (a.k.adelete3 are ignored, like the one used by FF.
RPB heuristics have been successful in planning mainly
for two reasons. First, in many domains they give a very

h in the form of state constraints, to inform the relaxed plan

extraction phase of key parts of the structure that we would
like to be preserved by the relaxed plan. We propose the use
of very simple constraints that can be extracted by existing
systems. We show in an example domain that our technique
can improve search effectiveness.

Background
Relaxed-Plan-Based Heuristics To compute the RPB

accurate advice of what needs to be done to achieve the heuristic for a state, we expand a so-calle@laxed plan-
goal in a particular state. Second, they can be computed ning graph(Hoffmann & Nebel 2001) frons, which is no

efficiently. Finally, in many domains (e.ghriefcase lo-
gisticy RPB heuristics are provably effective (Hoffmann
2005), since they have no local minima.

different from the graph that would be expanded by Graph-
plan (Blum & Furst 1997) on the relaxed instance of the
problem. We view this graph as composedalfixed states

Despite their success, in some domains that are simple for A relaxed state at deptih+ 1 is generated bgaddingall the



effects of actions that can be performed in the relaxed state Algorithm 1 A complete RPB-based planning algorithm.

of depthn, and then by copying all facts that appear in layer
n. The graph is expanded until the goal or a fixed point is
reached.

After the graph is computed, the relaxed plan is extracted
by regressing from the goal to the initial state. rédlaxed

plan can be represented as a sequence of sets of actions

A -+ A,. In general, many relaxed plans can be extracted
from a single graph; indeed, although finding the optimal
relaxed plan is NP-complete (Hoffmann & Nebel 2001),

heuristics can be used to extract a good (small) one in poly- 1.

nomial time. The number of actions in the relaxed plan is
used as the heuristic value of the nede

If A;--- A, is arelaxed plan, then the actionsAn are
often referred to akelpful actions These actions are used

by planners like FF as advice regarding the successors that16:

most likely will lead to satisfying the goal. K is an RPB
heuristic, we denote by (h, s) the set of helpful actions of
the relaxed plan constructed by the algorithm ficon state
s. Moreover, we usé*(s) to denote the cost of amptimal
plan that achieves the goal starting from state

Planning with RPB Heuristics As with any other

domain-independent heuristic for planning, a standart bes
first search can be used for planning with RPB heuristics.
However, the most effective planners improve over best-firs
search by exploiting helpful actions in one way or another.
One of the reasons for this is that computing the heuristic fo

a state is computationally expensive. FF, for example, uses

an enforced hill climbing (EHC) search algorithm that will

use only helpful actions in a breadth-first search that looks

for an improved successor of the node being expanded.
Concentrating on helpful actions improves the efficiency

1: function RPB-R.AN (stateinit, goalgoal)
: Compute heuristic & helpful actions fonit
Insertinit into PriOpenList
SecOpenList — ||
CurOpenlList «— PriOpenList
while PriOpenlList andSecOpenList are not emptyo
father «— best state irCurOpenList
Insertfather into ClosedList
if father satisfiesgoal then
return father

if CurOpenList =SecOpenlList then

ooNogR®DN

10:

12: Compute heuristic & helpful actions féather
13: succ < successors gfather

14: for all s € succ \ ClosedList do

15: if action that produced s in father.helpful then

Compute heuristic & helpful actions fer
Inserts into PriOpenList
else
s.heuristic < father.heuristic
Inserts into SecOpenList
21: Switch CurOpenList > change to the other list

22: return failure

17:
18:

helpful actions.

Good Relaxed Plan Heuristics

What makes an RPB heuristic a good heuristic? A uncon-
tentious informal answer to this question may be as follows.
A good RPB heuristic is one that leads the search to a rea-
sonably good solution, reasonably fast. Unfortunatelg thi

refers to two fuzzy concepts, whose definitions are them-
selves open to debate, i.e., what is “reasonably good”, and

of planners but focusing on them too much can lead, on its \yhat is “reasonably fast’.

own, to sacrificing completeness, independent of the search

strategy being used.

