Assumption-Based Planning: Generating Plans and Explanations
under Incomplete Knowledge

Sammy Davis-Mendelow
Department of Computer Science
University of Toronto
Toronto, Canada

Abstract

Many practical planning problems necessitate the generation
of a plan under incomplete information about the state of the
world. In this paper we propose the notion of Assumption-
Based Planning. Unlike conformant planning, which at-
tempts to find a plan under all possible completions of the
initial state, an assumption-based plan supports the assertion
of additional assumptions about the state of the world, often
resulting in high quality plans where no conformant plan ex-
ists. We are interested in this paradigm of planning for two
reasons: 1) it captures a compelling form of commonsense
planning, and 2) it is of great utility in the generation of expla-
nations, diagnoses, and counter-examples — tasks which share
a computational core with planning. We formalize the notion
of assumption-based planning, establishing a relationship be-
tween assumption-based and conformant planning, and prove
properties of such plans. We further provide for the scenario
where some assumptions are more preferred than others. Ex-
ploiting the correspondence with conformant planning, we
propose a means of computing assumption-based plans via
a translation to classical planning. Our translation is an ex-
tension of the popular approach proposed by Palacios and
Geffner and realized in their TO planner. We have imple-
mented our planner, A0, as a variant of TO and tested it on a
number of expository domains drawn from the International
Planning Competition. Our results illustrate the utility of this
new planning paradigm.

Introduction

Many real-world planning problems provide limited infor-
mation about the actual state of the world, and yet for a
number of tasks it is necessary to generate a reasonable plan
prior to execution, without the benefit of run-time sensing.
Planning a major project in which a reasonable plan must
be delivered to stakeholders is one such example. Planning
your day is another. Such forms of commonsense planning
are prevalent. A third example of this paradigm of planning
is found in the generation of explanations or diagnoses for
dynamical systems.

When information is limited and plans must be generated
without the benefit of run-time sensing, a common approach
is conformant planning, which computes a plan that relies

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Jorge A. Baier
Depto. de Ciencia de la Computacién
Pontificia Universidad Catélica de Chile
Santiago, Chile

Sheila A. Mcllraith
Department of Computer Science
University of Toronto
Toronto, Canada

only on what is known. This can make planning difficult
and can lead to poor-quality plans or no plan at all.

In this paper we define the notion of assumption-based
planning (ABP). Assumption-based planning endeavors to
find a middle-ground between conformant and classical
planning wherein the planner computes a set of calculated
assumptions about aspects of the world that support the gen-
eration of a plan. Assumption-based planning is well-suited
to scenarios where resolving uncertainty directly is impossi-
ble, difficult, or expensive.

Our interest in assumption-based planning is two-
fold: 1) it captures a compelling form of common-
sense planning', and 2) it is of great utility for tasks
that share a computational core with planning, such as
explanation generation (e.g., Gobelbecker et al. 2010,
Sohrabi, Baier, and Mcllraith 2011), plan recognition (e.g.,
Ramirez and Geffner 2010), diagnosis of dynamical sys-
tems (e.g., Sohrabi, Baier, and Mcllraith 2010, Haslum and
Grastien 2011) and counter-example generation for verifi-
cation (e.g., Albarghouthi, Baier, and Mcllraith 2009). To
illustrate, consider planning your trip home at the end of a
work day. You don’t know for certain that the subway will
be running, you have no way of finding out, but it’s reason-
able to assume so. Making this assumption supports gen-
eration of a reasonable plan. The conformant plan might
have you walking home! Similarly consider a sequence of
observations and the task of finding a sequence of actions
(a plan/explanation) that account for them. In such a sce-
nario, there is no opportunity to sense, because the obser-
vations occurred in the past. An explanation typically ne-
cessitates reasonable assumptions about unobserved state or
events. For the related task of counter-example generation in
service of verification, any assumptions that can be consis-
tently made to generate the counter-example are desirable.

The term assumption-based planning has been coined for
a number of diverse planning activities that broadly relate
to assumptions. Albore and Bertoli (2004) used the term to
describe planning with linear temporal logic “assumptions”
provided in advance. Pellier and Fiorino’s basic formula-
tion (2004) shares some commonalities with ours but the
approach to plan generation is fundamentally different. Our
characterization of assumption-based planning is related to

!Coined previously but with different meaning in (Faletti 1982).



abduction as theory formation (e.g., Poole, Goebel, and
Aleliunas 1987) wherein additional facts about the world are
conjectured to explain an observation.

Assumption-based planning shares commonalities with
contingent and probabilistic planning. Indeed, the
translation-based approach to conformant planning we ex-
ploit for assumption-based planning has been extended in
different ways for probabilistic planning (Brafman and Taig
2011) and for contingent planning (Albore, Palacios, and
Geffner 2009). Some contingent and probabilistic plan-
ners have also exploited a form of assumptions. Braf-
man and Shani (e.g., 2012) make implicit assumptions in-
formed by a probability distribution, and by online sensing.
Gobelbecker, Gretton, and Dearden (2011) do something
similar for decision-theoretic planning. Bonet and Geffner
(2011) make optimistic assumptions about the value of un-
known hidden variables, executing a classical plan given
these assumptions, and replanning if an assumption is re-
futed during execution. Finally, Albore and Geftner (2009)
incorporate assumptions into the CLG+ contingent planner
in order to deal with dead-end states. Rather than failing
when there is the possibility of such a state, the planner as-
sumes that these states are not possible, and only fails when
the dead-end is a certainty. Beyond the fundamental dif-
ference in planning paradigm, a major difference between
these works and ours is that they all combine some notion
of assumption making with online execution. While this can
be an important component of assumption-based planning,
it need not be, and is not the focus of this paper.

