
EFFECTIVE SEARCH TECHNIQUES FORNON-CLASSICAL PLANNING VIA

REFORMULATION

by

Jorge A. Baier

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2010 by Jorge A. Baier

Abstract

Effective Search Techniques for Non-Classical Planning via Reformulation

Jorge A. Baier

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2010

Automated planning is a branch of AI that addresses the problem of generating a course of action to

achieve a specified objective, given an initial state of the world. It is an area that is central to the

development of intelligent agents and autonomous robots. In the last decade, automated planning has

seen significant progress in terms of scalability, much of it achieved by the development of heuristic

search approaches. Many of these advances, are only immediately applicable to so-calledclassical

planning tasks. However, there are compelling applications of planning that are non-classical. An

example is the problem ofweb service composition, in which the objective is to automatically compose

web artifacts to achieve the objective of a human user. In doing so, not only the hard goals but also the

preferencesof the user—which are usually not considered in the classical model—must be considered.

In this thesis we show that many of the most successful advances in classical planning can be lever-

aged for solving compellingnon-classicalproblems. In particular, we focus on the following non-

classical planning problems: planning with temporally extended goals; planning with rich, temporally

extended preferences; planning with procedural control, and planning with procedural programs that

can sense the environment. We show that to efficiently solve these problems we can use a common

approach:reformulation. For each of these planning tasks, we propose a reformulation algorithm that

generates another, arguably simpler instance. Then, if necessary, weadapt existing techniques to make

the reformulated instance solvable efficiently. In particular, we show that both the problems of plan-

ning with temporally extended goals and with procedural control can be mapped into classical planning.

Planning with rich user preferences, even after reformulation, cannotbe mapped into classical planning

and thus we develop specialized heuristics, based on existing heuristics, together with a branch-and-

bound algorithm. Finally, for the problem of planning with programs that sense, we show that under

certain conditions programs can be reduced to simple operators, enabling the use of a variety of existing

ii

planners. In all cases, we show experimentally that the reformulated problems can be solved effectively

by either existing planners or by our adapted planners, outperforming previous approaches.

iii

Dedication

To Daniela, Valentina, and Benjamin.

iv

Acknowledgements

This work would have not been possible without my supervisor Sheila McIlraith. Sheila, with

her knowledgeable and impressively broad view of AI, provided me with a constant stream of ideas,

inspiration, and mental stimulation. I feel very grateful for her extremely dedicated support to my work,

and for the significant effort she put on maximizing the span of my research and my visibility as a

member of the AI community. There are many more reasons beyond academia to thank Sheila. Her

support usually exceeded the limits of the academic life and she constantly transmitted me optimism

and good spirit. Without any doubt, working with her was a fantastic experience.

I thank also the other members of my thesis committee: Fahiem Bacchus, Hector Levesque, and

Subbarao (Rao) Kambhampati. Fahiem enriched significantly my formation as aresearcher as we had

the chance to work together in some of the work presented in this thesis. I owehim much of the

success we obtained in the 2006 International Planning Competition, for which he collaborated not only

with ideas and experience but with several lines of C code. Hector provided a tremendous amount of

feedback and help on parts of the work included in this thesis. Rao provided important feedback, helping

to present my work in a broader manner.

I thank my colleague friend Christian Fritz, with whom I coauthored a couple of papers during my

studies. Working with Christian was a great pleasure. I also thank him for sharing plenty of discussions

on other topics related to my research.

During my studies I had the opportunity to interact with a number students and professors from

other institutions. I want to give a special thanks to Héctor Geffner, who was my mentor in ICAPS-06

and provided me with questions that I still cannot answer well, and that inspired some of my thesis and

current research.

I thank my friends from the KR group: Shirin Sohrabi, Christian Fritz, Eric Hsu, Christian Muise,

Toby Hu, Letao Wang, Horst Samulowitz, and Jessica Davis. And also thank my friends Marcelo Are-

nas, Pablo Barceló, Arnold Binas, Andŕes Lagar Cavilla, Claudia Garcı́a, Jocelyn Simmonds, Sebastián

Sardĩna, Leo Trivĩno, Daisy Guerrero (and someone else that I just forgot). Without their support this

experience would have been a lot harder. A hug to each one of them!

I thank the unconditional support from my parents and in-laws, who made mystay in Toronto a lot

easier, and thus contributed indirectly to the success in my studies.

Last, but far from least, I thank my wife Daniela, for her love, patience, and sacrifice. I thank her for

her continuous support even when things where not easy. Thanks to mydaughter Valentina, for filling

me with love by the end of my studies. Finally, thanks to my son Benjamin, for making meso happy,

and for not being born the day of my defense ;). I love them so much!

v

Contents

1 Introduction 1

1.1 Recent Advances in Classical Planning 1

1.2 Classical Planning Is Not Enough: An Example 3

1.3 The Problems We Address .. 5

1.4 Approach . 5

1.5 Outline and Contributions . 7

2 Planning: Languages and Algorithms 11

2.1 Classical Planning .. 11

2.1.1 STRIPS . 12

2.1.2 ADL for Classical Planning . 12

2.1.3 PDDL . 13

2.1.4 Some Complexity Results . 14

2.2 Planning as Heuristic Search .. . 16

2.2.1 FF . 16

3 Heuristic Planning for Temporally Extended Goals 20

3.1 Introduction .20

3.1.1 Contributions of this Chapter . 21

3.2 Preliminaries . 22

3.2.1 f-FOLTL: Finite LTL with FO Quantifiers 22

3.2.2 Planning Instances . 26

3.2.3 Causal Rules for Arbitrary Formulae .. 27

3.3 From f-FOLTL to Parameterized NFA .. 29

3.3.1 Parameterized Finite-State Automata . 29

3.3.2 The algorithm . 31

3.4 Compiling PNFAs into a Planning Instance .36

3.4.1 Translating PNFA to Causal Rules . 37

vi

3.4.2 Translation to Derived Predicates (axioms) 39

3.4.3 Avoiding Blowups: Multiple Goals and Formula Splitting 40

3.4.4 Search Space Pruning by Progression 42

3.5 Implementation and Experiments . 43

3.5.1 Axioms versus Causal Rules . 44

3.5.2 Comparison to State of the Art . 45

3.6 Discussion .46

3.6.1 Why a Reformulation Approach? . 46

3.6.2 Why Not LTL and B̈uchi Automata? . 47

3.7 Summary and Related Work . 49

4 Planning with Temporally Extended Preferences 51

4.1 Introduction .51

4.1.1 Contributions of this Chapter . 52

4.1.2 Outline . 54

4.2 Background .. 54

4.2.1 Relaxed Plans for Function-Free ADL Domains 54

4.2.2 Preference-based Planning .. . 56

4.2.3 Brief Description of PDDL3 . 57

4.3 Preprocessing PDDL3 .. . 59

4.3.1 Temporally Extended Preferences and Constraints 60

4.3.2 Precondition Preferences .. 63

4.3.3 Simple Preferences . 64

4.3.4 Metric Function . 64

4.4 Planning with Preferences via Heuristic Search 65

4.4.1 Heuristics Functions for Planning with Preferences 66

4.4.2 The Planning Algorithm . 71

4.4.3 Properties of the Algorithm . 73

4.5 Implementation and Evaluation . 78

4.5.1 The Effect of Iterative Pruning .. . 78

4.5.2 Performance of Heuristics . 79

4.5.3 Comparison to Other Approaches . 80

4.6 Discussion .82

4.7 Related Work . 86

4.7.1 Other Preference Languages .. . 86

4.7.2 IPC-5 competitors . 87

vii

4.8 Conclusions and Future Research 88

5 Golog Domain Control Knowledge in State-of-the-Art Planners 90

5.1 Introduction .90

5.1.1 Contributions . 92

5.1.2 Outline . 93

5.2 Background .. 93

5.2.1 A Subset of PDDL 2.1 . 93

5.3 A Language for Procedural Control 94

5.3.1 Syntax . 94

5.3.2 Semantics . 95

5.4 Compiling Control into the Action Theory .99

5.5 Exploiting DCK in State-of-the-Art Heuristic Planners 104

5.5.1 Direct Use of Translation (Simple) . 104

5.5.2 Modified Program Structure (H-ops) . 105

5.5.3 A Program-Unaware Approach (Basic) . 107

5.6 Implementation and Experiments . 107

5.7 Summary and Related Work . 110

6 Planning with Programs that Sense 112

6.1 Introduction .112

6.1.1 Contributions and Outline . 113

6.2 Preliminaries . 114

6.2.1 The Situation Calculus . 114

6.2.2 Basic Action Theories . 114

6.2.3 Representing Knowledge . 116

6.2.4 Regression . 119

6.2.5 Golog’s Syntax and Semantics . 122

6.2.6 Do−: A Poss-less Version ofDo . 123

6.3 Semantics for Executable Golog Programs 124

6.4 Planning with Programs that Sense .. . 127

6.4.1 Theory Compilation . 129

6.5 From Theory to Practice .. 137

6.5.1 Belief-State-Based Planners .138

6.5.2 ExtendingPKS . 140

6.6 Practical Relevance .. . 141

6.6.1 Web Service Composition . 141

viii

6.6.2 Experiments . 142

6.7 Summary and discussion .143

7 Conclusions, Related Work, and Future Work 144

7.1 Conclusions .144

7.1.1 Problems and Contributions . 145

7.2 Other Related Work .146

7.3 Future Work .147

Glossary of Acronyms and Abbreviations 149

Bibliography 151

A Proofs for Chapter 3 162

A.1 Proof for Proposition 3.1 .. . 162

A.2 Proof for Theorem 3.1 .. . 163

A.3 Proof for Proposition 3.4 .. . 166

B Proofs for Chapter 4 168

B.1 Proof for Proposition 4.1 .. . 168

B.2 Proof for Theorem 4.2 .. . 170

C Proofs for Chapter 5 173

C.1 Proof for Proposition 5.1 .. . 173

C.2 Proof for Proposition 5.4 .. . 174

C.3 Correctness (Theorem 5.1) 174

C.3.1 Soundness Part . 175

C.3.2 Completeness Part . 179

C.4 Succinctness (Theorem 5.2) 183

D Proofs for Chapter 6 184

D.1 Proof for Lemma 6.2 . 184

D.2 Proof for Theorem 6.3 .. . 184

D.3 Proof for Theorem 6.4 .. . 185

E Golog DCK for Experiments in Chapter 5 188

E.1 Golog Control for The Trucks Domain 188

E.2 Golog Control for The Storage Domain .. . 190

E.3 Golog Control for The Rovers Domain 191

ix

Chapter 1

Introduction

Automated planning is a fundamental reasoning task for autonomous agents.Traditionally, it corre-

sponds to the problem of generating a course of action to achieve a specified goal state, given an initial

state of the world, and a description of the dynamics of the world. Differentvariants of planning—more

formally known asparadigms—are created by making different assumptions about the dynamics of the

world and about the knowledge and sensing capabilities of the agent. The simplest of these paradigms

is classical planning.

Classical planning has seen a great deal of advancement in the last fewyears, most of it due to the de-

velopment of domain-independent heuristics. Nevertheless, many compelling applications of automated

planning do not fall under the classical paradigm. These compelling applications may consider charac-

terizations of the planning objective in terms of a rich goal and preferencerepresentation. Moreover,

as opposed to classical planning, the building blocks for plans might not besimple primitive actions

but rather relatively complex procedures. Unfortunately, as we move beyond the classical planning

paradigm, many of the highly optimized planning techniques that have led to this recent success are no

longer immediately applicable.

In this thesis, we investigate how recent advances in the automated planning community can be

leveraged to solve some compelling non-classical planning tasks. In the rest of this chapter, we describe

classical planning at an intuitive level. We continue by describing a in which classical planning does not

offer a satisfactory solution. The chapter finishes by describing in some detail the specific contributions

of this thesis, and outlining the remainder of this document.

1.1 Recent Advances in Classical Planning

In classical planning it is assumed that the domain is deterministic. This means thatan action transforms

a state into a single successor state. Moreover, in classical planning we assume that the initial state is

1

CHAPTER 1. INTRODUCTION 2

a complete description of the world, i.e., includes all facts that hold true. This implies that the agent

knows everything that holds true as a result of performing any sequence of actions. The objective of the

problem is to find a plan that satisfies the goal. This goal is a condition that mustbe satisfied at the state

that is reached after performing the plan in the initial state (i.e., the final state).

Even though classical planning makes quite stringent assumptions, it is a computationally hard

problem. Indeed, deciding the existence of a plan isPSPACE-complete (Bylander, 1994), which means

that it is very unlikely that there exists a polynomial-time algorithm to solve it. In mostcases, however,

automated planners are expected to carry out tasks that can be solved byhumans with relatively low

difficulty (e.g., “deliver mail to the professors’ offices”, “organize a travel using a collection of web

services”, “create a plan to transport packages to their destinations using trucks”). When non-optimal

solutions are required, these problems do not have a combinatorial natureand, indeed, for many of them

it is possible to construct solvers that run in polynomial time (Helmert, 2003, 2006b).

Although automated planning has been a topic of research for three decades, for a number of years

planners could not scale well in domains that humans can easily solve. Only inthe last decade has

the planning community produced planning technology that can scale relatively well in many of the

aforementioned “easy problems”.

Most of the recent success insatisficing(i.e., non-optimal) planning can be attributed to the de-

velopment of domain-independent heuristics (e.g. McDermott, 1996; Bonet and Geffner, 2001). These

heuristics are functions that estimate the cost of solving the planning problemgiven the current state.

For example, Bonet and Geffner (2001) propose a heuristich(·), such thath(s) estimates the cost of

achieving the goal froms by solving a relaxed version of the problem, in which the negative effects of

the actions are ignored. This relaxation is usually referred to as thedelete relaxation. Given the heuris-

tic h(s) it is possible to use standard algorithms (e.g., best-first search) to solve theplanning problem.

Most recent planners, however, use their own specific search algorithms, which provide a better tradeoff

between the computation time required to compute the heuristic and the nodes that are expanded by the

planner.

Most of the top-performers in recent occurrences of the International Planning Competition (IPC)

use some sort of heuristic in the search for a plan (see Figure 1.1). Manyof them rely, at least in

part, on computing a solution to the delete relaxation. The FF planner is probably one of the most

influential of the recent planners: a subset of the techniques it introduced have been used by most of

the subsequent IPC winners (satisficing track). Many other planners not shown in the figure also use

techniques introduced by FF.

CHAPTER 1. INTRODUCTION 3

FF (Hoffmann and Nebel, 2001) It uses domain-independent heuristics to guide search. The
heuristic is computed by finding a plan for the delete relaxation using a modification of
the Graphplan (Blum and Furst, 1997) algorithm. Uses enforced hill-climbing for search,
a modification of hill-climbing. Winner of IPC, satisficing track, in 2000.

LPG (Gerevini, Saetti, and Serina, 2003)Was inspired by local-search SAT solvers (e.g.,
walksat), this planner uses local search in the space of plans. Winner of IPC, satisfic-
ing track, in 2002.

FAST-DOWNWARD (Helmert, 2006a) It uses a domain-independent heuristic that is computed
by solving relaxed causal-graph representation of the planning problem. In addition, it
uses the FF heuristic. Winner of IPC, satisficing track, in 2004.

SGPlan5 (Hsu, Wah, Huang, and Chen, 2007)It uses an optimization approach to partition
the planning problem into different subproblems. It obtains solutions for the subproblems
using the a modification of the heuristic planner Metric-FF (Hoffmann, 2003). Winner of
IPC, satisficing track, in 2006.

LAMA (Richter, Helmert, and Westphal, 2008) In a preprocessing phase, it computes a set of
landmarks, which are sub-goals that have to be achieved before achieving any goal. For
planning, it uses a pseudo-heuristic designed to exploit the landmarks. In addition, it uses
the FF heuristic for planning. Winner of IPC, satisficing track, in 2008.

Figure 1.1: Brief description of the winners of the last 5 International Planning Competitions (IPC) in

the non-optimizing (satisficing) track.

1.2 Classical Planning Is Not Enough: An Example

As noted above, a planning task must satisfy a number of restrictions in order to be classical. As

a result, many compelling applications cannot be represented within the classical planning paradigm.

One example iscomponent software composition, in which it is necessary to create new software by

re-using existing components. An instance of this problem is Web Service Composition (WSC).

WSC involves the automatic composition of web services to perform some task, given a high-level

description of the tasks objective (McIlraith, Son, and Zeng, 2001). Onthe other hand, a Web Service

is a piece of software that is available via the Web, and whose features, and (possibly) its functionality

are described using a formal language. As an example, consider the task“make travel arrangements to

attend the IJCAI-09 conference.” This task necessitates selecting and executing a variety of web services

to perform tasks such as booking accommodation, purchasing air tickets, and possibly arranging other

types of transportation.

WSC is a compelling problem: both the academic community and industry have shown considerable

interest in the problem. As defined above, WSC is clearly a planning problem.Nevertheless, researchers

have pointed out many aspects of WSC that do not fit into the classical paradigm (e.g. Hendler, 1999;

McIlraith et al., 2001; McIlraith and Son, 2002; Srivastava and Koehler, 2003; Sohrabi, Prokoshyna,

and McIlraith, 2006). We enumerate some of them below.

CHAPTER 1. INTRODUCTION 4

Characteristic 1 The planning problem cannot be expected to take place at the level of primitive ac-

tions. Rather,complex actions—which in WSC correspond to the web services themselves—are

the building blocks to construct the required plans.

Characteristic 2 Unlike the classical model, in WSC there is incomplete information about the initial

state. While this implies that we do not have complete information at planning time, it mayalso

be true that we do not have complete information at execution time.

Characteristic 3 Web services haveinputsandoutputsas well as preconditions and effects. Inputs and

outputs are not easy to describe in the classical paradigm. They can be represented with relative

ease if we allow the agent to reasoning about knowledge. For example, atplanning time, we could

express that an agentknowsthat it have received an output from a service and therefore knows,

say, the price of the flight, although we still do not have such a value.

Characteristic 4 Web services can be viewed as entities that bothsenseandalter the environment. As

an example, consider the purchase of an air ticket using a web service. We sense the environment

by acquiring new information about different alternative flights between the origin and the desti-

nation (e.g., prices, departure times, etc.). On the other hand, the executionof the service actually

changes some properties of the world (e.g., a booking is registered in the airline database, a credit

card is charged).

Characteristic 5 Compositions (i.e., plans), rather than simple sequences of actions, may needto con-

tain complex control structures involving loops, non-determinism and choice. This means that the

solution to a WSC task may look more similar to an imperative program rather than to asequence

of actions.

Characteristic 6 WSC is usually required to achieverich goalsin the presence ofrich user preferences.

As such, goals might not only refer to the final state, but also to differentevents that occur during

the execution of the plan. They may also refer to the order of these events,or specify explicit time

constraints. In addition, compositions should take into account the preferences of the user. In our

travel example above, these may account to airline/hotel preferences, preferred times for travel,

and preferred methods of payment. We also would expect a rich languageto express preferences,

that also allows expressing preferences over events, explicit time, actionoccurrences, etc.

We have presented WSC as a motivating task that presents many interesting characteristics. Many

of these characteristics, however, do appear in other compelling applications. For example, in agent

programming (or robot programming), we may require almost all of them.

The goal of this thesis isnot to provide a solution to the WSC problem. Rather we use it here as a

catch-allexample, that shows many interesting problems that we are going to address in this thesis. To

CHAPTER 1. INTRODUCTION 5

this extent, WSC can be viewed as one of many potential applications for whichour techniques could

be applicable.

1.3 The Problems We Address

In this thesis, we deal with the following non-classical planning tasks.

• Planning with temporally extended goals(TEGs) (Chapter 3). Temporally extended goals have

the ability to refer properties that may occur throughout the execution of a plan. As such, this

problem addresses Characteristic 6 above.

• Planning with rich user preferences. In particular, we address the problem of planning with

temporally extended preferences (TEPs) (Chapter 4). This relates to Characteristic 6.

• Planning in the presence of procedural domain control knowledge(Chapter 5). In particular, we

consider procedural constraints expressed in a Golog-like language.Golog is a high-level robot

language that can be used to specify the behaviour of agents. In relationto our example, Golog can

be used to specify a “skeleton” of a solution to a planning task (such as a WSC task), containing

loops and conditional constructs, but also containing “open parts” that need to be filled in by the

a planner. As such, the work presented in this chapter relates to Characteristic 5 specified above.

• Planning with programs that sense(Chapter 6). Here we assume that the building blocks for plans

are Golog programs. In addition, we consider that these programs can sense the environment. To

deal with sensing, we move to a planning framework in which we can refer to the knowledge of

the agent. In particular, the framework deals with incomplete initial states. As such, this chapter

relates to Characteristics 2, 4, and 3.

1.4 Approach

To address each of the problems described above we use a common approach: reformulation. Our

reformulation algorithms will take a non-classical planning task, and generate a new task. This new task

is more amenable to be solved by current state-of-the-art techniques. Insome cases, we can generate

a classicaltask from a non-classical one. In other cases, we will not obtain a task that can be directly

exploited by current state-of-the-art techniques and thus weadapt existing techniques to handle the

reformulated tasks. Figure 1.2 shows a schematic view of our approach.

Our reformulation approach has the following advantages:

1. The main advantage is that in the majority of cases we generate some form ofstandard output,

which can be directly input to a wide variety of planners. This is important because it means

CHAPTER 1. INTRODUCTION 6

Existing
Planner Planner

Modified

Reformulated

Handled by existing solver? Is not handled by existing solver?

Non−classical
planning task

planning task

Reformulation

(cf. Chapters 3, 5, 6) (cf. Chapter 4)

Figure 1.2: The reformulation approach that is taken in all chapters of this thesis. In most cases we

solve the reformulated task with an existing planner. In others, we have modified and extended existing

planners to handle the reformulated tasks.

that advances in classical planning can be immediately leveraged for these non-classical planning

tasks.

2. Our approach is generalizable to other planning paradigms. Indeed, itcan be utilized in multiple

other scenarios that are not explicitly dealt with in this thesis. For example, our reformulation

for temporally extended goals is not bound to deterministic planning, but also can be applied in

a non-deterministic scenario. In that case our techniques admit minor modifications that enables

our approach to generate a non-deterministic problem with final-state goals only. Similarly, the

approach can be applied when in the original planning instance actions have associated costs,

when there is incomplete knowledge, etc.

3. Our reformulation techniques are composable. That is, they can be applied in succession in order

to address problems that are non-classical along several dimensions.

4. A reformulation approach serves as abaselinefor future comparison. Indeed, if a classical plan-

ning techniqueT is adapted for planning in any of the tasks for which we have proposed reformu-

lations, producing a new techniqueT ′, thenT ′ should outperform techniqueT on the reformulated

task in order to prove that is a valuable approach.

5. Finally, using the reformulation approach, it is possible to gain insights into how to adapt existing

techniques for these non-classical planning tasks. Indeed, by observing how a planner behaves

CHAPTER 1. INTRODUCTION 7

with the reformulated instance it is possible to spot potential drawbacks of theclassical approach

when solving the particular reformulated task. This information can then be used to inspire the

development of novel heuristics that avoid those drawbacks.

The notion of exploiting reformulation to solve planning problems is not new. Some previous

work however reformulates the domain description – effectively the transition system (e.g. Palacios

and Geffner, 2006; Yoon, Fern, Givan, and Kambhampati, 2008). Other previous work (e.g. Gazen and

Knoblock, 1997; Helmert, 2009) represents the entire planning problem ina different language. Our

work is more focused on the reformulation of the planningobjective, where our notion of objective is

defined in the large to include temporally extended goals, preferences, and also domain control knowl-

edge. It is only in Chapter 6 that we more closely align ourselves to approaches that reformulate the

entire problem. We discuss related work in each of the technical chapters of this document and also in

Section 7.2.

1.5 Outline and Contributions

The remainder of this document is organized as follows. Chapter 2 describes the basics of classical

planning and current state-of-the-art techniques. This chapter provides the necessary background for

most of the rest of the document: Chapters 3, 4, 5. The necessary background for Chapter 6 will be

given within the chapter. We draw conclusions and discuss future work inChapter 7.

The major contributions of this thesis follow.

Planning with Temporally Extended Goals using Heuristic Search (Chapter 3)

As we have noted above, many compelling applications have planning goals that are not naturally char-

acterized as conditions to achieve in thefinal state. In this chapter we deal with the problem of planning

with TEGs. TEGs refer to properties that must hold over intermediate and/or final states of a plan. Cur-

rent techniques for planning with TEGs only consider pruning the searchspace during planning viagoal

progression(e.g. Bacchus and Kabanza, 1998). Nevertheless, as we noted above, the fastest classical

domain-independent planners rely on heuristic search. We propose a method for planning with TEGs

using heuristic search. Thus, we reformulate planning task with TEGs into anequivalentclassicalplan-

ning task. With this translation in hand, we exploit heuristic search to determine aplan. Our translation

is based on the construction of nondeterministic finite automata for the TEG. We propose two alternative

translations: the first generates a task that contains operators with conditional effects, and the second

(more efficient) usesderived predicates, a way to describe predicates of the domain using an axiomatic

definition.

We prove the correctness of our algorithm and analyze the complexity of theresulting representation.

CHAPTER 1. INTRODUCTION 8

The translator is fully implemented and available. We show that our approach consistently outperforms

existing approaches to planning with TEGs.

An abridged version of this chapter appeared in the Proceedings of AAAI’06 (Baier and McIlraith,

2006b).

Heuristic Planning with Temporally Extended Preferences (Chapter 4)

As previously observed, the objectives of many planning applications arestated not only in terms of hard

goals but also in terms of preferences. In this chapter we focus on the problem of planning in the pres-

ence of rich user preferences. Planning with preferences involves not only finding a plan that achieves

the goal, it requires finding apreferred(and ideally optimal) plan that achieves the planning objective,

where preferences over plans are specified as part of the planner’s input. In this chapter we propose

a technique for accomplishing this objective. Our technique can deal with a rich class of preferences,

including temporally extended preferences. Unlike simple preferences which express desired proper-

ties of the final state achieved by a plan, TEPs can express desired properties of the entire sequence of

states traversed by a plan, allowing the user to express a much richer set of preferences. Our technique

involves reformulating a planning problem with TEPs into an equivalent planning problem containing

only simple preferences. This conversion is accomplished by augmenting theoriginal planning domain

with a new set of predicates and actions for updating these predicates.

The resulting task is not classical, since it contains preferences. To this end, we provide a collection

of new heuristics and a specialized search algorithm that can guide the planner towards preferred plans.

Under some fairly general conditions our method is able to find a most preferred plan—i.e., an optimal

plan. It can accomplish this without having to resort to admissible heuristics, which often perform

poorly in practice. Nor does our technique require an assumption of restricted plan length or make-

span, as is the case of SAT/CSP-based approaches. We have implementedour approach in a planning

system we call HPlan-P, and used it to compete in the 5th International Planning Competition, where it

achieved distinguished performance in theQualitative Preferencestrack.

A version of this chapter appeared published inArtificial Intelligence(Baier, Bacchus, and McIl-

raith, 2009).

Golog-Like Domain Control Knowledge in State-of-the-Art Planners (Chapter 5)

In the context of planning, Golog-like programs (Levesque, Reiter, Lespérance, Lin, and Scherl, 1997)

are suitable for declaring procedural constraints that restrict the search space significantly, allowing a

solver to find solutions more quickly. These procedural constraints are step-by-step specifications—like

those usually specified by an imperative program—of how a goal must be achieved. Additionally, Golog

allows specifying non-determinism in its programs. These provide “open parts” that must be filled in by

CHAPTER 1. INTRODUCTION 9

the planner.

Thus, Golog programs can be used to specify plan skeletons, which havebeen proposed as an ap-

proach to WSC (McIlraith and Son, 2002). Golog, however, can also beused to representdomain

control knowledge(DCK). DCK, used in conjunction with blind search has proven a to be a success-

ful technique for increasing planning speed, sometimes by orders of magnitude. It is only successful

however when very well-crafted control knowledge can be written.

The contribution of this chapter is threefold. First, we propose a new procedural control language

for representing DCK, specifically tailored for planning applications. Thelanguage is closely inspired

by Golog, offering natural constructs for DCK specification, such as iteration and nondeterminism.

We show that any planner that can input planning tasks in PDDL (the current de factoinput standard

of the planning community) is able to plan with our DCK. We do this by giving an algorithm that

reformulates any PDDL planning task and a control program, into an equivalent, program-free PDDL

task whose plans are only those that “behave” according to the control program.

Third, we show that the resulting planning task is amenable for use with domain-independent heuris-

tic planners. In particular, we propose three approaches. The first (control-aware) directly uses the re-

sulting PDDL task, the second (control-unaware) uses the set of operators of the original task to compute

the heuristic, and the third (control-aware) uses a modified set of operators from the resulting PDDL task

to compute the heuristic to better inform the heuristic about the control. Our experiments on familiar

planning benchmarks show that the combination of DCK and heuristics produce better performance

than using DCK with blind search and than using heuristics alone.

A version of this chapter appeared in the Proceedings of ICAPS’07 (Baier, Fritz, and McIlraith,

2007).

Planning with Programs that Sense (Chapter 6)

In this chapter we address the problem of planning by composingprograms, rather than or in addition

to primitive actions. The programs that form the building blocks of such planscan, themselves, contain

both sensing and world-altering actions. This is primarily motivated by the problem of automated

composition of component software, since Web services are programs that can sense and act. Our further

motivation is to understand how to exploit macro-actions in existing operator-based planners that plan

with sensing. We study this problem in the language of the situation calculus, appealing to Golog to

represent our programs. To this end, we propose an offline executionsemantics for Golog programs with

sensing. We then propose a compilation method that transforms our action theory with programs into

a new theory where programs are replaced by primitive actions. This enables us to use state-of-the-art,

operator-based planning techniques to plan with programs that sense fora restricted but compelling class

of programs. Finally, we discuss the applicability of these results to existing operator-based planners

that support sensing and illustrate the computational advantage of planningwith programs that sense

CHAPTER 1. INTRODUCTION 10

via an experiment. The work presented here is cast in the situation calculus tofacilitate formal analysis.

Nevertheless, both the results and the algorithm can be trivially modified to takePDDL as input and

output. This work has broad applicability to planning with programs or macro-actions with or without

sensing.

An abridged version of this chapter appeared in the Proceedings of KR’06 (Baier and McIlraith,

2006a).

Chapter 2

Planning: Languages and Algorithms

This chapter describes necessary background in classical planning.It first describes classical plan-

ning, along with the popular formalisms and languages used to represent these problems. It finishes by

describing some of the most successful techniques developed in the last few years to effectively solve

these problems.

2.1 Classical Planning

A classical planning task (or instance)is a tupleI = (F ,s0,O,G), whereF is a finite set of facts1,

s0 ∈ F is the initial state,O is a finite set of action operators, andG is a goal condition. An action

operatoro ∈ O maps a state into another state. The classical planning problem consists of finding a

sequence of action operatorsa1a2 · · ·an, which, when applied to the initial state, will produce a state that

satisfies the goal conditionG.

Classical planning, as defined above, requires to findanyplan. However, in most applications we

are required to find high-quality solutions. Although adding a quality measureimmediately means that

we are out of the classical planning paradigm, the quality of solutions is still considered when evaluating

a planner’s performance. A usual quality measure for plans is some costfunction defined over the set of

possible plans. The planning community usually distinguishes between planners that, given such a cost

function, will seek for an optimal solution, and planners that will not. In the former case, we use the

termoptimalplanner to refer to such a planner, and in the latter will use the termsatisficingplanner.

The planning community has developed a variety of languages to define planning instances. STRIPS

(Fikes and Nilsson, 1971) and ADL (Pednault, 1989) are two of the most prominent languages for the

representation of classical planning problems. We describe them in more detail below. Additionally, we

1Although not required by the model, facts are usually represented by first-order ground literals.

11

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 12

briefly describe PDDL, a language designed to represent planning problems that is used as a standard

in the planning community. We explicitly leave out a review of the SAS+ formalism (Bäckstr̈om and

Nebel, 1995), as it has little relevance to the contents presented in this thesis.

2.1.1 STRIPS

STRIPS (Fikes and Nilsson, 1971), is the oldest and most used formalism torepresent classical planning

problems. Here, operators are described as triples(pre(o),add(o),del(o)). Each of the components of

the triple is a list of facts inF . List pre(o) contains thepreconditionsof the operator, i.e., the facts

that must hold true prior to the application of operatoro. List add(o)—theadd-listof o—contains the

positive effects ofo. Finally, listdel(o)—thedelete-listof o, contains the negative effects of an operator.

A planning state is simply a collection of facts inF . An operator is applicable in states iff pre(o)⊆

s. The result of applying operatoro in s, denoted asγ(s,o), is defined as

γ(s,o) = (s\del(o))∪add(o).

2.1.2 ADL for Classical Planning

In Pednault’s ADL formalism (1989), facts inF are typically first-order ground atoms formed from

a finite set of predicatesPred and a finite set of objectsObjs.2 On the other hand, preconditions and

effects, can now be more than simple lists of ground predicate literals. ADL preconditions can be

arbitrary boolean formulae, existentially or universally quantified over theset of objectsObjs. ADL

effects can beconditional, which means that adds and deletes can be conditioned on the satisfaction of

arbitrary boolean formulae. Effects can also beuniversalin the sense that they affectall objects that

satisfy a certain condition. For example, assume we are describing a domain where objects can contain

other objects. Further, assume actionmove(x,y,z) moves objectx from locationy to locationz and in

the process moves all objects inx to z as well. The precondition for this action is justat(x,y); i.e., the

objectx has to be at locationy, while its effects can be defined by the list:

Eff = {add at(x,z),∀v[in(v,x)⇒ add at(v,z)],del at(x,y),∀v[in(v,x)⇒ del at(v,y)]}

Thus, the location of the objectx and all objects insidex changes toz.

In addition to more expressive preconditions and effects, ADL also allowsfor the representation of

functions. This means that states can contain, in addition to propositional facts, sentences of the form

f (~c) = z, where f is a function name,~c is a tuple of objects inObjs, andz is an object inObjs. Actions

can change the functions by assigningf (~c) a different value as an add effect.

2It is also standard to utilize ground predicate facts in STRIPS, even thoughthe notion of object is not really required.

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 13

(:action LOAD-TRUCK

:parameters (?pkg - package ?truck - truck ?loc - place)

:precondition (and (at ?truck ?loc) (at ?pkg ?loc))

:effect (and (not (at ?pkg ?loc)) (in ?pkg ?truck)))

(:action DRIVE-TRUCK

:parameters (?truck - truck ?loc-from - place ?loc-to - place ?city - city)

:precondition

(and (at ?truck ?loc-from) (in-city ?loc-from ?city) (in-city ?loc-to ?city))

:effect

(and (not (at ?truck ?loc-from)) (at ?truck ?loc-to)))

Figure 2.1: Two operators defined in thelogistics domain. Actions have parameters, preconditions,

and effects. Parameters are of a specifictype. Positive effects are described by positive literals, while

negative effects are represented by negated literals.

Finally, in ADL, Goal can be any formula (possibly quantified) that describes a condition that must

be satisfied by a goal state. For more details on ADL we refer the reader to Pednault’s paper (1989).

2.1.3 PDDL

ThePlanning Domain Definition Language(PDDL) was proposed by McDermott (1998) as a standard

input language for the first International Planning Competition. Since its inception, many planners have

adopted and thus it has become ade factostandard input language.

Although PDDL is a standard, there are many variants of the language. Indeed, new features have

been introduced with almost every planning competition. Current versions of PDDL allow the definition

of ADL planning problems, but also go beyond ADL, by allowing the user to express explicit time and

functional fluents (cf. PDDL2.1, Fox and Long, 2003),derived predicatesor axioms (cf. PDDL2.2,

Edelkamp and Hoffmann, 2004), temporally extended preferences and hard constraints (cf. PDDL3,

Gerevini, Haslum, Long, Saetti, and Dimopoulos, 2009), andobject fluents(cf. PDDL3.13). We will

give a more in-depth description of PDDL3 later in this document (Section 4.2.3, p. 57), just before we

describe our techniques for planning with preferences.