Algorithm 1 is a planning function that exploits RPB
heuristics. It is a variation of the one used by Fast Down-
ward (Helmert 2006). The algorithm uses two indepen-

Rather than proposing a definition for these fuzzy con-
cepts, in the remainder of this section we focus on two prop-
erties of RPB heuristicshelpfulnessandaccuracy We jus-
tify, in intuitive terms, why these properties are impottan
for obtaining good-quality solutions fast. (A more thorbug

dent open lists to keep the nodes in the search frontier: the ipeoretical analysis is left as future work.)

PriOpenList and theSecOpenList. The PriOpenList con-

tains nodes that were generated by performing a helpful ac-

tion, andSecOpenList contains those that were not. An im-
portant observation is that the computation of the heuwristi
is deferredfor successors that are not generated by a help-
ful action; these successors therefore inherit the héarist
value of their immediate ancestor (line 19). This enables
this algorithm to save time by not computing the heuristic
for states that don't look promising. At the end of the while
loop (line 21), theCurOpenlList points to the other open
list (i.e., if it was originally pointing taPriOpenList, it will
point to SecOpenList, and vice versa). The switch is only
made if afterward€<'urOpenList points to a non-empty list.
Although Algorithm 1 concentrates on helpful actions, it

is easy to see that it is complete for the case of classical

planning, because the search space is finite. Itis easytalsto
see that removing line 21 makes it incomplete, but probably
faster on the instances that can be solved by only consiglerin

As was previously highlighted, Algorithm 1 prioritizes
those successors of a stat¢hat result from performing a
helpful action ins, by computing their heuristic value im-
mediately after being expanded. Intuitively, we would like
to prioritize successorsthat lie on an optimal plan from.

Definition 1 (Helpful heuristic functioh). Let Opt(s) de-
note the set of optimal plans that lead fraro a goal state.
An RPB heuristid: is helpful in states if H(h, s) contains
an actiona that is a prefix of a plan irOpt(s).

Figure 1 depicts a situation which shows why helpful
heuristics can be better than un-helpful ones. In the pic-
ture, s ands’ are respectively in the primary and secondary

'Hoffmann (2005) has considered a similar concept that refers
to the so-called actiongspected by the relaxationf all actions
in the problem are respected by the relaxation, the RPB heuristic is
helpful, but not vice versa.



@ h(sl) = h*(sl) =9

h(s) =10, h*(s’) = 10 @%@ h(s2) = h*(s2) = 10

th :h*83 =
h(s') =10 = h*(s') = 15 (5 € hlss) (sa) =11

Figure 1: States, s9, andss are generated by respectively
performingai, az, andaz ons.

open lists, and is being expanded. The expansiorsqfro-
duces three successors;, so, andss. Consider the case
wherea; is a helpful action. Thens; (the closest state to
the goal) will be the next state in the primary open list to be
expanded aftes. Consider the case wheusg is helpful but
a1 is not helpful (i.e., the heuristic is not helpful ¥). In
this scenarios; is put in the secondary open list, and will
be associated with the heuristic value of its father (10 Th
next state to be expanded will Begbecause it is a shorter
plan in the secondary open list). On the next iteration,
will be expanded. Finally, in the next iteratieh may be
expanded, since it will have the same heuristic valualls
other successors 6f that are not helpful. Thoughy, might
eventually be expanded, it will certainly not be as quicldy a
we would ideally want.

Helpfulness, on its own, guarantees that an otherwise in-
complete version of Algorithm 1 is complete:

Proposition 1. If a helpful heuristic is used, Algorithm 1 is
complete even if line 21 is removed.

As also remarked by Helmert (2006), the previous result
is good news in terms of efficiency, since we can avoid com-
puting the heuristic for many states in the search space.

Helpfulness is still not enough to guarantee that the plan-
ner will be heading in the right direction. The reason is that
the heuristicvalueof a state is the actual criterion for pick-
ing up nodes from the open lists. If we want the heuristic to
“pick the right node,” the heuristic value of a nodshould
be related to the actual optimal cdst(s) of a plan froms.

