Reconnecting with the Ideal Tree: An Alternative to
Heuristic Learning in Real-Time Search

Leon Illanes
Dept. of Computer Science
Pontificia Universidad
Catolica de Chile
Santiago, Chile

Nicolas Rivera
Dept. of Computer Science
Pontificia Universidad
Catolica de Chile
Santiago, Chile

Abstract

In this paper, we present a conceptually simple, easy-to-
implement real-time search algorithm suitable for a priori
partially known environments. Instead of performing a series
of searches towards the goal, like most Real-Time Heuris-
tic Search Algorithms do, our algorithm follows the arcs of
a tree 7 rooted in the goal state that is built initially using
the heuristic A. When the agent observes that an arc in the
tree cannot be traversed in the actual environment, it removes
such an arc from 7 and our algorithm carries out a reconnec-
tion search whose objective is to find a path between the cur-
rent state and any node in 7. The reconnection search need
not be guided by h, since the search objective is not to en-
counter the goal. Furthermore, i need not be updated. We
implemented versions of our algorithm that utilize various
blind search algorithms for reconnection. We show experi-
mentally that these implementations significantly outperform
state-of-the-art real-time heuristic search algorithms for the
task of pathfinding in grids. In grids, our algorithms, which
do not incorporate any geometrical knowledge, naturally be-
haves similarly to a bug algorithm, moving around obstacles,
and never returning to areas that have been visited in the past.
In addition, we prove theoretical properties of the algorithm.

Introduction

Real-Time Heuristic Search (Korf 1990) is an approach to
solving single-agent search problems when a limit is im-
posed on the amount of computation that can be used for
deliberation. It is used for solving problems in which agents
have to start moving before a complete search algorithm can
solve the problem and is especially suitable for problems in
which the environment is only partially known in advance.

An application of real-time heuristic search algorithms
is goal-directed navigation in video games (Bulitko et al.
2011) in which computer characters are expected to find
their way in partially known terrain. Game-developing com-
panies impose a constant time limit on the amount of com-
putation per move close to one millisecond for all simulta-
neously moving characters (Bulitko et al. 2011). As such
real-time search algorithms are applicable since the provide
the main loop with quick moves that allow implementing
continuous character moves.

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Carlos Hernandez
Depto. de Informatica
Universidad Catdlica

de la Ssma. Concepcioén

Concepcion, Chile

Jorge A. Baier
Dept. of Computer Science
Pontificia Universidad
Catélica de Chile
Santiago, Chile

To apply real-time heuristic search algorithms in game
technology when the objective is to move an agent that be-
haves as if the environment were known to it, one needs
some sort of preprocessing (e.g., Bulitko et al. 2007, Bulitko,
Bjornsson, and Lawrence 2010, Herndndez and Baier 2011)
to produce an algorithm that moves the agent in a way that
looks reasonable to a human observer. Unfortunately, no
game developer would want to use standard real-time heuris-
tic search algorithms to simulate the movement of an intel-
ligent agent in a partially known or unknown terrain. This
is because these algorithms generate back-and-forth moves
that look very irrational to a human observer (Bulitko et al.
2011). The underlying reason for this behavior is that the
heuristic used to guide search must be updated—in a process
usually referred to as heuristic learning—whenever new ob-
stacles are found. A perfect heuristic update, while possi-
ble, cannot be afforded under very tight time constraints.
Left with limited time for updating, the heuristic cannot be
learned perfectly and hence agents are not moved perfectly.

In this paper we present FRIT, a real-time search algo-
rithm that does not rely on heuristic learning to control the
agent. While easily motivated by game applications, our al-
gorithm is designed for general search problems. An agent
controlled by our algorithm always follows the branch of a
tree containing a family of solutions. We call such a tree the
ideal tree because the paths it contains are solutions in the
world that is currently known to the agent, but such solutions
may not be legal in the actual world. As the agent moves
through the states in the ideal tree it will usually encounter
states that are not accessible and which block a solution in
the ideal tree. When this happens, a search is performed to
reconnect the current state with another state known to be in
the ideal tree. After reconnection succeeds the agent is again
on a state of the ideal tree, and it can continue following a
branch.

We evaluated our algorithm over standard game and maze
pathfinding benchmarks using a blind-search algorithm for
reconnection. Even though our algorithm does not guarantee
optimality, solutions returned, in terms of quality and total
time, are significantly better than those returned the state-of-
the-art real-time heuristic search algorithms we compared
to, when the search effort is fixed. Upon inspection of the
route followed by the agent, we observe they do not con-
tain back-and-forth, “irrational” movements, and that indeed



they look similar to solutions returned by so-called bug algo-
rithms (LaValle 2006; Taylor and LaValle 2009), developed
by the robotics community. As such, it usually detects states
that do not need to be visited again—sometimes referred
to as dead-ends or redundant states (Sturtevant and Bulitko
2011; Sharon, Sturtevant, and Felner 2013)—without imple-
menting a specific mechanism to detect them.

We also compared our algorithm to incremental heuris-
tic search algorithms can be modified to behave like a real-
time search algorithm. We find that, although FRIT does not
reach the same solution quality, it can obtain solutions that
are significantly better when the time deadline is tight (under
404 sec).