PDDL separates the definition of a planning instance in two parts: thedomain definition, and the

problem definition. The domain part describes domain-specific elements, including a declaration of the

predicates used to describe the domain, and a definition of the object types.Moreover, the dynamics

of the domain is defined using a set of action operators. Figure 2.1 shows the definition of two action

operators used in thelogisticsplanning benchmark.

3No formal publication exists at the moment. Seehttp://ipc.informatik.uni-freiburg.de/PddlExtension for
details.

http://ipc.informatik.uni-freiburg.de/PddlExtension

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 14

In the problem definition, one declares the objects, of the problem, the initial state, and the goal.

2.1.4 Some Complexity Results

Complexity of STRIPS planning

Classical planning, even in the limited STRIPS formalism, is a hard problem, as is established by the

following theorem.

Theorem 2.1 (Bylander, 1994)PLAN SAT, i.e, the problem of deciding whether there exists a plan for

a STRIPSplanning instance I isPSPACE-complete.

Proof sketch: First, note that because there are 2|F| states, in the worst case an instance can be such

that a plan has to visit all states before achieving the goal. The size of a planin the STRIPS formalism

could be therefore exponential in|I |. A “real-world” example of the need for exponential plans is the

classicalTowers of Hanoigame.

However, for determining plan existance we do not need to construct a plan. Since we know that the

plan is of size at most 2|F|, we can verify existence with a non-deterministic polynomial-space algorithm

shown in Figure 2.2, withs= s0, andn = 2|F|. Such an algorithm does not need more than polynomial

space, since its parametern can be represented efficiently with logn bits. This means that PLAN SAT is

in NPSPACE. Membership inPSPACE follows from Savitch’s theorem (1970).

The proof that PLAN SAT is PSPACE-hard is tedious, and we do not replicate it here. In short, the

proof follows from the fact that the transitions of any polynomial-space Turing machine can be encoded

by a polynomial number of operators. Details can be found in Bylander’s paper (1994). �

Another problem of interest is that of finding a plan of bounded length fora given instance. This

problem is alsoPSPACE-complete.

Theorem 2.2 (Bylander, 1994)PLAN M IN, i.e., the problem of deciding whether there exists a plan for

a STRIPSplanning instance I with k or fewer actions, where k is given as input, isPSPACE-complete.

Proof sketch: PLAN SAT is reducible to PLAN M IN in polynomial space, since we just need to output

(I ,k) for k = 2|F|. This provesPSPACE hardness. Furthermore, it is possible to determine the exis-

tence of a plan with at mostk actions by calling algorithm of Figure 2.2, withn = k. This proves that

PLAN M IN is in PSPACE. �

Although PLAN SAT and PLAN M IN arePSPACE-complete in general, under some restrictions these

problems can be shown to be lower in the polynomial hierarchy. Indeed, if we modify PLAN SAT, by

restricting the plan length to be bounded byp(|I |), wherep(n) is a polynomial inn with p(n)≥ n, then

the resulting decision problem isNP-complete (see e.g. Baral, Kreinovich, and Trejo, 2000). On the

other hand, Helmert (2003, 2006b) has shown that for many of the planning benchmarks that have been

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 15

1: function PLAN -EXISTS(states, naturaln)

2: if G is satisfied bys then

3: return true

4: else ifn> 0 then

5: for somes′ that is a successor ofs do

6: if PLAN -EXISTS(s′,n−1) then return true

7: end for

8: else return false

9: end if

10: end function

Figure 2.2: A nondeterministic, polynomial-space algorithm to determine the existence plan of length

at mostn

used in the International Planning Competition, PLAN M IN and PLAN SAT are inNP. As an example, in

the logisticsdomain, PLAN SAT is in P, whereas PLAN M IN is NP-complete. Theblocks worldhas also

be proven to beNP-complete for PLAN M IN and tractable for PLAN SAT (Gupta and Nau, 1992).

Another important aspect is the relationship between the complexity of plan existence andplan gen-

eration. Although it is the latter task which is of more interest, there are fewer results available in the

literature. Note that since plans could be exponential in the size of the problem plan generation is gen-

erally in EXPTIME. This complexity gap appears even when plan existence is tractable. For instance,

Jonsson and B̈ackstr̈om (1998) have shown a family of planning instances in which plan existenceis a

tractable task whereas plan generation is exponential.

Complexity of ADL vs. STRIPS

Any ADL problem can be translated into a STRIPS instance. However, existing compilation techniques—

such as Gazen and Knoblock’s (1997)—are worst-case exponential.This wort case cannot be improved

if we are willing to preserve the length of plans polynomially (Nebel, 2000), and thus ADL is strictly

more succinct than STRIPS.

ADL planning, however, is still aPSPACE-complete problem. Observe that the algorithm of Fig-

ure 2.2 also requires polynomial space even if the preconditions and effects are complex formulae.

Interestingly, most of the top-performing approaches to classical planning internally utilize a STRIPS-

like representation. In fact, all planners shown in Figure 1.1 first translate the ADL instance into one

that is essentially a STRIPS one (without conditional or quantified effects or goals).

Most of the reformulation algorithms we propose later in this document generate ADL problems.

As we will see, this has some practical implications if we want to use some state-of-the-art planners.

Most of these issues can be addressed by moving to more expressive solvers, or by utilizing ADL-native

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 16

solvers. More details are discussed in Chapters 3 and 4.

2.2 Planning as Heuristic Search

Many state-of-the-art domain-independent planners use domain-independent heuristics to guide the

search for a plan. Heuristics estimate the cost of achieving the goal from acertain state. They can

be used with standard search algorithms, and are usually key to good performance. They are typically

computed by solving a relaxed version of the original problem.

There are a few domain-independent relaxations that are widely used bycurrent planners. One

of them corresponds to ignoring the negative effects of actions. This relaxation is called thedelete-

relaxation.

Definition 2.1 (Delete-Relaxation)Let I be STRIPS planning instance. The delete relaxation of I,

denoted I+, is a instance just like I but in which operators inO have an empty delete list.

Classical planners likeHSP(Bonet and Geffner, 2001) and FF (Hoffmann and Nebel, 2001), among

others, use this relaxation to compute its heuristic.

We will focus our attention on the delete-relaxation, but we do not want to omita brief note on

Helmert’s relaxation of the causal graph of a task (2006a). Here, the domain is represented by a set of

variables (SAS+ representation). Acausal graphrepresents dependencies between variables. If such a

graph is acyclic, a solution to the problem can be computed in polynomial time. Helmert’s causal graph

heuristic (2006a) is computed by relaxing the causal graph (by ignoring certain preconditions) to the

point that it becomes acyclic. Then, polynomial algorithms are used to obtain an estimation of the cost

to a solution.

The rest of the section describes key aspects of the FF planner. Thereare two reasons to look into

this planner more closely. First, FF is one of the most influential planners developed in the last decade:

many other classical planners used techniques developed by FF in some way. Second, some of the

heuristics we propose in Chapters 4 and 5 are modifications of the standardFF heuristic.

2.2.1 FF

FF (Hoffmann and Nebel, 2001) is a classical planner that employs heuristic, forward search to find a

plan. The key novel aspects of the planner are its heuristic, and its search algorithm. We describe each

of those in turn.

FF Heuristic

The FF heuristic for a states is computed by finding a plan froms in the delete-relaxation of the

problem. This plan is referred to asrelaxed plan. FF computes the relaxed plan using a modification of

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 17

the GRAPHPLAN planner (Blum and Furst, 1997). It thus, computes arelaxed planning graph, which is

the graph that would be generated by GRAPHPLAN for the delete-relaxation. This graph is composed of

fact layers—orrelaxed states—and action layers. The action layer at leveln contains all actions whose

preconditions are contained in the relaxed state at depthn. The relaxed state at depthn+1 contains all

the facts that hold at layern+1 and is generated by applying all the positive effects of actions in action

layern.

Since in the delete relaxation, actions have no negative effects, therelaxed planning graphcontains

no mutexes (mutually exclusive facts or actions). This implies that, to find a plan,we only need to

expand the graph just until the point at which the goal is satisfied. FF computes a relaxed plan for the

goals by regression from the goal facts in the graph to the current states. The length of this plan is then

used as a heuristic estimator of the cost for achieving the goal. Henceforthwe refer to the FF heuristic

value ashFF(s). This takes polynomial time, since it only implies a traversal of the graph, whose size is

polynomial in the size of the problem.

Before explaining some details on the extraction algorithm, note that if the goal does not appear in

any fact layer of the relaxed graph, then the problem is proven unsolvable. To some extent, this dead

end detection can be quite powerful. We exploit this power in Chapter 4, when we design a pruning

function for planning with preferences.

The FF extraction algorithm (Figure 2.3) has a built-in heuristic that aims at extracting thesmallest

possible relaxed plan. The objective is to be as close as possible from the optimal solution toI+ from s.4

Specifically, the heuristic rule specifies that whenever an achieving action(achiever) is chosen, then we

prefer always theearliestachiever, i.e., the one that appears at the lowest level in the relaxed graph. If

there are ties, it will prefer the achiever that has the lowestprecondition cost, were the precondition cost

is defined as the sum of the levels at which the achiever’s precondition facts first appear in the relaxed

graph.

FF’s Search Algorithm

The FF’s search algorithm is less relevant to this thesis. We explain it here basically to introduce

the concept ofhelpful action, which is one the most interesting enhancement introduced in the search

algorithm. Later, in Chapter 4, we mention an extension to our HPLAN -P system that benefits from this

technique.

FF uses two search algorithms that are used in turn. The first isenforced hill climbing(EHC), a

modification of the standard hill-climbing search. If EHC fails to find a plan, thena standard best first

search is invoked, in whichhFF(s) is used as the evaluation function.

EHC is a greedy and incomplete algorithm for planning. It builds a plan by performing a sequence

4The length of the optimal plan froms in the delete relaxation is usually referred to ash+(s). Its computationNP-hard
(Bylander, 1994).

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 18

1: function EXTRACTPLAN (plan graphS0A0S1 · · ·An−1Sn, goalG)
2: for i = n. . .1 do
3: Gi ← goals first reached at leveli
4: end for
5: for i = n. . .1 do
6: for all g∈Gi not marked TRUE at timei do
7: Find min-costa∈ Ai−1 such thatg∈ add(Ai−1)
8: RPi−1← RPi−1∪{a}
9: for all f ∈ prec(a) do

10: Glayerof(f) = Glayerof(f)∪{ f}
11: end for
12: for all f ∈ add(a) do
13: mark f as TRUE at timesi−1 andi.
14: end for
15: end for
16: end for
17: return RP
18: end function

Figure 2.3: The FF extraction algorithm (Hoffmann and Nebel, 2001) receives a relaxed planning graph

as a succession of pairs of state and action layers, and a set of goal factsG. layerof(f) denotes the depth

of the fact layer at whichf first appears.

of improvement phases. In each phase, it takes the current states and searches for a descendant ofs, s′,

such thathFF(s′)< hFF(s), i.e, such that its heuristic value has improved. Onces′ has been found, the

actions that lead tos are added to the current plan prefix, and a new improvement phase is started. The

pseudo-code for EHC is shown in Figure 2.4.

The search fors′ is a simplebreadth-firstsearch. During this search however, only the successors

of a node that are produced by ahelpful actionare added to the search space.

Definition 2.2 (Helpful Actions) Let F be the set of facts in variable G1 after the plan extraction of the

algorithm of Figure 2.3 finishes. The helpful actions for state s are those actions that are applicable in

1: function EHC(initial stateI , goalG)
2: plan← EMPTY
3: s← I
4: while h(s) 6= 0 do
5: from s, search fors′ such thath(s′)< h(s).
6: if no such state is foundthen
7: return fail
8: end if
9: plan← plan◦ “actions on the path tos′”

10: s← s′

11: end while
12: return plan
13: end function

Figure 2.4: Enforced Hill Climbing (EHC) (Hoffmann and Nebel, 2001)

CHAPTER 2. PLANNING : LANGUAGES AND ALGORITHMS 19

s and that achieve a fact in F.

The restriction to use helpful actions only to generate successors in the breadth first phase contributes

to the incompleteness of the EHC algorithm. Nevertheless, the impact that it has inperformance is such

that it is still worth to use it. Hoffmann and Nebel (2001) show that this technique contribute to the

overall performance of FF.

Other classical planning systems use similar concepts. For example, both FAST-DOWNWARD and

LAMA use preferred operators. In the case of FAST-DOWNWARD, this notion is defined analogously to

helpful actions but for the causal graph heuristic. LAMA on the other hand, uses the FF helpful actions.

FF uses a handful of additional techniques that are important for performance. Among them is the

goal agenda, which specifies an ordering between the goals that are achieved. Also,a heuristic is used

to order helpful actions. We refer the reader to the original paper for more details.

Chapter 3

Heuristic Planning for Temporally

Extended Goals

3.1 Introduction

As we have seen in the first chapter, compelling applications of planning require the ability to express

goals and/or preferences that refer to properties that must be achieved at various states during the ex-

ecution of the plan. Examples of these include achieving several goals in succession (e.g., deliver all

the priority packages and then deliver the regular mail, pick up mail from the mail room before making

deliveries to offices, book my hotel after you book my flight), safety goalssuch as maintenance of a

property (e.g., always maintain at least 1/4 tank of fuel in the truck, ensure my credit card is never over

its limit), conditional temporal goals (if the robot reaches a low battery level, it should immediately

recharge), and achieving a goal within some number of steps (e.g., the truck must refuel at most 3 states

after its final delivery). All these goals are known astemporally extended goals(TEGs), since they refer

to different states of the execution in a temporal manner. We distinguish TEGsexplicitly from temporal

goals. The former do not refer to time in an explicit way while the latter do.

TEGs are typically represented (see e.g. Bacchus and Kabanza, 1998) using Linear Temporal Logic

(LTL) (Pnueli, 1977). This logic allows specifying properties of infinite sequences of states, and there-

fore it can be naturally used for representing TEGs.

In the current literature, however, there is a clear mismatch between state-of-the-art techniques used

for classical planning and the techniques used for planning with TEGs. Among the few planners that are

able to plan with TEGs we find TLPLAN (Bacchus and Kabanza, 1998). TLPLAN can be configured

to use human-encoded, domain-dependent heuristics, but in the absence of these it simply usesblind

search to plan for a goal. In addition, it will prune from the search spacethose states that can be proven

20

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 21

to violate the LTL formula. This is achieved through aprogressionmechanism, which re-writes the LTL

formula, into an equivalent one, which is written in terms of a property that has to be checked in the

current state and a property that has to be checked in a successor state. A state can be effectively pruned

if the progressed formula is equivalent tofalse, i.e., it is logically unsatisfiable.

Blind search in conjunction with state pruning via progression of the LTL formula can be very effec-

tive when the LTL formula is intended to constrain orcontrol the search. Indeed, Bacchus and Kabanza

(2000) have shown that the efficiency of classical planning can be significantly improved by expressing

domain-specific search-control knowledge in the form of LTL constraints. TLPLAN , enhanced with

such rules, won first place in the International Planning Competition in 2002 (hand-coded track).

Nevertheless, state pruning by TEG progression will not provide any pruning for many natural LTL

properties—and therefore no improvement whatsoever over blind search. Consider, for example, the

property “eventuallyp”. Such a goal will never progress tofalse. Without getting into the technical

details of why this is true, we explain this in an intuitive manner.1 Intuitively, such a goal formula

progresses tofalsein a states if and only if it is not possible to reachp by any means froms. Although

the latter statement could be true fors, the only way to actually prove it would be by doing some kind

of domain analysis. Such an analysis is not done by progression because it is a mechanism that only

manipulates the LTL goal formula syntactically.

On the other hand, as noted earlier, among the fastest domain-independent planners are those that

use heuristics. In planning for a TEG a heuristic should be expected to estimate the cost of achieving

the TEG. However, it is not clear how to adapt current heuristic methods toTEGs. This is due to the

fact that current heuristics only work for final-state goals.

3.1.1 Contributions of this Chapter

In this chapter we propose a method for performing heuristic search on planning problems with TEGs

by exploiting the relationship between temporal logic and automata. Our approach is as follows. Given

planning problem for a TEG, we transform it into a classical planning problem and apply a domain-

independent heuristic search planner to actively guide search towardsthe goal. This new augmented

domain, contains additional predicates that allow us to describe the (level of) achievement of the TEG.

In particular, in this new domain there is aclassical goalthat is satisfied iff the TEG of the original

problem is achieved.

The contributions of this chapter are the following:

1. We introduce a new logic for describing TEGs: the f-FOLTL logic. f-FOLTL is a version of

LTL which we modify to include first-order (FO) quantifiers and to be interpreted only by finite

1More technically,3p always progresses top∨©3p which never reduces to false, independent of the truth value ofp in
the current state.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 22

computations. While this logic is not new, its application to planning is new. Its use enables the

construction of a sound translation algorithm. Moreover, we argue that it ismore intuitive when

dealing with finite plans.

2. We provide and prove the correctness of an algorithm that given an f-FOLTL formulaϕ, gen-

erates a parametrized, nondeterministic finite automata (PNFA),Aϕ, whose is the set of models

of ϕ. Parametrized automata avoid grounding the goal formula, and in doing so, avoid poten-

tial blowups. In addition a parametric translation can be better exploited by planners that do not

ground the planning instance. Nevertheless, the size ofAϕ is worst-case exponential in the size of

ϕ. This motivates our next contribution.

3. We provide a simplification technique that allows reducing the size of the resulting compilation.

In particular, this avoids blowups of simple goals that are quite “natural” in planning with TEGs.

4. We provide two alternative methods for representing the PNFA within a planning domain. In both

translations, each of the states of the PNFA is represented by a planning predicate. In particular

the accepting states of the PNFA are regular predicates. The output of both methods is a PDDL

problem description, making our approach amenable to use with a variety of classical planners.

The first method defines the dynamics of the new predicates using goal regression (Waldinger,

1977); the second, defines them axiomatically, using PDDL axioms (Hoffmann and Edelkamp,

2005), a recent extension to the PDDL language. By representing the PNFA in the planning

domain we actually provide a compilation of TEGs into classical goals.

5. We show, through an experimental analysis, that our approach, used with the heuristic search

planners FF and FFX , consistently outperforms non-heuristic techniques. The analysis is carried

out in benchmark domains extended with TEGs. We also experimentally observe that the worst-

case exponential blowup does not manifest itself for practical goals.

3.2 Preliminaries

In this section we define the background for the rest of the chapter. We start by introducing f-FOLTL,

a logic for representing quantified TEGs for finite plans. We continue by formally defining the planning

instance for TEGs, and by reviewing regression, a technique that will beused in the rest of the chapter.

3.2.1 f-FOLTL: Finite LTL with FO Quantifiers

LTL (Pnueli, 1977) allows specifying temporal properties about infinite sequences of states. Therefore,

it can be naturally used to express temporally extended goals (see e.g. Bacchus and Kabanza, 1998). In

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 23

this chapter we introduce f-FOLTL, a variant of LTL, that we use to represent our TEGs. f-FOLTL, as

opposed to LTL, is interpreted overfinite computationsrather than over infinite ones.

There are two motivations for introducing a new logic to represent TEGs. The first motivation is a

methodological one: we want to apply state-of-the-art planning technology for planning with TEGs, and

current technology generally only applies to the generation of finite, linearsequences of actions. The

second motivation—a more pragmatical one—is that our translation to finite-state goals will be done by

representing a TEG by an automaton. Logics with infinite models, like LTL, require the use of B̈uchi

automata, which have an accepting condition that is difficult to express as a simple expression involving

domain predicates.

f-FOLTL is not a new logical language; the decidability of a slightly different version was analyzed

by Cerrito, Mayer, and Praud (1999). However, to the best of our knowledge, it has not been used for

representing planning goals before.

Syntax

f-FOLTL formulae augment LTL formulae with first-order quantification andby the use of the dis-

tinguished predicatefinal, which is only true in final states of computation. As usual, we assume our

f-FOLTL formulae are built using standard temporal and boolean connectives from a setS of sym-

bols for predicates and functions.2 We denote byLFO(S) the set of first-order formulae over the set of

symbolsS, the boolean connectives∨, ∧, and the quantifier∀.

Definition 3.1 (f-FOLTL formula) The setL(S) of f-FOLTL formulae over set of symbols S is the

least satisfying the following properties.

1. The 0-arity predicatesfinal, true or false are inL(S).

2. If ϕ ∈ LFO(S) thenϕ ∈ L(S).

3. ¬ψ, ψ∧χ, ©ψ, or ψUχ, are all inL(S) if ψ andχ are inL(S).

4. (∀x)ϕ, (∃x)ϕ are inL(S) if so isϕ.

As usual, a f-FOLTLsentenceis a formula with no free variables. Moreover, to simplify the nota-

tion, we assume precedence of the∧ connective over the∨ connective.

Semantics

f-FOLTL formulae are interpreted over finite computations. Finite computationsare finite sequences

of first-order interpretations that share a common domain and a common interpretation for function

symbols.

2Note thatconstantsare function of arity 0.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 24

Definition 3.2 (Finite First-Order Computation) Given a set of symbols for predicates and functions

S, afinite first-order computation onS is a sequenceσ = s0s1 · · ·sn, where each si ∈ σ is a first-order

interpretation〈D,IF ,I
i
P〉, whereD is the (unique) non-empty domain,IF is a (unique) interpretation

for function symbols in S, andI i
P is an interpretation for predicate symbols in S.

As a consequence of interpreting a formula using these computations, the logic providesrigid func-

tions, i.e., all constants and functions in the language refer to the same objectsat any time point.

Definition 3.3 (Truth of an f-FOLTL Formula) Let ϕ be an f-FOLTL formula, σ be a finite first-

order computation over domainD, and ν be a function mapping the variables inϕ to elements in

D. Moreover, letσi denote the suffix sisi+1 · · ·sn of σ. We say thatσ |= ϕ (i.e., σ is a model ofϕ) iff

〈σ0,ν〉 |= ϕ, for anyν. Furthermore,

• 〈σi ,ν〉 |= final iff i = n.

• 〈σi ,ν〉 |= true and〈σi ,ν〉 6|= false.

• 〈σi ,ν〉 |= ϕ, whereϕ is a first-order formula (ϕ ∈ L(S)) iff 〈si ,ν〉 |= ϕ.

• 〈σi ,ν〉 |= ¬ϕ iff 〈σi ,ν〉 6|= ϕ.

• 〈σi ,ν〉 |= ψ∧χ iff 〈σi ,ν〉 |= ψ and〈σi ,ν〉 |= χ.

• 〈σi ,ν〉 |= ©ϕ iff i < n and〈σi+1,ν〉 |= ϕ.

• 〈σi ,ν〉 |=ψUχ iff there exists a j∈ {i, . . . ,n} such that〈σ j ,ν〉 |=χ and for every k∈ {i, . . . , j−1},

〈σk,ν〉 |= ψ.

• 〈σi ,ν〉 |= (∀x)ϕ, iff for every a∈D, 〈σi ,ν[x→ a]〉 |=ϕ, whereν[x→ a] differs fromν only in that

it assigns a to the variable x.

Standard temporal operators such asalways(2), eventually(3), and release(R), typical binary

connectives such as∨,⊃,≡, and the existential quantifier∃ are defined in terms of these basic elements

as follows.

(ϕ∨ψ)
def
= ¬(¬ϕ∧¬ψ), (ϕ⊃ ψ)

def
= (¬ϕ∨ψ),

(ϕ≡ ψ)
def
= (ϕ∧ψ)∨ (¬ϕ∧¬ψ), (∃x)ϕ

def
= ¬(∀x)¬ϕ,

(ψRχ)
def
= ¬(¬ψU¬χ), 2ϕ

def
= (falseRϕ),

3ϕ
def
= (trueUϕ).

The definitions forvalid andsatisfiableformula are the same as in LTL. They follow.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 25

Definition 3.4 (Valid formula) We say that a formulaφ is valid, denoted by|= φ, if for every compu-

tationσ, σ |= φ.

Definition 3.5 (Satisfiable formula) We say that a formulaφ is satisfiable, if for some computationσ,

σ |= φ.

As in LTL, any f-FOLTL formula can be rewritten as formula that specifies an atemporal condition

that must hold in the first state and a condition that has to be verified in the following state. Identity (1)

below can be used to transform any formula to that form. That and other identities below are key to the

design of the algorithm that transforms f-FOLTL formulae to automata.

Proposition 3.1 Let ϕ ψ, andχ be f-FOLTL formulae, and assume variable x is not free inψ. The

following formulae are valid.

1. ψUχ≡ χ∨ψ∧©(ψUχ),

2. ¬©ϕ≡ final∨©¬ϕ,

3. ψU(∃x)ϕ≡ (∃x)(ψUϕ),

4. ψR(∀x)ϕ≡ (∀x)(ψRϕ),

5. ψRχ≡ χ∧ (final∨ψ∨©(ψRχ)).

Proof: See Section A.1 (page 162). �

Limiting f-FOLTL to finite computations results in several obvious discrepancies in the interpreta-

tion of LTL and f-FOLTL formulae. In particular, discrepancies can arise with LTL formulae whose

models can only be infinite. For example, in f-FOLTL the formula2(ϕ⊃©ψ)∧2(ψ ⊃©ϕ) is equiv-

alent to2¬(ϕ∨ψ). This is because ifϕ orψ were true in some state of a model, the model the formula

would have to be an infinite sequence of states. A second example is the LTL formula2p which in

f-FOLTL is notequivalent top∧©2p. If it were,2p could never be true in computations with a single

state. The interpretation of the© operator, represented by identity 2 of Proposition 3.1, is also a source

of discrepancies. The reader familiar with LTL, will note that identity 2 replaces LTL’s equivalence

¬©ϕ ≡ ©¬ϕ. This formula does not hold in f-FOLTL because©ϕ is true in a state iff there exists a

next state that satisfiesϕ. Since our logic refers to finite sequences of states, the last state of eachmodel

has no successor, and therefore in such states¬©ϕ holds for anyϕ.

Although there are differences between LTL and f-FOLTL, their expressive power is similar when it

comes to describing temporally extended goals for finite planning. Indeed, f-FOLTL has the advantage

that it is tailored to refer to finite plans. As a consequence, we can express goals that cannot be expressed

with LTL. Some examples follow.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 26

Example 3.1 The following are temporal f-FOLTL goals together with their intuitive meaning.

• 3(final∧ (∃c)(corridor(c)∧at(Robot,c))): In the final state,at(Robot,c) for some corridorc.

This is one way of encoding final-state goals in f-FOLTL.

• 2((closed(D1)∧©¬closed(D1)) ⊃ ©©©closed(D1)): If D1 was closed at plan stepi, and then

becomes opened at plan stepi +1, then it must be closed by plan stepi +3, for everyi.

• (∀r1, r2). priorityOver(r1, r2) ⊃ ((¬delivered(r2)Udelivered(r1))∧3delivered(r2)): If r1 has

priority overr2 thenr2 must be delivered, but not beforer1.

• 3(p(a)∧©©final): p(a) must hold true two states before the plan ends. This is an example of a

goal that cannot be expressed in LTL, since it does not have thefinal constant.

When writing f-FOLTL goals, one has to be careful not to use formulae that require infinite plans,

since they may be reduced to a contradictory formula. Indeed, the algorithmwe present in the next

section will automatically generate a non-accepting automaton for some of theseformulae.

The algorithm we present in the next section generates an automaton that accepts models of f-

FOLTL formula expressed in a syntactical form that we callextended prenex normal form.

Definition 3.6 (Extended Prenex Normal Form (EPNF))A formula is inextended prenex normal form

(EPNF) if it is of the form(Q1x1)(Q2x2) · · ·(Qnxn)ϕ, where Qi ∈ {∀,∃} and all quantifiers that occur

in ϕ quantify on first-order, atemporal, subformulae.

Some formulae that are not in EPNF, have an EPNF equivalent. For example, it can be proven

that (∀x)2(P(x) ⊃ (∃y)3Q(x,y)) is equivalent to(∀x)2(P(x) ⊃ 3(∃y)Q(x,y)), which is in EPNF.

However, there are formulae that do not have an EPNF equivalent, e.g.2∃x(P(x)∧3Q(x)).

3.2.2 Planning Instances

To simplify the exposition of the concepts of this chapter, we represent planning instances using causal

rules instead of STRIPS or ADL operators. A planning instances is a tuple〈I,D,G,T 〉, whereI is the

initial state, represented as a set of first-order (ground) positive facts;D is thedomain description; G is

a temporal formula describing thegoal, andT is a (possibly empty) set ofderived predicatedefinitions,

which are predicates that are defined in terms of other fluents of the domain.

A domain description is a tupleD = 〈Ob js,C,R〉, whereOb js is a finite set of objects,C is a set of

causal rules, andR a set ofaction precondition rules. Causal rules correspond to positive and negative

effect axiomsin the Situation Calculus (Pednault, 1989; McCarthy and Hayes, 1969). Assuch, we

remark that any planning instance described in ADL (plus derived predicates) can be described in terms

of causal rules (plus derived predicates) and vice versa.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 27

R1

O1

O3

O4 O2

D1

D12 D23 D34

R2 R3 R4

D2
Robot

C1 C2

Figure 3.1: The robot domain.

We represent positive and negative causal rules by the triple〈a(~x),c(~x), f (~x)〉 and〈a(~x),c(~x),¬ f (~x)〉

respectively, wherea(~x) is anaction term, f (~x) is afluent term, andc(~x) is a first-order formula, each

of them with free variables among those in~x. 〈a(~x),Φ(~x), ℓ(~x)〉 ∈ C expresses that fluent literalℓ(~x)

becomes true after performing actiona(~x) in the current state if conditionΦ(~x) holds. As with ADL

operators (Pednault, 1989), the conditionc(~x), can contain quantified FO subformulae. Finally, we

assume that for each action-fluent pair, there exists at most one positiveand one negative causal rule

in C. Free variables inC are assumed to be universally quantified. The setR of action precondition

rules consists of tuples〈a(~x),π(~x)〉, such thata(~x) is an action term, andπ(~x) is a first-order condition.

Intuitively 〈a,π〉 ∈ R means that it is possible to executea in a state that satisfies conditionπ. Free

variables inC orR are assumed to be universally quantified.

Example 3.2 Consider the robot domain defined by Bacchus and Kabanza (1998). In an instance of this

domain, depicted in Figure 3.1, there is a robot, some objects and six locations.Four of the locations

correspond to rooms (R1, . . . ,R4), and two of them represent the corridor (C1 andC2). Rooms are

connected by doors, which can be opened or closed. The robot can move between connected rooms,

close or open doors, and grasp or drop objects. It can hold one object at a time. The causal rules for this

domain are the following.

Positive Negative

〈open(d), true,opened(d)〉 〈close(d), true,¬opened(d)〉

〈grasp(o), true,holding(o)〉 〈grasp(o), true,¬handempty〉

〈release(o), true,handempty〉 〈release(o), true,¬holding(o)〉

〈move(x,y),o = robot∨holding(o),at(o,y)〉 〈move(x,y),o = robot∨holding(o),¬at(o,x)〉

3.2.3 Causal Rules for Arbitrary Formulae

The causal rules of a domain describe the dynamics of individual fluents.However, to model an NFA

in a planning domain, we must also know the dynamics of arbitrary complex formulae, such as for

example, the causal rule forat(o,R1)∧holding(o).

To obtain these rules one can use regression, a well-known technique introduced by Waldinger

(1977), and then extended for ADL by Pednault (1989), and furthergeneralized by Reiter (1991). Since

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 28

regression is well-studied in the literature and is not central to this chapter, here we only show the form

of causal rules for arbitrary formulae. For more details on the correctness of this approach, we refer the

reader to Reiter’s book (2001) or Pednault’s paper (1989).

To characterize the causal rules without articulating them explicitly, we introduce below the relation

causes that holds over the set of valid causal rules for arbitrary formulae. Thedefinition forcauses

below only includes rules for negation and conjunction since disjunction follows from these. Here, we

assume thatα(~x) is a boolean formula of fluents with free variables among the vector of variables~x.

Furthermore,~t is a vector of variables or constants.

Definition 3.7 causes is the least set that satisfies the following properties:

1. (base case) If 〈a,c,(¬) f 〉 ∈ C then〈a,c,(¬) f 〉 ∈ causes.

2. (instantiation & negation) If (a(~x),Φ+
a,α(~x),α(~x)) ∈ causes, then,

(a) 〈a(~x),~x =~t ∧Φ+
a,α(~x),α(~t)〉 ∈ causes, and

(b) 〈a(~x),~x =~t ∧Φ+
a,α(~x),¬¬α(~t)〉 ∈ causes.

3. (conjunction) If the following causal rules are incauses:

〈a(~x),Φ+
a,α(~x),α(~t1)〉, 〈a(~x),Φ−

a,α(~x),¬α(~t1)〉,

〈a(~x),Φ+
a,β(~x),β(~t2)〉, 〈a(~x),Φ−

a,β(~x),¬β(~t2)〉

then the following are also incauses:

(a) 〈a(~x),Φ+
a,α∧β,α(~t1)∧β(~t2)〉 ∈ causes, where

Φ+
a,α∧β =

(

Φ+
a,α(~x)∧Φ+

a,β(~x)
)

∨
(

α(~x)∧¬Φ−
a,α(~x)∧Φ+

a,β(~x)
)

∨
(

β(~x)∧¬Φ−
a,β(~x)∧Φ+

a,α(~x)
)

(b) 〈a(~x),Φ−
a,α∧β,¬(α(~t1)∧β(~t2))〉, whereΦ−

a,α∧β = Φ−
a,α(~x)∨Φ−

a,β(~x).

Rules such as this will be extensively used to produce the translated domain.The downside of this

approach is its space complexity; the size of the conditions in the causal laws can grow exponentially,

as it is shown by the following proposition.

Proposition 3.2 Letϕ be a an atemporal formula with n binary boolean connectives such that all its

atomic sub-formulae are fluent ground terms. Moreover, let F be the set of atomic sub-formulae ofϕ.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 29

Then, assuming no simplifications are made, the aggregated size of the causal rules for(¬)ϕ is Ω(4nm),

where m is the size of the smallest causal rule among all fluents f∈ F.

Proof: Straightforward by solving a recursive equation for a lower bound on the size of the causal rules

for ϕ. �

For this reason we will also provide a more efficient translation, based on derived predicates. We

will introduce this translation in the following chapters.

3.3 From f-FOLTL to Parameterized NFA

It is a well known fact that for every LTL formulaϕ, there exists a B̈uchi automaton3 Aϕ that accepts

an infinite state sequenceσ if and only if σ |= ϕ (Vardi and Wolper, 1994). In this section, we provide

an algorithm for the construction of parameterized finite state automata (PNFA)that accept the models

of f-FOLTL formulae in EPNF. This translation step is essential to convertingTEGs into standard,

final-state goals.

The rest of the section starts by introducing parameterized automata. Then itdescribes an algorithm

that accepts models of f-FOLTL formulae, and establishes it correctness. Finally, it comments on how

these automata can be simplified.

3.3.1 Parameterized Finite-State Automata

Parameterized finite-state automata represent families of finite-state automata. The input to these au-

tomata are models of f-FOLTL formulae, which are either rejected or accepted. The first automaton

we utilize is the parameterized, state-labeled, finite-state automaton (PSLNFA).A PSLNFA is like a

nondeterministic finite-state automaton (NFA) but with two main differences. Thefirst difference, is

that its states are labeled with first-order formulae. Intuitively, whenever the automaton is in stateq la-

beledL(q), it checks that all formulae inL(q) are true in the interpretation that is at the beginning of its

input. The second main difference is that PSLNFA are parameterized, which means that its acceptance

condition can be affected by a set of parameters. The parameters are variables that may occur free in the

labels of the states. A formal definition of a PSLNFA follows.