In particular, if from two successors of a node, sayand

sq, itis the case thai*(s1) < h*(s2), then we would never
wanth(s1) > h(sz) to hold true. We say that a heuristic
function isaccurate for siblingsor simply accurate, when it
completely respects the ordering of successor nodes irsterm
of their actual optimal cost to reach the goal. More formally

Definition 2 (Accurate heuristic function)A heuristic func-
tion h is accurate for state if for any two successors of
s andsg, h*(s1) < h*(sg) iff h(s1) < h(sz2). A heuristic is
accurate for planning problen®, if it is accurate for every
s in the search space.

Note that accuracyloes notimply admissibility, as it
refers to the relative heuristic values of sibling nodeg, no
to arbitrary nodes from the search space.

Helpfulness and accuracy are desirable properties of
heuristics, however it is hard to obtain them in practice. We
think it might be impossible to prove that any given RPB

to improve the quality of existing RPB heuristics. We shall
see this in the following sections.

Occlusion Penalties

As we remarked earlier, an accurate heuristic function en-
ables a planner such as the one in Alg. 1 to pick the right
successor of a node during planning. In this section we show
a very simple planning domain in which RPB heuristics are

notaccurate. We then define the notion of occlusion, which

is a way of considering negative effects of actions in RPB

heuristics. Using this notion, we can transform a given RPB

heuristic that is not accurate into an accurate one.

An Example in the Blocks World

Let us consider the old and well-known blocks world,
with the standard operatorgack, unstack, pickup, and
putdown. More specifically, let's consider the family of
very simple problems that was suggested in the call for pa-
pers for this workshop, i.e., building a sorted tower with
blocks By, B; . .., B,, with By on top. Initially, all blocks
are lying on the table, except fét,,, which is onB;. Amaz-
ingly, the FF planner needs more than 1GB of memory when
n > 28. Moreover, on the instances that it can solve, it gives
very poor solutions. For example, the plan for instance with
n = 27 contains 103 actions, almost double the number in
the optimal, 54-action plan. SGPlan, on the other hand, re-
turns a 91-action plan.

Although both FF and SGPlan rely on RPB heuristics, the
low quality of their solutions can be explained mostly by the
particular search strategy employed rather than the heuris
tic. Nevertheless, vanilla RPB heuristics are still not oo
for this family of problems. Actually, even algorithms like
Algorithm 1 will not find good solutions.

To understand why this happens, consider the domain
with n = 3 and an intermediate state where all blocks lie
on the table. The successors to this state are those that come
from performingpickup(B;), for i € {1,2,3}. Naturally,
the optimal decision here is to perfopickup(Bs), to then
stack it overB;. However, a vanilla RPB heuristic will not
suggest that. Indeed, the optimal relaxed plan for the suc-
cessor whereickup(Bs) is performed is as follows:

{stack(Bi, B2) }{pickup(B2)}{stack(Ba, B3)}, (1)

and the optimal relaxed plan f@ickup(Bs) successor has
the same number of actions:

{stack(Bs, B3) H{pickup(B1)}{stack(B1,B2)}. (2)

By ignoring negative effects, the RPB heuristic makes the
planner behave as if these two successors were identical.
Rephrasing this in the terminology of the previous section,
the standard RPB heuristic is not accurate.

Making an RPB Heuristic Accurate

The reason why the RPB heuristic is inaccurate for this fam-
ily of blocks-world examples is because negative effeats ar
ignored. If we took both relaxed plans seriously, and wanted

heuristic has any of these properties, independently of the to execute them in the un-relaxed domain, we would only

domain. However, thinking about these properties is useful

be able to perform plan (2). The problem of (1) is that



actionstack(B1, B2) deletes ooccludesa precondition of Algorithm 2 An algorithm for occlusion penalties
pickup(B2). Below we define formally the concept of oc-  "1: function OCCLUSIONPENALTY (relaxed plarP® = A; - - - A,,)
clusion but first we need another definition. 2:  penalty — 0
Definition 3. Let P be a relaxed plan constructed for astate - While Exists factf occluded by action do
s, and leta andb be actions inP. Moreover, letP_,, denote g', :G_"“ bisf‘;_(’h tgaffdfi}
the plan that corresponds to deleting actierirom P. We 6: s, o 4

7

. . It Ity +1
say thata is necessary tb—denoted by, < v—if the exe- . etu]iznaei/a; penatty
cution ofb is not possible while attempting to perforf, P Y
in the relaxed domain.