Here we provide a formal characterization of assumption-
based planning that can be realized offline or online and that
is applicable to a diversity of tasks involving assumption-
based reasoning in dynamical systems. By establishing
and exploiting a correspondence between assumption-based
planning and conformant planning we provide a translation
of assumption-based planning to a classical planning prob-
lem, building on the popular translation developed by Pala-
cios and Geffner (2009). We prove the soundness and com-
pleteness of our translation. This provides us with a means
of generating assumption-based plans using classical plan-
ners. We also argue for the merit of preferred assumption-
based plans and propose a means of realizing such plans via
cost-based planning. We implement these two approaches
and perform experiments to illustrate their viability and as-
sess some of their properties. While we have implemented
assumption-based planning using a translation-based ap-
proach, the established correspondence to conformant plan-
ning supports the realization of assumption-based planning
via minor modification of a diversity of conformant plan-
ners.

Characterization

In this section, we formally define an assumption-based
plan, analyze the complexity of plan generation, and relate
it to other well-known notions of planning.

Background

Following Palacios and Geftner (2006), a Planning Problem
is atuple P = (F,0,1,G) where F is a finite set of flu-

ent symbols, O is a finite set of action operators, [ is a set
of clauses over F', defining the set of possible initial states,
and G is a boolean formula over symbols in F, that defines
a goal condition. Every action a € O is defined by a con-
junction of fluent literals, prec(a) (preconditions) and a set
of conditional effects C' — L where L is a fluent literal that
is made true when the action is executed and the conjunction
of fluent literals C holds.

Example Returning to our example of planning your trip
home from work, let P = (F,0, I,G), where F includes
propositions describing your location, at(loc), and the loca-
tion of subway stations, station(loc), among other proper-
ties. O includes the locomotion operators walk(orig, dest),
bicycle(orig, dest), and subway(orig,dest) that take
you from origin to destination. Each of these operators
has the precondition at(orig); bicycle(orig,dest) has
the additional preconditions haveBike and dryRoad,
whereas subway(orig, dest) has the additional precondi-
tions station(orig) and station(dest). walk(orig, dest)
and bicycle(orig,dest) have the effects —at(orig)
and at(dest), and subway(orig,dest) has the effects
subwayRunning — at(dest), —~at(orig). The initial state
contains the location of all subway stations, at(Office)
and —haveBike. It is not known whether the subway is
operational, so there is no mention of subwayRunning.
The goal is G = at(Home).

A planning state s is defined by a set of fluent symbols,
which represent all that is true. Each system state s induces
a propositional valuation M; : F' — {true, false} that maps
any fluent literal in s to true, and all other literals to false.

We say a state s is consistent with a set of clauses C, if
M, E ¢, for every ¢ € C. Intuitively, M, = ¢ stands for
“boolean formula ¢ holds true in state s”.

An action a is executable in a state s if M = prec(a).
If a is executable in a state s, we define its successor state
as §(a,s) = (s\ Del) U Add, where Add contains a flu-
ent f iff C — f is an effect of a and My = C. On the
other hand Del contains a fluent f iff C — —f is an ef-
fect of a, and M; = C. We define d(apay . ..an,s) =
d(ay...an,d(ag,s)), and d(e,s) = s. A sequence of ac-
tions « is executable in s if §(«, s) is defined. Furthermore
« is executable in P iff it is executable in s, for any s con-
sistent with I.

Next we define an execution trace which intuitively char-
acterizes maximal state trajectories that could result from the
execution of an action sequence when performed in some of
the possible initial states of a planning problem.

Definition 1 (Execution Trace) A sequence of planning
states ¢ = SpS1---Sk IS an execution trace of a =
apay . . . ay, in planning problem P = (F,0,1,G) iff (1)
s is consistent with I, (2) §(a;, s;) = siy1, for all i < k,
and (3) either k = n+ 1ork < n+ 1 and §(sk, ax) is
undefined.

Definition 2 (Successful Execution Trace) An execution
trace o for « is successful iff |o| = |o| + 1.

Naturally, we are interested in execution traces that lead
to goal satisfaction, i.e., for which the goal holds in the final
state of the sequence of planning states. Formally,



Definition 3 (Leads to) An execution trace o = Sg--- S,
leads to (goal formula) G, iff M, E G.

A standard definition of conformant plan follows.

Definition 4 (Conformant Plan) A sequence of actions o
is a conformant plan for P = (F, O, I, Q) iff every execu-
tion trace of « is successful and leads to G.

Example: In our subway example, all conformant plans re-
quire you to walk home, e.g., walk(Office, Home). Such
plans are safe at the expense of quality. For the authors’
home and office, however, a plan that reasonably assumes
the subway is operational and takes the subway is best.

Assumption-Based Planning

In real-world planning scenarios, where incomplete infor-
mation is the norm, humans will often construct a common-
sense plan based on reasonable assumptions. In the case
of the subway example, they may do so in order to coordi-
nate with friends or family. In a project planning scenario,
such a plan might be necessary for stakeholder coordina-
tion. Analogously, when generating explanations for a nar-
rative of observed state, assumptions are posited in support
of generating a reasonable explanation. Indeed, the positing
of assumptions is at the core of abductive reasoning. Here it
is extended to dynamical systems.

Given a planning problem with an incomplete initial state,
the task of assumption-based planning requires computing
two elements: (1) a set of assumptions that are made at
different states during the execution of the plan, and (2) a
sequence of actions that, given the assumptions, is guaran-
teed to reach the goal. As such, the main difference between
assumption-based planning and conformant planning is the
computation of assumptions.