Definition 3.8 (PSLNFA) A parameterized state-labeled NFA (PSLNFA) is a tuple

A = 〈Q,Σ(S,D), δ,L,Γ,~x,Q0,F〉,

where Q is a finite set of states, and Q0 ⊆ Q is a set of initial states. The alphabetΣ(S,D) is a set of

first-orderLFO(S)-interpretations over the same domainD, such that they assign the same denotation

3A Büchi automaton is an extension of a finite state automaton to infinite inputs.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 30

to all function symbols in S;δ ⊆ Q×Q is a transition relation; F⊆ Q is the set of final states,~x is a

string of variables;Γ ∈ {∀,∃}∗ is a string of quantifiers such that|Γ| = |~x|, and the labeling function

L : Q→ 2LFO(S) is such that ifϕ ∈ L(q) then all the free variables ofϕ are in~x.

A PSLNFA with no quantifiers accepts a string of interpretationss0 . . .sn iff there is a pathq0 . . .qn

from an initial automaton state to a final automaton state such that labels of the states traversed are true

in the corresponding interpretation (i.e., all formulas inL(qi) are true insi). When adding quantifiers,

the free variables in the labels are interpreted based on the quantifiers inΓ. For example, if a PSLNFA

contains a single parameterx, and its quantifier is a∀, then the PSLNFA acceptss0 . . .sn if for all ways

of interpretingx, there is a path to an accepting state with the condition above.

To give a formal definition of the language accepted by a PSLNFA we define a few more concepts.

For any PSLNFAA = 〈Q,Σ(S,D), δ,L,Γ,~x,Q0,F〉, we define an automaton augmented with functionν

that maps variables of the language to elements of the domainD. This augmented automaton is denoted

by A·ν, and formally corresponds to a tuple that containsν as a new element.

Definition 3.9 (Run of a Quantifier-Free, Augmented PSLNFA) A run of an augmented automaton

with no quantifiers A= 〈Q,Σ(S,D), δ,L, ε,ε,Q0,F ,ν〉 over a string s0s1 · · ·sn ∈ Σ(S,D)∗ is a string of

automaton statesρ = q0q1 · · ·qn such that(q j ,q j+1) ∈ δ, and 〈si ,ν〉 |= L(qi), for all i ∈ {0,1, . . . ,n},

and all j∈ {0,1, . . . ,n−1}.

A string will be accepted by an augmented automaton with no quantifiers if there isa run for it that

ends in a final state. Formally,

Definition 3.10 (Strings Accepted by a Quantifier-Free Augmented PSLNFA) A string of interpre-

tationsσ ∈ Σ(S,D)∗ is acceptedby an augmented automaton with no quantifiers A iff there exists a run

of A,ρ= q0q1 · · ·qn onσ, such that qn ∈ F.

Now we are ready to define when a string is accepted by a regular augmented PSLNFA. The ac-

ceptance condition is strongly related to the definition of truth of a first-orderformula. Intuitively, for

PSLNFAA ·ν with an initial quantifier∀ (respectively∃), we will say that a stringσ is accepted iff all

(respectively, some) of the augmented automatonA · ν ′ accepts the string, whereν ′ extendsν with an

assignment for a new variable. Formally,

Definition 3.11 (String Accepted by a PSLNFA)String σ ∈ Σ(S,D)∗ is acceptedby an augmented

PSLNFA with quantifiers A= 〈Q,Σ(S,D), δ,L,VΓ,x~x,Q0,F ,ν〉, where V is either∀ or ∃ and x is a

variable, iff when V= ∀ (respectively, when V= ∃) σ is accepted by automaton

A′ = 〈Q,Σ(S,D), δ,L,Γ,~x,Q0,F ,ν[x→ a]〉,

for all (respectively, for some) a∈ D.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 31

Finally, we are now able to define the language accepted by a PSLNFA.

Definition 3.12 (Language Accepted by a PSLNFA)A PSLNFA A= 〈Q,Σ(S,D), δ,L,Γ,~x,Q0,F〉 ac-

cepts the set of allσ ∈ Σ(S,D)∗, such thatσ is accepted by all augmented automatons A·ν, for everyν

that assigns elements inD to variables in~x.

Example Consider the PSLNFAA = 〈{q0,q1},Σ,δ,L,Γ,xy,{q0},{q1}〉, whereδ = {(q0,q1),(q1,q1)},

andL(q0) = P(x) andL(q1) = Q(x,y). A accepts the models of(∀x).(∀y).P(x)∧©2Q(x,y) if Γ = ∀∀

and accepts the models of(∀x).(∃y) .P(x)∧©2Q(x,y) in caseΓ = ∀∃. Figure 3.2 shows a graphical

representation of a PSLNFA that can accept the models of either(∀x)3P(x) or (∃x)3P(x).

3.3.2 The algorithm

The translation algorithm is a modification of the one proposed by Gerth, Peled, Vardi, and Wolper

(1995). In contrast to their algorithm, ours generates a PSLNFA instead of a Büchi automaton.

To represent a node of the automaton, the algorithm uses Gerthet al.’s data structureNode, which

is a tuple〈Name, Incoming,New,Old,Next〉. The fieldNamecontains the name of the node;Incoming

is the list of node names with an outgoing edge leading toNode; Newcontains first-order formulae

that must hold at the current state but that have not been processed bythe algorithm;Old contains the

formulae that must hold in the nodes that have been processed by the algorithm; Nextcontains temporal

formulae that have to be true in the immediate successors ofNode.

In the following, suppose we want to build a PSLNFA for sentenceϕ in EPNF. We denote the string

of quantifiers and variables at the beginning ofϕ by QPrefix(ϕ). To generate the PSLNFA, we strip

QPrefix(ϕ) from ϕ and then leave the formula just in terms of the temporal operatorsU andR, and the

binary boolean operators∧ and∨. We then push all¬’s inside such that they occur only in front of

first-order formulae. The resulting formula, say,ϕ′ is the input for the procedure we describe below.

Note that the construction will start with a single node that containsϕ′ in its Newfield.

When processing nodeN, the algorithm checks whether there are pending formulae inNew. If there

are none, then the node can be added to theNodeSet. Two cases can hold:

1. If there is already a node inNodeSetwith the same fieldsOld andNext, then itsIncominglist is

updated by adding those nodes inN’s incoming list. (Line 4).

2. If there is no such node, thenN is added toNodeSet. Then, a new node is created for processing

if final 6∈ Old. This node containsN in its incoming list, and the fieldNewset toN’s Nextfield.

The fieldsNextandOld of the new node are empty. (Lines 5–12).

Intuitively, in this case we are creating a new node, successor to the current node, intended to

verify the formulae in theNextset. Notice that the new node will only be created iffinal 6∈ Old,

since that is the only case in which a node can have a successor.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 32

Otherwise, ifNewis not empty, formulaη is removed fromNewand added toOld. Then,

1. In caseη is a literal, or of the form(∀x) φ(x), or (∃x)φ(x), then if ¬η is in Old, the node is

discarded (a contradiction has occurred). Otherwise,η is added toOld and the node continues to

be processed.

2. Otherwise:

(a) If η = ϕ∧ψ, bothϕ, andψ are added toNew.

(b) If η = ©ψ, thenψ is added toNext.

(c) If η is one ofϕ∨ψ, ϕUψ, or ϕRψ, thenN is split into two nodes. The setNew1(η)

andNew2(η) are added, respectively, to theNewfield of the first and second nodes. These

functions are defined as follows:

η New1(η) New2(η)

ϕ∨ψ {ϕ} {ψ}

ϕUψ {ϕ,©(ϕUψ)} {ψ}

ϕRψ {ψ,final∨©(ϕRψ)} {ϕ,ψ}

The intuition of the split lies in standard f-FOLTL equivalences. For example, ϕUψ is

equivalent toψ∨ (ϕ∧©(ϕUψ)), thus one node verifies the conditionψ, whereas the other

verifiesϕ∧©(ϕUψ).

Definition 3.13 (∆−(q)) Let ∆(q) be the value of the Old field for node q, when node q has been pro-

cessed. We define∆−(q) as the set containing all the literals in∆(q) or formulae of the form(Qx)ϕ,

whereϕ is a first-order (atemporal) formula.

For an EPNF formulaϕ, we define PSLNFAAϕ = 〈Q,Σ(S,D), δ,L,Γ,~x,Q0,F〉, where

• Q = {n|n∈ NodeSet},

• Q0 = {q∈Q| Init ∈ Incoming(q)}.

• ~x is the maximal subsequence of variables inQPrefix(ϕ), andΓ is the maximal subsequence of

quantifiers inQPrefix(ϕ)

• δ is such thatδ(q,q′) iff q andq′ are connected in the graph (i.e.,q∈ Incoming(q′)).

• F = {q∈Q|Next(q) = ∅ and¬final 6∈ ∆−(q)}.

• L(q) is equal to∆−(q)\{final,¬final}.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 33

Algorithm 3.1 Converts an f-FOLTL formulaϕ into a graph used to defineAϕ.
1: function EXPAND(Node,NodeSet)
2: if New(Node) = ∅ then
3: if ∃N ∈ NodeSetandOld(N) = Old(Node) andNext(N) = Next(Node) then
4: Incoming(N)← Incoming(N)∪ Incoming(Node)
5: return NodeSet
6: else iffinal 6∈Old(Node) then
7: return EXPAND([Name← Father← newname(),
8: Incoming← Name(Node),
9: New← Next(Node),Old←∅

10: Next←∅],{Node}∪NodeSet)
11: else ifNext(Node) = ∅ then return {Node}∪NodeSet
12: else returnNodeSet ⊲ Nodeis discarded
13: end if
14: else
15: chooseη ∈ New(Node)
16: New(Node)← New(Node)\{η}
17: if η 6= Trueandη 6= Falsethen
18: Old(Node)←Old(Node)∪{η}
19: end if
20: if η is a literal,(Qx)ϕ, Trueor Falsethen
21: if η = Falseor¬η ∈Old(Node) then
22: return (NodeSet) ⊲ Nodeis discarded
23: else
24: return EXPAND(Node,NodeSet)
25: end if
26: else ifη = ©ϕ then
27: Next(Node)← Next(Node)∪{ϕ}
28: return EXPAND(Node,NodeSet)
29: else ifη = ϕ∧ψ then
30: New(Node)← New(Node)∪ ({ϕ,ψ}\Old(Node))
31: return EXPAND(Node,NodeSet)
32: else ifη = ϕ∨ψ orϕRψ orϕUψ then
33: Node1← SplitNode(Node,New1(η))
34: Node2← SplitNode(Node,New2(η))
35: return EXPAND(Node2,EXPAND(Node1,NodeSet))
36: end if
37: end if
38: end function
39: function SPLITNODE(Node,φ)
40: NewNode← [Name← newname(),Father← Name(Node)
41: Incoming← Incoming(Node),New← New(Node)∪φ, Old←Old(Node),Next← Next(Node)]
42: return NewNode
43: end function
44: function GENGRAPH(ϕ)
45: EXPAND([Name← Father← newname(), Incoming←{Init},New←{ϕ},Old←∅],∅)
46: end function

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 34

New= {}

Next = {}
Old = {}

4:

New= {}

Next = {}
Old = {}

4:

Next = {} Next = {}

0:

2:1:

...

1: 2:

3:

a few steps later...

Node 0 is split in two

Initial graph:

final graph

New= {}

Next = {}

Next = {}
Old = {}

Old = {} Old = {}

New= {}

1:

(two new successors are created)

2:

some iterations later:

Old = {true}

trueResulting automaton

New= {P(x)}New= {true,©trueU P(x)}

Next = {trueU P(x)}
Old = {P(x)}

New= {trueU P(x)}

New= {}
Old = {true}

New= {}

Next = {}Next = {trueU P(x)}
Old = {P(x)}

P(x)

Old = {}
Next = {}

New= {trueU P(x)}

Figure 3.2: Algorithm execution for formula(∀x)3P(x).

Figure 3.2 shows an example of the generation of a PSLNFA for(∀x)3A(x).

This theorem states the correctness of the algorithm.

Theorem 3.1 Let Aψ be the automaton constructed by our algorithm from an f-FOLTL formulaψ in

EPNF. Then Aψ accepts exactly the models ofψ.

Proof: See Section A.2 (page 163). �

An immediate consequence of this theorem is that our algorithm generates non-accepting automata

for temporal formulae that are only satisfied by infinite models, and that thus are unsatisfiable f-FOLTL

formulae. Sometimes this would be reflected by the fact that the automaton does not have accepting

states at all (this happens forϕ∧2(ϕ ⊃ ©ψ)∧2(ψ ⊃ ©ϕ), or by the fact that some state visited

by all paths to an accepting state is labeled with an inconsistent first-order formulae (this is the case of

3P(a)∧(∀x)2(P(x)⊃©P(x))). In the former case we are able to recognize that the goal is intrinsically

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 35

unachievable by just looking at the automaton, whereas in the latter we cannot do it in general, since

checking whether the labeling formulae are consistent is undecidable.

Simplifying PSLNFAs into PNFAs

The algorithm presented above often produces automata that are much bigger than the optimal. To

simplify the automata, we have used a modification of the algorithm proposed by Etessami and Holz-

mann (2000). This algorithm uses a simulation technique to simplify the automaton. In experiments

conducted by Fritz (2003), it was shown to be slightly better than LTL2AUT (Daniele, Giunchiglia, and

Vardi, 1999) at simplifying B̈uchi automata.

To apply the algorithm directly, we need an automaton representation in which transitions rather than

states are labelled with formulae. To that end, we introduce parameterized NFAs (PNFAs). Intuitively,

a PNFA is like a PSLNFA but such thattransitions—not states—are labeled with first-order formulae.

Formally, a PNFA is a tupleA = 〈Q,Σ(S,D), δ,Γ,~x,Q0,F〉, whereQ, Q0, F , Γ, ~x, andΣ(S,D) are

defined as in PSLNFAs. Finally, the labeled transition relationδ is a subset ofQ×2LFO(S)×Q.

As before, given an assignment of variables to domain variablesν, we can define an augmented

version ofA denoted byA · ν. A run of A · ν over the string of statesσ = s1 · · ·sn ∈ Σ(S,D)∗ is a

sequenceρ = q0q1 · · ·qn whereq0 ∈ Q0, and for some labelL such that(qi ,L,qi+1) ∈ δ, 〈si+1,ν〉 |= L,

for all i ∈ {0, . . . ,n−1}. Runρ is acceptingif qn ∈ F . Finally, the acceptance for PNFAs is defined

analogously to that of PSLNFAs, and therefore we omit it here.

It is straightforward to convert a PSLNFA to an equivalent PNFA by adding one initial state and

copying labels of states to any incoming transition. Figure 3.3 shows examples of PNFAs generated by

our implementation for some f-FOLTL formulae. The automaton for formula (b) isparameterized on

variablex, which is indicated beside the state name.

Size complexity of the NFA

In theory, the resulting automaton can be exponential in the size of formula in the worst case. Simplifi-

cations reduce the number of states of the PNFA significantly.

Proposition 3.3 Letϕ be in negated normal form, then the number of states of Aϕ is 2O(|ϕ|).

Proof: Note that the Algorithm 3.1 generates a new node if there is no previously existing node with

identicalOld andNext fields. In the worst case it will generate all plausible nodes, which is bound

by the total number of possible combinations forOld and Next. This number is upper-bounded by

2sub(ϕ)×2sub(ϕ), wheresub(ϕ) is the number of subformulae ofϕ. The proof is concluded by observing

thatsub(ϕ) = O(|ϕ|). �

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 36

q0 q1

{¬ϕ,¬ψ}

{¬ϕ,¬ψ}

{}

{}

at(x, R4)}

{¬at(Robot, R1),

{(∀d) closed(d),
¬at(Robot, R1)} {(∀d) closed(d),

{¬at(Robot, R1)}

q0(x)

q1(x)

¬at(Robot, R1),
at(x, R4)}

q2(x)

(a) (b)

Figure 3.3: Simplified PNFA (a)2(ϕ ⊃ ©ψ) ∧ 2(ψ ⊃ ©ϕ), and (b) 2(at(Robot,R1) ⊃

©3(∀d)closed(d))∧ (∀x)32at(x,R4).

Unfortunately, the upper bound above is tight. There are simple cases where our proposed translation

blows up.

Proposition 3.4 Any PNFA for formula3p1∧3p2∧ . . .∧3pn, where p1, p2, . . . , pn are propositions,

has at least2n states.

Proof: See Section A.3 (page 166). �

Intuitively, each state of the PNFA for the above mentioned formula keeps track of a particular

combination of propositions that has been true in the input read so far. Nevertheless, in Section 3.4.3 we

describe techniques that willnotblow up the planning domain when transforming formulae like the one

in Proposition 3.4. Also, it is critical to note that in practice, the number of statesof NFAs for natural

goals were generally equivalent to the size of our formulae (see Section 3.5).

3.4 Compiling PNFAs into a Planning Instance

We are now ready to show how the PNFA can be encoded in a planning instance. This will be essential

to transform TEGs into classical final-state goals.

During the execution a plana1a2 · · ·an, a set of planning statesσ = s0s1 · · ·sn is generated. In what

follows we make no distinction between a planning state (which are sets of ground first-order facts) and

a first-order interpretation. Thus, ifs is a planning state, we say that an atomic ground factP(~c) is true

in s (i.e.,s |= P(~c)) if and only if P(~c) ∈ s. This definition extends trivially to non-atomic formulae.

In the planning domain, each state of the automaton is represented by a fluent.More formally, for

each stateq of the automatonA we add to the domain a new fluentEq(~x), where~x is the vector of

variables used in the definition ofA. The translation is such that if a sequence of actionsa1a2 · · ·an is

performed in states0, generating the succession of statesσ = s0s1 · · ·sn, thenEq(~c) is true insn, for a

vector of constants~c, if and only if there is a runρ of Aϕ · ν onσ that ends in stateq, whereν assigns

the variables in~x to constants~c.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 37

Once the PNFA is modelled within the domain, the temporal goal in the newly generated domain

is reduced to a property of the final state alone. Intuitively, this property corresponds to the accepting

condition of the automaton.

To represent the dynamics of the states of the automaton, there are two alternatives. The first is to

modify the domain’scausal rulesto give an account of their change. The second, is to define them

asderived predicatesor axioms. The derived predicates approach we introduce here prove to be more

efficient, both in theory and in practice.

Henceforth, we assume the following:

• We start with a planning instance〈I,D,G,T 〉, whereG is a temporal formula in f-FOLTL.

• Temporal goalG is translated to the PNFAAG = (Q,Σ, δ,Γ,~x,Q0,F), with Γ = V1 · · ·Vn and~x =

x1 · · ·xn.

• To simplify notation, we denote bypred(q) the set of predecessors ofq. E.g., in Fig. 3.3(b),

pred(q0) = {q0,q1}.

• We defineλp,q(~x) as the formula
∨

(q,L,p)∈δ

∧

L. E.g., in Fig. 3.3(b),λq1,q0 = (∀d)closed(d)∧

¬at(Robot,R1). Note that~x corresponds to the variable vector inAG , and therefore~x are all the

variables that may appear free inλp,q(~x).

• For first-order formulaeϕ, we denote its grounded version byground(ϕ). This formula is equiva-

lent toϕ, but that has no quantifiers. Note that it is possible to compute this formula sinceplanning

domains we are dealing with have a finite number of objects.ground is defined as follows,

ground(ϕ)
def
=



































ϕ if ϕ is an atomic proposition

¬ground(ψ) if ϕ= ¬ψ

ground(ψ)∧ground(χ) if ϕ= ψ∧χ
∧

a∈Ob jsground(ψ(a)) if ϕ= (∀x)ψ(x)

3.4.1 Translating PNFA to Causal Rules

Recall that we have translated our TEG into a PNFA and to encode this PNFA inthe planning domain,

we have introduced fluentsEq, one for each stateq of the automaton. The final step is defining the

dynamics of this domain. We propose two methods to do that.

In the first translation, we encode the dynamics of the fluentEq as causal rules. For each fluentEq

we generate a new set of causal rules. The resulting new rules are added to the setC′, which is initialized

to ∅. In the second, we define the dynamics ofEq axiomatically, through the so-called PDDL derived

predicates.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 38

{}

{}

at(x, R4)}

{¬at(Robot, R1),

¬at(Robot, R1)}

{¬at(Robot, R1)}

q0(x)

q1(x)

at(x, R4)}

q2(x)

{closed(D1),
{closed(D1),

¬at(Robot, R1),

Figure 3.4: A PNFA for2(at(Robot,R1)⊃©3closed(D1))∧ (∀x)32at(x,R4).

We later show that the second translation is much more efficient than the first. The introduction

of the first one is justified for a pragmatic reason, since not many state-of-the-art planners are able to

handle derived predicates.

New Causal Rules

To understand the intuition behind the translation, consider the NFA shown in Figure 3.3(b). Sup-

poseEq2 is false in a statesi . After performing actionai , fluent Eq2 must become true in the result-

ing state,si+1, iff either Eq0 was true insi and¬at(Robot,R1)∧ at(O1,R4) is true insi+1 or Eq1 was

true insi and¬at(Robot,R1)∧ (∀d)closed(d)∧at(O1,R4) is true insi+1. Note that¬at(Robot,R1)∧

(∀d)closed(d)∧at(O1,R4) can be true insi+1 becausea made the property true, or because it was true

in si anda did not make it false.

To write the positive causal rule forEq2(~x) on actiona, we must only refer to the state prior to

the execution ofa. To do so, we appeal to regression. For each actiona, the positive action rule

〈a,Φ+
a,Eq

(~x),Eq(~x)〉 is added toC′, whereΦ+
a,Eq

(~x) stands for:

∨

p∈Pred(q)\{q}

Ep(~x)∧ (Φ+
a,ground(λp,q(~x))

∨λp,q(~x)∧¬Φ−
a,ground(λp,q(~x))

))). (3.1)

Note thatΦa,ground(λp,q) is a condition obtained by regression.

For the negative case, consider stateq0 of the automaton. IfEq0 is true in some statesi , then when

getting to statesi+1 after performinga, it will become false if¬at(Robot,R1) holds insi+1 and it does

not happen that inEq1 is true insi and¬at(Robot,R1)∧closed(D1) is true insi+1.

Again, we need to appeal to regression. For each actiona, the positive action rule〈a,Φ−
a,Eq

,¬Eq〉 is

added toC′, whereΦ−
a,Eq

(~x) stands for:

¬Φ+
a,Eq

(~x)∧¬(Φ+
a,ground(λq,q(~x))

∨λq,q(~x)∧¬Φ−
a,ground(λq,q(~x))

). (3.2)

Note thatλq,q(~x) is false if there is no self transition inq.

Example 3.2 (cont.) In the robots domain, consider the automaton constructed for formula2(at(Robot,R1)⊃

©3closed(D1))∧ (∀x)32at(x,R4) shown in Figure 3.4. We would add the following positive causal

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 39

rule for fluentEq2 and actionclose(x).

〈close(x),Eq1(x)∧ [at(O1,R4)∧¬at(Robot,R1)∧closed(D1)∨

at(O1,R4)∧¬at(Robot,R1)∧x = D1)]∨

Eq0(x)∧at(O1,R4)∧¬at(Robot,R1),Eq2(x)〉

New Initial State

The original initial state must also be modified, since it now must include which fluentsEq are initially

true. The new set of factsI ′ is the following:

I ′ = {Eq(c1, . . . ,cn) |(c1, . . . ,cn)∈Ob jsn, p∈Q0,and for someL, q, (p,L,q)∈ δ,I |= λp,q(c1, . . . ,cn)}.

I.e., are the factsEq(c1, . . . ,cn) such thatq is reachable for some initial statep through a transition whose

label is a fact that is true inI.

New Goal & Planning Instance

Intuitively, the automatonAG accepts iff the temporally extended goalG is satisfied. Therefore, the

new goal,G′ = QPrefix(G).
∨

p∈F Ep(x1, . . . ,xn), is defined according to the acceptance condition of the

NFA, i.e. the goal is achieved ifAG is in some final state. Note thatG′ is a non-temporal goal.

The final planning instanceL′ is 〈I ∪I ′,C ∪C′,R,G′,T 〉.

Size Complexity

Since we have generated a standard planning instance, the complexity of decision problem associated

is still PSPACE-hard. However, we the size of the new problem is worst-case exponential in the size of

the original problem. This is stated by the following proposition.

Proposition 3.5 The size ofC′ is wost-case n|Q|2O(ℓ) whereℓ is the maximum size of a grounded tran-

sition in AG , and n is the number of action terms in the domain.

Proof: For each of the|Q| predicates we needn new rules. From Proposition 3.2, each of them is

worst-case exponential on the size of the (grounded) transition formula. �

3.4.2 Translation to Derived Predicates (axioms)

In this translation we propose to write a derived predicate definition forEq(~x). However, as we saw

previously, the truth value ofEq(~x) in si+1 depends on whether some fluentsEp(~x) hold true in the

previous state, wherep is a state of the automaton. Therefore, we need a way to represent in statesi+1

what fluentsEp were true in the previous state.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 40

Thus, for each stateq of the automaton we use an auxiliary fluentPrevq(~x) which is true in a plan

states iff Eq was true in the previous state. The dynamics of fluentPrevq(~x) is described by the following

causal rules, which are added toC′:

〈a,Eq(~x),Prevq(~x)〉, 〈a,¬Eq(~x),¬Prevq(~x)〉,

for each actiona. The following definitions are also added toT ′:

Eq(~x)
def
=

∨

p∈pred(q)

Prevp(~x)∧λp,q(~x),

New Initial State

The new initial state must specify which fluents of the formPrevq are true. These are precisely those

facts that correspond to the initial state of the automaton.

I ′ = {Prevq(c1, . . . ,cn) |q∈Q0,(c1, . . . ,cn) ∈Ob jsn}.

New Goal & Planning Instance

The new goal is defined byG′ = (V1x1) · · ·(Vnxn)
∨

p∈F Ep, and the new planning instance is〈I ∪I ′,C∪

C′,R,G′,T ∪T ′〉.

Size Complexity

Planning with the new translated theory is theoretically as hard as planning with the original theory. The

amount of additional effort required to update newly created fluents is reflected in the size ofT ′.

Proposition 3.6 The size ofT ′ is O(n|Q|ℓ) whereℓ is the maximum size of a transition in AG , and n is

the number of action terms in the domain. The size ofC′ is only O(n|Q|).

3.4.3 Avoiding Blowups: Multiple Goals and Formula Splitting

In the previous section we saw that the size of the resulting translation depends on the number of states

in the automaton,|Q|, and, in the case of using the regression approach, it is worst-case exponential in

the size of the transitions. Previously, we also saw that|Q| is worst-case exponential in the size of the

temporal formula. This means that we could be generating quite big translationseven if we choose to

use derived predicates.

Below we present two techniques that will reduce the size of the translation.The first one aims

at reducing total number of states of the automata, while the seconds aims at reducing the size of the

transitions, an issue that is critical when using regression. These techniques are not guaranteed to always

reduce significantly the size of the resulting translation.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 41

Multiple Goals

Fortunately, there is a way to sometimes reduce this size complexity by regardinga formula as specifying

a goal composed of multiple individual goals. Consider for example the formula ϕ= 3p1∧ . . .∧3pn,

which we know has an exponential NFA. We know thatϕ will be satisfied if each of the conjuncts3pi

is satisfied. If instead of generating a unique NFA forϕ we generated adifferentNFA for each3pi ,

then we could just plan for a goal equivalent to the conjunction of the acceptance conditions of each of

those automata. For this particularϕ this means that the number of states in the new planning instance

is linear inn instead of exponential.

If the TEG, without its quantifier prefix, corresponds to a formula in which the top-level operators are

boolean, then we consider each of the (temporal) subformulae as an independent subgoal, and therefore

we build an automaton for each of them.

Formally, letϕ be a TEG with its quantifier prefix removed. Let functionϒ(ϕ) = {ϕ1,ϕ2, . . . ,ϕn}

correspond to the set of all subformulae ofϕ whose top-level operator is a temporal one, and such that

they are maximal under subformulae inclusion (i.e., no pair of different elementsϕi andϕ j in ϒ(ϕ) are

subformulae of each other). For each of theϕi ∈ ϒ(ϕ) we construct a PNFA, and compute its accepting

condition,Gi , expressed in terms of its accepting predicates. The final (classical) goal, corresponds to a

formula likeϕ, but in which allϕi ∈ ϒ(ϕ) are replaced byGi .

Example 3.3 Let ϕ
def
= 2(p⊃ 3q)∨ (3r ∧3s). Hereϒ(ϕ) = {2(p⊃ 3q),3r,3s}. The final (clas-

sical) goal condition corresponds toG1∨ (G2∧G3), whereG1, G2 andG3 correspond to the accepting

conditions of automata for2(p⊃3q), 3r, and3s.

Formula Splitting

On the other hand a formula transformation can be used to reduce the size ofthe transition formulae.

Consider for example the propositional formulaα
def
= 2

∧

d∈D closed(d). The automaton generated for

this formula has transitions of size|D|, and therefore the causal rules have size exponential in|D|. In

this case, however, we could use the fact thatα is equivalent to
∧

d∈D 2closed(d), and use the method

described above to generate|D| automata with a single proposition in their transitions. Again, in this

case we go from an exponential translation to a polynomial one. The transformation we have done to

formulaα is what we callformula splitting.

Splitting can be generalized to any combination of boolean formulae. In our implementation, before

generating the automata, we preprocess the TEG formula using the follwing f-FOLTL equivalences:

φU(ψ∨χ)≡ (φUψ)∨ (ψUχ),

φR(ψ∧χ)≡ (φRψ)∧ (ψRχ),

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 42

and other similar equivalences that hold for the temporal connectivesR and©, effectively “pulling”

binary connectives up in the formulae. With this technique, we generate moreautomata but avoid the

risk of exponential explosion.

The formal implementation is given by Algorithm 3.2. The SPLIT function calls repeatedly the

BREAKUP function until a fixed point is reached. BREAKUP simply applies one an f-FOLTL identity

generating an equivalent formula.

Algorithm 3.2 A simple algorithm for splitting formulae to avoid blowups
1: function BREAKUP(f-FOLTL formulaϕ)
2: if ϕ unifies with©(ψ∧χ) then
3: return ©(BREAKUP(ψ)∧BREAKUP(χ))
4: else ifϕ unifies withψU(χ∨ ζ) then
5: return BREAKUP(ψ)UBREAKUP(χ) ∨ BREAKUP(ψ)UBREAKUP(ζ)
6: else ifϕ unifies withψR(χ∧ ζ) then
7: return BREAKUP(ψ)UBREAKUP(χ) ∧ BREAKUP(ψ)UBREAKUP(ζ)
8: end if
9: end function

10: function SPLIT(f-FOLTL formulaϕ)
11: ψ← ϕ stripped fromQPrefix(ϕ)
12: repeat
13: ψ′← ψ
14: ψ←BREAKUP(ψ)
15: until ψ′ = ψ
16: end function

3.4.4 Search Space Pruning by Progression

As previously noted, planners for TEGs such as TLPLAN are able to prune the search space by pro-

gressing temporal formulae representing the goal. A states is pruned by progression if the progressed

temporal goal ins is equivalent tofalse. Intuitively, this means that there is no possible sequence of

actions that when executed ins would lead to the satisfaction of the goal.

Using our approach we can also prune the search space in a similar way. We illustrate the intuition

in the propositional case. Suppose we have constructed an NFA for the propositional TEGG. Since our

NFAs have no non-final states that do not lead to a final state, if at some state during the plan all fluents

Eq are false for everyq∈Q, then this means that the goal will never be satisfied. We can also do this in

the first-order case by considering the quantifiers of the TEG.

In the planning domain the pruning can be achieved in two ways. One way is to add

QPrefix(ϕ)
∨

q∈Q

Eq(~x)

as a state constraint (orsafety constraint). The other way is to add this condition to all of the action’s

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 43

Prb. Comp. No. CR+FF DP+FFX
CR/DP Sts. t ℓ t ℓ

1 .02/.02 2 .02 6 .02 6
2 .02/.01 2 .02 8 .01 8
3 .09/.06 15 .04 10 .04 10
4 .06/.07 5 .03 6 .02 6
5 .07/.03 6 .04 15 .03 15
6 .49/.39 37 .19 16 .16 16
7 .05/.03 6 .05 9 .11 10
8 .07/.06 15 .05 10 .04 12
9 .01/.02 4 .03 18 .03 18

10 .04/.05 6 .07 32 .05 15
11 .08/.04 5 .06 22 .03 20
12 .09/.02 5 .50 25 .03 24
13 .09/.05 6 m – .04 28
14 .32/.05 5 m – .10 33
15 .07/.03 5 .11 31 .09 34
16 .09/.04 10 m – .07 46

Table 3.1: A comparison between the two translation approaches for 16 problems on the Robots domain.

preconditions (Bacchus and Ady, 1999; Rintanen, 2000). This second approach however, implies re-

gressing the precondition, so it is prone to the worse-case exponential blowup discussed above.

This means that we are able to add certain types of TDCK to our planning domains by simply

adding the TDCK to the goal. Currently, though, our logic does not have theGoal modality that is used

in TLPLAN , which enables it to tailor the control depending on the goal.

3.5 Implementation and Experiments

We implemented a compiler that takes a planning domain and a TEG in EPNF f-FOLTLas input and

generates a classical planning problem as described in Section 4. Furthermore, the program can convert

the new problem into PDDL, thereby enabling its use with a wide variety of planners.

It is hard to perform an accurate experimental analysis of our approach for two reasons. First, there

are no standard benchmark problems for planning with TEGs. Second, none of the planners for TEGs

is heuristic, so it is not hard to contrive problems easily solvable by our approach but completely out of

the reach of non-heuristic planners.

The rest of the section is divided in two parts. First, it provides an evaluation of the relative perfor-

mance of the two translations we have proposed. Then it provides analysisof the performance of our

approach relative to that of existing planners.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 44

Prb. DP+FFX TPBA/dfs+c TPBA/dfs TPBA/bfs+c TPBA/bfs

t ℓ t ℓ t ℓ t ℓ t ℓ
1 .00 2 .06 2 0.3 2 0.24 2 0.44 2
2 .01 5 .51 15 30 563 0.96 5 44.42 5
3 .01 6 .58 17 29.56 563 1.3 5 47.91 5
4 .02 7 1.20 25 m – 3.29 7 m –
5 .01 13 1.53 34 m – 11.66 10 m –
6 .01 16 1.68 38 m – 28.87 12 m –
7 .02 17 2.00 45 m – 82.57 15 m –
8 .02 17 2.13 49 m – 35.69 17 m –
9 .03 21 2.50 52 m – 13.37 20 m –

10 .07 41 7.18 91 m – 126.25 35 m –
11 .09 46 8.66 101 m – m – m –
12 .10 49 10.06 113 m – m – m –
13 .28 67 19.89 131 m – m – m –
14 2.45 74 28.28 236 m – m – m –
15 4.54 115 43.07 300 m – m – m –

Table 3.2: Our approach compared to search control with Büchi automata

Domain Problems solved Speedup (s) Length ratio (r)

FFX TLPLAN s < 2 2 ≤ s < 10 10≤ s < 100 100≤ s < 1000 s≥ 1000 r = 1 1 ≤ r < 1.3 r ≥ 1.3

ZenoTravel(25) 21(84%) 9(36%) 0 1(11%) 2(22%) 5(56%) 1(11%) 8(89%) 1(11%) 0

Logistics(23) 23(100%) 17(74%) 1(6%) 4(24%) 4(24%) 6(35%) 2(12%) 14(82%) 2(12%) 1(6%)

Robot(16) 16(100%) 9(56%) 0 4(44%) 3(33%) 2(22%) 0 5(56%) 4(44%) 0%

Table 3.3: Performance of our approach compared to TLPLAN in 3 benchmark domains.Speedupand
the length ratioare shown for instances that were solved by both planners.Speedup(resp.length ratio)
is the time taken (resp. plan length obtained) by TLPLAN over that of our approach.