Our algorithm is extremely easy to implement and, in
case there is sufficient time for pre-processing, can utilize
techniques already described in the literature, like so-called
compressed path databases (Botea 2011), to compute an ini-
tial ideal tree. Furthermore, we provide a simple proof for
termination and provide a bound on the number of moves
required to find a solution in arbitrary graphs.

The rest of the paper is organized as follows. In the next
section we describe the background necessary for the rest
of the paper. Then we describe our algorithm in detail. We
continue presenting a short theoretical analysis, followed by
a description of our experimental evaluation. We then de-
scribe other related work, and finish with a summary.

Background

The search problems we deal with in this paper can be de-
scribed by a tuple P = (G, ¢, s9,9), where G = (S, A) is
a digraph that represents the search space. The set S rep-
resents the states and the arcs in A represent all available
actions. We assume that .S is finite, that A does not contain
elements of form (s, s), and that G has a strongly connected
component that contains both sg and g, and furthermore that
all states reachable from sq are in such a component. In ad-
dition, we have a non-negative cost function ¢ : A — R
which associates a cost with each of the available actions.
Naturally, the cost of a path in the graph is the sum of the
costs of the arcs in the path. Finally g € S is the goal state.
Note that even though our definition considers a single goal
state it can still model problems with multiple goal states
since we can always transform a multiple-goal problem into
a single-goal problem by adding a new state g to the graph
and connecting the goals in the original problem to g with a
Zero-cost action.

Real-Time Search The objective of a real-time search al-
gorithm problem is to move an agent from s to g, through a
low-cost path. The algorithm should satisfy the real-time
property, which means that the agent is given a bounded
amount of time for deliberating, independent of the size of
the problem. After deliberation, the agent is expected to
move. After such a move, more time is given for deliber-
ation and the loop repeats.

When searching in partially known environments, real-
time algorithms assume the search space has a particular
structure. In particular, in pathfinding in grid worlds, it is

assumed that the dimensions of the grid are known, and to
enable search a free-space assumption (Zelinsky 1992) is
made, whereby grid cells are regarded as obstacle-free un-
less there is sufficient information to the opposite.

Below we design our real-time search algorithm for gen-
eral problems. As other real-time search algorithms do, we
assume a certain graph G, is given as input to the agent.
Such a graph reflects what the agent knows about the envi-
ronment, and is kept in memory throughout execution. We
assume furthermore that such a graph satisfies a generalized
version of the free-space assumption. In particular, if the
actual search graph is G = (S, A), then G corresponds a
spanning supergraph of G,i.e. Gy = (S, A’), with A C A'.

While moving through the environment, we assume the
agent is capable of observing whether or not some of the
arcs in its search graph G; = (S, A’) are present in the
actual graph. In particular, we assume that if the agent is in
state s, it is able to sense whether (s,t) € A’ is traversable
in the actual graph. If an arc (s, t) is not traversable, then
t is inaccessible and hence the agent removes from G, all
arcs that lead to t. Note that this means that if GG, satisfies
the free-space assumption initially, it will always satisfy it
during execution.

Note that implicit to our definition is that the environment
is static. This is because G, unlike G, never changes.
The free-space assumption also implies that the agent can-
not discover arcs in the environment that are not present in
its search graph G ;.

We define the distance function dg : S X S — R such
that d (s, t) denotes the cost of a shortest path between s
and ¢ in the graph G. Note that if G’ is a spanning subgraph
of G, then dg(s,t) < dg/(s,t).

A heuristic for a search graph G is a non-negative function
h : S — R such that h(s) estimates d(s, g). We say that
h is admissible if h(s) < dg(s, g), for all s € S. Observe
that if G’ is a spanning subgraph of G, and & is admissible
for G, then h is also admissible for G'.

Many standard real-time search algorithms inherit the
structure of the LRTA* algorithm (Korf 1990) (Algo-
rithm 1), which solves the problem by iterating through
a loop that runs four procedures: observation, lookahead,
heuristic update and movement. In LRTA*, the observation
phase (Line 2) prunes arcs from G, the lookahead phase
(Line 4), chooses a neighbor of the current state based on
the estimated cost to the final goal. The heuristic update
phase (Line 5), updates the heuristic value for the current
state based on those of its neighbors. This phase is necessary
to prove termination of the algorithm. Finally, in the move-
ment phase (Line 7), the agent moves to the position chosen
in the lookahead phase. It is easy to see that LRTA* sat-
isfies the real-time property since all operations carried out
prior to the movement take constant time. Generalizations
of LRTA*, such as LSS-LRTA* (Koenig and Sun 2009), re-
place the lookahead by an A* search towards the goal, and
the update phase by some algorithm that may update the
heuristic of several states. The update of the heuristic is key
to enable a proof of termination of LRTA* and most of its
variants. Furthermore, LRTA* can solve any search problem
in (]S|? — |S|)/2 agent iterations, where |S]| is the number



Algorithm 1: LRTA*

Input: A search graph Gy, a heuristic function h
1 while the agent has not reached the goal state do
2 Observe the environment and update G 7, removing
any arcs to states that are observed inaccessible.
s < the current state
next <— arg ming, s ¢)in G, (S, 1) + h(t)]
if h(s) < c(s,next) + h(next) then
| h(s) < c(s,next) + h(next)

7 Move to next.

A AW

nodes in the search graph (Edelkamp and Schrodl 2011, Ch.
11).

