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Abstract. In real-time pathfinding in unknown terrain an agent is required to
solve a pathfinding problem by alternating a time-bounded deliberation phase
with an action execution phase. Real-time heuristic search algorithms are de-
signed for general search applications with time constraints but unfortunately in
pathfinding they are known to produce poor-quality solutions. In this paper we
propose p-FRITRT, a real-time version of FRIT, a recently proposed algorithm
able to produce very good-quality solutions in pathfinding under strict, but not
fully real-time constraints. The idea underlying p-FRITRT draws inspiration from
bug algorithms, a family of pathfinding algorithms. Yet, as we show, p-FRITRT

is able to outperform a well-known bug algorithm and is able to solve graph
search problems that are more general than pathfinding. p-FRITRT also outper-
forms significantly—generating solutions six times shorter when time constraints
are tight—a previously proposed real-time version of FRIT and the real-time
heuristic search algorithm that is considered to have state-of-the-art performance
in real-time pathfinding.

1 Introduction

Pathfinding in an a priori unknown terrain is an important problem, with applications
ranging from videogames to robotics. In many of those applications, time is a very
limited resource. One example is videogames, where characters are required to move
fluently but game developers are not willing to design pathfinding algorithms which
would spend more than one millisecond per game cycle, for all simultaneously moving
characters [1]. Under such time constraints it is often not possible to compute complete
solutions offline before all agents have to be moved.

Real-Time heuristic search algorithms, as conceived by Korf [2], solve general
search problems—including pathfinding—and are designed to produce movements given
a constant time bound for planning. However, it is known that in pathfinding applica-
tions they generate poor-quality solutions, because they rely on a heuristic function that
needs to be updated for several states in the search space [3]. When time constraints are
tight, the agent is required to re-visit many states before completing search, generating
scrubbing-like behavior [1].



Recently, Rivera et al. [4] proposed FRIT (Follow and Reconnect with the Ideal
Tree), a general search algorithm that performs very well at pathfinding in unknown ter-
rain, requiring very little time resources. Unfortunately FRIT cannot produce an action
given a constant time bound. In a follow-up paper [5], however, they proposed FRITRT,
a fully real-time version of FRIT. In their evaluation they showed that in pathfinding,
the resulting algorithm outperformed a state-of-the-art real-time heuristic search algo-
rithm. However, the quality of the solutions produced could be up to one order of mag-
nitude worse than those obtained by its predecessor, unless significant time was given
per move.

In this paper we propose a real-time version of FRITRT, p-FRITRT, that unlike
FRITRT, is able to produce solutions comparable to those of FRIT in pathfinding. The
key idea underlying this algorithm draws inspiration from a family of algorithms known
as bug algorithms [6], which are pathfinding-specific algorithms that imitate the be-
havior of bugs by “going around” obstacles as they move. Our version of FRITRT is
designed to restrict to borders too; specifically, it restricts reconnection search—a key
phase of FRIT—to only expand nodes that are in the border of obstacles.

We prove that our algorithm always finds a solution in a general class of problems
which subsumes pathfinding in 8-connected grids. In an experimental evaluation on
game map benchmarks, we show that p-FRITRT improves upon FRITRT significantly
and that it is able to outperform a bug algorithm.

The outline of the paper is as follows. In the next section we present background
knowledge, including FRIT and FRITRT. Then we present our algorithm, p-FRITRT, and
prove it always terminates. Next, we present our experimental evaluation. The paper
finishes with an analysis of related work and conclusions.

2 Preliminaries

A search problem is a tuple P = (G, c, sstart , g), where G = (S,A) is a directed graph
that represents the search space. The set S represents the states and the arcs in A repre-
sent all available actions. We define the successors of s as Succ(s) = {s′ | (s, s′) ∈ A}.
State sstart ∈ S is the initial state and state g ∈ S is the goal state. A standard assump-
tion in real-time search is that S is finite, that A does not contain elements of the form
(s, s), that G is such that g is reachable from all states reachable from sstart . In addi-
tion, we have a non-negative cost function c : A→ R which associates a cost with each
of the available actions.

Given a subset T of S we define the frontier of T as ∂T = {s ∈ S \ T : ∃t ∈
T such that (t, s) ∈ A}. Intuitively, ∂T corresponds to the states that surround the re-
gion of states T , i.e., it contains the neighbors of states in T that are not in T . A subset
T of S is said connected if for every pair of vertices s, t in T there exists a path that
only uses states in T that connects s and t and vice versa.