3.5.1 Axioms versus Causal Rules

We have seen in theory that both of our translations have an exponential worst-case, and that the trans-

lation to axioms is more compact. In this section we analyze how this is reflected in theperformance of

real planning systems.

We designed and ran a suite of problems in the robot domain (as per Fig. 3.1)to test the relative

effectiveness of the two translations. In each experiment, we compiled the planning problem to PDDL.

To evaluate the translation to causal rules (CR), we used FF as our heuristic planning engine (CR+FF).

For the translation to derived predicates (DP), we used FFX (DP+FFX), an extension of FF proposed by

Thiébaux, Hoffmann, and Nebel (2005) that supports derived predicates.

Table 3.1 presents results obtained for various temporal goals by both of our translations. The second

and third columns show statistics about the translation. The second column shows the time taken in each

translation, and the third shows the number of states of the automata representing the goal. The rest of

the columns show the time (t) and length (ℓ) of the plans for each approach. The character ‘m’ stands

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 45

for ran out of memory.

Although the relative performance in many cases is comparable, the derived predicates approach is

never inferior to the causal rules approach, and sometimes it is clearly superior.

The causal rule approach may generate problems that cannot be handled by the FF planner, even

when the number of states in the automata is quite low. That is the case of goal number 14, which cor-

responds to the formula:3[(AllIn(R4)∨AllIn(R3))∧©AllClosed)]∧32at(O1,C1), whereAllClosed

stands for a formula where all doors are closed, andAllIn(r) stands for “all objects are inr.” Although

the automaton for this goal is relatively simple, the grounded formulae in the transitions (which are

needed by the causal rules approach), are quite big. This produces very large conditions in conditional

effects, causing FF to run out of memory in the preprocessing phase, in which this planner converts

ADL operators into STRIPS operators.

Since we have shown that the causal rule approach is not superior to thederived predicates approach,

in the next subsection we focus our attention only on the derived predicates approach.

3.5.2 Comparison to State of the Art

We have compared the performance of our translation in conjunction with FFX against TLPLAN and the

planner presented by Kabanza and Thiébaux (2005) (henceforth, TPBA), which uses Büchi automata

to control search. The TPBA planner is not heuristic and is implemented in Scheme. It offers four

templates to write automata. We conducted experiments in the robots domain for goals that fit into these

templates. We have used one of them, which is of the form3(p1∧©(3p2∧ . . .∧©3pn) . . .).4 Results

are shown in Table 3.2

TPBA is significantly outperformed by our approach, even in the presence of extra control informa-

tion added by hand (this is indicated by the ‘+c’ in the table). In dfs mode, TPBA is able to solve every

problem but more slowly and with inferior quality. In the bfs mode with no control information, TPBA

fails for goal 4, which is “O1 must eventually be atR2, then atR4, then atC1, then atR3, and finally at

C2”. On the other hand, TPBA fails in bfs mode with control information for goal10, which is defined

as “eventuallyO1 at R2, then eventually all objects inR4, and finally all objects inC1.” The control

information added by hand in this case is “do not close any doors.”

On the other hand, Table 3.3 presents a comparison of our approach andTLPLAN in three domains.

For each domain, we designed a set of reasonably natural TEGs. BothZenoTravel(a travel agency

domain) andLogistics(a package delivery domain) are benchmark domains from past IPC. Toget a

feeling for the types of goals we used, here is an example of a goal in theZenoTraveldomain:“persons

P1 and P2 want to meet in some city and then eventually be at C1 and C2.” Our third test domain, the

Robotdomain (Bacchus and Kabanza, 1998) describes a robot that moves between rooms and carries

4Three more are available. One is for classical goals, another is for cyclic (infinite) goals, and the third is very similar to
the one we are using.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 46

objects. An example of a goal in the robot domain is:“open all the doors, then deliver objects to the

rooms, and then close all doors.”

Since most of the goals were unsolvable by TLPLAN (exceeding the 1GB RAM limit), we needed

to add extra TDCK to TLPLAN so that it could show more of its potential. We conclude that our

approach significantly outperforms TLPLAN . This can be seen in thespeedupmetric in the table, where

a significant percentage of the problems are solved over two orders of magnitude faster. Note that in

some cases, the plans that are returned are slightly longer than those obtained by TLPLAN . This is

usually the case with heuristic planners, where there is a tradeoff betweenoptimality and speed. Some

plans are not solved by FFX in the ZenoTravel domain, which is due to the presence of universally

quantified disjunctive goals.

The translation times for each of these problems was very low; in most cases it was less than 15%

of the planning time. Furthermore, the ratio|Aϕ|/|ϕ|, whereAϕ is the number of states of|Aϕ|, and|ϕ|

is the size of the TEGϕ never exceeds 1.0, which illustrates that our automata translation does not blow

up easily for natural TEGs.

The results shown, although good, are not surprising. We have compared our heuristic approach

to the blind-search approach (plus pruning) of TLPLAN . Consequently, these results were expected.

TLPLAN is particularly good when used with classical goals and a fair amount of hand-coded TDCK.

Our approach has the advantage that it is able to guide the search effectively towards the satisfaction of

a TEG with no need for hand-coded TDCK.

3.6 Discussion

There are two decisions at the core of our approach that deserve further discussion. The first, has to do

with the decision to choose a reformulation approach, and the second with thechoice of language for

TEGs. We discuss both decisions below.

3.6.1 Why a Reformulation Approach?

Instead of designing a specific heuristic for TEGs, we chose a reformulation approach, which, as we

have seen, may blow up the representation exponentially. Why is a reformulation approach justifiable

when it is conceivable that specific heuristics could be adapted to plan with TEGs?

There are three reasons why we think the reformulation approach has merit on its own. First, as

we have seen, we generate PDDL output, which can be used byany PDDL-compliant planner. This

is important because it means that potentially any advance in classical planning can be leveraged for

planning with TEGs.

Second, a reformulation approach serves as a useful benchmark forfuture comparison. Since TEGs

are very relevant, we expect future work that adapts classical approaches to TEGs. Those extensions

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 47

however, will only be of value if they can be proven to be superior to the original algorithm when applied

to the translated problem. Thus, we think our reformulation approach services the planning community

by providing a uniformbaselinefor future experimental comparison.

Third, using the reformulation approach, it is possible to gain insights about designing specific

heuristics for TEGs. As an example, consider that we wanted to adapt the relaxed plan heuristic in FF

for TEGs. To anyone deciding to take such an approach we would recommend to replicate somehow the

information that is provided by the extra automata predicates during the relaxed plan expansion, rather

than to adapt the progression algorithm to evaluate the formula in the relaxed states. Why? The answer

is a pragmatic one. Updating the truth values of predicates is quite an easy task. Progressing a formula,

on the other hand, might need some effort, especially regarding simplification, that the designer of the

heuristic might not want to pay. Our automata basically encodeall possible waysin which a formula

could be progressed. We pay a price for computing this representationonly oncehowever. Such a price

would be paid multiple times (maybe more than one could afford) if progression iscomputed during

heuristic computation.

By observing in which cases an algorithmA does not do well using the translated domain, one could

adapt the heuristic inA to do better in these cases. It is thus conceivable and quite possible that a TEG

adaptation of an algorithm originally designed for classical goals may outperform the original algorithm

used in conjunction with our reformulation.

3.6.2 Why Not LTL and Büchi Automata?

A fundamental design decision of this work is the use of a finite logic, f-FOLTL, over the standard

LTL logic. As we argued above, the main motivation is to provide a language for goals that is more

compatible with classical planning technology, in which plans returned are finite.

The use of f-FOLTL has several practical advantages. One advantage is that formulae that would

require infinite plans are not allowed by the logic, sometimes even generating automata that accept the

empty language. This allows most planners to immediately realize that the goal is not achievable.

Another advantage of f-FOLTL over LTL, is that there is a very clear relationship between ac-

ceptance condition of automata for f-FOLTL, and the representation of thiscondition in the planning

domain. Indeed, being at an accepting state of a PNFA is equivalent to accepting, and therefore equiva-

lent to satisfying the f-FOLTL formula. The acceptance condition can be represented directly from the

automaton, without any extra information.

With an LTL approach, through B̈uchi automata (BA), there is not always a clear relationship be-

tween being in an accepting state and satisfying the LTL formula. The main reason is that the acceptance

condition for a BA requires visiting an accepting state infinitely often. To clarify this, consider the two

Büchi automata shown in Figure 3.5. The automaton shown in (a) has only finalstates. Clearly in this

case it is not possible to interpret being in an accepting state as satisfying thegoal, as we do with PNFA.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 48

(b)(a)

p

p
q

⊤

¬p∧q

¬p

Figure 3.5: B̈uchi automata for (a)2(p⊃©q) and (b)2p. The automaton (a) is generated by LTL2BA

(Gastin and Oddoux, 2001), whereas (b) was built by hand.

Otherwise we could accept as valid an empty plan starting from an initial planning state wherep is true,

andq is false. On the other hand, in general we cannot expect to interpret not being in an accepting state

as rejection. For the contrived automata for2p shown in Figure 3.5(b), we would not accept an empty

plan as a solution if the initial state already satisfiesp. Although such an automaton is not generated

by standard LTL-to-BA algorithms, we cannot guarantee that similar situationsdo not occur for other

formulae.

We think that an approach that uses BA is indeed feasible if we have additional information as to

what is exactly being checked in each state. This information is usually not available in the graphical

representation of the BA but it is usually available in the internal data-structures used to construct the

automaton. For example, the algorithm to construct BAs by Gerthet al.(1995) that we have adapted, the

Next(q) field contains the formula that needs to be checked in the next state while we are in automaton

stateq. Next(q) can be used to determine whether or not we should accept a finite plan. Themethod

requires evaluating the formula as if the current state repeated for ever.5 As Cresswell and Coddington

(2004) have shown, given an LTL formulaϕ, it is possible to construct a non-temporal formula that

evaluates to true in a states if and only if ϕ is true in a model that contains an infinite repetition ofs.

Such a formula could be somehow encoded in the planning problem to correctly determine when a plan

has been found.

Nevertheless, the drawback of the approach sketched above is that information such as theNext(q)

formula, might not be available from off-the-shelf LTL-to-BA software.This is because typically BAs

are simplified, which usually implies post-processing the automaton. A special modification to the

simplifying algorithms might also be needed in order to keep information such asNext(q) even after

simplification. Arguably, such modifications are not straightforward.

5The repetition of the final state is what Bacchus and Kabanza (1998) callthe idling of the final state. This is the standard
way in which one usually determines whether or not an LTL formula is satisfied by a finite plan.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 49

3.7 Summary and Related Work

In this chapter we proposed a method for reformulating planning instances with first-order TEGs into

classical planning instances. With this reformulation in hand, we exploited domain-independent heuris-

tic search to determine a plan. Our compiler generates PDDL so it is equally amenable to use with any

PDDL-compliant classical planner.

There are many advantages to the quantifiers in our f-FOLTL language. In addition to providing a

richer language for goal specification, f-FOLTL also results in more efficient goal processing. Proposi-

tionalizing out quantifiers, as must be done in previous approaches to this problem, increases the size of

the reformulation as a function of the size of the domain and arity of predicatesin the TEG. In particular,

a propositional encoding requires grounding both the initial state of the automata and their transitions,

making the compilation specific to the instance of the problem.

We tested our approach on more than 60 problems over 3 standard benchmark domains, compar-

ing our results to TLPLAN . Using our method, the FFX planner often produced orders of magnitude

speedup compared to TLPLAN , solving some planning problems TLPLAN was unable to solve. Since

FFX propositionalizes its domains, it does not fully exploit the strength of our first-order goal encoding.

There are several pieces of related work. Rintanen (2000) proposed a reformulation of a subset

of LTL into a set of ADL operators, which is restricted to a very limited set of TEGs. Pistore and

colleagues (e.g. dal Lago, Pistore, and Traverso, 2002) used automata to encode goals for planning with

model checkers. Their approach uses different goal languages and is not heuristic.

Cresswell and Coddington (2004) briefly outline a means of compiling LTL formulae to PDDL.

They translate LTL to deterministic finite state machines (FSM) using progression (Bacchus and Ka-

banza, 1998), and then translate the FSM into an ADL-only domain. The accepting condition must

be determined by simulating an infinite repetition of the last state. Further, the useof deterministic

automata makes it very prone to exponential blowup with even simple goals. Theauthors’ code was un-

available for comparison. They report that their technique is no more efficient than TLPLAN (Cresswell

and Coddington, 2004), so we infer that our method is superior.

Kabanza and Thiébaux’s work (2005) is distinct because they are able to generate infiniteand cyclic

plans. They compile infinite propositional LTL into a Büchi automaton. Then they use the automaton to

guide planning by following a path in its graph from initial to final state, backtracking as necessary. The

planner is more prone to get lost and the restriction to one automaton makes it vulnerable to blowup. In a

recent poster publication (Baier and McIlraith, 2006c), we have presented a similar approach for propo-

sitional TEGs. Besides the expressiveness and efficiency issues related to propositionalizing TEGs, the

reformulation presented generates only ADL operators, which, as shown here, are less efficient both in

theory and in practice.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 50

Finally, Edelkamp (2006a) provides a reformulation of PDDL36 into PDDL2.2 by encoding propo-

sitionalized LTL hard constraints and preferences into Büchi automata. The approach cannot be used

directly to provide heuristic search guidance to achieve TEGs because theacceptance condition of a

Büchi automata requires visiting final states an infinite number of times.

6PDDL3 supports a subset of LTL first-order temporally extended goalsand preferences. It will be introduced in more
detail in Section 4.2.3.

Chapter 4

Planning with Temporally Extended

Preferences

4.1 Introduction

As we have seen in Chapter 2, classical planning requires a planner to find a plan that achieves a specified

goal. In practice, however, not every plan that achieves the goal is equally desirable. Moreover, many

applications requires returning plans that satisfy rich user preferences.

When we use the term rich user preferences, we refer to a range of possible properties that a user

would potentially like their plans to optimize. Given some task to be achieved, users may have prefer-

ences over what goals to achieve, and under what circumstances. They may also have preferences over

howgoals are achieved – properties of the world that are to be achieved, maintained or avoided during

plan execution, and/or adherence to a particular way of doing some or all of the tasks at hand. Interest-

ingly, with the exception of Markov Decision Processes (MDPs), nontrivial user preferences have only

recently been integrated into AI automated planning.

Planning with preferences involves not only finding a plan that achieves the goal, it requires finding

one that achieves the goal while also optimizing the user’s preferences. Unfortunately, finding an opti-

mal plan can be computationally expensive. In such cases, we would at least like the planner to direct

its search towards a reasonably preferred plan.

Planning with preferences is motivated by many applications. Indeed, sincepreferences play a sig-

nificant role in human decision making, it is not hard to argue that most real-world planning applications

will require some kind of preference reasoning. To mention a few, consider the Robocup@Home Sce-

51

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 52

nario1, in which a robot achieves a variety of goals in a domestic environment. Sucha robot would

be required to constantly plan to achieve hard goals but would also certainlybe required to take into

account the preferences of their users. There exist many applicationsin software environments too.

Requirements Engineering could be also viewed as a planning problem as theobjective is to optimize a

function in which the company’s or the user’s preferences play a significant role (e.g. Hui, Liaskos, and

Mylopoulos, 2003). Finally, component software composition and WSC areother compelling applica-

tions.

In this chapter we provide a technique for planning with a rich class of userpreferences. Most

notably this class includestemporally extended preferences. The difference between a TEP and a so-

calledsimplepreference is that a simple preference expresses some desired property of the final state

achieved by the plan, while a TEP expresses a desired property of the sequence of states traversed by

the plan. For example, a preference that a shift worker work no more than 2 overtime shifts in a week is

a temporally extended preference. It expresses a condition on a sequence of daily schedules that might

be constructed in a plan. Planning with TEPs has been the subject of recent research (e.g. Delgrande,

Schaub, and Tompits, 2007; Son and Pontelli, 2006; Bienvenu, Fritz, andMcIlraith, 2006). It was also

a theme of the 5th International Planning Competition (IPC-5).

The technique we propose in this chapter is able to plan with a class of preferences that includes

those that can be specified in the Planning Domain Definition Language PDDL3(Gereviniet al., 2009).

PDDL3 was specifically designed for IPC-5. It extends PDDL2.2 to include, among other things, fa-

cilities for expressing both temporally extended and simple preferences, where the temporally extended

preferences are described by a subset of LTL. It also supports quantifying the value of achieving dif-

ferent preferences through the specification of a metric function. The metric function assigns to each

plan a value that is dependent of the specific preferences the plan satisfies. The aim in solving a PDDL3

planning instance is to generate a plan that satisfies the hard goals and constraints while achieving the

best possible metric value, optimizing this value if possible or at least returninga high value plan if

optimization is infeasible.

Our technique is a two-step approach. The first step exploits the compilation technique we have

presented in the previous chapter to convert planning problems with TEPs toequivalent problems con-

taining only simple preferences defined over an extended planning domain.The second step solves the

reformulated instance with a specialized solver that we have developed.

4.1.1 Contributions of this Chapter

The main contributions of this chapter follow.

• We use the reformulation approach of the previous chapter to show how temporally extended

1http://www.ai.rug.nl/robocupathome/

http://www.ai.rug.nl/robocupathome/

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 53

preferences can be transformed into simple preferences (i.e., preferences that only refer to the

final state). Although this contribution is a straightforward application of ourexisting method, it

is important because allowsanyplanner for simple preferences to plan for TEPs. Also, it enables

the use of distance-bases heuristics for TEGs.

• We develop a set of new heuristics, and a search algorithm that can exploit these heuristics to

guide the planner towards preferred plans. Many of our heuristics areextracted from arelaxed

plan graph. Previous heuristics for classical planning, however, are not well suited to planning

with preferences. The heuristics we present here are specifically designed to address the tradeoffs

that arise when planning to achieve preferences.

Our search algorithm is also very different from previous algorithms used in planning. We prove

that it has a number of attractive properties, including the ability to find optimal plans without

having to resort to admissible heuristics. This is important because admissible heuristics generally

lead to unacceptable search performance. Our method is also able to find optimal plans without

requiring a restriction on plan length or make-span. This is important becausesuch restrictions do

not generally allow the planner to find a globally optimal plan. In addition, the search algorithm

is incremental in that it finds a sequence of plans each one improving on the previous. This is

important because in practice it is often necessary to trade off computation timewith plan quality.

The first plans in this sequence of plans can often be generated fairly quickly and provide the user

with at least a working plan if they must act immediately. If more time is available, the algorithm

can continue to search for a better plan. The incremental search process also employs a pruning

technique to make each incremental search more efficient. The heuristics and search algorithm

presented here can easily be employed in other planning systems.

• Our third and final contribution is that we have brought all of these ideas together into a working

planning system called HPLAN -P. Our planner is built as an extension of the TLPLAN system

(Bacchus and Kabanza, 1998). The basic TLPLAN system uses LTL formulae to expressdomain

control knowledge; thus, LTL formulae serve to prune the search space. However, TLPLAN has

no mechanism for providing heuristic guidance to the search. In contrast,our implementation

extends TLPLAN with a heuristic search mechanism that guides the planner towards plans that

satisfy TEPs, while still pruning those partial plans that violate hard constraints. We also ex-

ploit TLPLAN ’s ability to evaluate quantified formulae to avoid having to convert the preference

statements (many of which are quantified) into a collection of ground instances. This is impor-

tant because grounding the preferences can often yield intractably large domain descriptions. We

use our implementation to evaluate the performance of our algorithm and to analyze the rela-

tive performance of different heuristics on problems from both the IPC-5 SimpleandQualitative

Preferencestracks. We observe that planning performance is improved when using theheuristics

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 54

we propose. We also show that pruning is a technique that is sometimes be critical to finding

good-quality plans.

4.1.2 Outline

In the rest of the chapter we first provide some necessary background. This includes a formal definition

of preference-based planning and a brief description of the featuresof PDDL3 that our approach can

handle. In Section 4.3 we describe the first part of our approach—a method for compiling a domain with

temporally extended preferences into one that is solely in terms of simple (i.e., final state) preferences.

Section 4.4 describes the heuristics and search algorithm we have developed. It also presents a number

of formal properties of the algorithm, including characterizing various conditions under which the algo-

rithm is guaranteed to return optimal plans. Section 4.5 presents an extensive empirical evaluation of the

technique, including an analysis of the effectiveness of various combinations of the heuristics presented

in Section 4.4. Section 4.7 summarizes our contributions and discusses relatedwork after which we

provide some final conclusions.

4.2 Background

For the rest of this chapter, we assume familiarity with STRIPS and ADL planning (described in Sec-

tions 2.1.1 and 2.1.2). We also assume familiarity with planning as heuristic search(cf. Section 2.2).

Section 4.2.1 describes a variation of the well-known approach to computing domain-independent

heuristics based on the computation of relaxed plans that is used by our planner to compute heuris-

tics. As opposed to most well-known approaches, our method is able to handle ADL domains directly

without having to pre-compile the domain into a STRIPS domain. Then, Section 4.2.2 defines for-

mally the preference-based planning problem. Section 4.2.3 describes the planning domain definition

language PDDL3, a recent version of PDDL that enables the definition ofhard constraints, preferences,

and metric functions.

4.2.1 Relaxed Plans for Function-Free ADL Domains

To compute heuristics for function-free ADL domains one can first transform the domain to STRIPS,

using a well-known procedure described by Gazen and Knoblock (1997), and then compute the heuristic

as usual. This is the approach taken by some systems (e.g. FF) but unfortunately this procedure can lead

to a considerable blow up in the size of the original instance.

Our planner handles ADL domains, but takes a different approach. Inparticular, it computes the

relaxed planning graph directly from the ADL instance, using an approach similar to that taken by

the MARVIN planning system (Coles and Smith, 2007). To effectively handle relaxed ADL domains

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 55

(in which effects can be conditioned on negative facts), the relaxed states represent both the facts that

becometrue and the facts that becomefalseafter executing a set of actions. To that end, the relaxed

states are divided into two parts: a positive part, that represents added facts, and a negative part, that

represents deleted facts.

When computing a relaxed graph for a states, the set of relaxed states is a sequence of pairs of fact

sets(F+
0 ,F

−
0), . . . ,(F+

n ,F
−
n), with F+

0 = s andF−
0 = sc, wheresc is the set of facts not ins (i.e., the

complement ofs). Furthermore, if actiona appears in the action layer at depthn, all facts that are added

by a are included in the positive relaxed state at depthF+
k+1, whereas facts that are deleted bya are added

to F−
k+1. Moreover, all facts in layerk are copied to layerk+1 (i.e. F+

n ⊆ F+
k+1 andF−

k ⊆ F−
k+1).

Special care has to be taken in the evaluation of preconditions and conditions in conditional effects

for actions, because negations could appear anywhere in those conditions. To evaluate a formula in a

relaxed state, we evaluate itsnegation normal form(NNF) instead. In NNF, all negations appear right

in front of atomic formulae. A formula can easily be converted to NNF by pushing negations in using

the standard rules¬∃. f ≡ ∀.¬ f , ¬∀. f ≡ ∃.¬ f , ¬(f1∧ f2) ≡ ¬ f1∨¬ f2, ¬(f1∨ f2) ≡ ¬ f1∧¬ f2, and

¬¬ f ≡ f .

Now assume we want to determine whether or not the formulaφ is true in the relaxed state(F+
k ,F

−
k)

in the graph with relaxed states(F+
0 ,F

−
0) · · ·(F+

k ,F
−
k) · · ·(F+

n ,F
−
n). Furthermore, letφ′ be the NNF of

φ. To evaluateφ we instead evaluateφ′ recursively in the standard way, interpreting quantifiers and

boolean binary operators as usual. When evaluating a positive factf , we return the truth value of

f ∈ F+
k . On the other hand, when evaluating a negative fact¬ f , we return the truth value off ∈ F−

k . In

short,¬ f is true at depthk if f was deleted by an action or was already false in the initial state. More

formally,

Definition 4.1 (Evaluation of an NNF formula in a relaxed state) Let the relaxed planning graph con-

structed from the initial state s in a problem where the set of objects of the problem is Objs be(F+
0 ,F

−
0) · · ·(F+

k ,F
−
k).

The following cases define whenφ evaluates to true at level k of the relaxed graph, which is denoted as

(F+
k ,F

−
k) |=

rg
φ.

• if φ is an atomic formula then(F+
k ,F

−
k) |=

rg
φ iff φ ∈ F+

k .

• if φ= ¬ f , where f is an atomic formula, then(F+
k ,F

−
k) |=

rg
φ iff φ ∈ F−

k

• if φ= ψ∧ ξ, then(F+
k ,F

−
k) |=

rg
φ iff (F+

k ,F
−
k) |=

rg
ψ and(F+

k ,F
−
k) |=

rg
ξ.

• if φ= ψ∨ ξ, then(F+
k ,F

−
k) |=

rg
φ iff (F+

k ,F
−
k) |=

rg
ψ or (F+

k ,F
−
k) |=

rg
ξ.

• if φ = ∀x.ψ, then(F+
k ,F

−
k) |=

rg
φ iff for every o∈ Objs (F+

k ,F
−
k) |=

rg
ψ(x/o), whereψ(x/o) is the

formulaψ with all free instances of x replaced by o.2

2In our implementation, bounded quantification is used so that this condition can be checked more efficiently. In particular,

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 56

• if φ= ∃x.ψ, for some o∈Objs(F+
k ,F

−
k) |=

rg
ψ(x/o).

The standard relaxed plan extraction has to be modified slightly for the ADL case. Now, because

actions have conditional effects, whenever a factf is made true by actiona there is a particular set of

facts that is responsible for its addition, i.e. those that made both the precondition of a and the condition

in its conditional effect true. When recursing from a subgoalf we add as new subgoals all those facts

responsible for the addition off (which could be in either part of the relaxed state).

As is the case with STRIPS relaxed planning graphs, whenever a factf is reachable from a state

by performing a certain sequence of legal actions, thenf eventually appears in a fact layer of the graph.

The same happens in these relaxed graphs. This is proven in the following proposition.

Proposition 4.1 Let s be a planning state, R= (F+
0 ,F

−
0)(F+

1 ,F
−
1) · · ·(F+

m ,F
−
m) be the relaxed planning

graph constructed from s up to a fixed point, andφ be an NNF formula. Ifφ is true after performing a

legal sequence of actions a1 · · ·an in s, then there exists some k≤m such that(F+
k ,F

−
k) |=

rg
φ.

Proof: See Appendix B. �

This proposition verifies that the relaxed planning graph is in fact a relaxation of the problem. In

particular, it says that if the goal is not reachable in the relaxed planning graph then it is not achievable

by a real plan.

Besides being a desirable property, this reachability result is key to some interesting properties of

our search algorithm. In particular, as we see later, it is essential to proving that some of the bounding

functions we employ will never prune an optimal solution (under certain reasonable assumptions).

4.2.2 Preference-based Planning

We now introduce the preference-based planning formulation following Baier and McIlraith (2008).

An instance of the PBP problem is a pair(I ,�), whereI is a standard planning instance. Further-

more,� is a transitive and reflexive relation inP ×P, whereP contains precisely all plans forI . The

� relation is the formal mechanism for comparing two plans forI . Intuitively p1 � p2 stands for “p1

is at least as preferred asplan p2.” Moreover, we usep1 ≺ p2 to abbreviate thatp1 � p2 andp2 6� p1.

Thus,p1≺ p2 holds true if and only ifp1 is strictly preferred top2.

Definition 4.2 (Preferece-based Planning)Given an instance N= (I ,�), the preference-based plan-

ning problem consists of finding any plan in the set

ΛN = {p∈ P | there is no p′ ∈ P such that p′ ≺ p}.

this means that not every object inObjsneed be checked.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 57

1. s0s1 · · ·sn |= (always φ) iff ∀i : 0≤ i ≤ n, si |= φ

2. s0s1 · · ·sn |= (sometime φ) iff ∃i : 0≤ i ≤ n, si |= φ

3. s0s1 · · ·sn |= (at end φ) iff sn |= φ

4. s0s1 · · ·sn |= (sometime-after φ ψ) iff ∀i if si |= φ then∃ j : i ≤ j ≤ n, sj |= ψ

5. s0s1 · · ·sn |= (sometime-before φ ψ) iff ∀i if si |= φ then∃ j : 0≤ j < i, sj |= ψ

6. s0s1 · · ·sn |= (at-most-once φ) iff ∀i : 0< i ≤ n, if Si |= φ then∃ j : j ≥ i, ∀k : k> j, sk |= ¬φ

Figure 4.1: Semantics of PDDL3’s temporally extended formulae that do not mention explicit time.

The trajectorys0s1 · · ·sn represents the sequence of states that results from the execution a sequence of

actionsa1 · · ·an.

Intuitively, the setΛN contains all the optimal plans for an instanceI with respect to�. Observe

that now, as opposed to classical planning, we are interested in any plan that isoptimalbased on�.

Below, we define PDDL3, which defines the� relation in a quantitative way. At the end of the

following section we define precisely the PBP problem in PDDL3.

4.2.3 Brief Description of PDDL3

PDDL3 was introduced by Gereviniet al. (2009) for the 5th International Planning Competition. It

extends PDDL2.2 by enabling the specification ofpreferencesandhard constraints. It also provides a

way of defining ametric functionthat defines the quality of a plan dependent on the satisfaction of the

preferences.

The current version of our planner handles the non-temporal and non-numeric subset of PDDL3,

which was the language used for theQualitative Preferencestrack in IPC-5. In this subset, temporal

features of the language such as durative actions and timed fluents are not supported. Moreover, prefer-

ence formulae that mention explicit times (e.g., using operators such aswithin andalways-within)

are not supported. Numeric functions (PDDL fluents) are not supported either. The rest of this section

briefly describes the new elements introduced in PDDL3 that we do support.

Temporally Extended Preferences and Constraints

PDDL3 specifies TEPs and temporally extended hard constraints in a subset of a quantified LTL (Pnueli,

1977). These LTL formulae are interpreted overtrajectories, which in the non-temporal subset of

PDDL3 are sequences of states that result from the execution of a legalsequence of actions. Figure

4.1 shows the semantics of LTL-based operators that can be used in temporally extended formulae. The

first two operators are standard in LTL; the remaining ones are abbreviations that can be defined in terms

of standard LTL operators.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 58

Temporally Extended Preferences and Constraints

Preferences and constraints (which can be viewed as being preferences that must be satisfied) are de-

clared using the:constraints construct. Each preference is given a name in its declaration, to allow

for later reference. By way of illustration, the following PDDL3 code defines two preferences and one

hard constraint.

(:constraints

(and

(preference cautious
(forall (?o - heavy-object)

(sometime-after (holding ?o)

(at recharging-station-1))))

(forall (?l - light)

(preference p-light (sometime (turn-off ?l))))

(always (forall ?x - explosive) (not (holding ?x)))))

Thecautious preference suggests that the agent be at a recharging station sometime after it has

held a heavy object, whereasp-light suggests that the agent eventually turn all the lights off. Finally,

the (unnamed) hard constraint establishes that an explosive object cannot be held by the agent at any

point in a valid plan.

When a preference isexternallyuniversally quantified, it defines a family of preferences, contain-

ing an individual preference for each binding of the variables in the quantifier. Therefore, preference

p-light defines an individual preference for each object of typelight in the domain. Preferences

that are not quantified externally, likecautious, can be seen as defining a family containing a single

preference.

Temporal operators cannot be nested in PDDL3. Our approach can however handle the more general

case of nested temporal operators.

Precondition Preferences

Precondition preferences are atemporal formulae expressing conditions that should ideally hold in the

state in which the action is performed. They are defined as part of the action’s precondition. For

example, the preference labeledecon below specifies a preference for picking up objects that are not

heavy.

(:action pickup :parameters (?b - block)

(:precondition (and (clear ?b)

(preference econ (not (heavy ?b)))))

(:effect (holding ?b)))

Precondition preferences behave something like conditional action costs.They are violated each

time the action is executed in a state where the condition does not hold. In the above example,econ

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 59

will be violated every time a heavy block is picked up in the plan. Therefore these preferences can be

violated a number of times.

Simple Preferences

Simple preferences are atemporal formulae that express a preferencefor certain conditions to hold in

the final state of the plan. They are declared as part of the goal. For example, the following PDDL3

code:

(:goal (and (delivered pck1 depot1)

(preference truck (at truck depot1))))

specifies both a hard goal (pck1 must be delivered atdepot1) and a simple preference (thattruck

is atdepot1). Simple preferences can also be externally quantified, in which case theyagain represent

a family of individual preferences.

Metric Function

The metric function defines the quality of a plan, generally depending on the preferences that have been

achieved by the plan. To this end, the PDDL3 expression(is-violated name), returns the number

of individual preferences in thename family of preferences that have been violated by the plan. When

name refers to a precondition preference, the expression returns thenumber of timesthis precondition

preference was violated during the execution of the plan.

The quality metric can also depend on the functiontotal-time, which, in the non-temporal subset

of PDDL3, returns the plan length, and the actual duration of the plan in moreexpressive settings.

Finally, it is also possible to define whether we want to maximize or minimize the metric, and how we

want to weigh its different components. For example, the PDDL3 metric function:

(:metric minimize (+ (total-time)

(* 40 (is-violated econ))

(* 20 (is-violated truck))))

specifies that it is twice as important to satisfy preferenceecon as to satisfy preferencetruck, and

that it is less important, but still useful, to find a short plan.

In this chapter we focus on metric functions that mention onlytotal-time or is-violated func-

tions, since we do not allow function symbols in the planning domain.

4.3 Preprocessing PDDL3

As described in the previous section, PDDL3 supports the definition of temporally extended preferences

in a subset of LTL. A brute force method for generating a preferred plan would be to generate all

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 60

plans that realize the goal and then to rank them with respect to the PDDL3 metric function. However,

evaluating plans once they have been generated is not efficient because there could be many plans that

achieve the goal. Instead, we need to be able to provide heuristic guidance tothe planner to direct

it towards the generation ofhigh-qualityplans. This involves estimating the merit of partial plans by

estimating which of the TEPs could potentially be satisfied by one of its extensions(and thus estimating

the metric value that could potentially be achieved by some extension). With suchheuristic information

the planner could then direct the search effort towards growing the mostpromising partial plans.

To actively guide the search towards plans that satisfy the problem’s TEPswe develop a two-part

approach. The first component of our approach is to exploit the techniques presented in Chapter 3 to

convert a planning domain containing TEPs into one containing an equivalent set of simple (final-state)

preferences. Simple preferences are quite similar to standard goals (theyexpress soft goals), and thus

this conversion enables the second part of our approach, which is to extend existing heuristic approaches

for classical goals to obtain heuristics suitable for guiding the planner toward the achievement of this

new set of simple preferences. The development and evaluation of thesenew heuristics for simple

preferences is one of the main contributions of our work and is describedin the next section. That

section also presents a new search strategy that is effective in exploiting these heuristics.

In this section we describe the first part of our approach: how the techniques of Chapter 3 can

be exploited to compile a planning domain containing TEPs into a domain containing only simple

preferences. Besides the conversion of TEPs we also describe how we deal with the other features of

PDDL3 that we support (i.e., those described in the previous section).

4.3.1 Temporally Extended Preferences and Constraints

In Chapter 3 we presented a technique that can construct an automatonAϕ from a temporally extended

formulaϕ. The automatonAϕ has the property that it accepts a sequence of states (e.g., a sequence

of states generated by a plan) if and only if that sequence of states satisfies the original formulaϕ.