Intuitively, a < b expresses thatis essential to achieving

the preconditions ob. That is,a < b implies that neces- Moreover, extending an RPB heurisitc with occlusion can
sarily, in any valid linearization of the plam, has to occur lead to polynomial performance on this family of blocks
beforeb. world problems. Leth™ be the RPB introduced by Hoff-

mann (2005) that computes the optimal relaxed plan for any
given state. Leb} beh™ extended with occlusion penalties.
Then, we obtain the following result.

Definition 4 (Occluded facts) A fact f in a relaxed plan
is occludedif f is a precondition of an actioh in P such
that (1) there exists an actiomin P such thata < b, and
a deletes factf, and (2) every actior in P that addsf is Proposition 2. Let s - s2, be the state path traversed
suchthatt < aorb < c. by the optimal plan that solves the blocks-world problem
for n blocks defined earlier in this section. Moreover, let
H Succ(s) denote the set of successorssaothat are pro-
duced by some action ifi{(h},s). Then for anyi €

A preconditionf of an actioru is only occluded when an
actiona’ that is needed by has deleted it. However, other
actions in the relaxed plan (referred toteis the definition) )
could have added, and therefore un-occludé The defini- {0,...,2n — 1}, siga £ HS“CC(Sj)’ and for anys’ €
tion states that almost all actions that afidan un-occlude HSuce(si) N {si1}s hg (si1) < hg(s).

f exceptthose that necessarily have to occur befarer This property—which is not true of *—intuitively says
aftera. that 2} will lead any search algorithm focusing on helpful

Note that under the definitions above, the precondition actions toalwayschoose the optimal node to be expanded
clear(Bsg) of pickup(Bs) is occluded in plan (1) by ac-  next. In particular, this implies that EHC solves this famil
tion stack(B;, Bs). Note that the only action that adds of problems optimally in polynomial time in.
clear(Bs) in (1) is stack(B2, Bs) but this action cannot un-
occlude the fact becaugéckup(Bz) < stack(Bz, Bs). Incorporating Domain Knowledge

The definition of occlusion can also be extended to goal
facts. A goal fact is occluded if it is deleted by an actiorttha
occurs after the one that added it.

Now we focus on how we can use the notion of occlu-
sion to repair an estimate given by a RPB heuristic. In a
nutshell, if an action’s precondition is occluded, therads
valid linearization of the plan that will reach the goal ireth
un-relaxed domain. Under the premise that the relaxed plan
is still a good approximation to a solution, we could attempt
to repair it, or attempt to estimate how many more actions it
would need to become a “real” plan. From the two alterna-
tives, we have experimented with the latter.

Algorithm 2 computescclusion penalties The occlu-
sion penalty is a number that estimates the number of actions
that are missing in the relaxed plan. It does so by assuming
that each occluded fact will be un-occluded by some action
that adds this fact. Whenever an occluded fad found, a
pseudo-actiomdd; is added to the relaxed plan right after
the occluding action. The only effect efdd; is to addf.

Note that the addition ofidd; cannot introduce additional AR E lein th .
occlusions. n Example in the Storage Domain

Now instead of using the length of the relaxed plan as The storage domain was introduced in the 2006 International
a heuristic value for a node, we can use the length of the Planning Competition (IPC-5) (Gereviat al. 2006). In the
original plan plus the occlusion penalty. In our examplsthi  STRIPS version of this domain, there amatesthat can be
would mean that a successor resulting frafkup( B ) (the transported usindpoistsfrom oneareato another. Crates
wrong action) gets a penalty of 1, and therefore its hewgristi can bdifted anddroppedby hoists. Hoists can carry at most
value is 4, rather than 3. This modified heuristic is accurate one crate at a time, and can move between connected areas.
for this family of blocks-world. A hoist can only move telear areas, and can pick up or

As we saw earlier, helpful heuristics are desirable because
they can speed up search. However RPB heuristics some-
times lack this property because relaxed plans ignore some
of the structure of the problem. To address this issue, & thi
section we propose the useadmain knowledgéo extract
better (helpful) relaxed plans.