The objective in offline search is to compute a path from sstart to g. Heuristic search
algorithms solve search problems using a heuristic function to guide search. A heuristic
for a search graph G is a non-negative function h : S → R such that h(s) estimates the
distance between state s and state g, dG(s, g). We say that h is admissible iff h(s) ≤
dG(s, g), for every s ∈ S. Furthermore, h is consistent if for every (s, t) ∈ A it holds



that h(s) ≤ c(s, t) + h(t), and furthermore that h(g) = 0. It is simple to prove that
consistency implies admissibility.

Below we assume familiarity with the heuristic-search algorithm A* [7], which
ranks states in its search frontier with a function f(s) = g(s) + h(s), where g(s) is
the cost of a path from sstart to s, and h is the heuristic. We may refer to h(s) and g(s)
as, respectively the h-value and g-value of s.

A pathfinding problem in an n×m grid can represented as a search problem by rep-
resenting each cell as a state. Specifically, the set of states is defined by {0, 1, . . . , n, n+
1}×{0, 1, . . . ,m,m+1}, where cells of the form (0, x), (n+1, x), (x, 0), or (x,m+1),
for some x, are border cells and are regarded as obstacles. In this paper we focus on
8-connected grids, which are such that each of the cells have eight possible neighbors
(two horizontal, two vertical, and four diagonal neighbors). Formally, we denote by
dist(s, t) the euclidean distance between s and t, and we say that (s, t) ∈ A if and only
if dist(s, t) ≤

√
2. For any pair such that (s, t) ∈ A, we define c(s, t) = dist(s, t) if

neither s nor t are obstacles. If s is an obstacle, then c(s, t) = ∞ and c(t, s) = ∞, for
every suitable t. Finally, we assume Obs ⊆ S contains all obstacle cells.

Our pathfinding algorithm will restrict search to states that are adjacent to an obsta-
cle. To that end, we define an order for successor states. Specifically, Succ(s, i) denotes
the i-th successor of s, such that two successive successors are adjacent to each other.
Formally, Succ(s, i) = s + δi, for i ∈ {1, . . . , 8}, where δi is the i-th element of the
following vector,

δ =
(
(1, 0) (1, 1) (0, 1) (−1, 1) (−1, 0) (−1,−1) (0,−1) (1,−1)

)
,

defines the 8 successors of a cell in clockwise order.3 In addition, for simplicity, we
define Succ(s, 0) def

= Succ(s, 8) and Succ(s, 9) def
= Succ(s, 1). Finally, if Succ(s, i) 6∈

S, we say Succ(s, i) is undefined, which may only happen for an s that lies in the
border of the grid, which we defined above as obstacles.

An admissible and consistent heuristic often used in 8-connected grid navigation
is the octile distance, which is an analogue of the Manhattan distance in 4-connected
grids.

2.1 Real-Time Heuristic Search

Real-time search algorithms move an agent from the initial state to the goal. They are
given a bounded amount of time for deliberating, independent of the size of the problem,
after which the agent is expected to move. After such a move, more time is given for
deliberation and the loop repeats.

Real-time heuristic search algorithms are akin to heuristic search algorithms and
thus guide search with a heuristic. An example is Real-Time Adaptive A* (RTAA*) [8],
which in pathfinding problems in unknown terrain can be described using the following
algorithm. (1) Set s to sstart . (2) Observe the environment, updating Obs and c. (3)
Carry out a bounded A* search that will not extract the goal fromOpen or expand more

3 We chose this particular δ for convenience but any vector that allows defining the successors
in a clockwise order will work, as well as any vector that reflects a counter-clockwise order.



than k states. (4) Set next to argmint∈Open g(t)+h(t). (5) Set h(s)← f(next)−g(s),
for every s in Closed. (6) Follow the path identified by A* towards next; update Obs
while moving; stop if an obstacle is blocking the path or if next is reached. Step 5 is
called the learning step, in which it makes h more informed. It can be shown that Step
5 preserves heuristic consistency [8], which implies RTAA* always terminates.