The technique works for a rich subset of first-order linear temporal logic formulas that includes all of

PDDL3’s TEPs. It also includes TEPs in which the temporal operators arenested, which is not allowed

in PDDL3. To encode PDDL3 preference formulae, each preferenceformula is represented as an au-

tomaton. Reaching an accepting condition of the automaton corresponds to satisfying the associated

preference formula.

The techniques presented in Chapter 3 were aimed at planning with temporally extended goals, not

preferences. Up to the construction of the automata for each temporally extended formula, our approach

is identical to that taken in Chapter 3. However, Chapter 3 proposes the use of derived predicates or

regression to embed the automata in the planning domain. In this Chapter, we have chosen a different

approach that is more compatible with the underlying TLPLAN system we employed in our implemen-

tation. In the rest of the section, we give some more details on the constructionof automata and the way

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 61

we embed these automata into a planning domain.

From PDDL3 to PNFA

The compilation process first constructs a parameterized nondeterministic finite-state automaton (PNFA)

Aϕ for each temporally extended preference or hard constraint expressed as an LTL formulaϕ.

PDDL3 preferences, however, are not written using standard LTL operators. Thus we first trans-

form each PDDL3 operator into a standard formula. Below give a declarative definition of theToLTL

operator, which transforms PDDL3 temporally extended formulas into f-FOLTL.

• ToLTL(Qxϕ) = QxToLTL(ϕ), for Q∈ {∀,∃}.

• ToLTL(¬ϕ) = ¬ToLTL(ϕ).

• ToLTL(ϕ∗ψ) = ToLTL(ϕ)∗ToLTL(ψ), for any Boolean connective∗.

• ToLTL(always(ϕ)) = 2ToLTL(ϕ).

• ToLTL(sometime(ϕ)) = 3ToLTL(ϕ).

• ToLTL(at-end(ϕ)) = 23ToLTL(ϕ).

• ToLTL(at-most-once(ϕ)) = 2(ϕ′ ⊃ ϕ′U(final∨2¬ϕ′)), whereϕ′ = ToLTL(ϕ).

• ToLTL(sometime-before(ϕ,ψ))=2¬ϕ′∨(¬ϕ′∧¬ψ′)U(ψ′∧¬ϕ′∧©3ϕ′), whereToLTL(ϕ)=

ϕ′, andToLTL(ψ) = ψ′.

• ToLTL(sometime-after(ϕ,ψ)) = 2(ϕ′ ⊃3ψ′), whereToLTL(ϕ) = ϕ′, andToLTL(ψ) = ψ′.

• ToLTL(ϕ) = ϕ if ϕ does not if none of the previous expansions apply.

Our transformation generates a formula that is equivalent to the original one, as shown by the fol-

lowing result.

Proposition 4.2 Letϕ be a PDDL3 formula, andσ be the states generated by a plan. Thenσ |= ϕ iff

Int(σ) |= ToLTL(ϕ), where Int(σ) represent the obvious map of a sequence of planning states into a

first-order computation (defined in Definition 3.2 ,p. 24).

Proof: Straightforward from the PDDL3 and f-FOLTL semantics. �

With our preferences represented in f-FOLTL, we run the algorithm of Chapter 3 to obtain a PNFA

for PDDL3 temporally extended preferences. Figure 4.2 shows two examples of PNFA constructed for

PDDL3 formulae.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 62

(true)

(true)q0

q1

(exists (?c)

(and (cafe ?c)

(at ?c)))
q2

(true)

q0

q1

(loaded ?x)

(delivered ?x)

(delivered ?x)

?x

?x

?x(implies (loaded ?x)

(delivered ?x))

(implies (loaded ?x)

(delivered ?x))

(a) (b)

Figure 4.2: PNFA for (a)(sometime (exists (?c) (and (cafe ?c) (at ?c)))), and (b)(forall

(?x) (sometime-after (loaded ?x) (delivered ?x))). In both PNFAq0 is the initial state and the

accepting states are indicated by a double circle border.

A PNFA is useful for computing heuristics because it effectively represents all the different paths

to the goal that can achieve a certain property; its states intuitively “monitor” the progress towards

satisfying the original temporal formula. Therefore, while expanding a relaxed graph for computing

heuristics, one is implicitly considering all possible (relaxed) ways of satisfying the property.

Representing the PNFA Within the Planning Problem

After the PNFA has been constructed it must be embedded within the planning domain. This is ac-

complished by extending the original planning problem with additional predicates that represent the

state of the automaton in each plan state. If the planning domain has multiple TEPs (asis usually the

case), a PNFA is constructed for each TEP formula and then embedded within the planning domain with

automaton-specific automata-state predicates. That is, the final planning problem will contain distinct

sets of automata-state predicates, one for each embedded automaton.

To represent an automaton within the domain, we define a predicate specifying the automaton’s

current set of states. When the automaton is parameterized, the predicate has arguments, representing

the current set of automaton states for a particulartuple of objects. In our example, the fact(aut-state

q0 A) represents that objectA is in automaton stateq0. Moreover, for each automaton we define an

accepting predicate. The accepting predicate is true of a tuple of objects if the plan has satisfied the

temporal formula for the tuple.

Rather than modify the domain’s actions so that the automata state can be properly updated as

actions are executed (as was in Chapter 3) we instead modified the underlying TLPLAN system so

that after every action it would automatically apply a specified set ofautomata updates. Automata

updates work like pseudo-actions that are performed automatically while a new successor is generated.

When generating the successor tos after performing actiona, the planner builds the new states′ by

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 63

adding and deleting the effects ofa. When this is finished, it processes the automata updates overs′,

generating a new successors′′. The states′′ is then regarded as the actual successor ofsafter performing

a. The compilation process can then avoid changes to the domain’s actions andinstead insert all of

the conditions needed to transition the automata state in one self-contained addition to the domain

specification.

Syntactically, the automata updates are encoded in the domain as first-order formulae that contain

theadd anddel keywords, just like regular TLPLAN action effect specifications. For the automata of

Figure 4.2(b), the update would include rules such as:

(forall (?x) (implies (and (aut-state q0 ?x) (loaded ?x))

(add (aut-state q1 ?x))))

That is, an object?x moves from stateq0 to q1 whenever(loaded ?x) is true.

Analogously, we define an update for the accepting predicate, which is performed immediately after

the automata update—if the automaton reaches an accepting state then we add theaccepting predicate

to the world state.

In addition to specifying how the automata states are updated, we also need to specify what ob-

jects are in what automata states in the initial state of the problem. This means we mustaugment the

problem’s initial state by adding a collection of automata facts. Given the original initial state and

an automaton, the planner computes the states that every relevant tuple of objects can be in after the

automaton has inputed the problem’s initial state, and then adds the corresponding facts to the new

problem. In our example, the initial state of the new compiled problem contains facts stating that both

A andB are in statesq0 andq2.

If the temporally extended formula originally described a hard constraint, theaccepting condition

of the automaton can be treated as an additional mandatory goal. During search we also use TLPLAN ’s

ability to incrementally check temporal constraints to prune from the search space those plans that have

already violated the constraint.

4.3.2 Precondition Preferences

Precondition preferences are very different from TEPs: they are atemporal, and are associated with the

execution of actions. If a precondition preferencep is violatedn times during the plan, then the PDDL3

function(is-violated p) returnsn.

Therefore, the compiled problem contains anewdomain functionis-violated-counter-p, for

each precondition preference familyp. This function keeps track of how many times the preference has

been violated. It is initialized to zero and is (conditionally) incremented whenever its associated action

is performed in a state that violates the atemporal preference formula. In thecase where the preference

is quantified, the function is parameterized, which allows us to compute the number of times different

objects have violated the preference.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 64

For example, consider the PDDL3pickup action given above. In the compiled domain, the original

declaration is replaced by:

(:action pickup :parameters (?b - block)

(:precondition (clear ?b))

(:effect (and (when (heavy ?b)

(increase (is-violated-counter-econ) 1)))

(holding ?b))) ;; add (holding ?b)

4.3.3 Simple Preferences

As with TEPs, we add newaccepting predicatesto the compiled domain, one for each simple preference.

We also define updates, analogous to the automata updates for these accepting predicates. Accepting

predicates become true iff the preference is satisfied. Moreover, if the preference is quantified, these

accepting predicates are parameterized: they can be true of some tuples ofobjects and at the same time

be false for other tuples.

4.3.4 Metric Function

For each preference familyname , we define a newdomainfunctionis-violated-name . The return

values of these functions are defined in terms of the accepting predicates (for temporally extended and

simple preferences) and in terms of the violation counters (for preconditionpreferences). If preference

p is quantified, then theis-violated-p function counts the number of object tuples that fail to satisfy

the preference.

By way of illustration, the TLPLAN code that is generated for the preference p-light defined in

Section 4.2.3 is:

(def-defined-function (is-violated-p-light)

(local-vars ?x) ;; ?x is a local variable

(and (:= ?x 0) ;; ?x initialized to 0

(forall (?l) (light ?l)

(implies (not (preference_p-light_satisfied ?l))

(:= ?x (+ ?x 1)))) ;; increase ?x by 1 if

;; preference not satisfied

(:= is-violated-p-light ?x))) ;; return total sum

wherepreference_p-light_satisfied is the accepting predicate defined for preference p-light.

Note our translation avoids grounding by using quantification to refer to all objects of typelight.

If the original metric function contains the PDDL3 function(total-time), we replace its occur-

rence by the TLPLAN function(plan-length), which counts the number of actions in the plan. Thus,

actions are implicitly associated a unitary duration.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 65

The metric function in the resulting instance is defined just as in the PDDL3 definition but by making

reference to these new functions. If the objective was to maximize the function we invert the sign of the

function body. Therefore, we henceforth assume that the metric is always to be minimized.

In the remainder of the chapter, we use the notationis-violated(p,N) to refer to the value of

is-violated-p in a search nodeN. We will sometimes refer to the metric function asM, and we will

useM(N) to denote the value of the metric in search nodeN.

4.4 Planning with Preferences via Heuristic Search

As we have discussed earlier in this document, forward-chaining searchguided by heuristics has proved

to be a powerful and useful paradigm for solving planning problems. Asshown above, the automata

encoding of temporally extended preferences allows us to automatically augment the domain with addi-

tional predicates that serve to keep track of the partial plans’ progresstowards achieving the TEPs. The

central advantage of this approach is that it converts the planning domain toone with simple preferences.

In particular, now the achievement of a TEP is marked by the achievement ofan accepting predicate for

the TEP, which is syntactically identical to a standard goal predicate.

This means that, in the converted domain, standard techniques for computing heuristic distances to

goal predicates can be utilized to obtain heuristic distances to TEP accepting predicates. For example,

the standard technique based on a relaxed planning graph (Hoffmann and Nebel, 2001), which approx-

imates the distance to each goal and each TEP accepting predicate can be used to heuristically guide a

forward-chaining search.

Nevertheless, although the standard methods can be fairly easily modified in thismanner, our aim

here is to develop a search strategy that is more suitable to the problem of planning with TEPs. In

particular, our approach aims to provide a search algorithm with three main features. First, the planner

should find good plans, which optimize a supplied metric function. Second, it should be able to generate

optimal plans, or at least be able to generate an improvement over an existingplan. Finally, since in

some contexts it might be very hard to achieve an optimal plan—and hence a great deal of search effort

could be required—we want the algorithm to find at least one plan as quicklyas possible.

Heuristic search with non-admissible heuristics, like the relaxed goal distances employed in planners

like FF can be very effective at quickly finding a plan. However, they offer no assurances about the

quality of the plan they find. On the other hand, if an admissible heuristic is used, the plan found is

guaranteed to be optimal (assuming the heuristic is admissible with respect to the supplied plan metric).

Unfortunately, admissible heuristics typically perform poorly in practice (Bonet and Geffner, 2001).

Hence, with an admissible heuristic the plan often fails to find any plan. This is typically unacceptable

in practice.

In this section we develop a heuristic search technique that exploits the special structure of the

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 66

translated planning domains in order to (a) find a plan fairly rapidly using a non-admissible heuristic

and (b) generate a sequence of improved plans that, under some fairly general conditions, terminates

with an optimal plan by using a bounding technique. In particular, our search technique allows one to

generate better plans—or even optimal plans—if one has sufficient computational resources available.

It also allows one to improve on an existing plan and sometimes prove a plan to be optimal.

In the rest of the section we begin by describing a set of different heuristic functions that can serve

to guide the search towards satisfying goals and preferences. Then, we describe our search algorithm

and analyze some of its properties.

4.4.1 Heuristics Functions for Planning with Preferences

Our algorithm performs a forward search in the space of states guided byheuristics. Most of the heuristic

functions given below are computed at a search nodeN by constructing a relaxed graph as described

in Section 4.2.1. The graph is expanded from the planning state corresponding to N and is grown until

all goal facts and allpreferencefacts (i.e., instances of the accepting predicates) appear in the relaxed

state or a fixed point is reached. The goal facts correspond to the hardgoals, and the preference facts

correspond to instantiations of the accepting predicates for the convertedTEPs.

Since in our compiled domain we need to update the automata predicates, the procedure in Sec-

tion 4.2.1 is modified to apply automata updates in action layers after all regular actions have been

performed. On the other hand, because our new compiled domain has functions, in addition we modify

the procedure in Section 4.2.1 toignore all effects that directly affect the value of a function. This

means that in the relaxed worlds, all preference counters will have the same value as in the initial state

s. Note that since preference counters do not appear in the conditions ofconditional effects or in the

preconditions of actions, Proposition 4.1 continues to hold for relational facts; in particular, it holds for

accepting predicates.

Below we describe a suite of heuristics that can be computed from the relaxed graph and can be used

for planning with preferences. They are designed to guide the search towards (1) satisfying the goal,

and (2) satisfying highly valued preferences, i.e., those preferencesthat are given a higher weight in the

metric function. However, highly valued preferences can be very hardto achieve and hence guiding the

planner towards the achievement of such preferences might yield unacceptable performance. To avoid

this problem, our approach tries to account for the difficulty of satisfying preferences as well as their

value, ultimately attempting to achieve a tradeoff between these two factors.

Goal Distance Function (G)

This function returns an estimate of the number of actions needed to achieve the goal (planning problems

often contain a hard “must achieve” goal as well as a collection of preferences).G is the same as the

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 67

heuristic used by the FF planner but modified for the ADL case. The value returned byG is the number

of actions contained in a relaxed plan that achieves the goal.

Preference Distance Function (P)

This function is a measure of how hard it is to reach the various preference facts. It is based on a heuristic

proposed by Zhu and Givan (2005) for conjunctive hard goals, butadapted to the case of preferences.

LetP be the set of preference facts that appear in the relaxed graph, and let d(f) be the depth at which

f first appears during the construction of the graph. ThenP(N) =
∑

f∈P d(f)k, for some parameterk.

Notice that unreachable preference facts (i.e., those not appearing in the relaxed graph) do not affectP’s

value.

Optimistic Metric Function (O)

TheO function is an estimate of the metric value achievable from a search nodeN in the search space.

O does not require constructing the relaxed planning graph. Rather, we compute it by assuming (1) no

further precondition preferences will be violated in the future, (2) TEPsthat are violated and that can be

proved to be unachievable fromN are regarded as false, (3) all remaining preferences are regardedas

satisfied, and that (4) the value of(total-time) is evaluated to the length of the plan corresponding to

N. To prove that a TEPp is unachievable fromN, O uses a sufficient condition. It checks whether or not

the automaton forp is currently in a state from which there is no path to an accepting state. Examples

of LTL formulae that can be detected by this technique as always being falsified in the future are those

of the form(always ϕ). Indeed, as soon asϕ becomes false, from no state in the automaton’s current

set of states will it be possible to reach an accepting state.

AlthoughO clearly underestimates the set of preferences that can be violated by anyplan extending

N it is not necessarily a lower bound on the metric value of any plan extendingN. It will be a lower

bound when the metric function is non-decreasing in the number of violated preferences. As we will

see later, lower bounds for the metric function can be used to soundly prune the search space and speed

up search.

Definition 4.3 (NDVPL metric functions) LetI be a (preprocessed) PDDL3 planning instance, let the

setΓ contain its preferences, and letlength(N) be the length of the sequence of action that generated

N. A metric function M isnon-decreasing in the number of violated preferences and in plan length

(NDVPL) iff for any two nodes N and N′ it holds that:

1. If length(N)≥ length(N′), and for every p∈ Γ, is-violated(p,N)≥ is-violated(p,N′), then

M(N)≥M(N′), and

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 68

2. If (total-time) appears in M, and length(N)> length(N′), and for every p∈Γ, is-violated(p,N)≥

is-violated(p,N′), then M(N)>M(N′).

NDVPL metrics are natural when the objective of the problem is to minimize the metricfunction (as in

our preprocessed instances). Problems with NDVPL metrics are those in which violating preferences

never improves the metric of the plan. Furthermore, adding more actions to a plan that fail to satisfy

any new preferences can never improve its metric. Below, in Remark 4.1, wesee thatadditivemetrics,

which were the only metrics used in IPC-5, satisfy this condition.

Proposition 4.3 If the metric function is NDVPL, then O(N) is guaranteed to be a lower bound on the

metric value of any plan extending N.

Proof: The optimistic metric only regards as violated those preferences that are provably violated in

every successor ofN (i.e., in every state reachable fromN by some sequence of actions). It regards as

satisfied all remaining preferences. That is,O is evaluating the metric in a hypothetical nodeNO such

that for any nodeN′ reachable fromN and for everyp∈ Γ is-violated(p,NO)≤ is-violated(p,N′).

Furthermore, becauseO evaluates the plan length to that ofN, our hypothetical node is such that

length(NO) = length(N) and hence we havelength(NO) ≤ length(N′). Since the metric func-

tion is NDVPL, it follows from Definition 4.3 that for every successorN′ of N, M(NO) ≤ M(N′). It

follows thatO(N) returns a lower bound on the metric value of any plan extendingN. �

The O function is a variant of the“optimistic weight” heuristic in the PPLAN planner (Bienvenu

et al., 2006). PPLAN progressesLTL preferences (as defined by Bacchus and Kabanza (1998)) through

every node of the search space. The optimistic weight assumes as falsifiedonly those LTL preferences

that have progressed to false.

Best Relaxed Metric Function (B)

TheB function is another estimate of the metric value achievable by extending a nodeN. It utilizes the

relaxed planning graph grown from the state corresponding toN to obtain its estimate. In particular,

we evaluate the metric function in each of the relaxed worlds of the planning graph and takeB to be

the minimum among these values. The metric function evaluated in a relaxed worldw, M(w), evaluates

theis-violated functions directly onw, and evaluates(total-time) as the length of the sequence of

actions that corresponds toN.

For the case of NDVPL metric functions,B is similar toO, but can return tighter estimates. Indeed,

note that the last layer of the relaxed graph contains a superset of the preference facts that can be made

true by some successor to the current state. Also, because the countersfor precondition preferences

are not updated while expanding the graph, the value of theis-violated functions for precondition

preferences is constant over the relaxed states. This represents the implicit assumption that no further

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 69

precondition preferences will be violated. The metric value of the relaxed worlds does not increase (and

sometimes actually decreases), since the number of preference facts increases in deeper relaxed worlds.

As a result, the metric of the deepest relaxed world is the one that will be returned byB. This value

corresponds to evaluating the metric function in a relaxed state where: (1)is-violated functions for

precondition preferences are identical to the ones inN, (2) preference facts that do not appear in the

relaxed graph are regarded as violated, and (3) all remaining preferences are regarded as satisfied. This

condition (2) is stronger than condition (2) in the definition ofO above. Indeed, no preference that is

detected as unsatisfiable by the method described forO can appear in the relaxed graph, since there is

no path to an accepting state of that preference. Hence, no action can ever add the accepting predicate

for the preference.

By using the relaxed graph,B can sometimes detect preferences that are not satisfiable by any

successor ofN but that cannot be spotted byO’s method. For example, consider we have a preference

ϕ= (sometime f), and consider further that factf is not reachable from the current state. The myopic

O function would regard this preference as satisfiable, because it is always possible to reach the final

state of the automaton for formulaϕ (the automaton forf looks like the one in Figure 4.2(a)). On

the other hand,f might not appear in the relaxed graph—becausef is unreachable from the current

state—and thereforeB would regardϕ as unsatisfiable.

These observations lead to the conclusion thatB(N) will also be a lower bound on the metric value

of any successor ofN under the NDVPL condition.

Proposition 4.4 If the metric function is NDVPL, then B(N) is guaranteed to be a lower bound on the

metric value of any plan extending N.

Proof: Proposition 4.1 implies that all preference facts that could ever be achieved by some successors

of N will eventually appear in the deepest relaxed world. Because the metric is NDVPL, this implies

that the metric value of the deepest relaxed world is also the minimum, and therefore such a value will

be returned by theB function. Now we can apply the same argument as in the proof for Proposition 4.3,

since the returned metric value corresponds to evaluating the metric in a hypothetical node in which all

is-violated counters are lower or equal than those of any plan extendingN. �

Discounted Metric Function (D(r))

TheD function is a weighting of the metric function evaluated in the relaxed worlds. Assumew0,w1, . . . ,wn

are the relaxed worlds in the relaxed planning graph, wherewi is at depthi and thew0 = (s,sc), i.e., the

positive and negative facts of the state whereD(r) is being evaluated. Then the discounted metric,D(r),

is:

D(r) = M(w0)+
n−1
∑

i=0

(M(wi+1)−M(wi))r
i , (4.1)

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 70

whereM(wi) is the metric function evaluated in the relaxed worldwi andr is a discount factor (0≤ r ≤

1).

TheD function is optimistic with respect to preferences that appear earlier in the relaxed graph (i.e.,

preferences that seem easy) and pessimistic with respect to preferences that appear later (preferences

that seem hard). Intuitively, theD function estimates the metric value of plans extending the current state

by “believing” more in the satisfaction of preferences that appear to be easier. Observe thatM(wi+1)−

M(wi) is the amount of metric valuegainedwhen passing from relaxed worldwi to wi+1. This amount

is then multiplied byr i , which decreases asi increases. Observe also that, although the metric gains are

discounted, preferences that are weighted higher in the PDDL3 metric will also have a higher impact on

the value ofD. That is,D achieves the desired tradeoff between the ease of achieving a preference and

the value of achieving it.

A computational advantage of theD function is that it is easy to compute. As opposed to other

approaches, this heuristic never needs to make an explicit selection of the preferences to be pursued by

the planner.

Finally, observe that whenr is close to 1, the effect of discounting is low, and when it is close to

0, the metric is quickly discounted. Whenr is close to 0 theD function is myopic in the sense that it

discounts heavily those preferences that appear deeper in the graph.

Algorithm 4.1 HPLAN -P’s search algorithm
1: function SEARCH-HPLAN -P(initial stateinit , goal formulagoal, a set of hard constraintshConstraints,

metric function METRICFN, heuristic function USERHEURISTIC)
2: frontier← INITFRONTIER(init) ⊲ initialize search frontier
3: closed←∅
4: bestMetric←worst case upper bound
5: HEURISTICFN←G
6: while frontier is not emptydo
7: current← Best element fromfrontier according to HEURISTICFN

8: if ¬CLOSED?(current,closed) and current satisfieshConstraintsthen
9: if METRICBOUNDFN(current)< bestMetricthen ⊲ pruning by bounding

10: if current satisfiesgoal and its metric is< bestMetricthen
11: Output plan forcurrent
12: if this is first plan foundthen
13: HEURISTICFN← USERHEURISTICFN

14: frontier← INITFRONTIER(init) ⊲ search restarted
15: ReinitializeclosedList
16: end if
17: bestMetric←METRICFN(current)
18: end if
19: succ← successors ofcurrent
20: frontier← mergesuccinto frontier
21: closed← closed∪{current}
22: end if
23: end if
24: end while
25: end function

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 71

4.4.2 The Planning Algorithm

Our planning algorithm searches for a plan in a series ofepisodes. The purpose of each of these episodes

is to find a plan for the goal that has a better value than the best found so far. In each planning episode

a best-first search for a plan is initiated using some of the heuristics proposed above. The episode ends

as soon as it finds a plan whose quality is better than that of the plan found in the previous episode. The

search terminates when the search frontier is empty. The algorithm is shown as Algorithm 4.1.

When search is started (i.e., no plan has been found), the algorithm uses the goal distance function

(G) as its heuristic in a standard best-first search. The other heuristics areignored in this first planning

episode. This is motivated by the fact that the goal is a hard condition that must be satisfied. In some

problems the other heuristics (that guide the planner towards achieving a preferred plan) can conflict

with achieving the goal, or might cause the search to become too difficult.

After finding the first plan, the algorithm restarts the search from scratch, but this time it uses some

combination of the above heuristics to guide the planner towards a preferred plan. Let USERHEURIS-

TIC() denote this combination. USERHEURISTIC() could be any combination of the above heuristic

functions. Nevertheless, in this chapter we consider only a small subset of all possible combinations. In

particular, we consider onlyprioritized sequences of heuristics, where the lower priority heuristics are

used only to break ties in the higher priority heuristics.

Since achieving the goal remains mandatory, USERHEURISTIC() always usesG as the first priority,

together with some of the other heuristics at a lower priority. For example, consider the prioritization

sequenceGD(0.3)O. When comparing two states of the frontier, the planner first looks at theG function.

The best state is the one with lowerG value (i.e., lower distance to the goal). However, if there is a tie,

then it usesD(0.3) (the best state being the one with a smaller value). Finally, if there is still a tie, it uses

the O function to break it. In Section 4.5, we investigate the effectiveness of several such prioritized

heuristics sequences.

Pruning the Search Space

Once we have completed the first planning episode (usingG) we want to ensure that each subsequent

planning episode yields a better plan. Whenever a plan is found, it will only be returned if its metric is

lower than that of the last plan found (line 10).

Moreover, in each episode we can use the metric value of the previously found plan to prune the

search space, and thus improve search performance. In each planning episode, the algorithm prunes

from the search space any nodeN that we estimate cannot reach a better plan than the best plan found

so far. This estimate is provided by the function METRICBOUNDFN(), which is given as an argument

to the search algorithm. METRICBOUNDFN(N) must compute or estimate a lowerbound on the metric

of any plan extendingN.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 72

Pruning is realized by the algorithm in line 9, when the condition in theif becomes false. As the

value ofbestMetricgets updated (line 17), the pruning constraint imposes a tighter bound causing more

partial plans to be rejected.

TheO andB heuristic functions defined above are well-suited to be used as METRICBOUNDFN().

Indeed, we tried both of them in our experiments. On the other hand, it is alsosimple to “turn-off”

pruning by simply passing a null function as METRICBOUNDFN().

Discarding Nodes in Closed List

Under certain conditions, our algorithm will also prune nodes that revisit aplan state that has appeared

in a previously expanded node. This is done for efficiency, and allows the algorithm to avoid considering

plans with cycles.

The algorithm keeps a list of nodes that have already been expanded in the variableclosed, just as

in standard best-first search. Furthermore, whencurrent is extracted from the search frontier, its state is

checked against the set of closed nodes (line 8). If there exists a nodein the closed list with the same

state and a better or equal heuristic value (i.e., CLOSED?(current,closed) is true), then the nodecurrent

will be pruned from the search space.

Note that for two states to be identical in the compiled planning instance every boolean predicate has

to coincide and, moreover, values assigned to each ground function alsohave to coincide. In particular,

this means thatis-violated counters in two identical states are also identical, i.e., the preferences are

equally satisfied. Nevertheless, two search nodes with identical states canstill be assigned different

heuristic values. Given the way we have defined USERHEURISTIC(), different heuristic values will be

assigned to nodes with identical states only when the metric function depends on (total-time). If

the (total-time) function appears positively in the metric (i.e., the metric is such that for otherwise

equally preferred plans, longer ones are never preferred to shorter ones), then discarding of nodes cannot

prune any node that leads to an optimal plan. We discuss this further in the next section.

Finally, note that the cycles we are eliminating are those that occur in the compiledinstance,not

those occurring in the original instance. Indeed, in the original instance there might be LTL preferences

that can be satisfied by visiting the same state twice. For example consider the preference:eventu-

ally turn the light switch on and sometime after turn it off. Any plan that contains the actionturn-on

immediately followed byturn-off satisfies the preference but also visits the same state twice. In our

compiled domains however such a plan will not produce a cycle, and therefore will not be pruned. This

is because the set of current states of the preference’s automaton—represented by the automata domain

predicates—changes when performing those actions; indeed it changesfrom a non-accepting state to an

accepting state.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 73

4.4.3 Properties of the Algorithm

In this section we show that under certain conditions our search algorithm isguaranteed to returnoptimal

andk-optimalplans. We will prove this result without imposing any restriction on the USERHEURIS-

TIC() function. In particular, we can still ensure optimality even if this function is inadmissible. In

planning this is important, as inadmissible heuristics are typically required for adequate search perfor-

mance.

The first requirement in our proofs is that the pruning performed by the algorithm issound.

Definition 4.4 (Sound Pruning) The pruning performed by Algorithm 4.1 issoundiff whenever a node

N is pruned (line 9) the metric value of any plan extending N exceeds the current bound bestMetric.

When Algorithm 4.1 uses sound pruning, no state will be incorrectly prunedfrom the search space.

That is, nodeN is not pruned from the search space if some plan extending it can achievea metric-value

superior to the current bound. To guarantee that the algorithm performssound pruning it suffices to

provide a lowerbound function as input to the algorithm.

Theorem 4.1 If METRICBOUNDFN(N) is a lower bound on the metric value of any plan extending N,

then Algorithm 4.1 performs sound pruning.

Proof: If nodeN is not in closed and is pruned from the search space then (a) METRICBOUNDFN(N)≥

bestMetric. If M ETRICBOUNDFN() is a lower bound on the metric value of any plan extendingN, then

(b) METRICBOUNDFN(N) ≤ M(Np) for any solution nodeNp extendingN. By putting (a) and (b)

together we obtain that ifN is not in closed and it is pruned, thenM(Np) ≥ bestMetric, for every

solution nodeNp extendingN, i.e., pruning is sound. �

As proven previously in Section 4.4.1, if the metric function is NDVPL,O andB will both be lower

bound functions, and therefore provide sound pruning. Notice also that “turning off” pruning by having

METRICBOUNDFN() return a value that is always less thanbestMetric, also provides sound pruning.

The second requirement for optimality has to do with the discarding of closed nodes performed in

line 8. To preserve optimality, the algorithm must not remove a node that can lead to a plan that is more

preferred than any plan that can be achieved by extending nodes that are not discarded. Formally,

Definition 4.5 (Discarding of Closed Nodes Preserves Optimality)The discarding of nodes by Algo-

rithm 4.1 preserves optimality iff for any node N that is discarded in line 8, there is either already an

optimal node (i.e., plan) NO in the closed list or there exists a node N in frontier that can be extended to

a plan with optimal quality.

The condition defined above holds when using NDVPL metrics under fairly general conditions. In

particular, it holds for any NDVPL metric that is independent of(total-time). It also holds if the

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 74

NDVPL metric depends on(total-time), andO or B is used as a first tie breaker afterG or P in

USERHEURISTIC(). Finally, it will hold if D is used as the first tie breaker for NDVPL metric functions

that areadditive on total-time.

Definition 4.6 (Additive on total-time (ATT)) A metric function M is additive on total time (ATT) iff it

is such that M(N) = MP(N)+MT(N), where MP(N) is an expression that does not mention the function

(total-time), and MT(N) is an expression whose only plan-dependent function is(total-time).

Intuitively, an ATT metric is a sum of a function that only depends on theis-violated functions, and

a function that includes(total-time) but does not include anyis-violated functions. Now we are

ready to state our result formally.

Theorem 4.2 The discarding of nodes done by Algorithm 4.1 preserves optimality if the Algorithm

performs sound pruning, the metric function M is NDVPL and:

1. M is independent of(total-time), or

2. M is dependent on(total-time) and O or B are used as the first tie breaker inUSERHEURIS-

TIC() after G or P, or

3. M is ATT and D is used as the first tie breaker inUSERHEURISTIC() after G or P.

Proof: See Appendix B. �

An important fact about sound pruning is that it never prunes optimal plans from the search space,

unless another optimal plan has already been found. An important consequence of this fact, is that the

search algorithm will be able to find optimal plans under fairly general conditions. Our first result says

that, under sound pruning, optimality is guaranteed when the algorithm terminates.

Theorem 4.3 Assume Algorithm 4.1 performs sound pruning, and that its node discarding preserves

optimality. If it terminates, the last plan returned, if any, is optimal.

Proof: Each planning episode has returned a better plan, and the algorithm stops only when the final

planning episode has rejected all possible plans. Since the algorithm neverprunes or discards a node

that can be extended to an optimal unless an optimal plan has already been found then no plan better

than the last one returned exists. �

Theorem 4.3 still does not guarantee that an optimal solution will be found because the algorithm

might never terminate. To guarantee this we must impose further conditions thatrestrict the explored

search space to be finite. Once we have these conditions, optimality is easy to prove since the search

must eventually terminate.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 75

Theorem 4.4 Assume the following conditions hold:

1. The initial value of bestMetric (worst case upper bound) in Algorithm 4.1is finite;

2. The set of cycle-free nodes N such thatMETRICBOUNDFN(N) is less than the initial value of

bestMetric is finite;

3. Algorithm 4.1 performs sound pruning;

4. Node discarding in Algorithm 4.1 preserves optimality.

Then Algorithm 4.1 is guaranteed to find an optimal plan, if one exists.

Proof: Each planning episode only examines nodes with estimated metric value—given by MET-

RICBOUNDFN—that is less thanbestMetric. By assumption 2, this is a finite set of nodes, so each

episode must complete and the algorithm must eventually terminate. Now the resultfollows from The-

orem 4.3. �

In Theorem 4.4, condition 1 is satisfied by any implementation of the algorithm thatuses a suffi-

ciently large number for the initial value ofbestMetric. Moreover, Theorem 4.1 shows how condition

3 can be satisfied, and Theorem 4.2 shows how condition 4 can be satisfied. Condition 2, however, can

sometimes be falsified by a PDDL3 instance. In particular, the metric function can be defined in such a

way that its valueimprovesas the number of violated precondition preferences increases. Under such a

metric function the plans’ metric values might improve without bound as the plan length increases. This

would mean that the number of plans with metric value less than the intitial bound,bestMetric, becomes

unbounded, and condition 2 will be violated. We can avoid cases like this when the metric function is

bounded on precondition preferences.

Definition 4.7 (BPP metrics) Let the individual precondition preferences for a planning instance P

be Γ, and let U denote the initial value of bestMetric. A metric function isbounded on precondition

preferences(BPP) if there exists a value ri for each precondition preference pi ∈ Γ such that in every

node N withMETRICBOUNDFN(N)<U, pi is never violated more than ri times.

BPP metrics are such that theis-violated functions are always smaller than a fixed bound in every

node with metric value lower thanU . This property guarantees that there are only a finite number of

plans with value less thanU , and ultimately enables us to prove another optimality result:

Corollary 4.1 Assume that the metric function for planning instance P is BPP and assume conditions

1, 3, and 4 in Theorem 4.4 hold. Then Algorithm 4.1 finds an optimal plan for P.

Proof: We need only prove that the set of nodesN with METRICBOUNDFN(N)< bestMetricis finite.

This will satisfy condition 2 and allow us to apply Theorem 4.4. The BPP condition ensures that each

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 76

precondition functionpi in N can only have a value in the range 0–r i (for some fixed valuer i). Since

the precondition functions are the only functions in the planning instance (theremaining elements of

the state are boolean predicates), this means that only a finite number of different states can have this

property. �

Note that the NDVPL property, which we could use to satisfy condition (4) in Theorem 4.4,does not

imply necessarily the BPP property. As an example suppose a domain whereprecPref is a precondition

preference, andgoalPref1 andgoalPref2 are final-state preferences. Assume we are using theB

function as METRICBOUNDFN and that the metric for a nodeN is defined as:

M(N)= is-violated(goalPref1,N)∗is-violated(precPref,N)+is-violated(goalPref2,N).