Searching via Tree Reconnection

The algorithm we propose below moves an agent towards
the goal state in a partially known environment by following
the arcs of a so-called ideal tree 7. Whenever an arc in
such a tree cannot be traversed in the actual environment, it
carries out a search to reconnect the current state with a node
in 7. In this section we describe a simple version of our
algorithm which does not satisfy the real-time property, and
then show how this algorithm can be transformed into one
that does. Prior to that, we describe how 7 is built initially.

The Ideal Tree

The ideal tree intuitively corresponds to a family of paths
that connect some states of the search space with the goal
state. The tree is ideal because some of the arcs in the tree
may not exist in the actual search problem. Formally,

Definition 1 (Ideal Tree) Given a search problem P =
(G, ¢, 80,9) and graph Gy that satisfies the generalized
free-space assumption, the ideal tree T over P and Gy is a
tree of states that satisfies the following properties.

1. its root is the goal state g, and
2. if sis the parent of t in T, then (t, s) is an arc in G ;.

Properties 1 and 2 imply that given an ideal tree 7 and a
node s in GG, it suffices to follow the arcs in 7 (which are
also in G y) to reach the goal state g. Property 2 corresponds
to the intuition of 7 being ideal: the arcs in 7 may not exist
in the actual search graph because they only correspond to
arcs in Gpy.

We note that in search problems in which the search graph
is defined using a successor generator (as is the case of stan-
dard planning problems) it is possible to build an ideal tree
by first setting which states will represent the leaves of the
tree, and then computing a path to the goal from those states.
A way of achieving this is to relax the successor generator
(perhaps by removing preconditions), which allows includ-
ing arcs in 7 that are not in the original problem. As such,
Property 2 does not require the user to provide an inverse of
the successor generator.

The internal representation of an ideal tree 7 is straight-
forward. For each node s € S we store a pointer to

the parent of s, which we denote by p(s). Formally p :
SU{null} — SU{null}, p(null) = null and p(g) = null.

At the outset of search, the algorithm we present below
starts off with an ideal tree that is also spanning, i.e., such
that it contains all the states in S. In the general case, a span-
ning ideal tree can be computed by running the Dijkstra al-
gorithm from the goal node in a graph like G 7 but in which
all arcs are inverted. Indeed, if h(s) is defined as the distance
from g to s in such a graph, an ideal tree can be clearly con-
structed using the following rules: for every s € S\ {g} we
define p(s) = argminy.(s,u)e (G, ¢(5, u) + h(u), where
A[G ] are the arcs of G ;.

In some applications like real-time pathfinding in
videogames, when the environment is partially known a pri-
ori it is reasonable to assume that there is sufficient time for
preprocessing (Bulitko, Bjornsson, and Lawrence 2010). In
preprocessing time, one could run Dijkstra for every pos-
sible goal state. If memory is a problem, one could use
so-called compressed path databases (Botea 2011), which
actually define ideal trees for every possible goal state of a
given grid.

Moreover, in gridworld pathfinding in initially unknown
terrain, an ideal tree over an obstacle-free Gj; can be
quickly constructed using the information given by a stan-
dard heuristic. This is because both the Manhattan distance
and the octile distance correspond to the value returned by
a Dijkstra call from the goal state in 4-connected and 8-
connected grids, respectively. In cases in which the grid is
completely or partially known initially but there is no time
for preprocessing, one can still feed the algorithm with an
obstacle-free initial graph in which obstacles are regarded
as accessible from neighbor states. Thus, a call to an algo-
rithm like Dijkstra does not need to be made if there is no
sufficient time.

In the implementation of our algorithm for gridworlds we
further exploit the fact that the tree can be built on the fly. In-
deed, we do not need to set p(s) for every s before starting
the search; instead, we set p(s) only when it is needed for
the first time. As such, there is no time is spent initializing a
spanning ideal tree before search. More generally, depend-
ing on the problem structure, different implementations can
exploit the fact that 7 need not be an explicit tree.

Moving and Reconnecting

Our search algorithm (Algorithm 2) receives as input a
search graph GG)/, an initial state sg, a goal state g, and a
graph search algorithm A. G, is the search graph known
to the agent initially, which we assume satisfies the general-
ized free-space assumption with respect to the actual search
graph. A is the algorithm used for reconnecting with the
ideal tree. We require A to receive the following param-
eters: an initial state, a search graph, and a goal-checking
boolean function, which receives a state as parameter.

In its initialization (Lines 1-3), it sets up an ideal tree T
over graph Gp;. As discussed above, the tree can be re-
trieved from a database, if pre-processing was carried out.
If there is no time for pre-processing but a suitable heuristic
is available for Gy, then 7 can be computed on the fly. In
addition it sets value of the variable c and the color of every



Algorithm 2: FRIT: Follow and Reconnect with The
Ideal Tree
Input: A search graph GG/, an initial state s, a goal
state g, and a search algorithm A
Initialization: Let 7 be a spanning ideal tree for G 5.
Set s to sg
Set ¢ to 0 and the color of each state in G to 0
while s # g do
Observe the environment around s and prune from
T and Gy any arcs that lead to newly discovered
inaccessible states.
if p(s) = null then
Reconnect:
c+—c+1
Let o be the path returned by a call to
A(s, Gpr, INTREE(T, ¢))
10 Assuming o = g, 21, ..., T, make
p(x;) = 441 foreveryi € {0,...,n — 1}.

oA W N =

RIS B

u Movement: Move the agent from s to p(s) and set
s to the new position of the agent

state to 0. The role of state colors will become clear below
when we describe reconnection.