Formally an Assumption-Based Planning Problem is a tu-
ple P = (F,0,I,G,U). F, O, I, and G follow the previ-
ously described standard definition, but here P is augmented
with U, a subset of F' denoting the set of assumable fluents
used to contruct assumptions. U may be equal to F' or it
may be restricted to an application-specific subset of fluents
that are reasonable to assume. For example, in the case of
explanation generation or diagnosis of a component-based
system, U might include fluents denoting the (ab)normal
functioning of system components (e.g., AB(c;)). In the
subway example, U would include subwayRunning. An
assumption-based plan is a pair (p, «) where &« = ag - - - ai,
is a sequence of actions and p = hg - - - hg41 1S a sequence
of boolean formulae over fluents in U representing assump-
tions made about the ¢-th state visited when performing a.

The execution traces of interest are those that conform to
p; i.e., those consistent with the assumptions. Formally,

Definition 5 (Conforms to) An execution trace o =
So - - - Sk conforms to a sequence of boolean formulae p =
ho -+ hp withk < niff Ms, = h;, foreveryi € {0,...,k}.
Finally, each of the execution traces of « that conforms to
p must actually lead to the goal. A formal definition of an
assumption-based plan follows.

Definition 6 (Assumption-Based Plan) The pair (p,«),
where o is a sequence of k actions, and p is a sequence of

k+ 1 boolean formulae over U is an assumption-based plan
for P = (F,0,1,G,U) iff any execution trace of « that
conforms to p is successful and leads to G, and furthermore
at least one such execution trace exists.

Intuitively for every consistent completion of the initial
state the execution trace is either successful and leads to the
goal or is pruned by p. Assumption-based planning reduces
to yielding a conformant plan when assumptions are entailed
by the states in which they are made.

Example: Assumption-based planning allows for the
generation of the reasonable plan, that we assume
the subway is running when we need to take it. lLe.,
m = (p, ), where p = true; subway Running; true; true, and

a=walk(Office, StnA);subway(StnA, StnB);walk(StnB, Home).

The astute reader will note that restricting the vocabulary
of assumptions via U may not be sufficient to ensure reason-
able plans. At the extreme one could imagine simply assum-
ing the goal is already true in I. This issue can be addressed
by defining a notion of quality over assumption-based plans.
We discuss this in more detail later in the paper.

Initial-State Assumption-Based Planning

In many settings it is convenient or sufficient to restrict as-
sumptions to the initial state of the world, i.e., to make
h; = true for every ¢ > 0. We call this class of prob-
lems initial-state assumption-based planning. An initial-
state assumption-based plan is denoted by (hg, «), where hg
is a boolean formula over U that corresponds to an assump-
tion with respect to the initial state.

The formal relation between conformant planning and
initial-state assumption-based planning is straightforward,
and is established in the following proposition.

Proposition 1 The tuple (ho,o) is an  initial-
state assumption-based plan for planning problem
P = (F,0,I,G,U) iff a is a conformant plan for
P = (F,0,1U{ho},G).

Note that this proposition does not imply that an
assumption-based plan can be directly computed using a
conformant planner, since a conformant planner is not able
to compute assumptions. In addition, a relation between
assumption-based planning and initial-state assumption-
based planning can be established.

Theorem 1 If P = (F,0,I,G,U), U = F, and (p,«) is
an assumption-based plan for P, then there exists an hg such
that (hg, @) is an initial-state assumption-based plan for P.

Fm(’lth‘ermore, ho can be computed from p, P and o in time
20D,

Proof sketch: Via regression, we obtain a condition ¢pcc
that corresponds to the conditions under which « is exe-
cutable in the initial state. Likewise, we obtain a condition
¢¢ under which « leads to the goal G. hg is made equal to
Gprec N . Regression is worst-case exponential in |« |, but
is linear in || if there are no actions with conditional effects
in a. O

As a consequence of this theorem, if « is a sequence of
actions for which there is some p such that (p,«) is an



assumption-based plan, then we can construct an assump-
tion hg on the initial state using « such that (hg, ) is an
assumption-based plan. The proof of the above theorem
(omitted here for space) actually gives a constructive al-
gorithm for hg that relies on regressing G over a. Un-
der certain conditions, one can similarly construct an ar-
bitrary assumption-based plan (p,a) from an initial-state
assumption-based plan (hg, «) by progressing aspects of
ho (Lin and Reiter 1997). Intuitively, this provides a
means of generating an assumption-based plan that makes
assumptions at the point at which they are needed, and no
sooner. This supports monitoring of the continued valid-
ity of assumption-based plans during execution, dovetailing
nicely with techniques for annotating plans with the neces-
sary conditions for their continued validity (e.g., Fritz and
Mcllraith 2007), monitoring continued plan validity, and re-
pairing or replanning when necessary.

As it turns out, the definition of assumption-based plan-
ning is general enough that its complexity seems to lie across
a spectrum of complexity classes, depending on which lit-
erals are allowed to be assumed. Below we provide two
complexity results showing that assumption-based planning
is complete for two complexity classes. Our first result
follows directly from the fact that conformant planning is
EXPSPACE-complete (Haslum and Jonsson 1999).

Theorem 2 Given an assumption-based planning problem
P = (F,0,1,G,U), where U contains no fluents men-
tioned in non-unary clauses of 1, deciding whether or not
an assumption-based plan exists is EXPSPACE-complete.

However, as more information can be assumed, the com-
plexity moves down to that of classical planning.

Theorem 3 Given an assumption-based planning problem
P = (F,0,1,G,U), where U contains all fluents men-
tioned in non-unary clauses of 1, deciding whether or not
an assumption-based plan exists is PSPACE-complete.