(4.2)

M is clearly NDVPL since it cannot decrease as plans violate more preferences. However,M does not

necessarilyincreaseas more preferences are violated, which can lead to situations in which we have

an infinite set of goal nodes with the same metric value. Indeed, assumegoalPref2 is an unreachable

preference that cannot be detected by the relaxed graph (i.e., it is suchthat it won’t be detected by our

B bounding function). Moreover, assume the planner has found a node that satisfiesgoalPref1. As-

sumingprecPref can be violated by some action in the planning instance, there might be infinite plans

that could be generated that violateprecPref repeatedly while still satisfyinggoalPref1. Because

the is-violated functions are represented within the state, those plans cannot be eliminated by the

algorithm since they will not produce cycles.

The BPP and NDVPL properties are quite natural conditions on the metric function. Indeed, it is rea-

sonable to assume that violated preferences are undesirable. Hence, aplan should become (arbitrarily)

worse as the number of preferences it violates becomes (arbitrarily) larger. Such a property is sufficient

to guarantee both the NDVPL and the BPP conditions. Theadditivefamily of metric functions satisfies

both conditions, and it is defined as follows.

Definition 4.8 (Additive metric function) A PDDL3 metric function isadditive, if it has the form M=
∑n

i=0ci×is-violated(pi), where ci ≥ 0.

Remark 4.1 Additive metric functions satisfy the NDVPL condition and satisfy the BPP condition when

METRICBOUNDFN is either B or O.

Additive metric functions were used in all of the problems in the qualitative preference track of IPC-5.

Therefore, our algorithm—when usingO or B for pruning—is guaranteed to find an optimal solution

for these problems, given sufficient time and memory. In practice, however, due to restrictions of time

and memory, the algorithm finds the optimal solution only in the most simple problems. On the other

larger problems it returned the best plan its completed planning episodes found in the time alloted.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 77

k-Optimality

Instead of searching for an optimal plan among the set of all valid plans, one might be interested in

restricting attention to a subset of the valid plans. For example, there might be resource usage limitations

that might further constrain the set of plans that one is willing to accept. This might be the case when

a shift worker cannot be asked to work more than one overtime shift in three days, or a plane cannot

log more than a certain number of continuous kilometers. If the set of plans one is interested in can

be characterized by a temporally extended property, it suffices to add such a property to the set of hard

constraints. The optimality results presented above, will allow the planner to find the optimal plan from

among the restricted set of plans, regardless of the property used.

For some interesting properties, however, we can find optimal plans underweaker conditions on the

metric function than those required in the general case above. This is the case, for example, when we

are interested in plans whose length is bounded by a certain value.

Several existing preference planners are able to find plans that are optimal among the set of plans

with restricted length or makespan. For example, PPLAN (Bienvenuet al., 2006) when given a boundk

is able to find an optimal plan among those with lengthk or less. Similarly, both the system by Brafman

and Chernyavsky (2005) and SATPLAN-P (Giunchiglia and Maratea, 2007) return optimal plans among

those plans of makespann, wheren is a parameter. It should be noted, however, that such plans need

not be globally optimal. That is, there could be plans of longer length or makespan that have higher

value than the plan returned by these systems. Our algorithm, on the other hand, can return the globally

optimal plan under conditions described above. If we are interested, however, in plans of restricted

length then our algorithm can returnk-optimal plans under weaker conditions.

Definition 4.9 (k-optimal plan) A plan is k-optimaliff it is the optimal among the set of plans of length

i ≤ k.

To achievek-optimality, we force the algorithm to search in the space of plans whose lengthis smaller

than or equal tok, by imposing an additional hard constraint that restricts the length of the plan.

Theorem 4.5 Assume Algorithm 4.1 uses sound pruning, and that the set of initial hard constraints

contains the formula(total-time)≤ k. Then, the returned plan (if any) is k-optimal.

Proof: Since the space of plans of length up tok is finite, each planning episode will terminate with

an improved plan (if any exists). Because of sound pruning, no node can be wrongly pruned from the

search space. Hence, the last returned plan (if any) is optimal. �

Note that this result does not require restrictions on the metric function suchas condition 2 in

Theorem 4.4. Thus, this result is satisfied by a broader family of metric functions than those that satisfy

Theorem 4.4; for example, it is satisfied when using NDVPL metrics such as the one in Equation 4.2.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 78

4.5 Implementation and Evaluation

We have implemented our ideas in the planner HPLAN -P. HPLAN -P consists of two modules. The

first is a preprocessor that reads PDDL3 problems and generates a planning problem with only simple

preferences expressed as a TLPLAN domain. The second module is a modified version of TLPLAN that

is able to compute the heuristic functions and implements the algorithm of Section 4.4.

Recall that two of the key elements in our algorithm are the iterative pruning strategy and the heuris-

tics used for planning. In the following subsections we evaluate the effectiveness of our planner in

obtaining good quality plans using several combinations of the heuristics. Asa testbed, we use the

problems of the qualitative preferences track of IPC-5, all of which contain TEPs. The IPC-5 domains

are composed of two transportation domains:TPP andtrucks, a production domain:openstacks, a do-

main which involves moving objects by using machines under several restrictions: storage, and finally,

rovers, which models a rover that must move and collect experiments (for more details, we refer the

reader to the IPC-5 booklet (Dimopolus, Gerevini, Haslum, and Saetti, 2006)). Each domain consists of

20 problems. The problems in thetrucks, openstacks, androvers domains have hard goals and prefer-

ences. The remaining problems have only preferences. Preferencesin these domains impose interesting

restrictions on plans, and usually there is no plan that can achieve them all.

At the end of the section, we compare our planner against the other planners that participated in

IPC-5. The results are based on the data available from IPC-5 (Gerevini, Dimopoulos, Haslum, and

Saetti, 2006) and our own experiments.

4.5.1 The Effect of Iterative Pruning

To evaluate the effectiveness of iterative pruning we compared the performance of three pruning func-

tions: the optimistic metric (O), the best relaxed metric (B), and no pruning at all. From our experiments,

we conclude that most of the time pruning can only produce better results thanno pruning, and that,

overall, pruning withB usually produces better results than pruning withO.

To compare the different strategies, we ran all IPC-5 problems withO and no pruning, with a 30-

minute timeout. The heuristics used in these experiments were the four top-performing strategies on

each domain, under pruning withB.

The impact of pruning varies across different domains. In three of the domains, the impact of

pruning is little. In thestorage andTPP domains, pruning has no effect, in practice. In therovers

domain, the impact is slim:O performs as good asB does, and no pruning, on average, produces

solutions with a 0.05% increase on the metric. An increased impact is observedin the trucks domain,

where the top-performing heuristics improve the metric of the first plan foundby 30.60% underB

pruning, while underO pruning the metric is improved by 28.02% on average, and under no pruning

by 21.33% on average. Finally, the greatest impact can be observed on the openstacks domain. Here,

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 79

B produces 13.63% improvement on average, while both no pruning and pruning with O produce only

1.62% improvement.

In general, pruning has a noticeable impact when, during search, it canbe frequently proven that

certain preferences willnot be satisfied. In the case of theopenstacks domain for example, most pref-

erences require certain products (which are associated withorders) to bedelivered. On the other hand,

the goal usually requires a number of orders to beshipped. To ship an order one is required to start

the order, and then ship it. However, to deliver a product associated withordero, one needs tomake

the product aftero has been started and before theo has been shipped. Thus, whenever an ordero is

shipped, theB function automatically regards as unsatisfiable all preferences that involved the delivery

of an unmade product associated witho. This occurs frequently in the search for plans for this domain.

The initial solution, which ignores preferences, produces a plan with nomake-productactions. As the

search progresses, states that finish an order early are constantly pruned away, which in turn favours

addingmake-productactions.

A side effect of pruning is that it can sometimes prove (when the conditions of Theorem 4.3 are met)

that an optimal solution has been found. Indeed, the algorithm stops on mostof the simplest problems

across all domains (therefore, proving it has found an optimal plan). Ifno pruning was used the search

would generally never terminate.

4.5.2 Performance of Heuristics

To determine the effectiveness of various prioritized heuristic sequences (Section 4.4.1) we compared

42 heuristic sequences usingB as a pruning function, allowing the planner to run for 15 minutes over

each of the 80 IPC-5 problem instances. All the heuristics hadG as the highest priority (therefore,

we omitG from their names). Specifically, we experimented withO, B, OP, PO, BP, PB, andBD(r),

D(r)B, OD(r), D(r)O for r ∈ {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1}.

In general, we say that a heuristic is better than another if it produces plans with better quality,

where quality is measured by the metric of the plans. To evaluate how good a heuristic is, we measure

the percent improvement of the metric of the last plan found with respect to themetric of the first plan

found. Thus, if the first plan found has metric 100, and the last has metric 20, the percent improvement

is 80%. Since a first plan is always found usingG, its metric value is always the same, regardless of the

heuristic we choose. Hence this measure can be used to objectively compare performance.

Table 4.1 shows the best and worst performing heuristics in each of the domains tested. In many

domains, several heuristics yield very similar performance. Moreover, we conclude that the heuristic

functions that use the relaxed graph are key to good performance. In all problems, saveTPP, the

heuristics that used the relaxed graph had the best performance. The case ofTPP is pathological in the

qualitative preference track. However, upon looking at the actual plans traversed during the search we

observed that it is not the case thatO is agoodheuristic for this problem, indeedO is almost totally blind

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 80

Domain 1 Plan >1 Plan

Best heuristics

Worst heuristics

openstacks 18 14 BP[13.77], DO(1)[13.63],
DB(1)[13.63], BD(1)[13.63],
B[13.63]

D(0)B[7.56], for r ∈

{0.01,0.05,0.1}: DO(r)[7.63]
and DB(r)[7.63]

trucks 5 4 D(0)O[30.68], OD(0)[30.68] PB[5.35], OP[5.35], PO[5.35],
O[12.02]

storage 16 9 BO[37], OB[37], B[37], O[37],
BD(0.05)[35.62], OD(0.05)[35.55],
BD(0)[35.42]

PO[21.04], PB[21.04], BP[24.18],
OP[24.18]

rovers 11 9 D(0.1)O[17.15], D(0.1)B[17.15],
D(0.3)B[16.91], D(0.3)O[16.91],
O(0.01)D[16.47], O(0.05)D[16.47]

BP[6.97], OP[7.16], B[10.85],
OB[10.85], BO[10.85], O[10.85]

TPP 20 20 O[40.32], BO[32.02], B[32.02],
OB[33.97]

for r ≤ 0.9: BD(r)[9.03],
OD(0.9)[10.98]

Table 4.1: Performance of different heuristics in the problems of theQualitative Preferencestrack of

IPC-5. The second column shows the number of problems where at least one plan was found. The third,

shows how many of these plans were subsequently improved upon by the planner. The average percent

metric improvement wrt. the first plan found is shown in square brackets.

since in most statesO is equal to 0. Rather, it turns out that heuristics based on the relaxed graph are

poor in this domain, misguiding the search. In Section 4.6, we explain scenarios in which our heuristics

can perform badly, and give more details on whyTPP is one of these cases.

4.5.3 Comparison to Other Approaches

We entered HPLAN -P in the IPC-5Qualitative Preferencestrack (Gereviniet al., 2006), achieving 2nd

place behind SGPlan5 (Hsuet al., 2007). Despite HPLAN -P’s distinguished standing, SGPlan5’s perfor-

mance was superior to HPLAN -P’s, sometimes finding better quality plans, but generally solving more

problems and solving them faster. SGPlan5’s superior performance was not unique to the preferences

tracks. SGPlan5 dominated all 6 tracks of the IPC-5satisficing plannercompetition. As such, we con-

jecture that their superior performance can be attributed to the partitioning techniques they use, which

are not specific to planning with preferences, and that these techniquescould be combined with those of

HPLAN -P. This is supported by the fact that HPLAN -P has similar or better performance than SGPlan5

on simple planning instances, as we see in experiments shown at the end of thissection.

HPLAN -P consistently performed better thanMIPS-BDD (Edelkamp, Jabbar, and Naizih, 2006) and

MIPS-XXL (Edelkamp, 2006b); HPLAN -P can usually find plans of better quality and solve many more

problems.MIPS-BDD andMIPS-XXL use related techniques, based on propositional Büchi automata, to

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 81

handle LTL preferences. We think that part of our superior performance can be explained because our

compilation does not ground LTL formulae, avoiding blowups, and also because the heuristics are easy

to compute. For example,MIPS-XXL andMIPS-BDD were only able to solve the first two problems (the

smallest) of theopenstacks domain, whereas HPLAN -P could quickly find plans for almost all of them.

In this domain the number of preferences was typically high (the third instancealready contains around

120 preferences). On the other hand, something similar occurs in thestorage domains. In this domain,

though, there are many fewer preferences, but these are quantified.More details can be found on the

results of IPC-5 (Gereviniet al., 2006).

While we did not enter theSimple Preferencestrack, experiments performed after the competition

indicate that HPLAN -P would have done well in this track. To perform a comparison, we ran our planner

for 15 minutes3 on the first 20 instances4 of each domain. In Table 4.2, we show the performance

of HPLAN -P’s best heuristics compared to all other participants, in those domains on which all four

planners solved at least one problem. HPLAN -P was able to solve 20 problems in all domains, except

trucks, where it could only solve the 5 simpler instances (see Table 4.3 for details onthetrucks domain).

In the table, #S is the number of problems solved by each approach, andRatio is the average ratio

between the metric value obtained by the particular planner and the metric obtained by our planner.

Thus, values over 1 indicate that our planner is finding better plans, whereas values under 1 indicate the

opposite. The results for HPLAN -P were obtained on an Intel(R) Xeon(TM) CPU 2.66GHz machine

running Linux, with a timeout of 15min. Results for other planners were extracted from the IPC-5

official results, which were generated on a Linux Intel(R) Xeon(TM) CPU 3.00GHz machine, with a 30

min. timeout. Memory was limited to 1GB for all processes.

We conclude that SGPlan5 typically outperforms HPLAN -P. SGPlan5, on average, obtains plans

that are no more than 25% better in terms of metric value than those obtained by HPLAN -P. Moreover,

in the most simple instances usually HPLAN -P does equally well or better than SGPlan5 (see Table 4.3).

HPLAN -P can solve more instances than those solved byYochanPS , MIPS-XXL andMIPS-BDD. Fur-

thermore, it outperformsYochanPS and MIPS-XXL in terms of achieved plan quality. HPLAN -P’s

performance is comparable to that ofMIPS-BDD in those problems that can be solved by both planners.

Finally, we again observed that the best-performing heuristics in domains other thanTPP are those that

use the relaxed graph, and, in particular, theD heuristic.

We ran a final comparison between SGPlan5 and HPLAN -P on theopenstacks-nce domain (Haslum,

2007). openstacks-nce is a re-formulation of the originalopenstacks simple-preferences domain that

does not include actions with conditional effects. These two domains are essentially equivalent in the

sense that plans in one domain have a corresponding plan with equal qualityin the other. The results are

shown in Table 4.4. We observe that HPLAN -P consistently outperforms SGPlan5 across all instances

3In IPC-5, planners where given 30 min. on a similar machine.
4Only thepathways domain has more than 20 problems.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 82

Domain HPLAN -P SGPlan5 YochanPS MIPS-BDD MIPS-XXL

#S Ratio #S Ratio #S Ratio #S Ratio #S Ratio
TPP 20 1 20 .78–.8 11 1.02–1.07 9 0.94–0.99 9 1.68–1.78
openstacks 20 1 20 .89–.92 * * 2 2.5 18 6.45–6.81
storage 20 1 20 .74–.76 5 3.86–3.95 4 1 4 15.41
pathways 20 1 20 .77 4 1.02 10 0.79 16 1.19–1.21

Table 4.2: Relative performance of HPLAN -P’s best heuristics for simple preferences, compared to

other IPC-5 participants.Ratio compares the performance of the particular planner and HPLAN -P’s.

Ratio> 1 means HPLAN -P is superior, and Ratio< 1 means otherwise. #S is the number of problems

solved. “*” means the planner did not compete in the domain.

of this domain, obtaining plans that are usually at least 50% better in quality. Wealso observe that the

performance of HPLAN -P is consistent across the two formulations, which is not the case with SGPlan5.

4.6 Discussion

In previous sections, we proposed a collection of heuristics that can be used in planning with TEPs and

simple preferences in conjunction with our incremental search algorithm. In our experimental evaluation

we saw that in most domains the heuristics that utilize the relaxed planning graphare those that provide

the best performance. Given the limited number of domains in which we have had the opportunity to test

the planner, it is hard—and might be even be impossible—to conclude which is the best combination

of heuristics to use. It is even hard to give a justified recipe for their use.However, some situations in

which our heuristics perform poorly can be identified and analyzed. Below we describe two reasons for

potential poor performance.

The first reason for potentially poor performance is due to our choice ofusing prioritized sequences

of heuristics. We have chosen the goal distanceG to appear as the first priority to guide the planner

towards satisfying the must-achieve goals for a pragmatic reason: the goalis the most important thing

to achieve. However, this design decision sometimes makes the search algorithm focus excessively on

goal achievement to the detriment of preference satisfaction. This issue becomes particularly relevant

when there are interactions between the goal and the preferences. Consider, for example, a situation in

which a preferencep canonly be achievedafter achieving the goal. Furthermore, assume the goalg

is the conjunctionf1∧ f2, and assume that prior to achievingp one has to makef2 false. In cases like

this, after the algorithm finds a plan for the goal, it can hardly find a plan thatalso satisfiesp. When

extending any plan forg, the planner will always choose an action that does not invalidate the subgoal

f2 over an action that invalidatesf2, if such an action is available. This is because the goal distance (G)

of any search node in whichf2 is false is strictly greater than the goal distance in which bothf1 and f2

are true. As a consequence, the algorithm will have trouble achievingp, and actually will only achieve

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 83

Instance YochanPS MIPS-BDD MIPS-XXL SGPlan5 HPLAN -P

O OD(r=0.5) OD(r=0) OD(r=1)

TPP-01 22 16 16 16 16 16 16 16

TPP-02 36 24 24 24 24 24 24 24

TPP-03 24 29 29 29 29 29 29 29

TPP-04 45 35 35 35 39 35 35 42

TPP-05 103 89 223 79 103 79 87 105

TPP-06 133 110 275 101 120 118 114 120

TPP-07 124 126 322 100 124 135 135 135

openstacks-01 * 12 63 13 6 6 6 6

openstacks-02 * 12 63 16 4 4 4 4

openstacks-03 * ns 88 12 36 30 36 30

openstacks-04 * ns 98 26 47 44 45 49

openstacks-05 * ns 133 36 25 21 25 21

openstacks-06 * ns 133 33 21 18 21 18

openstacks-07 * ns 285 67 87 74 87 74

trucks-01 0 0 0 1 0 0 0 0

trucks-02 3 0 0 0 0 0 0 0

trucks-03 0 0 0 0 0 0 0 0

trucks-04 0 0 ns 0 3 1 3 4

trucks-05 1 ns ns 0 0 0 0 0

storage-01 6 3 18 5 3 3 3 3

storage-02 11 5 37 8 5 5 5 5

storage-03 49 6 158 14 6 6 6 6

storage-04 51 9 197 17 9 9 9 9

storage-05 165 ns ns 87 97 130 130 97

storage-06 ns ns ns 124 161 195 195 161

storage-07 ns ns ns 160 274 281 307 274

pathways-01 2 2 3 2 2 2 2 2

pathways-02 3 3 5 3 3 4 4 4

pathways-03 3 3 4.7 3 3 3.7 3.7 3.7

pathways-04 3 2 3 2 2 2 2 2

pathways-05 ns 7 10.2 6.5 8.5 9 10.2 10.2

pathways-06 ns 8 12.9 10 12.9 12.9 12.9 12.9

pathways-07 ns 11 12.5 8 12.5 12.5 12.5 12.5

Table 4.3: Plan quality (metric) of three of HPLAN -P’s heuristics compared to the IPC-5Simple Pref-

erencesparticipants on the simpler, non-metric problems. “ns” means that the instance what not solved

by the planner. “*” means the planner did not compete in the domain.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 84

openstacks-nce openstacks

Instance
SGPlan5 HPLAN -P SGPlan5 HPLAN -P

O OD(.5) OD(0) OD(1) O OD(.5) OD(0) OD(1)

01 70 11 11 11 11 13 6 6 6 6

02 70 7 11 7 11 16 4 4 4 4

03 90 38 42 37 41 12 36 30 36 30

04 100 48 49 46 49 26 47 44 45 49

05 140 48 48 48 48 36 25 21 25 21

06 140 35 41 34 41 33 21 18 21 18

07 300 98 98 98 98 67 87 74 87 74

08 620 140 152 148 148 123 86 78 86 78

09 620 154 155 154 154 121 109 123 109 123

10 120 30 25 30 20 20 19 11 10 13

11 120 36 26 36 22 21 19 22 23 12

12 153 80 81 80 73 23 52 45 45 51

13 223 190 172 181 174 48 171 167 167 167

14 65 47 22 47 24 6 32 23 21 21

15 210 125 123 125 126 0 74 67 67 67

16 210 133 133 133 133 0 74 63 67 63

17 450 224 255 269 254 0 209 179 179 180

18 930 588 558 929 557 0 557 464 464 493

19 1581 1581 1581 1581 1581 254 1581 1581 1581 1581

20 1348 1348 1348 1348 1348 424 1348 1348 1348 1348

openstacks-nce openstacks

Table 4.4: Metric values obtained by four of HPLAN -P’s heuristics and SGPlan5 on theopenstacks and

openstacks-nce(Haslum, 2007) domains.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 85

p when extending a plan forg whenno actionsthat invalidatef2 are available. Unfortunately the only

way of getting into such a situation implies exhausting the search space of plansthat extend a plan forg

without invalidatingg.

The second source for poor performance is the loss of structure in which we incur by computing our

heuristic in a planning instance in which the action’s deletes (i.e., negative effects) are ignored. The in-

accurate reachability information provided by this relaxation might significantlyaffect the performance

of all our heuristics based on the relaxed planning graph (i.e.,P, B, andD). Consider for example an

instance in which there are no hard goals and there are two preferences, p1 andp2. Assume further that

p2 is a preference that is rather easy to achieve from any state but that hasto be violated in order to

achievep1. Assume that we are in a state in whichp2 is satisfied butp1 is not, and in which we need

to perform at least three actions to achieve bothp1 and p2. Let those actions bea, b, andc, such that

a makesp2 false andp1 true, and finally actionb followed byc reestablishp1, as shown in Figure 4.3.

Moreover, assume that actione is applicable ins, and that it leads tos2—a state from whichp1 and

p2 can be reached by the same sequence of three actions. Because theD heuristic is computed on the

delete relaxation,D will always prefer to expands2 instead ofs1. A relaxed solution ons2 may achieve

both preferences at depth 1, since the preferencep2 is already satisfied at depth 0. On the other hand,

a relaxed solution ons1 may achieve both preferences at depth 2, since ins1 two actions are needed to

reestablishp2. Once the algorithm expandss2, there could be another action applicable ins2, analogous

to e, that would steer the search away froms3.

It is precisely a situation similar to that described above that makes the heuristics based on the

relaxed graph (especiallyD andP), perform poorly in theTPP domain.TPP is a transportation problem

in which trucks can move between markets and depots transporting goods. A good can be put into the

truck by performing aload followed by astore. Stored goods can be unloaded from the truck performing

an unload. Once in a market, one has tobuy an object before it becomes ready to load. In problems

of theTPP domain there is a preference that states that any good must be eventually loaded on some

truck (p1). On the other hand, there is a preference that states that all trucks should be unloaded at

the end of the plan (p2). Once we have considered moving a truck to a market and bought a certain

good, saygood1, our plan prefix has achievedp2 but notp1. A reasonable course of action to achieve

both preferences would be toload good1 on the truck, followed by astore, and followed by anunload.

However, the state that results from performing aload is never preferred by the planner, since just

like in Figure 4.3, aload invalidatesp2 while makingp1 true. Instead, an action that preserves thep2

property (e.g., abuyof another good) is always preferred. This leads the planner to consider all possible

combinations of sequences thatbuya good before considering aload. Even worse, after performing all

possible buys, for a similar reason the search prefers to use other truckto move to another market to

keep on buying products.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 86

s

s1

s2 s3
a

a b

b c

c

e

{¬p1, p2}

{¬p1, p2}

{p1,¬p2}

{p1,¬p2}

{p1,¬p2}

{p1,¬p2} {p1, p2}

{p1, p2}

Figure 4.3: A situation in which ourD heuristics prefers a node that does not lead to the quick satisfac-

tion of bothp1 andp2.

4.7 Related Work

There is a significant amount of work on planning with preferences that isrelated, in varying degrees,

to the method we have presented here. We organize this work into two groups: first, planners that are

able to plan with preferences in non-PDDL3 preference languages or using soft goals; second, work

that focuses on the PDDL3 language. In the rest of the section we reviewthe literature in these two

categories.

4.7.1 Other Preference Languages

PPLAN (Bienvenuet al., 2006) is a plannning system that exploits progression to plan directly with

TEPs using heuristic search. In contrast to HPLAN -P, which is incremental, PPLAN always returns an

optimal plan whose length is bounded by a plan-length parameter (i.e., it isk-optimal). Unfortunately,

PPLAN uses an admissible heuristic that is far less informative than the heuristics proposed here. As

such, it is far less efficient. The heuristic in PPLAN is similar to ourO heuristic, and thus does not

provide an estimate of the cost to achieving unsatisfied preferences. PPLAN was developed prior to the

definition of PDDL3 and exploits its ownqualitativepreference language,LPP, to define preferences.

LPP supports rich TEPs, including nested LTL formulae (unlike PDDL3) and rather than specifying a

metric objective function, theLPP objective is expressed as a logical formula. PPLAN ’s LPP language

is an extension and improvement over thePP language proposed by Son and Pontelli (2004).

The HPLAN -QP planner (Baier and McIlraith, 2007) was proposed as an answer tosome of the

shortcomings of PPLAN . It is an extension to the HPLAN -P system, allowing planning forqualitative

TEPs guided by heuristics similar to those that have been proposed in this chapter. The preference

language is based onLPP, the language used by PPLAN . HPLAN -QP guides the search actively towards

satisfaction of preferences (unlike PPLAN), and like HPLAN -P, guarantees optimality of the last plan

found given sufficient resources.

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 87

Also related is the work onpartial satisfaction planning problems(PSPs) (over-subscription plan-

ning) (van den Briel, Nigenda, Do, and Kambhampati, 2004; Smith, 2004).PSPs can be understood

as a planning problem with no hard goals but rather a collection of soft goals each with an associated

utility; actions also have costs associated with them. Some existing planners for PSPs (Sanchez and

Kambhampati, 2005; Do, Benton, van den Briel, and Kambhampati, 2007) arealso incremental and

use pruning techniques. However in general, they do not offer any optimality guarantees. Recently,

Benton, van den Briel, and Kambhampati (2007) developed an incrementalplanner,BBOP-LP, that uses

branch-and-bound pruning for PSP planning, similar to our approach.BBOP-LP is able to offer opti-

mality guarantees given sufficient resources. However, in contrast toHPLAN -P, it uses very different

techniques for obtaining the heuristics. To compute heuristics it first relaxes the original planning prob-

lem and creates an integer programming (IP) model of this new problem. It then computes heuristics

from a linear-programming relaxation of the IP model. Lastly, Feldmann, Brewka, and Wenzel (2006)

propose a planner for PSPs that iteratively invokes METRIC-FF to find better plans.

Bonet and Geffner (2006) have proposed a framework for planningwith action costs and costs/rewards

associated with fluents. Their cost model can represent PSPs as well asthe simple preferences subset of

PDDL3. They propose admissible heuristics and an optimal algorithm for planning under this model.

Heuristics are obtained by compiling a relaxed instance of the problem to d-DNNF, while the algorithm

is a modification ofA∗. The approach does not scale very well for large planning instances,in part

because of its need to employ an admissible heuristic.

Finally, there has been work that casts the preference-based planningproblem as an answer set

programming problem (ASP), as a constraint satisfaction problem (CSP),and as a satisfiability (SAT)

instance. The paper by Son and Pontelli (2004) proposed one of the first languages for preference-

based planning,PP, and cast the planning problem as an optimization of an ASP problem. TheirPP

language includes TEPs expressed in LTL. Brafman and Chernyavsky(2005) proposed a CSP approach

to planning with final-state qualitative preferences specified using TCP-nets. Additionally, Giunchiglia

and Maratea (2007) proposed a compilation of preference-based planning problems into SAT. None

of these approaches exploits heuristic search and thus are fundamentallydifferent form the approach

proposed here. The latter two approaches guide the search for a solution by imposing a variable/value

ordering that will attempt to produce preferred solutions first. Because these works are recasting the

problem into a different formalism, they explore a very different searchspace than our approach. Note

also that the conversion to ASP, CSP or SAT requires assuming a fixed bound on plan length limiting

the approach to at best findingk-optimal plans.

4.7.2 IPC-5 competitors

Most related to our work are the approaches taken by the planners that competed in IPC-5, both because

they used the PDDL3 language and because many used some form of heuristic search. YochanPS

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 88

(Benton, Kambhampati, and Do, 2006) is a heuristic planner for simple preferences based on the Sapaps

system (van den Brielet al., 2004). Our approach is similar to theirs in the sense that both use a relaxed

graph to obtain a heuristic estimate.YochanPS is also an incremental planner, employing heuristics

geared towards classical goals. However, to compute its heuristic for a given state, it explicitly selects

a subset of preferences to achieve from that state and then treats this subset as a classical goal. This

process can be very costly in the presence of many preferences.

MIPS-XXL (Edelkampet al., 2006) andMIPS-BDD (Edelkamp, 2006b) both use Büchi automata

to plan with temporally extended preferences. While the approach to compiling away the TEPs also

constructs an automata (as in our approach), their translation process generates grounded preference

formulae. This makes the translation algorithm prone to unmanageable blow-up. Further, the search

techniques used in both of these planners are quite different from thosewe exploit. MIPS-XXL itera-

tively invokes a modified METRIC-FF (Hoffmann, 2003) forcing plans to have decreasing metric values.

MIPS-BDD, on the other hand, performs a cost-optimal breath-first search that does not employ a heuris-

tic.

Finally, the winner of the preferences tracks at IPC-5, SGPlan5 (Hsuet al., 2007), uses a completely

different approach. It partitions the planning problem into several subproblems. It then uses a modified

version of FF to solve those subproblems and finally integrates these sub-solutions into a solution for

the entire problem. During the integration process it attempts to minimize the metric function. SGPlan5

is not incremental, and seems to suffer from some non-robustness in its performance as shown by the

results given in Table 4.4 (where its performance on an reformulated but equivalent domain changes

quite dramatically).

4.8 Conclusions and Future Research

In this chapter we have presented a new technique for planning with preferences that can deal with

simple preferences, temporally extended preferences, and hard constraints. The core of the technique,

our new set of heuristics and incremental search algorithm, are both amenable to integration with a

variety of classical and simple-preference planners. The compilation technique for converting TEPs to

simple preferences can also be made to work with other planners, although the method of embedding the

constructed automata we utilize here might need some modification, dependent on the facilities available

in that planner. Our method of embedding the constructed automata utilized TLPLAN ’s ability to deal

with numeric functions and quantification. In particular, TLPLAN ’s ability to handle quantification

allowed us to utilize the parameterized representation of the preferences generated by the compilation,

leading to a considerably more compact domain encoding.

We have presented a number of different heuristics for planning with preferences. These heuristics

have the feature that some of them account for the value that could be achieved from unsatisfied pref-

CHAPTER 4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 89

erences, while others account for the difficulty of actually achieving these preferences. Our method for

combining these different types of guidance is quite simple (tie-breaking), and more sophisticated com-

binations of these or related heuristics could be investigated. More generally, the question of identifying

the domain features for which particular heuristics are most suitable is an interesting direction for future

work.

We have also presented an incremental best-first search planning algorithm. A key feature of this

algorithm is that it can use heuristic bounding functions to prune the searchspace during its incremental

planning episodes. We have proved that under some fairly natural conditions our algorithm can generate

optimal plans. It is worth noting that these conditions do not require the algorithm to utilize admissible

heuristics. Nor do they require imposing a priori restrictions on the plan size(length or makespan)

which would allow the algorithm to only achievek-optimality rather than global optimality.

The algorithm can also employ different heuristics in each incremental planning episode, something

we exploit during the very first planning episode by ignoring the preferences and only asking the planner

to search for a plan achieving the goals. The motivation for this is that we want at least one working

plan in hand before trying to find a more preferred plan. In our experiments, however, the remaining

planning episodes are all executed with one fixed heuristic. More flexible schedules of heuristics could

be investigated in future work.

We have implemented our method by extending the TLPLAN planning system and have performed

extensive experiments on the IPC-5 problems to evaluate the effectiveness of our heuristic functions and

search algorithm. While no heuristic dominated all test cases, several clearly provided superior guidance

towards good solutions. In particular, those that use the relaxed graph insome way proved to be the most

effective in almost all domains. Experiments also confirmed the essential roleof pruning when solving

large problems. HPLAN -P scales better than many other approaches to planning with preferences, and

we attribute much of this superior performance to the fact that we do not ground our planning problems.

Although the proposed heuristics perform reasonably well in many of the benchmarks we have

tested, we have identified cases in which they perform poorly. In some cases, computing heuristics over

the delete relaxation can provide bad guidance in the presence of preferences. The resolution of some

of the issues we have raised above open interesting avenues for futureresearch.

The ideas presented in this chapter have been used to build other planning systems. As we mentioned

above, Baier and McIlraith (2007) have extended HPLAN -P to plan for aqualitativepreference language

LPP. Recently, Sohrabi, Baier, and McIlraith (2009), have used the reformulation technique presented

in this chapter to build a heuristic preference-based Hierarchical Task Network (HTN) (Erol, Hendler,

and Nau, 1994) planner.

Chapter 5

Golog Domain Control Knowledge in

State-of-the-Art Planners

5.1 Introduction

In previous chapters we have focused our attention on the problems of planning with temporally ex-

tended goals and temporally extended preferences. Our goal has beenthe exploitation of state-of-the-art

techniques to achieve effective planning for these compelling non-classical planning tasks.

Another compelling planning technique is the use of DCK. DCK imposes domain-specific con-

straints on the definition of a valid plan. As such, it can be used to impose restrictions on the course

of action that achieves the goal. While DCK sometimes reflects a user’s desireto achieve the goal

a particular way, it is most often constructed to aid in plan generation by reducing the plan search

space. Moreover, if well-crafted, DCK can eliminate those parts of the search space that necessitate

backtracking. In such cases, DCK together with blind search can yield valid plans significantly faster

than state-of-the-art planners that do not exploit DCK. Indeed most planners that exploit DCK, such

as TLPLAN (Bacchus and Kabanza, 1998) or TALPLAN (Kvarnstr̈om and Doherty, 2000), do little

more than blind depth-first search with cycle checking in a DCK-pruned search space. Since most DCK

reduces the search space but still requires a planner to backtrack to find a valid plan, it should prove

beneficial to exploit better search techniques.

In this chapter we explore ways in which state-of-the-art planning techniques and existing state-

of-the-art planners can be used in conjunction with DCK, with particular focus onproceduralDCK.

Procedural DCK (as used in HTN (Nau, Cao, Lotem, and Muñoz-Avila, 1999) or Golog (Levesque

et al., 1997)) is action-centric. It is much like a programming language, and oftentimes like a plan

skeleton or template. It can (conditionally) constrain the order in which domainactions should appear

90

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 91

in a plan.