After initialization, in the main loop (Lines 5-11), the
agent observes the environment and prunes from Gjs and
from 7 those arcs that do not exist in the actual graph. If the
current state is s and the agent observes that its parent is not
reachable in the actual search graph, it sets the parent pointer
of s, p(s), to null. Now the agent will move immediately
to state p(s) unless p(s) = null. In the latter case, s is dis-
connected from the ideal tree 7, and a reconnection search
is carried out by calling algorithm .A. The objective of this
search is to reconnect to some state in 7 : the goal function
INTREE(T, ¢) returns true when invoked over a state in 7
and false otherwise. Once a path is returned, it reconnects
the current state with 7 through the path found and then
move to the parent of s. The loop finishes when the agent
reaches the goal.

The INTREE Function A key component of reconnection
search is the INTREE function that determines whether or
not a state is in 7. Our implementation, shown in Algo-
rithm 3, follows the parent pointers of the state being queried
and returns true if the goal can be reached. In addition, it
paints each visited state with a color ¢, given as a parameter.
The algorithm returns false if a state visited does not have
a parent or has been painted with c (i.e., it has been visited
before by some previous call to INTREE while in the same
reconnection search).

Figure 1 shows an example execution of the algorithm in
an a priori unknown grid pathfinding task. As can be ob-
served, the agent is moved until a wall is encountered, and
then continues bordering the wall until it solves the prob-
lem. It is simple to see that, were the vertical wall longer,
the agent would have traveled beside the wall following a
similar down-up pattern.

Algorithm 3: INTREE function

Input: a vertex s, a color ¢
1 while s # g do
2 paint s with color c.
3 if p(s) = null or p(s) has color c then
4 | return false

5 s < p(s)

6 return true

This example reflects a general behavior of this algorithm
in grid worlds: the agent usually moves around obstacles, in
a way that resembles bug algorithms (LaValle 2006; Taylor
and LaValle 2009). This occurs because the agent believes
there is a path behind the wall currently known and always
tries to move to such a state unless there is another state
that allows reconnection and that is found before. A closer
look shows that some times the agent does not walk exactly
besides the wall but moves very close to them perform a
sort of zig-zag movement. This can occur if the search used
does not consider the cost of diagonals. Breadth-First Search
(BFS) or Depth-First Search (DFS) may sometimes prefer
using two diagonals instead of two edges with cost 1. To
avoid this problem we can use a variant of BFS, that, for
a few iterations, generates first the non-diagonal successors
and later the diagonal ones. For nodes deeper in the search it
uses the standard ordering (e.g., clockwise). Such a version
of BFS achieves in practice a behavior very similar to a bug
algorithm.!

This contrasts with traditional real-time heuristic search
algorithms, which rely on increasing the heuristic value of
the heuristic h to exit the heuristic depressions generated by
obstacles. In such a process they may need to revisit the
same cell several times.

Satisfying the Real-Time Property

As presented, Algorithm 2 does not satisfy the real-time
property. Indeed, each call to A or INTREE may visit a
number of states dependent on the size of the search graph.
It is straightforward, however, to convert this algorithm to a
real-time one by using ideas previously used in algorithms
such as Time-Bounded A* (Bjornsson, Bulitko, and Sturte-
vant 2009). Time-Bounded A* is a real-time algorithm for
a priori known domains that simply runs an A* search to
the goal. In each time interval, it expands k£ nodes and then
moves the agent. Eventually, when the goal is found, no fur-
ther search is needed and the agent is moved straight to the
goal.

Analogously, given a parameter k, our algorithm can be
modified to stop reconnection search as soon as np + m x
nINTREE .k where n7 is the number of states expanded
by A, ni¥TREE is the number of states visited by INTREE,
and m is a constant chosen specifically for the application.
Once search is stopped a decision on the movement has to be

'Videos can be viewed at http://web.ing.puc.cl/
~jabaier/index.php?page=research.



() (b)

=]

|
—

4

=He)
|
v
|
v
|

= = <
= 4=

=
|
o
v
A

(d)

Figure 1: An illustration of some of the steps of an execution over a 4-connected grid pathfinding task, where the initial state
is cell D3, and the goal is E6. The search algorithm A is breadth-first search, which, when expanding a cell, generates the
successors in clockwise order starting with the node to the right. The position of the agent is shown with a black dot. (a) shows
the true environment, which is not known a priori by the agent. (b) shows the p pointers which define the ideal tree built initially
from the Manhattan heuristic. Following the p pointers, the algorithm leads the agent to D4, where a new obstacle is observed.
D5 is disconnected from 7 and GG, and a reconnection search is initiated. (c) shows the status of 7 after reconnection search
expands state D4, finding E4 is in 7. The agent is then moved to E4, from where a new reconnection search expands the gray
cells shown in (d). The problem is now solved by simply following the p pointers.

made. Depending on the type of application, an implemen-
tation may choose not to move the agent at all, or to move
it in a meaningful way. We leave a thorough discussion on
how to implement such a movement strategy out of the scope
of the paper since we believe that such a strategy is usually
application-specific. If a movement ought to be carried out,
the agent could choose to move back-and-forth, or choose
any other moving strategy that allows it to follow the re-
connection path once it is found. Later, in our experimental
evaluation, we choose not to move the agent if computation
exceeds the parameter and discuss why this seems a good
strategy in the application we chose.