Proof sketch: For membership, we propose the following
NPSPACE algorithm: guess the assumptions h( such that
I U hy has a unique model, then call a PSPACE algorithm
(like the one suggested by De Giacomo and Vardi (1999))
to decide (classical) plan existence. Then we use the fact
that NPSPACE=PSPACE. Hardness is given by the fact that
classical planning, a PSPACE-complete problem (Bylan-
der 1994), can be straightforwardly reduced to assumption-
based planning. g

Theorem 3 implies that when the set of assumable flu-
ents contain all fluents appearing in non-unary clauses of I,
assumption-based planning can be reduced to classical plan-
ning. A Naive Translation is to construct a classical problem
P’ by augmenting P with an exponential (in the number of
unknown fluents in the initial state, k) number of additional
actions, selected at the outset of planning to complete the ini-
tial state, consistent with I. If aga; . . . a, is a classical plan
for P’, we construct the initial-state assumption-based plan
as follows. hg is constructed with the facts true in the state
s1 that ay generates and « is simply set to a; . .. a,. Such a
commitment to a single initial state can be excessive, mak-
ing unnecessary assumptions. Alternatively, some domains

may lend themselves to achieving the same completion ef-
fect by applying a sequence of actions. In our example, each
sequence of these actions generates one of the possible 2*
states. Both approaches outlined above have been used in the
past to tackle diagnosis problems in which the initial state is
incomplete or unknown (Sohrabi, Baier, and Mcllraith 2010;
Haslum and Grastien 2011).

A Translation-Based Approach

Here we propose an alternative translation of assumption-
based planning to classical planning that builds on top of
Palacios and Geffner’s K j; translation (2009) — hence-
forth denoted by P&G- which translates conformant plan-
ning into classical planning. The main objective of our trans-
lation is to avoid the excessive commitment exhibited by the
naive translation of assumption-based planning to classical
planning.

The K :,4 » Translation

Given an assumption-based planning problem P =
(F,0,1,G,U), we generate a new planning problem P’ =
(F',O',I',G"); we call this process the K4, translation,
which builds on P&G. For each literal L we associate a set
of merges, M. Each merge is a finite set of tags, which in
turn are conjunctions of literals that are unknown in the ini-
tial state. Each merge characterizes a partition of the initial
state in the sense that I |= \/,., t is required to hold for
each merge m.

A tag intuitively represents a partial completion of the ini-
tial state in which every L € ¢ is initially true — it is a “case”
in which L is initially true. Problem P’ contains fluents of
the form KL, for each L € F, Kt and K-t for each tag ¢,
and K L/t for each L € F and each tag t in a merge of M.
K L intuitively represents that L is known. K L/t represents
the fact that L is known given that ¢ is true in the initial state.

The main difference between P&G and our translation is
that we consider a set of assumption actions, which allow
the planner to assume that a tag ¢ was true in the initial
state. More specifically, given a set T of assumable tags,
there is an assumption action associated to each ¢ € T that
assumes t is true in the initial state. Instead of using the
standard P&G merge actions, we use the contingent merge
actions introduced by Albore, Palacios, and Geffner (2009).
Furthermore, our translation augments P&G with additional
conditional effects to handle assumptions. More precisely,
P’ is such that the following holds.

M) I'={KL|IEL}U{KL/t|I,t = L}U{Kt, K-t |
I,t = L,forsome L} U {ok}. I’ differs from P&G in the
ok fluent which is added to keep track of consistency and is
explained in detail later, and in the fluents of the form Kt
and K—t, with ¢ a tag, which represent that ¢ is true and,
respectively, false in the initial state.

(2) For each literal L, and each tag ¢ in some merge of My,
O contains the so-called contingent merges proposed origi-
nally by Albore, Palacios, and Geffner (2009), of the form
(Atem(KL/t vV K=t)] — K L. These generalize the P&G
merge actions for the case where ¢ is refuted by assumptions.



(3) Like in P&G, for each action a with conditional effect
C — L, O’ contains the conditional effects [A ..~ Kc/t] —
KL/t and [\ .- ~K—c/t] — —K-L/t, for each tag t in
some merge of M7,.

(4) In addition, for each tag ¢ in the set of assumable tags,
T, we create an assumption action Assume(t), with precon-
dition ~ K-t A-KtA\—~K—-t' A\—Kt' and effects Kt, ~K—t,
K~t', =Kt for every tag t’ that is inconsistent with ¢, i.e.,
contains the complement of a literal in ¢.

(5) For each merge set My, that contains tag ¢, and each
merge m € M, the conditional effects KL/t — KL, and
KL/t N K=L — —ok are added to the Assume(t) action.
The first conditional effect makes L known if it is the case
that K LL/t. The second conditional effect takes care of po-
tential inconsistencies that could arise when assuming a lit-
eral that implies that L is known, when — L is already known.
In such cases the action deletes the fluent ok signaling incon-
sistency.

(6) For each action a € O the version of ¢ in O’ contains
the precondition ok A A\ ;¢ ee(a) K L-

(7) The planner should not make inconsistent assumptions.
Thus whenever we assume a tag ¢, we may need to update
the knowledge about other tags. To illustrate this, consider
that L1, Lo, and Lg are literals, each of which corresponds
to a tag, and that both ¢y = =L V Ly and co = L3 V L
are clauses in I, and suppose a plan contains the action
Assume(Ls). Then action Assume(—Lsy) cannot consis-
tently occur after Assume(L3) because that would imply
that ¢; would be contradicted (L; is forced to be true by
co and the assumption of L3). Thus whenever we assume
a tag t, we may need to update the knowledge about other
tags. We achieve this by adding specific conditional effects
to assumption actions. Such effects reflect logical inferences
among clauses defining the initial state and we obtain them
by performing resolution. In our example, if one carries
out a resolution step between c; and co, then we obtain the
clause c3 = L3 V Lo, from which it is straightforward that
L, is forced to be true after assuming Ls. Using c3 we write
a new effect for Assume(—Ls) that states K Ly as a new
effect. This idea can be extended further by computing all
possible resolution steps with the clauses in the initial state.