RTAA* and many other generalizations of LRTA* (e.g., [9–11]) perform poorly in
the presence of heuristic depressions [3, 12]. A heuristic depression is an area of the
search space in which the heuristic function returns values that are much lower than the
actual cost required to reach a goal state.

2.2 FRIT and FRITRT

Follow and Reconnect with the Ideal Tree (FRIT) [4], is a family of algorithms for
solving search problems in unknown search graphs. FRIT is a framework for general
search problems but since the focus of this paper is pathfinding we describe it using
pathfinding notions, differing slightly from [4].

In an unknown terrain the search graph G is not known to the agent at the outset;
instead, the agent knows the dimensions of the grid and the start and goal cells, and
furthermore believes that the search graph is given by GM , which intuitively defines an
idealistic pathfinding problem in which the set of obstacles is a subset of the obstacles in
G. Specifically, GM is a search graph that materializes the free-space assumption [13],
in which unobserved cells whose blockage status is unknown are assumed obstacle-free.

In its initialization, FRIT defines a so-called ideal tree, T , which contains each non-
border cell and is defined via parent pointers, which point from children nodes to parent
nodes. Specifically, each cell s in T , except for the goal cell, has a parent pointer p(s)
such that p(s) is a state not in Obs. In addition, given any cell s in T , there exists a
natural n such that pn(s) = g. In other words, by “following” the parent pointers from
any cell s in T , one eventually reaches the goal in the idealistic world defined by GM .

For pathfinding in unknown terrain we can generate an initial ideal tree using a
consistent heuristic h, setting p(s) = argmint∈Succ(t) c(s, t) + h(t), for every non-
border cell which is not the goal cell. Moreover, the parent pointers do not need to be
set explicitly for every cell but rather computed when needed. Fig. 1(a) illustrates the
ideal tree defined for an 8-connected grid.

To solve a pathfinding problem, FRIT follows the parent pointers of the ideal tree,
observing the environment as it moves, until it discovers that this is not possible because
a newly discovered obstacle is blocking the path the pointers define. When this happens
it invokes a search procedure whose objective is to find a path connecting the current
state to a state that is connected to the ideal tree. We call this search reconnection search.

Reconnection search can be carried out with any graph search algorithm. The goal
condition is the only aspect that is rather different: instead of looking for a specific goal
state, reconnection search needs to verify whether or not a state is connected to the
search graph, which can be done verifying that there exists a path to the goal state via
p pointers. After reconnection, the p pointers define a forest, and the current state is in
the ideal tree T .

FRIT(BFS) [4] is the simplest instance of FRIT. It uses breadth-first search (BFS)
for reconnection and was shown to have very good performance in pathfinding, with



very little time requirements. Fig. 1(b)-(d) shows a few iterations of FRIT(BFS) on a
pathfinding problem.

Unfortunately, FRIT(BFS), unlike standard real-time search algorithms, is not able
to produce an action given a time bound. This is because BFS takes time bounded by the
size of the search graph to return a solution. To address this pitfall, Rivera et al. [5] pro-
posed to use a real-time search algorithm for reconnection search. In particular, when
RTAA* is used for reconnection, one produces FRITRT (RTAA*).

Algorithm 1: FRITRT (RTAA*): FRIT with RTAA* reconnection.
Input: A search graph GM , an initial state sstart , and a goal state g

1 Initialization: Let T be an ideal tree for GM .
2 Set s to sstart .
3 Set c to 0 and the color of each state in GM to 0.
4 while s 6= g do
5 Observe the environment around s.
6 for each newly discovered inaccesible state o do
7 Prune from T any arcs that lead to o, and add o to Obs.

8 if p(s) = null then
9 c← c+ 1

10 Call RTAA*, using INTREE[c] as termination condition.

11 Movement: Move the agent from s to p(s) and set s to the new position of the agent.

Algorithm 1 shows the pseudo-code for FRITRT (RTAA*). Line 10 invokes a slightly
modified version of RTAA* (Algorithm 3), which differs from its original in (1) that it
sets the parent pointers following the path traversed by the agent, and (2) that it uses
function INTREE[c] to determine whether or not a state is connected to the ideal tree.
A simplified version of the pseudo-code of INTREE[c] is shown in Algorithm 2. It is
simplified because it still may need a number of iterations bounded by the size of the
graph. We can modify INTREE[c] to make it real-time, making it return false if there is
no more time for a new iteration in the main loop. If time constraints are extremely tight
INTREE[c] will return false almost always. This is no problem since RTAA* is still guar-
anteed to lead the agent to the goal state. For more details on this discussion we refer the
reader to [5]. In the next section we will show that this implementation of INTREE[c]
will not guarantee termination; this will motivate a new version of INTREE[c].