As a simple example of procedural DCK, consider thetrucks domain of the 5th International

Planning Competition, where the goal is to deliver packages between certainlocations using a limited-

capacity truck. When a package reaches its destination it must be delivered to the customer. We can

write simple and natural procedural DCK that significantly improves the efficiency of plan generation

for instance:

Repeat the following until all packages have been delivered: Unload everything from the

truck, and, if there is any package in the current location whose destination is the current

location, deliver it. After that, if any of the local packages have destinations elsewhere,

load them on the truck while there is space. Drive to the destination of any of theloaded

packages. If there are no packages loaded on the truck, but there remain packages at

locations other than their destinations, drive to one of these locations.

Although procedural DCK is interesting in its own right as a planning tool, there are other very inter-

esting applications, not strictly considered as“pure” planning applications, in which procedural control

plays a fundamental role. A relevant application is agent programming; in particular, cognitive robotics

(Levesque and Lakemeyer, 2007). Here the objective is to program agents withflexibleprograms. Pro-

grams are flexible in the sense that the agent may adjust, complete, or customizeits execution based

on its current goals, its knowledge and beliefs, and the state of the environment. Golog is one of the

prominent languages used by this community, and has been used in some notable applications such as

the Minerva Museum Tour Robot (Thrun, Bennewitz, Burgard, Cremers, Dellaert, Fox, Ḧahnel, Rosen-

berg, Roy, Schulte, and Schulz, 1999), Robocup (Ferrein, Fritz, and Lakemeyer, 2005), and recently

also Robocup@Home.1 By reformulating a problem with procedural Golog DCK into a classical plan-

ning problem we bring planning advances closer to the area of cognitive robotics, and thus potentially

improve the performance of a broad range of applications. Claßen, Eyerich, Lakemeyer, and Nebel

(2007) have made steps in connecting Golog and state-of-the-art planners but, as we discuss later in the

chapter, their work is quite different from ours.

WSC is also another motivation for dealing with this problem. As seen in the first chapter, applica-

tions such as WSC require the plans that are complex structures (with loops and conditional constructs),

there are many other applications. Notwithstanding, current planning technology has not reached the

point at which complex plans with loops can be generated for a broad set of planning domains (for an

up-to-date report, see e.g. Levesque, 2005). It has therefore been argued that a reasonable solution for

problems such as WSC is the generation of plans by computing an execution ofa human-generated pro-

cedure (or program) (McIlraithet al., 2001), which essentially acts as DCK. These programs, however,

contain significant non-determinism, which has to be resolved by the planner. Resolving these non-

1Personal communication with Gerhard Lakemeyer.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 92

deterministic segments can be quite challenging. Thus, for those tasks, we are interested in leveraging

the power of state-of-the-art techniques.

5.1.1 Contributions

The main contributions of this chapter follow.

1. As we mentioned above, DCK that has been used in planning is either state-centric (e.g. LTL), or

based on HTNs. HTNs do not provide programming language constructs.

We propose a language for DCK based on Golog that includes typical programming languages

constructs such as conditionals and iteration as well as nondeterministic choice of actions in places

where control is not germane. We argue that these action-centric constructs provide a natural

language for specifying DCK for planning. We contrast them with DCK specifications based on

LTL which are state-centric and though still of tremendous value, arguablyprovide a less natural

way to specify DCK. We specify the syntax for our language as well as a PDDL-based semantics

following Fox and Long (2003).

An immediate advantage of our semantics is that it can be used to implement native Golog control

support in any forward-chaining planner.

2. With a well-defined procedural DCK language in hand, we examine how touse state-of-the-

art planning techniques together with DCK. Of course, most state-of-the-art planners are unable

to exploit DCK. As such, we present an algorithm that translates a PDDL2.1-specified ADL

planning instance and associated procedural DCK into an equivalent, program-free PDDL2.1

instance whose plans provably adhere to the DCK. Any PDDL2.1-compliant planner can take

such a planning instance as input to their planner, generating a plan that adheres to the DCK.

3. Since they were not designed for this purpose, existing state-of-the-art planners may not exploit

techniques that optimally leverage the DCK embedded in the planning instance. As such, we

investigate how state-of-the-art planning techniques, rather than planners, can be used in conjunc-

tion with our compiled DCK planning instances. In particular, we propose domain-independent

search heuristics for planning with our newly-generated planning instances. We examine three

different approaches to generating heuristics, and evaluate them on three domains of the 5th Inter-

national Planning Competition. Our results show that procedural DCK improves the performance

of state-of-the-art planners, and that our heuristics are sometimes key toachieving good perfor-

mance.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 93

5.1.2 Outline

The rest of the chapter is organized as follows. Section 5.2 presents background on PDDL necessary

for the rest of the chapter. Section 5.3 presents our procedural control language. Section 5.4 presents a

procedure to compile Golog control into PDDL. Then, in section 5.5 we show how our compiled theory

can be integrated with state-of-the-art planners. Section 5.6 presents anexperimental analysis showing

the benefits of our approach. Finally, Section 5.7 summarizes the chapter and discusses related work.

5.2 Background

5.2.1 A Subset of PDDL 2.1

In PDDL, aplanning instanceis a pairI = (D,P), whereD is a domain definition andP is a problem.

To simplify notation, we assume thatD andP are described in an ADL subset of PDDL. The difference

between this ADL subset and PDDL 2.1 is that no concurrent or durativeactions are allowed.

Following convention, domains are tuples of finite sets(PF,Ops,ObjsD,T, τD), wherePF defines

domain predicates and functions,Opsdefines operators,ObjsD contains domain objects,T is a set of

types, andτD ⊆ObjsD×T is a type relation associating objects to types. An operator (or action schema)

is also a tuple〈O(~x),~t,Prec(~x),Eff(~x)〉, whereO(~x) is the unique operator name and~x= (x1, . . . ,xn) is a

vector of variables. Furthermore,~t = (t1, . . . , tn) is a vector of types. Each variablexi ranges over objects

associated with typeti . Moreover,Prec(~x) is a boolean formula with quantifiers (BFQ) that specifies the

operator’s preconditions. BFQs are defined inductively as follows. Atomic BFQs are either of the form

t1 = t2 or R(t1, . . . , tn), whereti (i ∈ {1, . . . ,n}) is a term (i.e. either a variable, a function literal, or an

object), andR is a predicate symbol. Ifϕ is a BFQ, then so isQx-tϕ, for a variablex, a type symbolt,

andQ∈ {∃,∀}. BFQs are also formed by applying standard boolean operators over other BFQs. Finally

Eff(~x) is a list of conditional effects, each of which can be in one of the following forms:

∀y1-t1 · · ·∀yn-tn.ϕ(~x,~y)⇒ R(~x,~y), (5.1)

∀y1-t1 · · ·∀yn-tn.ϕ(~x,~y)⇒¬R(~x,~y), (5.2)

∀y1-t1 · · ·∀yn-tn.ϕ(~x,~y)⇒ f (~x,~y) = ob j, (5.3)

whereϕ is a BFQ whose only free variables are among~x and~y, R is a predicate,f is a function, andob j

is an object After performing a ground operator – oraction– O(~c) in a certain states, for all tuples of

objects that may instantiate~y such thatϕ(~c,~y) holds ins, effect (5.1) (resp. (5.2)) expresses thatR(~c,~y)

becomes true (resp. false), and effect (5.3) expresses thatf (~c,~y) takes the valueob j. As usual, states

are represented as finite sets of atoms (ground formulae of the formR(~c) or of the form f (~c) = ob j).

Planning problems are tuples(Init,Goal,ObjsP, τP), whereInit is the initial state,Goal is a sentence

with quantifiers for the goal, andObjsP andτP are defined analogously as for domains.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 94

Semantics:Fox and Long (2003) have given a formal semantics for PDDL 2.1. In particular, they define

when a sentence istrue in a state and whatstate traceis the result of performing a set oftimed actions.

A state trace intuitively corresponds to an execution trace, and the sets of timed actions are ultimately

used to refer to plans. In the ADL subset of PDDL2.1, since there are noconcurrent or durative actions,

time does not play any role. Hence, state traces reduce to sequences of states and sets of timed actions

reduce to sequences of actions.

Building on Fox and Long’s semantics, we assume that|= is defined such thats |= ϕ holds when

sentenceϕ is true in states. Moreover, for a planning instanceI , we assume there exists a relation

Succsuch thatSucc(s,a,s′) iff s′ results from performing an executable actiona in s. Finally, a se-

quence of actionsa1 · · ·an is a plan forI if there exists a sequence of statess0 · · ·sn such thats0 = Init ,

Succ(si ,ai+1,si+1) for i ∈ {0, . . . ,n−1}, andsn |= Goal.

5.3 A Language for Procedural Control

In contrast to state-centric languages, that often use LTL-like logical formulae to specify properties of

the states traversed during plan execution, procedural DCK specification languages are predominantly

action-centric, defining a plan template or skeleton that dictatesactionsto be used at various stages of

the plan.

Procedural control is specified viaprogramsrather than logical expressions. The specification lan-

guage for these programs incorporates desirable elements from imperative programming languages such

as iteration and conditional constructs. However, to make the language moresuitable to planning ap-

plications, it also incorporates nondeterministic constructs. These elements are key to writing flexible

control since they allow programs to contain missing or open program segments, which are filled in

by a planner at the time of plan generation. Finally, our language also incorporates property testing,

achieved through so-calledtest actions. These actions are not real actions, in the sense that they do

not change the state of the world, rather they can be used to specify properties of the states traversed

while executing the plan. By using test actions, our programs can also specify properties of executions

similarly to state-centric specification languages.

The rest of this section describes the syntax and semantics of the procedural DCK specification

language we propose to use. We conclude this section by formally defining what it means to plan under

the control of such programs.

5.3.1 Syntax

The language we propose is based on Golog (Levesqueet al., 1997), a robot programming language de-

veloped by the cognitive robotics community. In contrast to Golog, our language supports specification

of types for program variables, but does not support procedures.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 95

Programs are constructed using the implicit language for actions and boolean formulae defined

by a particular planning instanceI . Additionally, a program may refer to variables drawn from a set

of program variablesV. This setV will contain variables that are used for nondeterministic choices of

arguments. In what follows, we assumeO denotes the set of operator names fromOps, fully instantiated

with objects defined inI or elements ofV.

The set of programs over a planning instanceI and a set of program variablesV can be defined

by induction. In what follows, assumeφ is a boolean formula with quantifiers on the language ofI ,

possibly including terms in the set of program variablesV. Atomic programs are as follows.

1. nil: Represents the empty program.

2. o: Is a single operator instance, whereo∈ O.

3. any: A keyword denoting “any action”.

4. φ?: A test action.

If σ1, σ2 andσ are programs, so are the following:

1. (σ1;σ2): A sequence of programs.

2. if φ thenσ1elseσ2: A conditional sentence.

3. whileφdoσ: A while-loop.

4. σ∗: A nondeterministic iteration.

5. (σ1|σ2): Nondeterministic choice between two programs.

6. π(x-t)σ: Nondeterministic choice of variablex∈V of typet ∈ T.

Before we formally define the semantics of the language, we show some examples that give a sense

of the language’s expressiveness and semantics.

• while¬clear(B)doπ(b-block) putOnTable(b): while B is not clear choose anyb of type block

and put it on the table.

• any∗; loaded(A,Truck)?: Perform any sequence of actions untilA is loaded inTruck. Plans under

this control are such thatloaded(A,Truck) holds in the final state.

• (load(C,P); f ly(P,LA) | load(C,T);drive(T,LA)): Either loadC on the planeP or on the truck

T, and perform the right action to move the vehicle toLA.

5.3.2 Semantics

The problem of planning for an instanceI under the control of programσ corresponds to finding a plan

for I that is also an execution ofσ from the initial state. In the rest of this section we define what

those legal executions are. Intuitively, we define a formal device to check whether a sequence of actions

~a corresponds to the execution of a programσ. The device we use is a nondeterministic finite state

automaton withε-transitions (ε-NFA).

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 96

For the sake of readability, we remind the reader thatε-NFAs are like standard nondeterministic

automata except that they can transition without reading any input symbol, through the so-calledε-

transitions. ε-transitions are usually defined over a state of the automaton and a special symbol ε,

denoting the empty symbol.

An ε-NFA Aσ,I is defined for each programσ and each planning instanceI . Its alphabet is the set

of operator names, instantiated by objects ofI . Its states areprogram configurationswhich have the

form [σ,s], whereσ is a program ands is a planning state. Intuitively, as it reads a word of actions, it

keeps track, within its state[σ,s], of the part of the program that remains to be executed,σ, as well as

the current planning state after performing the actions it has read already, s.

Formally,Aσ,I = (Q,A,Tr,qo,F), whereQ is the set of program configurations, the alphabetA is a

set of domain actions, the transition function isTr : Q× (A∪{ε})→ 2Q, q0 = [σ, Init], andF is the set

of final states.

Our definition ofTr closely follows the definition ofTransandFinal from Golog’s transition seman-

tics (De Giacomo, Lesṕerance, and Levesque, 2000).

The transition functionTr is defined as follows for atomic programs.

Tr([a,s],a) = {[nil,s′]} iff Succ(s,a,s′), s.t. a∈ A, (5.4)

Tr([any,s],a) = {[nil ,s′]} iff Succ(s,a,s′), s.t. a∈ A, (5.5)

Tr([φ?,s], ε) = {[nil,s]} iff s |= φ. (5.6)

Equations 5.4 and 5.5 dictate that actions in programs change the state according to theSuccrelation

described in the previous section. Finally, Eq. 5.6 defines transitions forφ? whenφ is a sentence (i.e.,

a formula with no program variables). It expresses that a transition can only be carried out if the plan

state so far satisfiesφ.

Now we defineTr for non-atomic programs. In the definitions below, assume thata∈ A∪{ε}, and

thatσ1 andσ2 are subprograms ofσ, where occurring elements inV may have been instantiated by any

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 97

object in the planning instanceI .

Tr([(σ1;σ2),s],a) = {[(σ′1;σ2),s
′] | [σ′1,s

′] ∈ Tr([σ1,s],a)} if σ1 6= nil, (5.7)

Tr([(nil;σ2),s], ε) = {[σ2,s]}, (5.8)

Tr([if φ thenσ1elseσ2,s], ε) =







[σ1,s] if s |= φ,

[σ2,s] if s 6|= φ,
(5.9)

Tr([(σ1|σ2),s], ε) = {[σ1,s], [σ2,s]} (5.10)

Tr([whileφdoσ1,s], ε) =







{[nil,s]} if s 6|= φ,

{[σ1;whileφdoσ1,s]} if s |= φ,
(5.11)

Tr([σ∗1,s], ε) = {[(σ1;σ∗1),s], [nil,s]}, (5.12)

Tr([π(x-t)σ1,s], ε) = {[σ1|x/o,s] |(o, t) ∈ τD∪ τP}. (5.13)

whereσ1|x/o denotes the program resulting from replacing any occurrence ofx in σ1 by o. We now give

some intuitions for the definitions. First, a transition on a sequence corresponds to transitioning on its

first component first (Eq. 5.7), unless the first component is already the empty program, in which case we

transition on the second component (Eq. 5.8). A transition on a conditional corresponds to a transition

in the then or elsepart depending on the truth value of the condition (Eq. 5.9). A transition of the

nondeterministic choice leads to the consideration of either of the programs (Eq. 5.10). A transition of a

while-loop corresponds to thenil program if the condition is false, and corresponds to the body followed

by the while-loop if the condition is true (Eq. 5.11). On the other hand, a transition of σ∗1 represents two

alternatives: executingσ1 at least once, or stopping the execution ofσ∗1, with the remaining programnil

(Eq. 5.12). Finally, a transition of the nondeterministic choice corresponds toa transition of its body

when the variable has been replaced by any object of the right type (Eq.5.13).

To end the definition ofAσ,I , Q corresponds precisely to the program configurations[σ′,s] where

σ′ is eithernil or a subprogram ofσ such that program variables may have been replaced by objects in

I , ands is any possible planning state. Moreover,Tr is assumed empty for elements of its domain not

explicitly mentioned above. Finally, the set of accepting states isF = {[nil,s] |s is any state overI}, i.e.,

those where no program remains in execution. We can now formally define anexecution of a program.

Definition 5.1 (Execution of a program) A sequence of actions a1 · · ·an is an execution ofσ in I if

a1 · · ·an is accepted by Aσ,I .

As usual, we use the symbol⊢ to represent a single computation of the automaton. We say thatq⊢ q′

iff there exists ana such thatq′ ∈ Tr(q,a). The symbol⊢∗ represents the reflexive and transitive closure

of ⊢. Finally, q0 ⊢
k qk iff there are exist statesq1, . . . ,qk−1 such thatq0 ⊢ q1 ⊢ q2 ⊢ . . . ⊢ qk−1 ⊢ qk.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 98

Before defining what we mean by planning in the presence of control, we prove several results

that attempt to justify the correctness of the defined semantics in terms of the standard intuition. The

first result proves that the definition of the sequence is intuitively correct, i.e., the execution ofσ1;σ2

corresponds to the execution ofσ1 followed byσ2.

Proposition 5.1 Letσ1 andσ2 be programs. If

[σ1;σ2,s] ⊢ q1 ⊢ q2 ⊢ . . . ⊢ qk−1 ⊢ qk = [nil,s′],

then for some i∈ [1,k], qi = [σ2,s′] and[σ1,s] ⊢∗ [nil,s′].

Proof: See Section C.1 (p. 173). �

Our second result proves that the semantics for the execution of anif - then-elseis intuitively correct

Proposition 5.2 Letφ be a BFQ and letσ1 andσ2 be programs. Then the following holds

[if φ thenσ1elseσ2,s] ⊢
∗ [nil,s′]

iff

s |= φ and[σ1,s] ⊢∗ [nil,s′], or s 6|= φ and[σ2,s] ⊢∗ [nil,s′].

Proof: Straightforward by definition ofTr. �

The execution of a nondeterministic choice of programs have the intended meaning too, as shown

by the following result.

Proposition 5.3 Letσ1 andσ2 be programs. Then the following holds

[(σ1|σ2),s] ⊢
∗ [nil,s′]

iff

[σ1,s] ⊢∗ [nil,s′] or [σ2,s] ⊢∗ [nil,s′].

Proof: Straightforward by definition ofTr. �

Now we prove that the execution of the while loop correspond to a repeatedexecution of the body

of the loop.

Proposition 5.4 Letφ be a BFQ andσ be a program. If

[whileφdoσ,s] ⊢ q1 ⊢ q2 ⊢ . . . ⊢ qk ⊢ [nil,s′],

then:

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 99

1. for all i∈ [1,k], qi is either of the form qi = [σr ;whileφdoσ, r i], or of the form qi = [whileφdoσ, r i].

2. for all i ∈ [1,k], if qi is of the form qi = [whileφdoσ, r i] then i< k iff r i |= φ. State qk is of the

form qk = [whileφdoσ, rk]

3. Finally, let n be the number of states qi (i ∈ [1,k]) of the form qi = [whileφdoσ, r i]. Then,[σn,s]⊢∗

[nil ,s′], whereσn represents the sequence that repeatsσ n times.

Proof: See Section C.2 (p. 174). �

In the Golog language (Levesqueet al., 1997), theif - then-else construct is defined by macro

expansion, in terms of test actions and non-deterministic choices. Below we prove that our semantics

for the if - then-elseand for the Golog macro expansion of such a construct are equivalent.

Proposition 5.5 Letφ be a BFQ and letσ1 andσ2 be programs. Then the following holds

[if φ thenσ1elseσ2,s] ⊢ [σ,s]

iff

[(φ?;σ1)|(¬φ?;σ2),s] ⊢
3 [σ,s].

Proof: Straightforward from the definition ofTr. �

Now that we have justified the correctness of the semantics of the control language, we return to

planning. We are now ready to define the notion of planning under procedural control.

Definition 5.2 (Planning under procedural control) A sequence of actions a1a2 · · ·an is aplan for in-

stanceI under the control of programσ if a1a2 · · ·an is a plan in I and is an execution ofσ in I.

5.4 Compiling Control into the Action Theory

This section describes a translation function that, given a programσ in the DCK language defined above

together with a PDDL2.1 domain specificationD, outputs a new PDDL2.1 domain specificationDσ and

problem specificationPσ. The two resulting specifications can then be combined with any problemP

defined overD, creating a new planning instance that embeds the control given byσ, i.e. that is such

that only action sequences that are executions ofσ are possible. This enables any PDDL2.1-compliant

planner to exploit search control specified by any program.

To account for the state of execution of programσ and to describe legal transitions in that program,

we introduce a few bookkeeping predicates and a few additional actions.Figure 5.1 graphically illus-

trates the translation of an example program shown as a finite state automaton. Intuitively, the operators

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 100

1 2
3 4

5 6
7 8 9

noop

noop

noop

test(ψ)

test(¬ψ)

test(φ)

test(¬φ)

a

b

c

if

while
sequence

Figure 5.1: Automaton forwhileφdo(if ψ thenaelseb);c.

we generate in the compilation define the transitions of this automaton. Their preconditions and effects

condition on and change the automaton’s state.

The translation is defined inductively by a functionC(σ,n,E) which takes as input a programσ, an

integern, and a list of program variables with typesE = [e1-t1, . . . ,ek-tk], and outputs a tuple(L,L′,n′)

with L a list of domain-independent operator definitions,L′ a list of domain-dependent operator def-

initions, andn′ another integer. Intuitively,E contains the program variables whose scope includes

(sub-)programσ. Moreover,L′ contains restrictions on the applicability of operators defined inD, and

L contains additional control operators needed to enforce the search control defined inσ. Integersn and

n′ abstractly denote the program state before and after execution ofσ.

We use two auxiliary functions.Cnoop(n1,n2) produces an operator definition that allows a transi-

tion from staten1 to n2. Similarly Ctest(φ,n1,n2,E) defines the same transition, but conditioned onφ.

They are defined as:2

Cnoop(n1,n2) = 〈noopn1 n2(), [],state= sn1, [state= sn2]〉

Ctest(φ,n1,n2,E) = 〈test n1 n2(~x),~t,Prec(~x),Eff(~x)〉 with

(~e-t,~x) = mentions(φ,E), ~e-t = e1-t1, . . . ,em-tm,

Prec(~x) =
(

state= sn1∧ φ[ei/xi]
m
i=1∧

∧m

i=1
bound(ei)→map(ei ,xi)

)

,

Eff(~x) = [state= sn2] · [bound(ei),map(ei ,xi)]
m
i=1.

Functionmentions(φ,E) returns a vector~e-t of program variables and types that occur inφ, and a vector

~x of new variables of the same length. Bookkeeping predicates serve the following purposes:state

denotes the state of the automaton;bound(e) expresses that the program variableehas been bound to an

object of the domain;map(e,o) states that this object iso. Thus, the implicationbound(ei)→map(ei ,xi)

forces parameterxi to take the value to whichei is bound, but has no effect ifei is not bound.

2 We useA ·B to denote the concatenation of listsA andB.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 101

Consider the inner box of Figure 5.1, depicting the compilation of the if statement.It is defined as:

C(if φ thenσ1elseσ2,n,E) = (L1 ·L2 ·X,L
′
1 ·L

′
2,n3)

with (L1,L
′
1,n1) = C(σ1,n+1,E),

(L2,L
′
2,n2) = C(σ2,n1 +1,E), n3 = n2 +1,

X = [Ctest(φ,n,n+1,E), Ctest(¬φ,n,n1 +1,E),

Cnoop(n1,n3), Cnoop(n2,n3)]

and in the example we haveφ= ψ,n = 2,n1 = 4,n2 = 6,n3 = 7,σ1 = a, andσ2 = b.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 102

The inductive definitions for other programsσ are:

C(nil,n,E) = ([], [],n)

C(O(~r),n,E) = ([], [〈O(~x),~t,Prec′(~x),Eff ′(~x)〉],n+1) with

〈O(~x),~t,Prec(~x),Eff(~x)〉 ∈Ops, ~r = r1, . . . , rm,

Prec′(~x) = (state= sn∧
∧

i s.t. r i∈E

bound(r i)→map(r i ,xi)∧
∧

i s.t. r i 6∈E

xi = r i),

Eff ′(~x) = [state= sn⇒ state= sn+1] ·

[state= sn⇒ bound(r i)∧map(r i ,xi)]i s.t. r i∈E

C(φ?,n,E) = ([Ctest(φ,n,n+1,E)], [], n+1)

C((σ1;σ2),n,E) = (L1 ·L2, L′
1 ·L

′
2, n2) with

(L1,L
′
1,n1) = C(σ1,n,E),(L2,L

′
2,n2) = C(σ2,n1,E)

C((σ1|σ2),n,E) = (L1 ·L2 ·X,L
′
1 ·L

′
2,n2 +1) with

(L1,L
′
1,n1) = C(σ1,n+1,E),

(L2,L
′
2,n2) = C(σ2,n1 +1,E),

X = [Cnoop(n,n+1), Cnoop(n,n1 +1),

Cnoop(n1,n2 +1), Cnoop(n2,n2 +1)]

C(whileφdoσ,n,E) = (L ·X,L′,n1 +1) with

(L,L′,n1) = C(σ,n+1,E), X = [Ctest(φ,n,n+1,E),

Ctest(¬φ,n,n1 +1,E),Cnoop(n1,n)]

C(σ∗,n,E) = (L · [Cnoop(n,n2),Cnoop(n1,n)],L′,n2)

with (L,L′,n1) = C(σ,n,E),n2 = n1 +1

C(π(x-t,σ),n,E) = (L ·X,L′,n1 +1) with

(L,L′,n1) = C(σ,n,E · [x-t]),

X = [〈 f ree n1(x), t, state= sn1,

[state= sn1+1,¬bound(x),∀y.¬map(x,y)]〉]

The atomic programany is handled by macro expansion to above defined constructs.

As mentioned above, given programσ, the return value(L,L′,nfinal) of C(σ,0, []) is such thatL

contains new operators for encoding transitions in the automaton, whereasL′ contains restrictions on the

applicability of the original operators of the domain. Now we are ready to integrate these new operators

and restrictions with the original domain specificationD to produce the new domain specificationDσ.

Dσ contains a constrained version of the operatorsO(~x) of the original domainD also mentioned in

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 103

L′. Let [〈O(~x),~t,Preci(~x),Eff i(~x)〉]
n
i=1 be the sublist ofL′ that contains additional conditions for operator

O(~x). The operator replacingO(~x) in Dσ is defined as:

〈O′(~x), ~t, Prec(~x)∧
∨n

i=1
Preci(~x), Eff(~x)∪

⋃n

i=1
Eff i(~x)〉

Additionally, Dσ contains all operator definitions inL. Objects inDσ are the same as those inD, plus a

few new ones to represent the program variables and the automaton’s statessi (0≤ i ≤ nfinal). Finally

Dσ inherits all predicates inD plusbound(x), map(x,y), and functionstate.

The translation, up to this point, is problem-independent; the problem specification Pσ is defined

as follows. Given any predefined problemP over D, Pσ is like P except that its initial state contains

conditionstate= s0, and its goal containsstate= snfinal. Those conditions ensure that the program must

be executed to completion.

As is shown below, planning in the generated instanceIσ = (Dσ,Pσ) is equivalent to planning for

the original instanceI = (D,P) under the control of programσ, except that plans onIσ contain actions

that were not part of the original domain definition (test, noop, andfree).

Theorem 5.1 (Correctness)Let Filter(α,D) denote the sequence that remains when removing fromα

any action not defined in D. Ifα is a plan for instance Iσ = (Dσ,Pσ) then Filter(α,D) is a plan for

I = (D,P) under the control ofσ. Conversely, ifα is a plan for I under the control ofσ, there exists a

planα′ for Iσ, such thatα= Filter(α′,D).

Proof: See Section C.3 (page 174) . �

Now we turn our attention to analyzing the size of the output planning instance relative to the original

instance and control program. Assume we define the size of a program asthe number of programming

constructs and actions it contains. Then we obtain the following result.

Theorem 5.2 (Succinctness)Let σ is a program of size m, and let k be the maximal nesting depth of

π(x-t) statements inσ, then|Iσ| (the overall size of Iσ) is O((k+ p)m), where p is the size of the largest

operator in I.

Proof: See Section C.4 (page 183). �

The encoding of programs in PDDL2.1 is, hence, in worst caseO(k) times bigger than the program

itself. It is also easy to show that the translation is done in time linear in the size of the program, since,

by definition, every occurrence of a program construct is only dealt with once.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 104

5.5 Exploiting DCK in State-of-the-Art Heuristic Planners

Our objective in translating procedural DCK to PDDL2.1 was to enableanyPDDL2.1-compliant state-

of-the-art planner to seamlessly exploit our DCK. In this section, we investigate ways to best leverage

our translated domains using domain-independent heuristic search planners.

There are several compelling reasons for wanting to apply domain-independent heuristic search to

these problems. Procedural DCK can take many forms. Often, it will provide explicit actions for some

parts of a sequential plan, but not for others. In such cases, it will contain unconstrained fragments (i.e.,

fragments with nondeterministic choices of actions) where the designer expects the planner to figure out

the best choice of actions to realize a sub-task. In the absence of domain-specific guidance for these

unconstrained fragments, it is natural to consider using a domain-independent heuristic to guide the

search.

In many domains it is very hard to write deterministic procedural DCK, i.e. DCK that restricts the

search space in such a way that solutions can be obtained very efficiently, even using blind search. An

example of such a domain is one where plans involve solving an optimization sub-problem. In such

cases, procedural DCK will contain open parts (fragments of nondeterministc choice within the DCK),

where the designer expects the planner to figure out the best way of completing a sub-task. However, in

the absence of domain-specific guidance for these open parts, it is natural to consider using a domain-

independent heuristic to guide the search.

In other cases, it is the choice of action arguments, rather than the choice of actions that must

be optimized. In particular, fragments of DCK may collectively impose global constraints on action

argument choices that need to be enforced by the planner. As such, theplanner needs to beawareof

the procedural control in order to avoid backtracking. By way of illustration, consider a travel planning

domain comprising two tasks “buy air ticket” followed by “book hotel”. Each DCK fragment restricts

the actions that can be used, but leaves the choice of arguments to the planner. Further suppose that

budget is limited. We would like our planner to realize that actions used to completethe first part should

save enough money to complete the second task. The ability to do such lookahead can be achieved via

domain-independent heuristic search.

In the rest of the section we propose three ways in which one can leverage our translated do-

mains using a domain-independent heuristic planner. These three techniques differ predominantly in

the operands they consider in computing heuristics.

5.5.1 Direct Use of Translation (Simple)

As the name suggests, a simple way to provide heuristic guidance while enforcing program awareness

is to use our translated domain directly with a domain-independent heuristic planner. In short, take the

original domain instanceI and controlσ, and use the resulting instanceIσ with any heuristic planner.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 105

Unfortunately, when exploiting a relaxed graph to compute heuristics, two issues arise. First, since

both themapandboundpredicates are relaxed, whatever value is already assigned to a variable, will

remain assigned to that variable. This can cause a problem with iterative control. For example, assume

programσL
def
= whileφdoπ(c-crate)unload(c,T), is intended for a domain where crates can be only

unloaded sequentially from a truck. While expanding the relaxed plan, as soon as variablec is bound to

some value, actionunloadcan only take that value as argument. This leads the heuristic to regard most

instances as unsolvable, returning misleading estimates.

The second issue is one of efficiency. Since fluentstateis also relaxed, the benefits of the reduced

branching factor induced by the programs is lost. This could slow down the computation of the heuristic

significantly.

5.5.2 Modified Program Structure (H-ops)

TheH-opsapproach addresses the two issues potentially affecting the computation of theSimpleheuris-

tic. It is designed to be used with planners that employ relaxed planning graphs for heuristic compu-

tation. The input to the planner in this case is a pair(Iσ,HOps), whereIσ = (Dσ,Pσ) is the translated

instance, andHOpsis an additional set of planning operators. The planner uses the operators in Dσ to

generate successor states while searching. However, when computing the heuristic for a states it uses

the operators inHOps.

Additionally, functionstateand predicatesboundandmaparenot relaxed. This means that when

computing the relaxed graph we actually delete their instances from the relaxed states. As usual,deletes

are processed beforeadds. The expansion of the graph is stopped if the goal or a fixed point is reached.

Finally, a relaxed plan is extracted in the usual way, and its length is reportedas the heuristic value. In

the computation of the length, auxiliary actions such as tests and noops are ignored.

The un-relaxing ofstate, boundandmapaddresses the problem of reflecting the reduced branching

factor provided by the control program while computing the heuristics. However, it introduces other

problems. Returning to theσL program defined above, sincestateis now un-relaxed, the relaxed graph

expansion cannot escape from the loop, because under the relaxed planning semantics, as soon asφ is

true, it remains true forever. A similar issue occurs with the nondeterministic iteration. Furthermore,

we want to avoid state duplication, i.e. havingstateequal to two different values at the same time in the

same relaxed state. This could happen for example while reaching anif construct whose condition is

both true and false at the same time (this can happen becausep andnot-p can both be true in a relaxed

state).

This issue is addressed by theHOpsoperators. To avoid staying in the loop forever, the loop will be

exited when actions in it are no longer adding effects. Figure 5.2 providesa graphical representation.

An important detail to note is that the loop is not entered whenφ is not found true in the relaxed state.

(The expressionnot φ should be understood as negation as failure.) Moreover, the pseudo-fluent f p is

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 106

1 2 7 8
test(φ)

test(notφ)

test(fp≤ 5) test(fp> 5)

Figure 5.2: H-ops translation ofwhile loops. While computing the heuristics, pseudo-fluentfp is

increased each time no new effect is added into the relaxed state, and it is set to 0 otherwise. The loop

can be exited if the last five (7-2) actions performed didn’t add any new effect.

test(notφ) noop
s2
0

s1
0 s1

f

s2
f

σ1

σ2

continue

exitif

escapet

escapee

testesc(φ)

Figure 5.3:H-opstranslation forif - then-else. Action testesc(φ) is possible if conditionφ is true. If

condition¬φ is also true in the relaxed state, thetestesc(φ) dds a factescapeactive that will enable

the execution ofcontinueandescapet andescapee. Actionsescapet andescapee are possible only

when no other actions are possible. This is checked using the pseudo-fluent f p described in Figure 5.2.

Action exitif is only possible ifescapeactiveis true. Both thenoopand theescapeeactions delete the

factescapeactive. Nestedif constructs are handled using a parameterized version of theescapeactive

predicate.

an internal variable of the planner that acts as a real fluent for theHOps. A similar approach is adopted

for nodeterministic iterations, whose description we omit here.

Since loops are guaranteed to be exited, the computation ofH-opsis guaranteed to finish because at

some relaxed state the final state of the automaton will be reached. At this point,if the goal is not true,

no operators will be possible and a fixed point will be produced immediately.

For if ’s, if the condition is both true and false at the same time, thethen part is processed first,

followed by theelse part. The objective of this is avoidance of state duplication. However, this new

interpretation of theif introduces a new problem. This problem occurs when, while performing the

actions of one of the parts, no action is possible anymore. Intuitively, this could happen because the

heuristics has chosen the wrong subprogram to execute actions from. Indeed, if there exists an execu-

tion of the program from states that executes the “then” part of theif , it can happen that, during the

computation of the heuristic fors, the “else” part forces some actions to occur that are not possible.

Under normal circumstances, the non existence of any possible action produces a fixed point. Because

the goal is not reached on such a fixed point, the heuristic regards the goal as unreachable, which could

be a wrong estimation.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 107

To solve this problem,H-opsconsiders new “escape” actions, that are executable only when no more

actions are possible. Escapes can be performed only inside “then” or “else” bodies. After executing an

escape, the simulation of the program’s execution jumps to the else part if the escape occurs in the

“then” part, or to the end of theif , if the escape occurs in the then part. Figure 5.5.2 shows a graphical

representation of theH-opsgenerated for theif .

5.5.3 A Program-Unaware Approach (Basic)

Our program-unaware approach (Basic) completely ignores the program when computing heuristics.