In the general case, however, tags may be conjunctions
of literals, and thus the relationship between different tags
may not be entirely obvious by just looking at the clauses
that result from resolution. In such a case, for each tag t,
we add to I the clauses corresponding to the formula ¢ <>
[ALc; L], where t is a new variable that represents a tag
t. After carrying out all possible resolutions there will be
clauses that only contain variables of the form ¢, and we
only consider these clauses to generate the effects.

Let us denote by I the set of clauses that result after per-
forming resolution. Now we are ready to specify the con-
ditional effects that are going to be added to Assume(t).
For each clause in ¢ € I of the form {—79, 71,72, ..., Tn},
with each 7; of the form ¢ or —¢, for some tag t, we add the
conditional effect [\ c.\ (7,3 K7 = K7y, for every

i € {1,...,n}, to action Assume(7p). In addition, effects
similar to those described in step (5) are also added to ac-

count for the addition of each K'7;.

Note that the construction of I is clearly worst-case ex-
ponential. Nevertheless, in practice, there are usually few
resolution steps that can be made between clauses in I as
usually I is formed by groups of clauses relatively indepen-
dent of each other. Furthermore, when tags are of size 1, we
do not need to add the clauses involving additional variables
t as literals themselves represent their tags.

(8) Finally, G’ = {KL| L € G} U {ok}.

Just like P&G, our K#' ,, translation is sound in the fol-

lowing sense. ’

Theorem 4 The K{}  translation is sound; i.e., if « is a
plan for K4 ,,(P), then there is an assumption-based plan

(p, &) for the original problem. Furthermore, (p,a’) can
be computed from « in linear time.

The K{(P) Translation

As with P&G’s K7 ) translation, the K 7“3’ a7 translation does
not explicitly define how the merges/tags are computed from
the original problem. In addition, it provides no complete-
ness guarantees. A practical realization of P&G’s K js is
given by the so-called K translation (Palacios and Geftner
2009). K; defines an explicit way to compute merges. It is
a sound translation (in the sense defined above). In addition,
if 7 is not greater than the so-called width of the problem P,
then it is also complete.

We have defined an analogous version of the K; trans-
lation, that we call K. K7 is a version of K; in which
merges and tags are computed using the same procedure as
for the case of K;. Due to lack of space we cannot elab-
orate on this process, but we refer the reader to Palacios
and Geffner’s paper (2009) for reference. After the tags and
merges are determined, however, it may be that the set of
tags does not capture the set of assumable fluents. In such
a case, we create additional tags for those assumable fluents
that are not captured. Since K is a particular form of the
translation K7 57, we obtain that it is sound as a corollary of
Theorem 4. Furthermore,

Theorem 5 Given an assumption-based planning problem
P = (F,0,1,G,U), with width w(P) < i, the K{* trans-
lation is complete; i.e. if there exists an assumption-based
plan (p, «) for P, in which p are conjunctions of literals in
U, then a plan exists for K{*(P).

In the previous result, w(P) is defined analogously to P&G.

Negative Results Given P, K;(P) is polynomial in the
width of P (Palacios and Geffner 2009). Since our imple-
mentation involves a step in which previously we do a reso-
Iution fixpoint computation (Step (7)), we cannot guarantee
that the K translation is polynomial on the width of P.

Preferred Assumption-Based Planning

The definition of an assumption-based plan allows the plan-
ner to assume any aspect of the state that can be con-
structed from the subset of assumable literals and con-
sistently assumed. However, some assumptions will be
more reasonable than others. E.g., in our subway exam-
ple, if it’s raining, it is much more reasonable to assume



subwayRunning than dryRoad. To define the notion of
a preferred assumption-based plan, we employ a preference
relation <, a transitive and reflexive relation in II x II, where
II is the set of all assumption-based plans for a particular
problem (following Baier and Mcllraith 2008). Plan opti-
mality is defined in the obvious way given relation <.

For the purposes of this paper, we will appeal to the
uniform notion of action cost in order to characterize pre-
ferred assumption-based plans, rather than defining < di-
rectly. Specifically, given an assumption-based planning
problem P, we build its translated instance K7,/ (P) =
(F,0,1,Q), and then augment this instance to produce a
cost-based planning problem Pe = (F,0,I,G) such that
each action a € O has a non-negative cost C(a). Note that
this means that actions of the form Assume(t), as well as
other domain actions, will have a cost associated with them.
When a particular assumption is reasonable, as is the case
with assuming that the subway is running, the cost of the cor-
responding Assume(t) will be low relative to domain action
costs. In cases where the assumptions are not reasonable, the
cost of their corresponding actions will be high.

Specifying how a domain expert would specify these pref-
erences in the original problem specification and ensuring
that the corresponding cost-based planning problem respects
the induced < relation can be achieved in a variety of ways.
Detailed discussion of this is beyond the scope of this paper.

Implementation and Experiments

The K{' translation was implemented in our AO planner as
an augmentation of Palacios and Geffner’s TO planner. In the
absence of the specification of assumables, the assumables
are set to all the fluents less those involved in G, precluding
assumption-based plans that assume G. We use FF (Hoft-
mann and Nebel 2001) to generate classical plans with the
translated domains and convert them back into assumption-
based plans. To generate preferred assumption-based plans,
we associate a cost with each action in the (translated) clas-
sical planning problem. The resulting cost-based planning
problem is solved using the latest versions of Metric-FF
(Hoffmann 2003) and LAMA (Richter, Helmert, and West-
phal 2008).