Algorithm 2: INTREE[c] function
Input: a vertex s

1 while s 6= g do
2 Paint s with color c.
3 if p(s) = null or p(s) has color c then
4 return false
5 s← p(s)

6 return true

An important aspect of using a real-time search algorithm for reconnection is what
heuristic to use. In contrast to the traditional use of real-time search algorithms, which
is to guide the agent to the goal, here RTAA* is used to find a reconnecting path. Rivera
et al. [5] defined the concept of admissible reconnecting heuristic. By using them ter-
mination is guaranteed. In addition, they showed that both the null heuristic (h(s) = 0,
for every s ∈ S), and the octile distance are admissible reconnecting heuristics and
hence can be used along with FRITRT. Experimentally, they showed that best results in
pathfinding are obtained with the null heuristic. The intuition for this is that, upon re-



connection, search must be guided away from heuristic depressions rather than towards
the goal. The null heuristic seems to better serve that purpose.

Algorithm 3: Real-Time Adaptive A* for FRIT
Input: A search problem P , and a heuristic function h.
Effect: The agent is moved from the initial state to a goal state if a trajectory exists

1 h0 ← h
2 scurrent ← s0
3 while scurrent 6∈ G do
4 A* (k)
5 if Open = ∅ then return no-solution
6 snext ← argmins∈Open f(s)
7 for each s ∈ Closed do
8 h(s)← f(snext)− g(s)
9 Follow the path connecting scurrent and snext that was identified by A* and that can be

extracted by following the back pointers from snext. Update Obs while moving. Stop if an
obstacle is detected in the path or if snext is reached.

10 Assuming σ = s0s1, . . . sn is the path traversed in this iteration, make p(si) = si+1 for every
i ∈ {0, . . . , n− 1}.

11 Set scurrent to the current position of the agent.

2.3 Bug Algorithms

Bug algorithms [6] are pathfinding algorithms for continuous 2D terrain. Unlike real-
time heuristic search algorithms, they do not work in general search problems and do
not exploit heuristics.

An algorithm relevant to our evaluation is Bug2 [14], which behaves as follows.
First it defines a straight line connecting the initial position with the final position, which
henceforth we call m-line. During execution Bug2 follows the m-line until encountering
an obstacle or reaching the goal. If an obstacle is encountered, it saves the position
at which the obstacle was hit in a variable called hit point and then starts following
the boundary of the obstacle (either clockwise or counterclockwise) until the m-line is
encountered again. Then, if the current position is closer to the goal than the hit point,
the agent starts following the m-line again and the process repeats.

The trajectories generated by Bug2 “go around” obstacles. In the pathfinding prob-
lem defined by Fig. 1, there are two trajectories that can be returned by Bug2, depending
on the side that is chosen when the obstacle in F6 is observed.

3 A Pathfinding-Specific Version of FRITRT

FRITRT was shown in [5] to have to have good performance in pathfinding relative
to other real-time heuristic search algorithms. Indeed, its performance was shown to
be comparable to that of daRTAA* [12], which is considered state-of-the-art in real-
time pathfinding. Nevertheless, there are situations in which paths returned by FRITRT
have a large number of steps; much larger than those returned by pathfinding-specific
algorithms like Bug2 or even FRIT(BFS). There are two reasons for this. First, recon-
nection is carried out using a standard real-time search algorithm (in this case, RTAA*),
the agent may be required to revisit some states many times while reconnecting.
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Fig. 1. An execution of FRIT (BFS) when solving the pathfinding problem of moving an agent
from cell F2 to cell F7. The gray areas represent obstacles that have not been detected yet by the
agent. The position of the agent is shown by the dot. The arrows are a representation of the ideal
tree as maintained by FRIT. The first few moves, (a)-(b), trivially follow the ideal tree moving the
agent from F2 to F5. In (b), the ideal tree has been updated by removing edges that go through
the observed obstacles. (c) shows the agent in the same location after the reconnection through
BFS has been completed connecting F5 to D6 through F6. (d)-(e) show the next few stages of
the search after reconnection is performed. After (e), the rest of the search is straightforward and
the search effort is minimal. The path followed by the agent throughout the whole execution is
shown in (f).