Finally, we note that implementing this stop-and-resume
mechanism is easy for most search algorithms.

Theoretical Analysis

Our first result proves termination of the algorithm and pro-
vides an explicit bound on the number of agent moves until
reaching the goal.

Theorem 1 Given an initial tree G that satisfies the gen-
eralized free-space assumption, then Algorithm 2 solves P

2
in at most % agent moves.

Proof: Let M denote the elements in the state space S that
are inaccessible from any state in the connected component
that contains sg. Furthermore, let 7 be the ideal tree com-
puted at initialization. Note that the goal state g is always
part of T, thus 7 never becomes empty and therefore re-
connection search always succeeds. Because reconnection
search is only invoked after a new inaccessible state is de-
tected, it can be invoked at most | M| times. Between two
consecutive calls to reconnection search, the agent moves in
a tree and thus cannot visit a single state twice. Hence, the
number of states visited between two consecutive reconnec-
tion searches is at most |S| — |[M|. We conclude that the
number of moves until the algorithm terminates is

(IM[+1)(IS] = IM]), M

which maximizes when |M| = 521 Substituting such

a value in (1), we obtain the desired result. Note that the
algorithm follows a path of the tree | M| + 1 times because
it reconnects | M| times. [ ]

The average complexity can be expected to be much lower.
Indeed, the number of reconnection searches is at most the
number of inaccessible states that can be reached by some
state in GGy, which in many cases is much lower than the
total number of obstacles.

The following intermediate result is necessary to prove
that after termination, the agent knows a solution to the prob-
lem that is possible shorter than the one just found.

Lemma 1 After every reconnection search, sy € T.

Proof: The proof is by induction on the number of recon-
nection searches. At the start of search, the property holds
by definition of spanning ideal tree. For the induction, let s
denote the current state and suppose there is a path o from
S0 to sin 7. Let ¢’ denote the path from s to g in T after re-
connection. It is clear that o and ¢’ contain at least one state
in common, s. Let x be the first state in ¢ that appears also
in ¢’. Then, after reconnecting s with 7, the parent pointer
of x would be reset in such a way that there will still be a
path from sg to g in 7. ]

Theorem 2 Running the algorithm for a second time over
the same problem, without initializing the ideal tree, results
in an execution that never runs reconnection search and
finds a potentially better solution than the one found in the
first run.

Proof: Straightforward from Lemma 1. ]

Note that Theorem 2 implies that our algorithm can return
a different path in a second trial, which is an “optimized
version” that does not contain the loops that the first version
had. The second execution of the algorithm is naturally very
fast because reconnection search is not required.



Empirical Evaluation

The objective of our experimental evaluation was to com-
pare the performance of our algorithm with various state-of-
the-art algorithms on the task of pathfinding with real-time
constraints. We chose this application since it seems to be
the most straightforward application of real-time search al-
gorithms.

We compared to two classes of search algorithms. For the
first class, we considered state-of-the-art real-time heuris-
tic search algorithms. Specifically, we compare to LSS-
LRTA* (Koenig and Sun 2009), and wLSS-LRTA* (Rivera,
Baier, and Hernandez 2013), a variant of LSS-LRTA* that
may outperform it significantly. For the second class, we
compared to the incremental heuristic search algorithms Re-
peated A* and Adaptive A*. We chose them because it is
easy to modify them to satisfy the real-time property fol-
lowing the same approach we follow with FRIT. We do not
include D*Lite (Koenig and Likhachev 2002) since it has
been shown that Repeated A* is faster than D*Lite in most
instances of the problems we evaluate here (Herndndez et al.
2012). Other incremental search algorithms are not included
since it is not the focus of this paper to propose strategies to
make various algorithms satisfy the real-time property.

Repeated A* and Adaptive A* both run a complete A* un-
til the goal is reached. Then the path found is followed until
the goal is reached or until the path is blocked by an obsta-
cle. When this happens, they iterate by running another A*
to the goal. To make both algorithms satisfy the real-time
property, we follow an approach similar to that employed in
the design of the algorithm Time-Bounded A* (Bjornsson,
Bulitko, and Sturtevant 2009). In each iteration, if the al-
gorithm does not have a path to the goal (and hence it is
running an A*) we only allow it to expand at most k states,
and if no path to the goal is found the agent is not moved.
Otherwise (the agent has a path to the goal) the agent makes
a single move on the path.

For the case of FRIT, we satisfy the real-time property as
discussed above by setting the m constant to 1. This means
that in each iteration, if the current state has no parent then
only k states can be expanded/visited during the reconnec-
tion search and if no reconnection path is found the agent
is not moved. Otherwise, if the current state has a non-null
parent pointer, the agent follows the pointer.