In contrast to some previous work in planning, which
has used non-trivial domain knowledge to improve search
(e.g., LTL formulae to control search by Bacchus & Ka-
banza (1998) using TURAN), we use much simpler knowl-
edge to improve relaxed plan generation. Indeed, we will
just use state constraints, i.e., properties that holditres-
ery state of the plan. In the rest of the section we show a
very simple domain in which RPB heuristics are not help-
ful. Then we show how domain knowledge can be useful
for extracting better relaxed plans, and end giving an algo-
rithm for extracting relaxed plans thaties to satisfy given
constraints.



depotl  loadarea containerl search space, as in TLRN (Bacchus & Kabanza 1998).

al 1a2 ic-al Here we propose to use domain knowledge for relaxed plan
‘ | extraction.
,,,,,,,,,,,,,,,,,, L The type of domain knowledge we propose to use is
a3 1ad ! ic-a2 among the simplest one can think of: domain state con-
! clg straints. These constraints are logical formulae that frold
! 0o every state of the search space. For example, in the stor-

age domairitwo objects cannot be at the same store arga”
and“the hoist can lift only one crate at a timeéare prop-
erties that hold in every problem. Existing systems are able
to extract these constraints. IndeedscopPLAN (Gerevini

& Schubert 2000) is able to extract both of the constraints
mentioned above.

Relaxed plan extraction that respects an arbitrary state
constraint is worst-case exponential in the depth of tha.pla
The intuitive reason is that state constraints may imply tha
deletes must not be ignored.

Nevertheless, we do not needftdly satisfy domain con-
straints to obtain reasonable relaxed plans. Sometimes a re
laxed plan that “almost” satisfies a state constraint is much
better than one that doesn't.

Algorithm 3 extracts relaxed plans while trying to achieve
a domain constraint as much as possible. The main differ-
ence between ours and a standard relaxed plan extraction
algorithm is in lines 5-10. Instead of looking for any action
that achieves an unsatisfied sub-goal, the algorithm |lawks f
an action such that the union of its effects plus the effects o
all other actions already in the relaxed plan satisfy the con
straint. If such an action exists, itis added to the relaxad p
in the standard way. Otherwise the algoritiimes notadd

Figure 2: An intermediate state in a 2-crate storage domain.
Dashed lines divide connected areas; e4yis connected

to loadarea but a2 is not. The goal is to have all crates in
depotl. The hoist is currently holdirg.

drop a crate in an area that is connected to the one they are
currently in. A crate can only be dropped in a clear area.
Areas can be part of a depot, part of a container, or just be
used to move between depots and containers.

Usually problems in this domain consist of moving crates
located initially in containers to the depots. These protsle
are quite simple for humans, however, they turned out to be
surprisingly hard for most of the IPC-5 competitors. For ex-
ample, no planner, except SGPlan, is able to solve instances
19-30. If one looks at instance 19 and over, there is no sig-
nificant additional number of objects—which would be an
obvious reason to justify bad performance.

Vanilla RPB heuristics have some serious drawbacks on
this domain. Consider the situation depicted in Figure 2. A
relaxed plan for this state would be as follows.

{drop(cl, ad) }{pick(c2,c-a2)}{drop(c2,a4)} (3) any action to the relaxed plan but still length is incremdnte
) ] o ) by one (line 10) to reflect the fact that at least one action
The drawback of this relaxed planis that itist being help-  \yas needed to satisfy the unsatisfied sub-goal. The returned
ful because is does not have the actjorin(a4) in the first length is used by the search algorithm as the heuristic value

layer. This relaxed plan is suggesting that a good thing to do f the node being evaluated.
is to dropcl immediately, a clearly dumb decision.