The second reason explaining poor behavior of FRITRT is that the search space
considered by FRITRT during reconnection is large. An illustration is given in Fig. 2.
In that situation the path followed FRITRT (RTAA*) covers a complete area underneath
the obstacle, while a bug algorithm would only move on the perimeter of that obstacle.
As a general conclusion, FRITRT (RTAA*) may return solution paths whose size is
quadratic on the size of paths returned by pathfinding-specific bug algorithms.

Our approach to reducing the search space is strongly inspired by the design prin-
ciple of bug algorithms. We propose to restrict the reconnection search space only to
states that are in the border of an obstacle. This can be ensured by replacing the A*
search in RTAA* by Algorithm 4, which in Line 10 guarantees that a state is added to
Open only if it has a neighbor which is an obstacle too. We call the resulting algorithm
p-FRITRT. It is not hard to verify that p-FRITRT (RTAA*) solves the problem of Fig. 2
in 19 steps.

A rather important detail to notice is that since Algorithm 4 only considers states
next to obstacles, RTAA*’s learning rule applies only to those states. Although Algo-
rithm 4 imposes a clockwise order to look for new open states, any order can be im-
plemented. On the other hand, in order to ensure that FRITRT always reaches the goal,
the INTREE[c] function needs modification. As mentioned above, if time constraints are



tight INTREE[c] will return false most of the times putting reconnection at risk. Since
Algorithm 4 only inserts into Open states that are next to an obstacle, RTAA* moves
the agent only through those states. If the goal state is not adjacent to a wall and the
agent does not have enough time to check whether states are connected to the ideal tree
then it may end up looping forever around an obstacle. To address this, we propose a
modification of the INTREE[c] function, shown in Algorithm 5.
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Fig. 2. An illustration of the execution of FRITRT (RTAA*), run with lookahead parameter equal
to 1, at solving a pathfinding problem whose start state is cell F2, and whose goal cell is F7. In
(a)-(d), the dot shows the position of the agent, the arrow denotes the next action to be carried
out, and the number in the cell denotes the value of the reconnecting heuristic that we use in this
example (h = 0). For the first three moves (a)-(b) the agent follows the ideal tree. Once it reaches
F5, the obstacle cell at F6 becomes disconnected from the tree and reconnection is initiated via
running RTAA*. Now we assume the cells are added to A* priority queue in clockwise order,
starting from the top cell, and that, moreover ties are broken in the priority queue in the same
order. After expanding F5, E5 is the best successor, and thus the agent moves upward, updating
the heuristic value of F5 to 1. Analogously, the agent moves upwards until reaching cell D5 (c).
D5’s best successor is D4, and due to tie-breaking rules the agent moves downward, then left, and
then upwards again, following the path shown in (d).

Algorithm 4: Bounded A* lookahead restricted to follow walls
1 procedure A* (k)
2 for each s ∈ S do g(s)←∞
3 g(scurrent)← 0; Open← ∅
4 Insert scurrent into Open
5 expansions← 0
6 while each s′ ∈ Open with minimum f -value is such that INTREE[c](s′) is not true and

expansions < k do
7 Remove state s with smallest f -value from Open
8 Insert s into Closed
9 for i in 1, . . . , 8 do

10 if Succ(s, i− 1) ∈ Obs or Succ(s, i+ 1) ∈ Obs then
11 if g(s′) > g(s) + c(s, s′) then
12 g(s′)← g(s) + c(s, s′)
13 s′.back = s
14 if s′ ∈ Open then remove s′ from Open
15 Insert s′ in Open

16 expansions← expansions+ 1



Algorithm 5: Modified INTREE[c] function
Input: a vertex s

1 s′ ← s
2 if sp(s′) = null then
3 return false
4 else
5 s′ ← sp(s′)

6 while s′ 6= g do
7 Paint s′ with color c.
8 if p(s′) = null or p(s′) has color c then
9 return false

10 s′ ← p(s′)
11 sp(s)← p(s′)

12 return true

Algorithm 5 introduces a new attribute for states called the super parent sp. At the
outset of each reconnection (i.e., each call of RTAA* in Algorithm 1) we set sp(s) = s
for every s. The idea of Algorithm 5 is now that if the agent does not have enough time
to complete the INTREE[c] process from a state s and it had to move, if we perform
the INTREE[c] function again from s, we can recover the work done starting the search
from sp(s) instead of s. It is easy yet important to observe that if we repeat Algorithm 5
from the same state a sufficient number of times the algorithm will eventually return
true if the state is connected to the goal state.