Therefore in each iteration of FRIT, Repeated A* or
Adaptive A* two things can happen: either the agent is not
moved or the agent is moved one step. This moving strategy
is sensible for applications like videogames where, although
characters are expected to move fluently, we do not want to
force the algorithm to return an arbitrary move if a path has
not been found, since that would introduce moves that may
be perceived as pointless by the users. In contrast, real-time
search algorithms return a move at each iteration.

We use eight-neighbor grids in the experiments since they
are often preferred in practice, for example in video games
(Bulitko et al. 2011). The algorithms are evaluated in
the context of goal-directed navigation in a priori unknown
grids. The agent is capable of detecting whether or not any
of its eight neighboring cells is blocked and can then move to
any one of the unblocked neighboring cells. The user-given

h-values are the octile distances (Bulitko and Lee 2006).

We used twelve maps from deployed video games to carry
out the experiments. The first six are taken from the game
Dragon Age, and the remaining six are taken from the game
StarCraft. The maps were retrieved from Nathan Sturte-
vant’s pathfinding repository (Sturtevant 2012).> We aver-
age our experimental results over 300 test cases with a reach-
able goal cell for each map. For each test case the start and
goal cells are chosen randomly. All the experiments were
run on a 2.00GHz QuadCore Intel Xeon machine running
Linux.

As a parameter to FRIT we used the following alo-
gorithms for reconnection:

o bfs: a standard breadth-first search algorithm.

e iddfs(n): a modified iterative deepening depth-first search
which in iteration k runs a depth first search to depth kn.
To save execution time, after each iteration, it stores the
last layer of the tree so that the next iteration does not
need to re-expand nodes.

Figure 2 shows average total iterations until the goal is
reached versus time per planning episode. AA and rA repre-
sent Adaptive A* and Repeated A*. “bfs” and “dfs-n” rep-
resent FRIT using the algorithms described above. 1-LSS
corresponds to LSS-LRTA*, and 16-LSS and 32-LSS cor-
respond, respectively, to wLSS-LRTA* with w = 16 and
w = 32. We use these values since Rivera, Baier, and
Hernandez (2013) report them as producing best results in
game maps.

We observe that FRIT returns significantly better solu-
tions when time constraints are very tight. Indeed, our al-
gorithm does not need more than 454 sec to return its best
solution. Given such a time as a limit per episode, 32-LSS,
the algorithm that comes closest requires between three and
four times as many iterations on average. Furthermore, to
obtain a solution of the quality returned by FRIT at 454 sec,
AA* needs around 1504 sec; i.e., slightly more than 3 times
as long as FRIT. We observe that the benefit of iddfs is only
marginal over bfs.

LSS-LRTA* and its variants are completely outperformed
by FRIT as the solutions returned are much better in terms
of quality for any given time deadline, and, moreover, the
best solution returned by FRIT is 3 times cheaper than the
best solution returned by the best variant of LSS-LRTA*.

An interesting variable to study is the number of algo-
rithm iterations in which the agent did not return a move
because the algorithm exceeded the amount of computation
established by the parameter without finishing search. As
we can see in Table 1, FRIT, using BFS as its parame-
ter algorithm, has the best relationship between time spent
per episode and the percentage of no-moves over the total
number of moves. To be comparable to other Real-Time

“Maps used for Dragon Age: brc202d, orz702d, orz900d,
ost000a, ost000t and ost100d whose sizes are 481 x 530, 939 x 718,
656 x 1491, 969 x 487, 971 x 487, and 1025 x 1024 cells respec-
tively. Maps for StarCraft: ArcticStation, Enigma, Inferno Jungle-
Siege, Ramparts and WheelofWar of size 768 x 768, 768 x 768,
768 x 768, 768 X 768, 512 x 512 and 768 x 768 cells respectively.



FRIT(BES) RA* AA*
k | Avg. Its | Time/ep | Nomoves | Avg. Its | Time/ep | No moves | Avg. Its | Time/ep | No moves
(ps) (%) (ps) (%) (ps) (%)
1] 1717724 0.015 99.82 | 3449725 0.077 99.95 | 1090722 0.072 99.84
345316 0.076 99.13 690952 0.387 99.75 219162 0.357 99.22
10 173765 0.152 98.27 346105 0.774 99.50 110217 0.714 98.45
50 36524 0.746 91.77 70228 3.850 97.58 23061 3.512 92.61
100 19369 1.460 84.49 35744 7.651 95.25 12167 6.892 86.00
500 5665 6.176 46.98 8185 36.29 79.27 3482 29.57 51.12
1000 4069 9.905 26.17 4838 66.53 64.94 2513 46.74 32.26
5000 3064 15.97 1.978 2240 188.4 24.29 1822 79.69 6.607
10000 3017 16.45 0.435 1931 240.9 12.16 1748 86.23 2.632
50000 3004 16.58 0.012 1713 299.8 1.009 1703 90.68 0.100
100000 3004 16.58 0.003 1698 305.0 0.122 1702 90.85 0.007

Table 1: Relationship between search expansions and number of iterations in which the agent does not move. The table shows
a parameter k for each algorithm. In the case of AA* and Repeated A* the parameter corresponds to the number of expanded
states. In case of FRIT, the parameter corresponds to the number of visited states during an iteration. In addition, it shows
average time per search episode, and the percentage of iterations in which the agent was not moved by the algorithm with

respect to the total number of iterations.