The source of the problem is, again, in the overly relaxed Agorthm 3 P - - Taxed Ol rach
domain that is being solved. Relaxing deletes completely is gon m roperty-preserving relaxed plan extraction
a bad idea because it allows the relaxed plan to consider— 1: function EXTRACTPRsRV(plan graphPy Ao P - - - An—1Pn,
among other things—dropping crates at the same location, 908G, Propertyy)

. rel hitiali

ultimately causing it not to consider tlge-in action. gi ]{;}” ZZ g 1do > initialize goals

A potential fix to the problem would be to define a less 4. forall p € P* do > find supporting actions
relaxed problem, in which certain fluents amet relaxed. 5 Finda € A; such tha < i, p € eff " (a), and
This would mean that deletes wouléveto be considered 6: such thatp is satisfied inJr_o P U efft (a)
during planning extraction. In our example, the fact that 7: if a is foundthen
we are relaxing thelear fluent looks particularly harmful, 8: A® — A®'Ua
and we might want to un-relax it. This approach however o: P — P U prec(a)
is not good in theory, since extraction gets worst-case ex- 1q. length — length + 1 > Count action
ponential in the depth of the graph. Moreover, in prac- 1. (etum (length, AR . - A™)

tice it doesn’t seem to be promising either. Actually, Sat-
Plan (Kautz, Selman, & Hoffmann 2006), takes more than
20 sec. on a 2-GHz Pentium to solve problem number 21 of  A|gorithm 3 is polynomial in the size of the relaxed plan.

the storage IPC-5 problem set when only ¢hear predicate In fact, compared to the standard relaxed plan extraction,
is un-relaxed. the only extra cost is finding an action that preserye&f-

. . . ficiency however comes at a cost: the algorithm is not com-
Using Domain Knowledge to Achieve Helpfulness plete; it will not find a relaxed plan that respegtsfor an

Domain knowledge has been previously used to improve arbitrary o, if one exists. The main reason for this is that
search efficiency in planning. Most previous work has con- the algorithm cannot backtrack: once an actiohas been
centrated on using this knowledge to control or prune the included in the relaxed plan, it can never be removed.



1000 |

1000 -

100 |
100 -

10+
10

seconds

seconds

S

0.1

¥

without occlusions —+—

with occlusions
/‘ 0'010 5

vanilla RPB heuristic —— ]

T property-preserving RPB heuristic

w/occlusions
18
22

no occlusions
18
21

vanilla
preserve

10

10 15 20 25 30 35 40 45
instance

50

(a) Times, blocks world

15
instance

(b) Times, storage domain

20 25 30

(c) Instancesdatvgtorage domain.

Figure 3: Summary of experimental results

An important observation is that the algorithm in a way
“gives up” when an action violates a property by not adding
any action to the relaxed plan. This is useful for properties
that, once violated, will never be true again. By not com-
mitting to any action, there is still a chance of finding other
actions later that will still satisfy the property.

As a final remark, the quality of the relaxed plans found
by Alg. 3 depends strongly on the planning graph that is
given to it as input. Generally, a plan that satisfies a state
constraint islonger (in terms of makespan) than one that
does not satisfy it. Therefore, we must feed our algorithm
with planning graphs that are extended beyond the layer
where the goals appear for the first time.

Let us go back to our example domain. Our initial in-
tuition is that the reason why the vanilla RPB heuristic is
bad is that it allows locating an arbitrary number of crates i
the same position. Suppose we consider the following state
constraint:

(forall cl1 c2 - crate
(forall a - area
(inplies (and (on cl a) (on c2 a))
(= clc2))))

then Algorithm 3 can find the following relaxed plan:
{drop(cl,ad), go-in(ad) }{pick(c2, c-a2) H{drop(c2, a3)}.

As before, actiondrop(cl,ad) achieves the first sub-
goal in(cl,depotl). To achieve the second subgoal
in(c2,depotl), the algorithm choosegrop(c2, a3), since
choosingdrop(c2,a4) would violate the constraint. The
remaining actions are added to satisfy the preconditions of
drop(c2,a3). The resulting heuristic is helpful for the state
of Figure 2.

Implementation & Preliminary Experiments

We have implemented (deterministic) versions of the algo-
rithms given above for computing occlusion penalties and
property-preserving relaxed plans. Our planner is a mod-
ified version of TLPlan which uses a domain-independent
heuristic search algorithm similar to Alg. 1.