Since the notion of assumption-based planning is new,
there are no systems to benchmark against. We sought in-
stead to evaluate the running time of A0 + FF compared
to an implementation of the previously introduced naive
assumption-based planning, and to various cost distributions
for cost-based assumption-based planning. We also assessed
the proportion of solution time taken by translation.
Domains: We exploited four domains from the Interna-
tional Planning Competition (IPC) benchmark suite: logis-
tics, raokeys, coins, and storage. The well-known logis-
tics domain was converted into an assumption-based plan-
ning problem by making some routes uni-directional (cor-
responding to one-way streets, temporary closures, etc.) or
closed completely. Trucks were provided with 4 levels of
gas, which are decremented by one with each movement.
Certain locations are designated as having gas stations, per-
mitting refueling. We refer to this modified domain as al-

ogistics. The 12 instances we constructed vary in the num-
ber of cities and trucks (2-4), and locations within a city.
Varying amounts of uncertainty were introduced into the
initial state of each instance via unknown truck gas lev-
els and locations, and the connectivity within cities. The
second domain we used was raokeys, a conformant plan-
ning IPC-2008 benchmark. The problem requires reason-
ing about n locks with n different possible keys in n differ-
ent possible locations, making the number of initial states
combinatorial explosive. We experimented with 4 instances
of raokeys. These problem instances were left unchanged
to see how the planner would address standard conformant
planning problems. The storage classical IPC-2006 plan-
ning benchmark which requires storing different crates into
depots using hoists, was converted into an assumption-based
planning domain by adding uncertainty about whether or not
a depot was available. Crates could only be stored in avail-
able depots. All 12 instances we generated have four depots,
and the number of crates is varied. Because one of the legal
initial states is such that no depot is available, none of these
instances have a conformant plan. Finally, the coins domain,
a conformant planning benchmark, in which the objective
is to collect coins in different floors, was converted into an
assumption-based planning domain by letting the planner as-
sume the location of the coins, and the floor at which an el-
evator is initially located.

Experiments: We ran 7 different experimental configu-
rations on the 16 problem instances described above and 4
preliminary results from coins. (1) We ran AO + FF on the
translated domains. (2) We generated a naive assumption-
based planning problem by augmenting each problem in-
stance with actions that create each of the different consis-
tent completions of the initial state, then solved with FF. (3)-
(7) These configurations all relate to generating preferred
assumption-based plans. The configurations differ with re-
spect to the cost of the assumption actions relative to the
domain actions. E.g., x = 0.5 denotes that assumption ac-
tions are twice as expensive as domain actions. All merge
actions were assigned equal (low) cost. Instances solved via
A0 + Metric-FF or LAMA.

Table 1 shows the results obtained on the seven configu-
rations for a representative subset of all instances. On the
classical settings, AO does not take much more time than the
naive method but makes fewer assumptions in general. In
alogistics, A0 and the naive approach are comparable time-
wise, but A0 makes fewer assumptions (see e.g., alog-4).
This domain is contrasted by raokeys in which A0 seems to
take exponentially more time while the naive method works
fairly well. The reason the naive method is able to handle
the small instances (raokeys2, raokeys3, and raokeys4) is
because the conditional dependencies are not considered, it
merely needs to set the unknown fluents and find a plan from
there. In the easier assumption-based planning coins do-
main, we observe a behavior similar to alogistics. For larger
instances FF failed due to a too large number of predicates
(even after recompiling it to accept 10 times more predi-
cates than the default). This does not seem to be a limitation
of the planner, however; we believe that by increasing even
more its hard-coded parameters, more instances should be



Table 1: A comparison of seven planner configurations. The total time to solve in seconds is on the left and plan length on the
right. The number of assumptions made appears in parentheses. (STO: time out during planning. PRED: FF error, more than
5,000 predicates needed.). All experiments were run on a 2.80GHz machine with 2GB memory and a 30 minute timeout.

Prob Classical (t(s)/len) A0 + Cost-Based Metric-FF (t(s)/len) A0 + Cost-Based LAMA (t(s)/len)