Average Total Iterations vs Time per Episode

1000000 ‘ | |
i frit-bfs
[
: frit-dfs-1
|9
: FAK -eeeeeeeee
[*)]
; | ANK —-—-—
w 100000 { o155 7
g .‘ 16-LSS
©
. 32-LSS ----
e
€ 10000 |
()
[e)]
2\ e
S NG
I N

‘ ‘ -~- | L
0 100 200 300 400 500 600

Time per Planning Episode (usec)
Figure 2: Total Iterations versus Time per Episode

Heuristic Search Algorithms, it would be preferrable to re-
duce the number of incomplete searches as much as possi-
ble. With this in mind, we can focus on the time after which
the amount of incomplete searches is reduced to less than
1%. Notice that for FRIT this means approximately 16 us,
whereas for AA* and RA* this requires times of over 86 us
and 299 us respectively. Additionally, Table 1 shows that
for a given time constraint, FRIT behaves much better than
both RA* and AA*, requiring fewer iterations and less time.
Nevertheless, when provided more time, FRIT does not take
advantage of it and the resulting solutions cease to improve.
As an example of this, we can see that for & = 5000 to
k = 100000 the number of iterations required to solve the
problem only decreases by 60 steps, and the time used per
search episode only increases by 1.65us. Effectively, this
means that the algorithm does not use the extra time in an
advantageous way. This is in contrast to what is usually ex-

pected for Real-Time Search Algorithms.

Related Work

Incremental Heuristic Search and Real-time Heuristic
Search are two heuristic search approaches to solving search
problems in partially known environments using the free-
space assumption that are related to the approach we propose
here. Incremental search algorithms based on A*, such as
D* Lite (Koenig and Likhachev 2002), Adaptive A* (Koenig
and Likhachev 2005) and Tree Adaptive A* (Herndndez et
al. 2011), reuse information from previous searches to speed
up the current search. The algorithms can solve sequences
of similar search problems faster than Repeated A*, which
performs repeated A* searches from scratch.

During runtime, most incremental search algorithms, like
our algorithm, store a graph in memory reflecting the current
knowledge of the agent. In the first search, they perform a
complete A* (backward or forward), and in the subsequent
searches they perform less intensive searches. Different to
our algorithm, such searches return optimal paths connect-
ing the current state with the goal. Our algorithm is similar
to incremental search algorithms in the sense that it uses the
ideal tree, which is information that, in some cases, may
have been computed using search, but differs from them in
that the objective of the search is not to compute optimal
paths to the goal. Our algorithm leverages the speed of sim-
ple blind search and does not need to deal with a priority
queue, which is computationally expensive to handle.

Many state-of-the-art real-time heuristic search al-
gorithms (e.g., Koenig and Sun 2009, Koenig and
Likhachev 2006, Sturtevant and Bulitko 2011, Hernandez
and Baier 2012, Rivera, Baier, and Hernandez 2013), which
satisfy the real-time property, rely on updating the heuris-
tic to guarantee important properties like termination. Our
algorithm, on the other hand, does not need to update the



heuristic to guarantee termination. Like incremental search
algorithms, real-time heuristic search algorithms usually
carry out search for a path between the current node and
the goal state. Real-time heuristic search algorithms can-
not return a likely better solution after the problem is solved
without carrying any search at all (cf. Theorem 2). Instead,
when running multiple trials they eventually converge to an
optimal solution or offer guarantees on solution quality. Our
algorithm does not offer guarantees on quality, even though
experimental results are reasonable.

HCDPS (Lawrence and Bulitko 2010) is a real-time
heuristic algorithm that does not employ learning. This al-
gorithm is tailored to problems in which the agent knows the
map initially, and in which there is time for preprocessing.

The idea of reconnecting with a tree rooted at the goal
state is not new and can be traced back to bi-directional
search (Pohl 1971). Recent Incremental Search algorithms
such as Tree Adaptive A* exploits this idea to make sub-
sequent searches faster. Real-Time D* (RTD*) (Bond et
al. 2010) use bi-directional search to perform searches
in dynamic environments. RTD* combines Incremental
Backward Search (D*Lite) with Real-Time Forward Search
(LSS-LRTA*).

Finally, our notion of generalized free-space assumption
is related to that proposed by Bonet and Geftner (2011), for
the case of planning in partially observable environments.
Under certain circumstances, they propose to set unobserved
variables in action preconditions in the most convenient way
during planning time, which indeed corresponds to adding
more arcs to the original search graph.

Summary

We presented FRIT, a real-time search algorithm that fol-
lows a path in a tree—the ideal tree—that represents a fam-
ily of solutions in the graph currently known by the agent.
The algorithm is simple to describe and implement, and does
not need to update the heuristic to guarantee termination. In
our experiments, it returns solutions much faster than other
state-of-the-art algorithms when time constraints are tight.
We proved that our algorithm finds a solution in at most a
quadratic number of states, however in grids it is able to find
very good solutions, faster than all algorithms we compared
to. In our experiments we evaluated two blind-search algo-
rithms for reconnection: bfs and a version of iterative deep-
ening depth-first search (iddfs). Their performance is very
similar but bfs is much simpler to implement.