We have performed a preliminary evaluation of our tech-
nigues in the blocks family of problems introduced above,
and on the IPC-5 storage problems. In blocks world we

found that occlusion penalties were key to finding good-
quality solutions relatively fast. As shown in Fig. 3(a) the
version with occlusions is faster and solves more problems
than the version without occlusions. Moreover, occlusions
enable the planner to sohal problems optimally. The
vanilla RPB, on the other hand, yields plans with 4 more
actions for almost all instances.

We have also experimented with our property-preserving
algorithm in the storage domain. Fig. 3(c) shows a summary
of the number of instances solved given a 1 hour timeout.
The property used is the one that restricts having two crates
in the same location. Not surprisingly, property-presegvi
heuristics are sometimes slower; however, in general, gime
are comparable (see Fig. 3(b)).

Discussion & Related Work

We have presented two techniques for improving relaxed
plans by attempting to incorporate structure of planning do
mains that is lost by the standard relaxation of negative ef-
fects. Our first technique is domain independent, and could
be understood as a way of considering some mutexes during
relaxed plan extraction. We have proven that this techinque
can significantly improve the performance of EHC in a fam-
ily of simple blocks-world problems.

The second, domain-dependent technique, could be un-
derstood as a way of customizing relaxation, but also as
a way of considering mutexes during relaxed plan extrac-
tion. The relationship between our two techniques still has
to be established. We think that the incorporation of do-
main knowledge in relaxed plan extraction has a great deal
of potential, especially if we could mechanize the selectio
of useful state constraints to be considered. For example,
in the storage domain, it does not seem to be reasonable to
consider the constraint where only one crate is allowed to be
carried by a hoist.

There are pieces of work in the literature that are related to
this work. First, work that incorporates mutexes for heuris
tics not based on relaxed plans, such as that by Nguyen &
Kambhampati (2000), and work that extracts better relaxed
plans for cost-based planning (e.g. (Do & Kambhampati
2003)). More related is work that exploits generic types
to improve relaxed plans by Coles & Smith (2006). Their



work uses mechanically extractgge-knowledgéo recog-

nize when actions need to be added to the relaxed plan. Spe-
cialized techniques, that depend on the particular typéeof o
jects, are used to improve the plans.

Acknowledgments

| am very grateful to Sheila Mcllraith for useful discussson
and comments on drafts of this paper. | thank the anonymous
reviewers for their suggestions and insightful comments.

References

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goalsAnnals of Mathematics and Atrtificial
Intelligence22(1-2):5-27.

Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Atrtificial Intelligence 90(1-
2):281-300.

Chen, Y.; Wah, B.; and Hsu, C.-W. 2006. Temporal plan-
ning using subgoal partitioning and resolution in SGPlan.
Journal of Artificial Intelligence Resear@6:323-269.

Coles, A., and Smith, A. 2006. Generic types and their use
in improving the quality of search heuristics. Rroceed-
ings of the 25th Workshop of the UK Planning and Schedul-
ing Special Interest Group (PlanSIG 2006)

Do, M. B., and Kambhampati, S. 2003. Sapa: A scalable
multi-objective metric temporal plannedournal of Artifi-
cial Intelligence Researc0:155-194.

Gerevini, A., and Schubert, L. K. 2000. Discovering state
constraints in DISCOPLAN: Some new results. Rroc.

of the 15th National Conference on Atrtificial Intelligence
(AAAI-00) 761-767.

Gerevini, A.; Dimopoulos, Y.; Haslum, P.; and Saetti, A.
2006. 5th International Planning Competitiomt t p: / /
zeus.ing.unibs.it/ipc-5/.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Resear@6:191-246.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic sea¥ohrnal
of Artificial Intelligence Research4:253-302.

Hoffmann, J. 2005. Where 'ignoring delete lists’ works:
Local search topology in planning benchmarBsurnal of
Artificial Intelligence Researc4:685—758.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:

Planning as satisfiability. Ibth International Planning
Competition Booklet (IPC-2006)

Nguyen, X., and Kambhampati, S. 2000. Extracting effec-
tive and admissible state space heuristics from the plannin
graph. InProc. of the 15th National Conference on Artifi-
cial Intelligence (AAAI-00)798-805.