A0 +FF| naive + FF x=0.1 x=0.5 x=1 x=2 x=10 x=0.1 x=0.5 x=1 x=2 x=10
alog-01 0.05/42 (2)| 0.00/38 (4)]0.01/34 (2)|0.01/34 (2)|0.01/34 (2)|0.01/34 (2)|0.01/34 (2)| 214.59/37 (1)| 255.05/37 (1)| 445.31/35(2) 0.02/36 (3) 0.01/36 (3)
alog-02 0.07/42 (2)| 0.01/50 (16)|0.02/34 (2)|0.02/34 (2)|0.01/34 (2)|0.02/34 (2)|0.01/34 (2) 1.27/38 (2)| 418.33/35(2) 0.02/36 (3)| 95.17/34 (2)| 128.16/34 (2)
alog-04 0.2/42 (2)|0.43/128 (92)|0.02/34 (2)|0.02/34 (2)[0.02/34 (2)[0.01/34 (2)|0.02/34 (2) 0.32/38 (2) 0.01/36 (3) 0.03/36 (3) 0.03/36 (3) 0.02/36 (3)
alog-06 0.07/48 (2)|  0.01/49 (8)|0.02/40 (3)|0.02/40 (3) |0.02/40 (3) |0.02/40 (3) |0.02/40 (3) 6.08/41 (1)| 31.99/43 (1) 1.45/41 (4) 1.46/41 (4) 1.46/41 (4)
alog-10 0.07/34 (5)|  0.01/35 (6)|0.03/37 (3)|0.03/37 (3)|0.03/37 (3)|0.03/37 (3)|0.03/37 (3) 8.11/32 (1) 22/32 (1) 0.02/33 (4)| 601.62/30 (6) 149729 (4)
coins-01 0.01/5 (3) 0.01/9 (4)| 0.00/6 (3)| 0.01/6 (3)| 0.00/6 (3)| 0.01/6 (3)| 0.00/6 (3) 0.03/12 (0) 0/5 (3) 0.01/5 (3) 0/5(3) 0.01/5 (3)
coins-07 0.05/8 (5)| 0.01/14 (6)| 0.02/8 (5)| 0.02/8 (5)| 0.03/8 (5)| 0.02/8 (5)| 0.03/8 (5) 4.91/31 (0) 0.08/8 (5) 0.08/8 (5) 0.06/8 (5) 0.04/8 (5)
coins-13 0.7/10 (7)| 0.10/18 (8)|0.51/10 (7)|0.51/10 (7) [0.54/10 (7)[0.52/10 (7)[0.55/10 (7)| 117.71/12 (6) 4.33/10 (7) 4.29/10 (7) 3.83/10 (7) 3.43/10 (7)
coins-19 | 0.79/15 (7)| 0.12/25 (8)]0.56/15 (7)|0.57/15 (7)|0.57/15 (7)|0.57/15 (7)|0.57/15 (7)| 311.82/18 (6)| 248.39/14 (7)| 214.96/14 (7)| 82.83/14 (7) 3.69/15 (7)
coins-25 PRED |24.32/62 (20) PRED PRED PRED PRED PRED|131.86/45 (16) | 132.06/45 (16) | 129.12/45 (16) [ 143.87/40 (16) | 156.69/40 (16)
coins-30 PRED |67.50/71 (25) PRED PRED PRED PRED PRED| 399.1/52 (21)|398.42/52 (21)|398.32/52 (21)|392.55/52 (21)|399.85/52 (21)
raokeys-2 | 0.04/8 (2)| 0.01/10(9)| 0.02/9 (2)| 0.02/9 (2)| 0.02/9 (2)| 0.02/9 (2)| 0.03/9 (2) 0.02/8 (2) 0.01/8 (2) 0.02/8 (2) 0.02/8 (2) 0.02/8 (2)
raokeys-3 |36.68/13 (3)| 0.04/23 (13)[8.24/15 (4)|8.57/15 (4)|8.50/15 (4)|8.16/15 (4)|8.22/15 (4)| 57.37/14 (3)| 57.29/14 (3)| 57.52/14 (3)| 57.35/14 (3)| 57.44/14 (3)
raokeys-4 | NOTRAN| 5.14/39 (17)| NOTRAN| NOTRAN| NOTRAN| NOTRAN| NOTRAN NOTRAN NOTRAN NOTRAN NOTRAN NOTRAN
raokeys-5 | NOTRAN STO| NOTRAN| NOTRAN | NOTRAN| NOTRAN| NOTRAN NOTRAN NOTRAN NOTRAN NOTRAN NOTRAN
storage-01| 0.44/7 (2)| 0.02/11 (4)| 0.02/7 (2)| 0.01/7 (2)| 0.01/7 (2)| 0.01/7 (2)| 0.02/7 (2) 0.02/9 (1) 0.07/7 (2) 0.02/7 (2) 0.03/7 (2) 0.07/7 (2)
storage-04| 1.80/33 (4)|125.47/49 (4)|0.14/35 (4)|0.15/35 (4)|0.14/35 (4)|0.14/35 (4)|0.18/35 (4) 3.93/29 (4) 4.71/29 (4) 4.56/29 (4) 4.84/29 (4) 5.15/29 (4)
storage-07| 1.06/9 (3)| 0.06/12 (3)| 0.02/9 (3)| 0.02/9 (3)| 0.02/9 (3)| 0.02/9 (3)| 0.02/9 (3) 0.04/13 (1) 0.08/9 (3) 0.08/9 (3) 0.08/9 (3) 0.08/9 (3)
storage-09 | 1.20/35 (3)|100.53/48 (3)]0.12/39 (3)|0.13/39 (3)|0.14/39 (3)|0.11/39 (3)|0.11/39 (3) 1.64/33 (3) 0.98/33 (3) 0.88/33 (3) 0.76/33 (3) 0.67/33 (3)
storage-10| 3.44/59 (3) STO|[6.51/85 (3)|6.50/85 (3)|7.12/83 (3)|7.16/83 (3)|7.04/83 (3) 6.17/49 (3) 5.92/49 (3) 5.15/49 (3) 5.75/49 (3) 5.83/49 (3)
storage-11 STO STO STO STO STO STO STO|705.62/167 (4)|637.31/165 (4)|635.51/165 (4)|632.32/157 (4)| 621.2/157 (4)
storage-12 STO STO STO STO STO STO STO STO STO STO STO STO

solved. It is interesting to note that when no assumptions
can be made, the very same instances we evaluated here are
very challenging (To, Son, and Pontelli 2010). In the stor-
age domain, we observe that our translation approach can
significantly outperform the naive approach. In this domain,
the standard delete relaxation is a weak heuristic, thus the
planner may choose the wrong set of assumptions initially,
leading the search astray.

Finally, we observe that the number of assumptions de-
creases as they are penalized further, at the expense of in-
creased solving time. In the instances we tried it was not
possible to have a large difference in the number of assump-
tions because on the one hand a few assumptions were re-
quired for each instance, and on the other hand only a few
assumptions were possible to make in one plan without in-
consistencies. With further testing on problem instances that
either allow or require many more assumptions we believe
the trend will be more apparent and interesting.

We also evaluated the proportion of solution time dedi-
cated to translation. For the alogistics domains this ranged
from 5-25%, whereas with the raokeys domain, it was closer
to 50%. In the coins and storage domains, on the other hand,
translation time is negligible compared to solving time.

Summary and Concluding Remarks

Our concern in this paper is with real-world planning scenar-
ios where incomplete information is prevalent, and where
a plan must be generated prior to execution and/or with-
out the benefit of run-time sensing. Motivated by so-called
commonsense planning, and by the paradigm of planning
that is at the computational core of explanation, diagnosis,
or counter-example generation, we introduce the notion of
assumption-based planning. We provide a formal character-

ization of assumption-based planning, establishing a corre-
spondence to conformant planning. Exploiting this corre-
spondence, we provide a translation of an assumption-based
planning problem to a classical planning problem, building
on the popular translation developed by P&G. We prove
the soundness and completeness of our translation. This
provides us with a means of generating assumption-based
plans using classical planners. We also argue for the merit
of preferred assumption-based plans and propose a means
of realizing such plans using cost-based planning. We de-
scribe A0, a planner that addresses the subset of initial state
assumption-based planning problems and present experi-
ments that illustrate the viability of our approach and that
assess some properties of our translation.