A disadvantage of our algorithm is that if given arbitrarily
more time our algorithm cannot return a better solution, even
if we use better blind search algorithms. As such, our algo-
rithm is recommended over incremental search algorithms
only under very tight time constraints per planning episode.

Acknowledgments

Nicolas Rivera, Le6n Illanes, and Jorge Baier were partly
funded by Fondecyt Project Number 11110321.

References

Bjornsson, Y.; Bulitko, V.; and Sturtevant, N. R. 20009.
TBA*: Time-bounded A*. In Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence (1J-

CAI), 431-436.

Bond, D. M.; Widger, N. A.; Ruml, W.; and Sun, X. 2010.
Real-time search in dynamic worlds. In Proceedings of the
3rd Symposium on Combinatorial Search (SoCS).

Bonet, B., and Geffner, H. 2011. Planning under partial
observability by classical replanning: Theory and experi-
ments. In Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI), 1936—1941.

Botea, A. 2011. Ultra-fast Optimal Pathfinding without
Runtime Search. In Proceedings of the 7th Annual Inter-
national AIIDE Conference (AIIDE).

Bulitko, V., and Lee, G. 2006. Learning in real time search:
aunifying framework. Journal of Artificial Intelligence Re-
search 25:119-157.

Bulitko, V.; Bjornsson, Y.; Lustrek, M.; Schaeffer, J.; and
Sigmundarson, S. 2007. Dynamic control in path-planning
with real-time heuristic search. In Proceedings of the

17th International Conference on Automated Planning and
Scheduling (ICAPS), 49-56.

Bulitko, V.; Bjornsson, Y.; Sturtevant, N.; and Lawrence,
R. 2011. Real-time Heuristic Search for Game Pathfinding.
Applied Research in Artificial Intelligence for Computer
Games. Springer Verlag. 1-30.

Bulitko, V.; Bjornsson, Y.; and Lawrence, R. 2010. Case-
based subgoaling in real-time heuristic search for video
game pathfinding. Journal of Artificial Intelligence Re-
search 38:268-300.

Edelkamp, S., and Schrodl, S. 2011. Heuristic Search:
Theory and Applications. Morgan Kaufmann.

Herndndez, C., and Baier, J. A. 2011. Fast subgoaling
for pathfinding via real-time search. In Proceedings of the

21th International Conference on Automated Planning and
Scheduling (ICAPS).

Hernandez, C., and Baier, J. A. 2012. Avoiding and es-
caping depressions in real-time heuristic search. Journal
of Artificial Intelligence Research 43:523-570.

Herndndez, C.; Sun, X.; Koenig, S.; and Meseguer, P.
2011. Tree adaptive A*. In Proceedings of the 10th In-
ternational Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS).

Hernandez, C.; Baier, J. A.; Uras, T.; and Koenig, S. 2012.
Position paper: Incremental search algorithms considered
poorly understood. In Proceedings of the 5th Symposium
on Combinatorial Search (SoCS).

Koenig, S., and Likhachev, M. 2002. D* lite. In Proceed-
ings of the 18th National Conference on Artificial Intelli-
gence (AAAI), 476-483.

Koenig, S., and Likhachev, M. 2005. Adaptive A*. In
Proceedings of the 4th International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS),
1311-1312.



Koenig, S., and Likhachev, M. 2006. Real-time Adaptive
A*. In Proceedings of the 5th International Joint Confer-

ence on Autonomous Agents and Multi Agent Systems (AA-
MAS), 281-288.

Koenig, S., and Sun, X. 2009. Comparing real-time and
incremental heuristic search for real-time situated agents.
Autonomous Agents and Multi-Agent Systems 18(3):313—
341.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189-211.

LaValle, S. M. 2006. Planning algorithms. Cambridge
University Press.

Lawrence, R., and Bulitko, V. 2010. Taking learning out
of real-time heuristic search for video-game pathfinding.
In Australasian Conference on Artificial Intelligence, 405—
414.

Pohl, I. 1971. Bi-directional heuristic search. In Machine
Intelligence 6. Edinburgh, Scotland: Edinburgh University
Press. 127-140.

Rivera, N.; Baier, J. A.; and Herndndez, C. 2013. Weighted
real-time heuristic search. In Proceedings of the 11th In-
ternational Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS). To appear.

Sharon, G.; Sturtevant, N.; and Felner, A. 2013. Online
detection of dead states in real-time agent-centered search.
In Proceedings of the 6th Symposium on Combinatorial
Search (SoCS).

Sturtevant, N. R., and Bulitko, V. 2011. Learning where
you are going and from whence you came: h- and g-cost
learning in real-time heuristic search. In Proceedings of
the 22nd International Joint Conference on Artificial Intel-
ligence (IJCAI), 365-370.

Sturtevant, N. R. 2012. Benchmarks for grid-based
pathfinding. IEEE Transactions Computational Intelli-
gence and Al in Games 4(2):144—148.

Taylor, K., and LaValle, S. M. 2009. I-bug: An
intensity-based bug algorithm. In Proceedings of the 2009
IEEE International Conference on Robotics and Automa-
tion (ICRA), 3981-3986.

Zelinsky, A. 1992. A mobile robot exploration algorithm.
IEEE Transactions on Robotics and Automation 8(6):707—
717.