3.1 Theoretical Analysis

In this section we prove that p-FRITRT is correct; i.e., that it guides an agent to the goal
when a solution exists. Though p-FRITRT was designed for pathfinding, we extend it
now to a more general class of graphs. Below, G = (S,A) is an undirected graph, i.e.,
one in which (s, s′) ∈ A if and only if (s′, s) ∈ A.

We say that B ⊂ S is a fence with respect to state s and goal state g if g 6∈ B, B
is a connected graph and whenever there is a path from s to g then ∂B ∩ L(s,B) is
connected, where L(s,B) is the set of all vertices reachable by a path from s without
using states of B. The idea of the fence is that the agent cannot cross it but can “skirt
around it”. Note that, for technical reasons, B is a fence in the trivial cases when s ∈ B
or B cuts all paths from s to g.

We say G is nice with respect to state s and goal state g, if every B ⊂ V is a fence
with respect to s and g. A graph is nice (with respect to g) if it is nice with respect to s
and g for all s ∈ S. As a way of example an n×m grid that has a solution is nice.

Remark 1. This simple observation about the definition of fence is the key to prove that
the algorithm always finds a solution. Let G be a connected, nice undirected graph with
g the goal state. Let s be a state such that π = ss1 . . . sng is a path from s to g. Let B
be a fence w.r.t. s and g, and s 6∈ B but si ∈ B for some i (the reader should think B as
a set of obstacles that cut the path π). We can always reconstruct a new path P ′ with the
following idea, let N be the greater N such that sN ∈ B, then sN+1 ∈ ∂B (note that
sN+1 might be g), then we can construct a path starting from s, then move along the
path until we hit B, then move through states in ∂B until we reach sN+1 and continue
using π again.



Theorem 1. Consider a search problem P , and assume that at every moment, the cur-
rent search graph GM is nice. Then the algorithm finds a solution.

To prove Theorem 1 we use the following intermediate result.

Lemma 1. Suppose that from the current state p-FRITRT follows the path defined by
the p pointers and that when the agent reaches state s the path becomes blocked by an
obstacle. Then reconnection search can find a reconnecting path to the ideal tree.

Proof. Recall that when the ideal tree is disconnected then the agent runs RTAA* using
the modified version of A* in Algorithm 4 which restricts to states next to an obstacle.
Let GM be the current graph, let x be the obstacle in the path that was being followed
and let B be the set of all obstacles connected with x. Since GM is nice, and B is a
fence the agent can move on the wall of B. By Remark 1, there exists a set of states on
the wall of B, say U , such that the vertices of U are connected with g and thus if the
agent can identify them, it can reconnect to the ideal tree. Finally, even though it may
take several runs of Algorithm 5 from the same vertex, a connected vertex is eventually
recognized since the graph is finite and connected. RTAA* will make the agent move
on the wall of B until it recognizes a state of U connected to the ideal tree.

Proof (Of theorem 1). Let T be the ideal tree defined by the p pointers after a recon-
nection or at the beginning of the algorithm. Moreover, let s be the position of the agent
after such reconnection. Let π be the path in T that goes from s to g. Recall the agent
will follow π until it reaches g or finds an obstacle. Now assume an obstacle is found,
and let GM be the known graph at the point the agent found the obstacle. The above
lemma says that we can reconnect the tree on GM , recovering a new tree that connects
the position of the agent with the goal state. Since the initial tree T connects the initial
position with g (in the initial known graph) and the set of connected components of
obstacles is finite, we repeat the argument inductively, finishing the proof.

4 Experimental Evaluation

We implemented our algorithm over the same codebase of FRIT. The objective of our
experimental evaluation was to compare p-FRITRT (RTAA*) with the state of the art
in real-time pathfinding, which is represented by daRTAA* and FRIT (RTAA*). The
objective of our evaluation was not to establish a relationship between p-FRITRT and the
state of the art in bug algorithms. However, for reference we also include a comparison
with Bug2, which we is easy to implement.