While this paper explores the generation of
assumption-based plans via a translation to classical
planning, the correspondence to conformant planning opens
the door to adapting a variety of conformant planners for
assumption-based planning (e.g., To, Son, and Pontelli
2010). Beyond planning, the assumption-based plan-
ning paradigm has compelling applications in diagnosis,
explanation generation, and verification of dynamical
systems.

Acknowledgements:  We wish to thank Alexandre Al-
bore and Héctor Palacios for assistance with the CLG and
TO planner code bases. We also gratefully acknowledge
funding from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC). Jorge Baier was partly
funded by Fondecyt grant no. 11110321. Earlier versions of
this work appeared at ICAPS and AAAI workshops (Davis-
Mendelow, Baier, and Mcllraith 2012a; 2012b).



References

Albarghouthi, A.; Baier, J. A.; and Mcllraith, S. A. 2009. On
the use of planning technology for verification. In Proc. of
ICAPS Workshop on Verification and Validation of Planning
and Scheduling Systems.

Albore, A., and Bertoli, P. 2004. Generating safe
assumption-based plans for partially observable, nondeter-
ministic domains. In Proc. of the 19th National Conference
on Artificial Intelligence (AAAI), 495-500.

Albore, A., and Geftner, H. 2009. Acting in partially ob-
servable environments when achievement of the goal cannot
be guaranteed. In Proc. of ICAPS Workshop on Planning
and Plan Execution for Real-World Systems.

Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Proc.
of the 21st International Joint Conference on Artificial Intel-
ligence (IJCAI), 1623-1628.

Baier, J. A., and Mcllraith, S. A. 2008. Planning with pref-
erences. Artificial Intelligence Magazine 29(4):25-36.

Bonet, B., and Geftner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In Proc. of the 22nd International Joint Conference on Arti-
ficial Intelligence (IJCAI), 1936-1941.

Brafman, R. L., and Shani, G. 2012. Replanning in domains
with partial information and sensing actions. Journal of Ar-
tificial Intelligence Research 45:565-600.

Brafman, R. 1., and Taig, R. 2011. A translation based ap-
proach to probabilistic conformant planning. In Proceedings
of the Second International Conference on Algorithmic De-
cision Theory (ADT), 16-27.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1-
2):165-204.

Davis-Mendelow, S.; Baier, J. A.; and Mcllraith, S. A.
2012a. Making reasonable assumptions to plan with in-
complete information. In Proc. of the ICAPS Workshop
on Heuristics and Search for Domain-Independent Planning
(HSDIP).

Davis-Mendelow, S.; Baier, J. A.; and Mcllraith, S. A.
2012b. Making reasonable assumptions to plan with in-
complete information: Abridged report. In Proc. of the
AAAI Workshop on Problem Solving Using Classical Plan-
ners (CP4PS).

De Giacomo, G., and Vardi, M. Y. 1999. Automata-theoretic
approach to planning for temporally extended goals. In Bi-
undo, S., and Fox, M., eds., ECP, volume 1809 of LNCS,
226-238. Durham, UK: Springer.

Faletti, J. 1982. Pandora: A program for doing common-
sense planning in complex situations. In AAAIS2, 185-188.
Fritz, C., and Mcllraith, S. A. 2007. Monitoring plan op-
timality during execution. In Proc. of the 17th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 144-151.

Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to

do when no plan can be found. In Proc. of the 20th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 81-88.

Gobelbecker, M.; Gretton, C.; and Dearden, R. 2011. A
switching planner for combined task and observation plan-
ning. In Proc. of the 26th AAAI Conference on Artificial
Intelligence (AAAI).

Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In Proc. of the International Scheduling
and Planning Applications workshop (SPARK).

Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Proc. of
the 5th European Conference on Planning (ECP), 308-318.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291-341.

Lin, E., and Reiter, R. 1997. How to progress a database.
Artif. Intell. 92(1-2):131-167.

Palacios, H., and Geffner, H. 2006. Compiling uncertainty
away: Solving conformant planning problems using a classi-
cal planner (sometimes). In Proc. of the 21st National Con-
ference on Artificial Intelligence (AAAI).

Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623—675.

Pellier, D., and Fiorino, H. 2004. Assumption-based plan-
ning. In In Proceedings of the International Conference on
Advances in Intelligence Systems Theory and Applications,
Luxemburg.

Poole, D.; Goebel, R.; and Aleliunas, R. 1987. Theorist:
a logical reasoning system for defaults and diagnosis. In
Cercone, N., and McCalla, G., eds., The Knowledge Fron-
tier: Essays in the Representation of Knowledge. New York:
Springer Verlag. 331-352.

Ramirez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Proc. of
the 25th AAAI Conference on Artificial Intelligence (AAAI).

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. of the 23rd AAAI Conference on
Artificial Intelligence (AAAI), 975-982.

Sohrabi, S.; Baier, J.; and Mcllraith, S. A. 2010. Diagnosis
as planning revisited. In Proc. of the 12th International Con-
ference on Knowledge Representation and Reasoning (KR),
26-36.

Sohrabi, S.; Baier, J. A.; and Mcllraith, S. A. 2011. Pre-
ferred explanations: Theory and generation via planning. In
Proc. of the 26th AAAI Conference on Artificial Intelligence
(AAAI), 261-267.

To, S. T.; Son, T. C.; and Pontelli, E. 2010. A New Ap-
proach to Conformant Planning Using CNF*. In Proc. of

the 20th International Conference on Automated Planning
and Scheduling (ICAPS), 169-176.