We evaluated over 12 game maps from N. Sturtevant’s pathfinding repository [15].
The maps we considered come from the games Dragon Age, and StarCraft.4 We gen-
erated 500 problems for each of them. We ran the real-time algorithms in 9 lookahead
configurations (1, 2, 4, 8, 16, 32, 64, 128, 512). We assume the agent can observe the
blockage status of its neighbor cells. All experiments were run on a Linux 2.00GHz
QuadCore Intel Xeon machine with 128MB of RAM.

4 Map details. Dragon Age: brc202d, orz702d, orz900d, ost000a, ost000t and ost100d; sizes:
481× 530, 939× 718, 656× 1491, 969× 487, 971× 487, and 1025× 1024 resp. StarCraft:
ArcticStation, Enigma, Inferno, JungleSiege, Ramparts and WheelofWar; sizes: 768 × 768,
768× 768, 768× 768, 768× 768, 512× 512 and 768× 768 resp.
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Fig. 3. A comparison of p-FRITRT, FRITRT (RTAA), and the state-of-the-art daRTAA* over 12
standard game maps. The plot on the right-hand side is a zoomed version of the one on the left.

Figure 3 compares solution quality obtained by the various algorithms. FRIT(BFS)
is not a real-time algorithm and its average solution cost is included in the plots for
reference only. On the other hand, Bug2 returns a single solution in very little time;
it is shown in the figure as a horizontal line, rather than a simple dot, for clarity. As
well, “optimal” is the average optimal solution (obtained using RTAA* using an infinite
lookahead parameter) and it is included for reference as a horizontal line.

p-FRITRT significantly outperforms the real-time search algorithms daRTAA* and
FRITRT (RTAA*) with respect to average time spent per search episode. In fact, for
lookahead equal to 1 p-FRITRT (RTAA*) generates a solution that is 6.9 times cheaper
than that produced by daRTAA* and 8.3 times better than the one returned by FRITRT
(RTAA*). For other values of the lookahead parameter we observe a similar behavior.
For example, for lookahead 16, the solution returned by p-FRITRT (RTAA*) is 2.7 times
cheaper than that produced by daRTAA* and 4.5 times better than the one returned by
FRITRT (RTAA*). For lack of space we omit total runtime plots. However, p-FRITRT
(RTAA*) clearly outperforms the other real-time search algorithms on that metric. For
example, it is 5.52, 23.62, and 2.81 times faster than daRTAA* for lookaheads 1, 16,
and 512, respectively, and on average 9.81 times faster than daRTAA*, 22.8 times faster
than RTAA*, and 7.55 times faster than FRITRT (RTAA*).

The average cost of the solutions returned by Bug2 is 6,546, with an average run-
time of 2,317 µs. p-FRITRT (RTAA*), on the other hand, obtains solutions of cost 7,629
on average for lookahead parameter 16, with an average runtime of 4,777 µs. For looka-
head parameter 32, p-FRITRT (RTAA*) obtains an average solution of cost 4,210 with
an average total runtime of 4,008 µs. The best average solution cost obtained by p-
FRITRT (RTAA*) is for a lookahead equal to 64, which yields an average solution of
cost 3,225—about half of the cost obtained by Bug2—, with a runtime of 4,838 µs.

We conclude that p-FRITRT significantly outperforms the state of the art in real-time
heuristic search for pathfinding tasks. Given sufficient time, p-FRITRT may also return
solutions substantially better than those obtained by Bug2 and thus should be preferred
in situations in which time constraints allow for at least 64 node expansions.



5 Summary & Final Remarks

We presented p-FRITRT, a real-time algorithm tailored to pathfinding which we showed
outperforms by a large margin the state of the art in real-time heuristic search algorithms
for pathfinding. p-FRITRT is a modification of FRITRT that searches for reconnection
only on states that are in the border of obstacles. We proved p-FRITRT always terminates
leading the agent to a goal in a class of problems that subsumes 8-connected grids.

The main idea underlying FRITRT draws inspiration from bug algorithms, but is also
related to other recent trends in offline pathfinding in grids which restrict the search
space exploiting the fact that optimal paths must touch the borders of obstacles (i.e.,
[16, 17]).
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