Here, the input to the planner is a pair(Iσ,Ops), whereIσ is the translated instance, andOpsare the

original domain operators. TheOpsoperators are used exclusively to compute the heuristic. Hence,

Basic’s output is not at all influenced by the control program.

Although Basic is program unaware, it can sometimes provide good estimates, as we see in the

following section. This is especially true when the DCK characterizes a solution that would be naturally

found by the planner if no control were used. It is also relatively fast tocompute.

5.6 Implementation and Experiments

Our implementation3 takes a PDDL planning instance and a DCK program and generates a new PDDL

planning instance. It will also generate appropriate output for theBasicandH-opsheuristics, which

require a different set of operators. Thus, the resulting PDDL instance may contain definitions for

operators that are used only for heuristic computation using the:h-action keyword, whose syntax is

analogous to the PDDL keyword:action.

Our planner is a modified version of TLPLAN , which does a best-first search using an FF-style

heuristic. It is capable of reading the PDDL with extended operators.

We performed our experiments on thetrucks, storageandroversdomains (30 instances each). We

wrote DCK for these domains. For details on the Golog code used for these examples, see Section E.

We ran our three heuristic approaches (Basic, H-ops, andSimple) and cycle-free, depth-first search on

the translated instance (blind). Additionally, we ran the original instance of the program (DCK-free)

using the domain-independent heuristics provided by the planner (original). Table 5.1 shows various

statistics on the performance of the approaches. Furthermore, Fig. 5.4 shows times for the different

heuristic approaches.

Not surprisingly, our data confirms that DCK helps to improve the performance of the planner,

solving more instances across all domains. In some domains (i.e. storage androvers) blind depth-first

cycle-free search is sufficient for solving most of the instances. However, quality of solutions (plan

3Available atwww.cs.toronto.edu/kr/systems

www.cs.toronto.edu/kr/systems

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 108

original Simple Basic H-ops blind

T
ru

ck
s

#n 1 0.31 0.41 0.26 19.85

#s 9 9 15 14 3

ℓmin 1 1 1 1 1

ℓavg 1.1 1.03 1.02 1.04 1.04

ℓmax 1.2 1.2 1.07 1.2 1.07

R
ov

er
s

#n 1 0.74 1.06 1.06 1.62

#s 10 19 28 22 30

ℓmin 1 1 1 1 1

ℓavg 2.13 1.03 1.05 1.21 1.53

ℓmax 4.59 1.2 1.3 1.7 2.14

S
to

ra
ge

#n 1 1.2 1.13 0.76 1.45

#s 18 18 20 21 20

ℓmin 1 1 1 1 1

ℓavg 4.4 1.05 1.01 1.07 1.62

ℓmax 21.11 1.29 1.16 1.48 2.11

Table 5.1: Comparison between different approaches to planning (with DCK). #n is the average factor

of expanded nodes to the number of nodes expanded byoriginal (i.e., #n=0.26 means the approach

expanded 0.26 times the number of nodes expanded by original). #s is the number of problems solved

by each approach.ℓavg denotes the average ratio of the plan length to the shortest plan found by any of

the approaches (i.e.,ℓavg=1.50 means that on average, on each instance, plans where 50% longerthan

the shortest plan found for that instance).ℓmin andℓmax are defined analogously.

length) is poor compared to the heuristic approaches. In trucks, DCK is only effective in conjunction

with heuristics; blind search can solve very few instances.

We observe thatH-ops is the most informative (expands fewer nodes). This fact does not payoff

in time in the experiments shown in the table. Nevertheless, it is easy to constructinstances where the

H-opsperforms better thanBasic. This happens when the DCK control restricts the space of valid plans

(i.e., prunes out valid plans). We have experimented with various instancesof the storage domain, where

we restrict the plan to use only one hoist. In some of these casesH-opsoutperformsBasicby orders of

magnitude.

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 109

1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(a) rovers

1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(b) storage

1000

100

1

0.1

0.01
0 5 10

10

15 20 25

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(c) trucks

Figure 5.4: Running times of the three heuristics and the original instance; logarithmic scale; run on an

Intel Xeon, 3.6GHz, 2GB RAM

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 110

5.7 Summary and Related Work

DCK can be used to constrain the set of valid plans and has proven an effective tool in reducing the

time required to generate a plan. Moreover, DCK can be used to specify “plan skeletons” which may be

effective for addressing other problems, such as WSC or component software composition.

Nevertheless, many of the planners that exploit it use arguably less natural state-centric DCK spec-

ification languages, and their planners use blind search. In this chapter we examined the problem of

exploiting procedural DCK with state-of-the-art planners. Our goal was to specify rich DCK naturally

in the form of a program template and to exploit state-of-the-art planning techniques to actively plan

towards the achievement of this DCK. To this end we made three contributions:provision of a procedu-

ral DCK language syntax and semantics; a polynomial-time algorithm to compile DCKand a planning

instance into a PDDL2.1 planning instance that could be input to any PDDL2.1-compliant planner; and

finally a set of techniques for exploiting domain-independent heuristic search with our translated DCK

planning instances. Each contribution is of value in and of itself. The language can be used without the

compilation, and the compiled PDDL2.1 instance can be input to any PDDL2.1-compliant state-of-the-

art planner, not just the domain-independent heuristic search plannerthat we propose. Our experiments

show that procedural DCK improves the performance of state-of-the-art planners, and that our heuristics

are sometimes key to achieving good performance.

Much of the previous work on DCK in planning has exploited state-centric specification languages.

In particular, TLPLAN (Bacchus and Kabanza, 1998) and TALPLAN (Kvarnstr̈om and Doherty, 2000)

employ declarative, state-centric, temporal languages based on LTL to specify DCK. Such languages

define necessary properties of states over fragments of a valid plan. Weargue that they could be less

natural than our procedural specification language.

Though not described as DCK specification languages there are a number of languages from the

agent programming and/or model-based programming communities that are related to procedural con-

trol. Among these are EAGLE, a goal language designed to also express intentionality (dal Lagoet al.,

2002). Moreover, Golog is a procedural language proposed as an alternative to planning by the cogni-

tive robotics community. It essentially constrains the possible space of actions that could be performed

by the programmed agent allowing non-determinism. Our DCK language can beviewed as a ver-

sion of Golog. Further, languages such as the Reactive Model-Based Programming Language (RMPL)

(Kim, Williams, and Abramson, 2001) – a procedural language that combinesideas from constraint-

based modeling with reactive programming constructs – also share expressive power and goals with

procedural DCK. Finally, HTN specification languages such as those used in SHOP (Nauet al., 1999)

domain-dependent hierarchical task decompositions together with partial order constraints, not easily

describable in our language. However, Fritz, Baier, and McIlraith (2008) have recently provided a

compilation of ConGolog (De Giacomoet al., 2000), a successor of Golog, to PDDL. ConGolog can

CHAPTER 5. GOLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 111

represent various HTN constructs.

A focus of our work was to exploit state-of-the-art planners and planning techniques with our proce-

dural DCK. In contrast, well-known DCK-enabled planners such as TLPLAN and TALPLAN use DCK

to prune the search space at each step of the plan and then employ blind depth-first cycle-free search to

try to reach the goal. Unfortunately, pruning is only possible for maintenance-style DCK and there is

no way to plan towards achieving other types of DCK as there is with the heuristic search techniques

proposed here.

Similarly, Golog interpreters, while exploiting procedural DCK, have traditionally employed blind

search to instantiate nondeterministic fragments of a Golog program. Most recently, Claßenet al.(2007)

have proposed to integrate an incremental Golog interpreter with a state-of-the-art planner. Their mo-

tivation is similar to ours, but there is a subtle difference: they are interestedin combiningagent pro-

grammingand efficient planning. The integration works by allowing a Golog programto make explicit

calls to a state-of-the-art planner to achieve particular conditions identifiedby the user. The actual plan-

ning, however, is not controlled in any way. Also, since the Golog interpreter executes the returned plan

immediately without further lookahead, backtracking does not extend overthe boundary between Golog

and the planner. As such, each fragment of nondeterminism within a program is treated independently,

so that actions selected locally are not informed by the constraints of later fragments as they are with the

approach that we propose. Their work, which focuses on the semanticsof ADL in the situation calculus,

is hence orthogonal to ours.

Finally, there is related work that compiles DCK into standard planning domains.Baier and McIl-

raith (2006b), Cresswell and Coddington (2004), Edelkamp (2006a),and Rintanen (2000), propose to

compile different versions of LTL-based DCK into PDDL/ADL planning domains. The main drawback

of these approaches is that translating full LTL into ADL/PDDL is worst-case exponential in the size of

the control formula whereas our compilation produces an addition to the original PDDL instance that is

linear in the size of the DCK program. Son, Baral, Nam, and McIlraith (2006)further show how HTN,

LTL, and Golog-like DCK can be encoded into planning instances that can be solved using answer set

solvers. Nevertheless, they do not provide translations that can be integrated with PDDL-compliant

state-of-the-art planners, nor do they propose any heuristic approaches to planning with them.

Chapter 6

Planning with Programs that Sense

6.1 Introduction

In the previous chapter, we developed an algorithm that enables any PDDL-compliant planner to plan

with Golog procedural control. This is important because many applications require planning in such

conditions. However, as we mentioned in the introduction of this document, in many cases thebuilding

blocksfor plans are not simply primitive actions butcomplex actionsor programs. Moreover, programs

may be able tosensethe environment.

Our interest in this chapter is to develop an algorithm that will enable existing operator-based plan-

ners to plan withprograms, rather than or in addition to primitive actions, as the building blocks for

plans. By doing so, we enable recent advances in these planners to be leveraged for planning with pro-

grams. Our approach is distinct from previous work (McIlraith and Fadel, 2002) in that it can handle

programs that sense the environment.

Our approach is to develop a technique for compiling programs into new primitive actions that

can be exploited by standard operator-based planning techniques. To achieve this, we automatically

extract (knowledge) preconditions and (knowledge) effects from programs. We study this problem in

the language of the situation calculus, appealing to Golog to represent our programs. The output of

our compilation process is expressed as a situation calculus theory. This output can be translated into a

PDDL specification rather straightforwardly (Pednault, 1989; Claßenet al., 2007).

A primary motivation for this work is to provide a theoretical framework for theuse of conditional

(knowledge producing) macro-actions. Planning with some form of macro-actions (e.g Fikes, Hart, and

Nilsson, 1972; Sacerdoti, 1974; Korf, 1987; McIlraith and Fadel, 2002; Erol et al., 1994) can dramat-

ically improve the efficiency of plan generation. As such, our work enables practitioners that want to

improve the performance of planning applications by adding or learning complex macro-actions to plan

112

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 113

with these actions without requiring to implement any extensions to their planner.

Our secondary motivation for investigating this topic is to address the problemof automated compo-

nent software composition and specifically WSC (e.g. McIlraith and Son, 2002). Web services are self-

contained, Web-accessible computer programs, such as the airline ticket service at www.aircanada.com,

or the weather service at www.weather.com. These services are indeed programs that sense—e.g. by

determining the balance of an account or flight costs by querying a database—and act in the world—

e.g. by arranging for the delivery of goods, by debiting accounts, etc.As such, the task of WSC can

be conceived as the task of planning with programs, or as a specialized version of a program synthesis

task.

6.1.1 Contributions and Outline

The main contributions or our work follow.

1. Levesque (1996) argued that when planning with sensing, the outcomeof the planning process

should be a plan which the executing agent knows at the outset will lead to a final situation in

which the goal is satisfied. Even in cases where no uncertainty in the outcomeof actions, and

no exogenous actions are assumed this remains challenging because of incomplete information

about the initial state. To plan effectively with programs, we must consider whether we have the

knowledge to actually execute the program prior to using it in a plan. To that end, in Section 6.3

we propose an offline execution semantics for Golog programs with sensingthat enables us to

determine that we know how to execute a program. We prove the equivalence of our semantics to

the original Golog semantics, under certain conditions.

2. The main contribution of this work is the compilation method that transforms our action theory

with programs into a new theory where programs are replaced by primitive actions (Section 6.4.1).

This enables us to use traditional operator-based planning techniques to plan with programs that

sense in a restricted but compelling set of cases.

3. Because the operators that result from the compilation may sense various properties at the same

time, and, additionally have conditional knowledge effects, it is not obviouswhether or not our

compilation can be immediately used by standard operator-based planners withsensing. Thus,

we provide an analysis of the applicability of the results presented in the chapter to those planners

(Section 6.5). We also extend thePKS planning system (Petrick and Bacchus, 2002) to handle

sensing for complex formulae

In Section 6.6 we discuss the practical relevance of this work by illustrating the potential computa-

tional advantages of planning with programs that sense. We also discuss the relevance of this work to

WSC.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 114

6.2 Preliminaries

The situation calculus and Golog provide the theoretical foundations for our work. In the two subsec-

tions that follow we briefly review the situation calculus (McCarthy and Hayes, 1969; Reiter, 2001),

including a treatment of sensing actions and knowledge. We also review the transition semantics for

Golog, a high-level agent programming language that we employ to represent the programs we are

composing.

6.2.1 The Situation Calculus

The Situation Calculus, as described by Reiter (2001), is a sorted second-order language for specifying

and reasoning about dynamical systems. In the Situation Calculus, the worldchanges as the result of

actions. A situationis a term denoting the history of actions performed from an initial distinguishedsit-

uation,S0. The functiondo(a,s) denotes the situation that results from performing actiona in situation

s1. Relationalfluentsare situation-dependent predicates that capture the changing state of theworld.2

Finally, the distinguished predicatePoss(a,s) is used to express that it is possible to execute actiona in

situations.

To represent knowledge in the Situation Calculus, we essentially follow Scherl and Levesque’s for-

malism (2003). Thus, we consider an additional predicate symbolK, which has two arguments of the

sort situation, such thatK(s′,s) indicates thats′ is accessiblefrom s. K intuitively represents thats′ is a

“possible world” given that we are ins, and therefore adapts Moore’s possible-world model of knowl-

edge (1985) to the Situation Calculus. Finally, the relation< is such that ifs< s′ it is possible to reach

situations′ from s by performing a non-empty sequence of actions.

6.2.2 Basic Action Theories

The dynamics of a particular domain is described bybasic action theories(BATs). Before defining

BATs precisely, we need to introduce the notion ofuniform formulae. Intuitively, a uniform formula in

the set of situation termsϒ is one that does not containPossor <, it does not quantify over variables

of the sort situation, it does not mention equality on situations, and wheneverit mentions a term of sort

situation in the situation argument position of a fluent, then that term is inϒ.

Definition 6.1 (Uniform Formula) Let ϒ be a set of terms of the sort situation.

• Any situation-independent term is uniform inϒ.3

1do([a1, . . . ,an],s) abbreviatesdo(an,do(. . . ,do(a1,s) . . .)).
2In this chapter we do not deal withfunctional fluentsand thus omit their description.
3Note that since we do not allow functional fluents, the only situation-independent terms of the language may be either

variables not of the sort situation or situation-independent function terms

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 115

• Formulae that are uniform inϒ are inductively defined as follows:

1. Any formula that does not mention a term of sort situation is uniform inϒ.

2. When F is an(n+ 1)-ary relational fluent, t1, . . . , tn are terms uniform in{σ} whose sorts

are appropriate4 for F, andσ ∈ ϒ, then F(t1, . . . , tm,σ) is uniform inϒ.

3. If U1 and U2 are formulae uniform inϒ, so are¬U1, U1∧U2, and(∃v)U1, provided v is a

variable not of sort situation.

Our definition generalizes Definition 4.4.1 by Reiter (2001), in that it considers multiple situation terms

in which a formula can be uniform. We introduce this generalized version since later in this chapter we

will guarantee certain conditions on our compiled theories, that can be expressed compactly in terms of

this definition.

In the remainder of the chapter, whenever a formulaW is uniform in a singleton set{s} we simply

say thatW is uniform in s. Likewise we say thatW is uniform in s and s′ wheneverW is uniform in

{s,s′}.

Now we are ready to describe how to model a dynamic domain using the Situation Calculus. Reiter’s

basic action theory with a treatment for knowledge has the form

D = Σ∪Dss∪Dap∪Duna∪DS0∪Kinit ,

where,

• Σ is a set of foundational axioms.

• Dss is a set of successor state axioms (SSAs), of the form:5,6

F(~x,do(a,s))≡ΦF(a,~x,s), (6.1)

whereΦF(a,~x,s) is a formula uniform ins and whose free variables are amonga, ~x, ands. The

set of SSAs can be compiled from a set ofeffect axioms, Deff (Reiter, 2001). An effect axiom

describes the effect of an action on the truth value of certain fluents, e.g.,

a = startCar⊃ engineStarted(do(a,s)).

The general form of effect axioms is:

γ(~x,a,s)⊃ [¬]F(~x,do(a,s)), (6.2)

4We borrow the term “appropriate” from Reiter’s definition. In short, a term that is the argument to a predicate in thei-th
position as the appropriate sort iff it has the expected sort such a position. Among other things, this means that an argument to
a fluent atom cannot be sort situation unless it is the last argument.

5For notational convenience we use the notationφ(~x,s) to represent a formulaφ(x1, . . . ,xn,s) of the Situation Calculus, for
somen.

6All free variables in formulae are regarded as universally quantified.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 116

where[¬] indicates that¬ may or may not appear.γ(~x,a,s) is a formula uniform ins and whose

free variables are among~x, a, ands.

Dss contains an axiom for theK fluent that we review below.

• Dap contains action precondition axioms. For each action function symbolA of the language,

there is a precondition axiom of the form:

Poss(A(~x),s)≡ΠA(~x,s), (6.3)

whereΠA(~x,s) is a formula uniform ins and whose free variables are among~x ands. ΠA(~x,s)

expresses all the conditions under whicha can be performed ins.

• Duna contains unique names axioms for actions.

• DS0 describes the initial state of the world.

• Kinit defines the properties of theK fluent in the initial situation. The form of the successor state

axiom for K guarantees that these properties are preserved in all successors ofs. One of the

conditions that we assume forK in the rest of the chapter isreflexivity. This condition is enforced

by adding the following axiom toKinit .

(∀s). Init (s)⊃ K(s,s), (6.4)

whereInit (s)
def
= ¬(∃a,s′)s= do(a,s′). Reflexivity ofK implies that everything that is known in

situations is also true ins.

6.2.3 Representing Knowledge

Our representation of knowledge closely follows the formalism introduced byScherl and Levesque

(2003). As they do, we use the distinguished fluentK to capture the knowledge of an agent in the

Situation Calculus. However, as opposed to their treatment, we assume that thesuccessor state axiom

for K has a slightly different form that allows a sensing action to sense multiple formulae. Our SSA for

K looks closer in syntax to the one that was proposed earlier by the same authors (Scherl and Levesque,

1993), which was also adopted by Reiter (2001). Although we use regression extensively, we do not

appeal to an extension of Reiter’s regression operators proposed byScherl and Levesque that allows

regressing the knowledge of the agent.

We now proceed to formally define two notions of knowledge for an agent, and we then describe the

structure of the successor state axiom forK.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 117

What Does an Agent Know?

We will extensively use two notions of knowledge. First, we want to establishthat an agentknowsa

formulaφ in a certain situations. Essentially, this means thatφ should hold in any situation that is

accessible froms. Our second notion of knowledge corresponds toknowing whether or nota formula

φ is true. This second notion is weaker, but is useful since it allows to reason hypothetically about the

knowledge of the agent. For example, we expect from our formalization that if an agent has a sensor

for φ, then we can conclude that after performing an action that reads this sensor, the agent will know

whether or notφ, even if the action has not been actually performed.

The following are the formal definitions that summarize the intuitions given above.

Knows(φ,s) def
= (∀s′).K(s′,s)⊃ φ[s′],

KWhether(φ,s) def
= Knows(φ,s)∨Knows(¬φ,s),

whereφ is asituation-suppressedformula (i.e. a Situation Calculus formula whose situation terms are

suppressed), andφ[s] denotes the formula that restores situation arguments inφ by s.

A Successor State Axiom forK

Scherl and Levesque (2003) define a standard SSA for theK predicate. The axiom is:7

K(s′′,do(a,s))≡ (∃s′).s′′ = do(a,s′)∧K(s′,s)∧Poss(a,s′)∧SF(a,s)≡ SF(a,s′), (6.5)

WhereSF(a,s) is a distinguished predicate that defines the formula that is sensed by a sensing actiona.

Intuitively, if an actiona is performed ins and s′ was K-accessible froms then do(a,s′) is K-

accessible fromdo(a,s) only if SF(a,s) andSF(a,s′) have the same truth value. For sensing actions,

SF(a,s) is equivalent to a formulaφ(s), which issensedby a. For a non-sensing actiona, SF(a,s) is

equivalent toTrue. This means that if one performs a non-sensing actiona in s, if s′ wasK-accessible

from s then so isdo(a,s′) from do(a,s).

As mentioned above, if an actionsenseφ senses whether or not fluentφ is true, then we would add

SF(senseφ,s) ≡ φ(s) to the domain theory. TheSF notation also allows expressing context-dependent

sensing. For example, by using the axioms:

InRoom1(s)⊃ (SF(senseLight,s)≡ Light1(s)),

InRoom2(s)⊃ (SF(senseLight,s)≡ Light2(s)),

we establish that actionsenseLightinspects the truth value of different fluents depending on the location

of the robot. Even thoughSF provides a good level of flexibility, it cannot be used straightforwardly to

7Scherl and Levesque’s paper actually usesSRinstead ofSF. SinceSF seems to be standard (e.g. Levesque, 1996) when
dealing with knowledge about Boolean formulae, we stick to it here.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 118

represent actions that sense the truth value of multiple formulae at the same time.The reason is that in

those cases, we need to specify multiple equivalencies for a single action.

In the rest of this chapter we adopt a slightly different successor state axiom for K, that allows

sensing multiple properties and also allows context-dependent sensing. Ifthe language of a theory

containsn action function symbolsA1, . . . ,An ourDss includes:

K(s′′,do(a,s))≡ (∃s′).s′′ = do(a,s′)∧K(s′,s)∧Poss(a,s′)∧
n

∧

i=1

{a = Ai(~xi)⊃ SensedCond(Ai(~xi),s,s
′)},

(6.6)

whereSensedCond(Ai(~xi),s,s′′) stands for a formula that expresses the sensing condition of action

Ai(~x). SensedCond(Ai(~xi),s,s′′) is defined by macro expansion and, ifAi is a sensing action, it has the

following form:

SensedCond(Ai(~xi),s,s
′)

def
=

ni
∧

j=1

α j(~xi ,s)⊃ (ψ j(~xi ,s)≡ ψ j(~xi ,s
′)), (6.7)

whereα j is a condition under whichAi senses propertyψ j . Bothα j(~xi ,s) andψ j(~xi ,s) are formulae

uniform insand are such that their free variables are among those in~x ands. On the other hand, ifAi is

not a sensing action, then it has the following form:

SensedCond(Ai(~x),s,s
′)

def
= True (6.8)

Note that the resulting axiom forK is very similar in form to that of Reiter (2001). There are two main

differences however. First, it contains the termPoss(a,s′) in the right hand side. This term also appears

in Scherl and Levesque’s axiom (6.5), and allows the agent to know the precondition of an action after

performing it. Second, it is explicit about the fact that an action canconditionallysense possiblymultiple

formulae. Although Reiter’s axiom (2001, Expression 11.7) does not seem to disallow multiple sensing

effects, it is not in a form that allows conditional sensing effects. Finally,we insist thatα j(~xi ,s) and

ψ j(~xi ,s) be uniform formulae; this condition was not imposed explicitly neither by Reiter (2001) nor by

Scherl and Levesque (2003) but seems necessary for the SSA forK to have a form that resembles that

of the SSAs for other fluents (cf. Expression 6.1).

Example 6.1 Let senseφ andsenseLightbe as defined above. Moreover assume actionlookMonitor

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 119

senses the value of bothLight1 andLight2. Then, we defineSensedCond in the following way.

SensedCond(senseφ,s,s
′)

def
= True⊃ (φ(s)≡ φ(s′))

SensedCond(senseLight,s,s′)
def
= [InRoom1(s)⊃ (Light1(s)≡ Light1(s

′))]∧

[InRoom2(s)⊃ (Light2(s)≡ Light2(s
′))],

SensedCond(lookMonitor,s,s′)
def
= [True⊃ (Light1(s)≡ Light1(s

′))]∧

[True⊃ (Light2(s)≡ Light2(s
′))],

6.2.4 Regression

Finally, our compilation procedure will make extensive use of a generalization of Reiter’sregression

operator (Reiter, 2001). The regression ofα = ϕ(do([a1, . . . ,an],S0)), denoted byR[α], is a formula

equivalent toα but such that the only situation terms occurring in it areS0. Roughly, to regress a formula,

one iteratively replaces each occurrence of fluent atomic formulaeF(x,do(a,s)) by the right-hand side

of Expression 6.1 until all atomic subformulae mention only situationS0.

In this chapter, we need to use a more general version of regression withtwo main objectives. First,

to produce the physical effects for our new primitive actions, we will needto be able to regress for-

mulae in order to produce a formula that only mentions a situation terms, whens is not necessarily

S0. Second, we will need to regress formulae that contain situations that are inthe future of multiple

different situations (not just one, as in Reiter’s definition) – the reason for this is that we will be ob-

taining knowledge effects of programs by regressing formulae that refer to equivalencies of the sort of

those in Expression 6.7. To that end, we propose a generalization of Reiter’s operator,R[W,ϒ], where

W is a formula of the Situation Calculus andϒ is a set of situation terms. Intuitively, this operator

regresses formulae that mention situation terms that may depend only on the termsin ϒ. Additionally,

the regression “stops” when situation terms mentioned in the formula are all inϒ.

Following Reiter (2001), we start off by definingregressableformulae in a setϒ of situation terms.

Our definition extends Reiter’s in the sense that our regressable formulaeare those that refer to situations

in the future of situations inϒ rather than only in the future ofS0. Other aspects of Reiter’s definition

are not changed.

Definition 6.2 (Regressable formula in a set of situations terms)A formula W of the Situation Cal-

culus isregressable in a set of situation termsϒ iff

1. Each term of the sort situation mentioned by W has the syntactic form do([α1, . . . ,αn],s) for some

s∈ ϒ, and some n≥ 0, whereα1, . . . ,αn are terms of the sort action.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 120

2. For each atom of the form Poss(α,σ) mentioned by W,α has the form A(t1, . . . , tn) for some action

function symbol A.

3. W does not quantify over situations.

4. W does not mention the predicate symbol<, nor does it mention any equality atomσ = σ′ for

termsσ,σ′ of the sort situation.

5. Each atom is either situation-independent, of the form Poss(α,σ), or of the form F(t1, . . . , tn,σ)

for some fluent symbol F that is not K, some action termα, and some situation termσ.

Note that this definition coincides with Reiter’s Definition 4.5.1 (2001) whenϒ = {S0}. Reiter’s

definition—since it was not designed to deal with theK fluent—does not insist on atoms being of the

form in requirement number 5. This however, is necessary since our language containsK, which has an

SSA whose right-hand side is not regressable because it quantifies over situations.

Our definition of the regression operator differs from Reiter’s essentially only for the case of atomic

formulae. There is an important property that atoms of a regressable formula satisfy:

Proposition 6.1 Let W be a formula regressable inϒ. Then for any atom U in W, there exists a situation

sU ∈ ϒ, such that U is regressable in sU .

Proof: SinceW is regressable inϒ, no atom ofW can contain two different situation terms. Indeed,

both the arguments to fluents atoms inW that are not the situation argument, and the arguments to action

terms in aPossatom ofW may only be situation-independent terms since we do not deal with functional

fluents. If an atomU of W contains 0 situation terms, the result follows immediately. IfU contains 1

situation term, then this must be a term in the future of some situation insU ∈ ϒ. It follows that this

atom is regressable insU . �

To defineR[W,ϒ] we slightly modify Reiter’s definition (2001). Our definition differs from Reiter’s

in two aspects. The first is that we do not regress up toS0 but only until all situation terms are inϒ. The

second is that we do not regress terms that are in the future of a single situation but we allow to regress

formulae that refer to situations in the future of multiple situations.

Definition 6.3 (Regression of a formula over a set of situation terms)Letϒ be a set of situation terms.

Furthermore, let W be a formula regressable inϒ that mentions no functional fluents. Then the regres-

sion of W overϒ,R[W,ϒ], is defined as follows.

1. Assume W is an atom then we have the following cases.

(a) W is situation-independent, then

R[W,ϒ] = W.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 121

(b) W is of the form F(t1, . . . , tn,s) for some s∈ ϒ, then

R[W,ϒ] = W.

(c) If W is of the form Poss(A(~t),σ),

R[W,ϒ] =R[ΠA(~t,σ),ϒ].

(d) If W is of the form F(~x,do(α,σ)), then

R[W,ϒ] =R[ΦF(~x,α,σ),ϒ].

2. If W is a non-atomic formula, then the operator is defined as follows.

R[¬W,ϒ] = ¬R[W,ϒ],

R[W1∧W2,ϒ] =R[W1,ϒ]∧R[W2,ϒ],

R[(∃v)W,ϒ] = (∃v)R[W,ϒ],

Proposition 6.2 Let W be both regressable inϒ and regressable inϒ′. Assume further thatϒ is a proper

subset ofϒ′. Then,

R[W,ϒ′] =R[W,ϒ].

Proof: Follows straightforwardly by observing thatW does not depend on any situation term in the

future of any variable inϒ′ \ϒ; otherwise, it would not be regressable inϒ. �

As with Reiter’s operator, we prove that by applying our operator we preserve the models of the

formula given as argument, and that, furthermore, the resulting formula satisfies a uniformity condition.

Theorem 6.1 Let W be a formula regressable inϒ. LetD be a basic action theory. ThenR[W,ϒ] is

uniform inϒ, and furthermore,

D |=R[W,ϒ]≡W

Proof: First note that the regression operator is well-defined, in the sense that italways produces a

situation calculus formula. The proof follows from Reiter’s Theorem 4.5.4 (2001), and Propositions 6.1

and 6.2. First, observe that both our regression operator and Reiter’scoincide for non-atomic formulae

(modulo the extra parameter). Hence, their behaviour is only different atthe atom level. On the other

hand, by Proposition 6.1, we have that for any atomU in W, U is regressable in only one situation

sU ∈ ϒ. By Proposition 6.2 we have thatR[U ,ϒ] = R[U ,{sU}]. Moreover,R[U ,{sU}] coincides with

Reiter’s operator, the only difference being that the root of the regression is notS0 but sU . The result

now follows almost directly from (1) Reiter’s Theorem 4.5.4 by noticing that the only difference for this

case is the different root for the regression, and by (2) the fact thata logical combination of formulae

uniform in a subset ofϒ is uniform inϒ. �

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 122

6.2.5 Golog’s Syntax and Semantics

Golog is a high-level agent programming language whose semantics is basedon the situation calculus

(Reiter, 2001). A Golog program is a complex action8. For this chapter we focus on the Golog de-

terministic tree programs. Golog deterministic tree programs can be formed by applying the following

constructs.

nil – the empty program

a – a primitive action

φ? – test action

δ1;δ2 – sequences (δ1 is followed byδ2)

if φ then δ1 elseδ2 endif – conditional

For the definition above, we assume thata is a primitive action of the formA(~t), whereA is an action

function symbol. Assume also thatδ1 andδ2 are Golog deterministic tree programs. Finally, assume

thatφ[s] is a formula of the language that is regressable ins.

The Golog deterministic tree programs that we deal with in this chapter impose four restrictions on

general Golog programs. The first and most obvious one is determinism. This restriction is necessary

in order to reduce a program into a primitive action. The second two are the form of the primitive

action a and the form ofφ[s]. This enables us to use regression over Golog programs later in this

chapter, ultimately allowing us to extract the effects of Golog programs. Restricting conditions to be

regressable still allows the user to define a wide range of formulae, in particular any boolean combination

of formulae whose atoms are situation-suppressed fluents, including quantification. There are some

formulae that are not allowed, but they arguably express less compelling conditions, that hardly appear

in real applications. For example, we do not allow the conditionφ to refer toPossused on an action

term that is not ground. We would not allow, for example,(∀a)Poss(a) as a condition in anif-then-else

statement.

The final restriction is that of disallowing unbounded iteration. This restriction may seem too strong.

Nevertheless, in practical applications most loops in terminating programs canbe replaced by a bounded

loop (i.e. a loop that is guaranteed to end after a certain number of iterations). Therefore, following

McIlraith and Fadel (2002), we extend the Golog language with abounded loopconstruct, defined as

follows.

whilen φ do δ endwhile=







nil if n = 0

if φ then {δ;whilen−1 φ do δ endwhile} elsenil endif if n> 0

The semantics of Golog (Levesqueet al., 1997) is defined by the macroDo(δ,s,s′) which expands

into a formula that is true if and only if the execution of programδ in situations leads to situations′. Do

8We use the symbolδ to denote complex actions.φ is a situation-suppressed formula.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 123

is defined as follows.

Do(nil ,s,s′)
def
= s= s′ (6.9)

Do(a,s,s′)
def
= Poss(a[s],s)∧s′ = do(a[s],s) (6.10)

Do(φ?,s,s′)
def
= φ[s]∧s′ = s (6.11)

Do(δ1;δ2,s,s
′)

def
= (∃s′′).Do(δ1,s,s

′′)∧Do(δ2,s
′′,s′) (6.12)

Do(if φ then δ1 elseδ2 endif,s,s′) def
= φ[s]∧Do(δ1,s,s

′)∨¬φ[s]∧Do(δ2,s,s
′) (6.13)

6.2.6 Do−: A Poss-less Version ofDo

In the rest of the chapter, we will be using regression onDo to obtain the preconditions and physical and

knowledge effects of programs. Since the definition ofDo includesPoss, when we regress it directly,

we obtain an expression that includes the preconditions of the program. This is a feature that, as we see

later, will enable us to obtain a precondition to the program by regressingDo. However, when using

regression to obtain the effects of the program by regressingDo directly, we obtain that each effect of

the program is conditioned on the program’s precondition. Such an expression is redundant and thus

undesirable. To address this issue we use aPoss-less version ofDo, Do−. Its definition follows.

Do−(nil ,s,s′)
def
= s= s′ (6.14)

Do−(a,s,s′)
def
= s′ = do(a[s],s) (6.15)

Do−(φ?,s,s′)
def
= φ[s]∧s′ = s (6.16)

Do−(δ1;δ2,s,s
′)

def
= (∃s′′).Do−(δ1,s,s

′′)∧Do−(δ2,s
′′,s′) (6.17)

Do−(if φ then δ1 elseδ2 endif,s,s′) def
= φ[s]∧Do−(δ1,s,s

′)∨¬φ[s]∧Do−(δ2,s,s
′) (6.18)

Note that the only aspect in whichDo− differs fromDo is in the formula for the primitive actiona.

A rather obvious property ofDo− is that set of situations that are executions of a programδ under

Do− is a superset of those underDo. Formally,

Proposition 6.3 Let δ be a Golog program and letD be a theory of action. Then,

D |= (∀s,s′).Do(δ,s,s′)⊃ Do−(δ,s,s′)

Proof: Fairly straightforward by induction in the structure ofδ. �

As we mentioned earlier, bothDo andDo− expand into a formula of the language. Both of these

formulae can be put into a certain form that will later allow us to use regression. This is justified by the

following result.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 124

Lemma 6.1 Let δ(~y) be a Golog deterministic tree program whose free variables are among those in

~y. Then there exists a set of sequences of primitive action terms{~a1, . . . ,~an}, where each action term in

each sequence is of the form A(~t), for some action function symbol A of the language, and there exists a

set of formulae{ψ1(~y,s), . . . ,ψn(~y,s)}, where eachψi(~y,s) is regressable in s, such that:

Do(δ(~y),s,s′)≡
n

∨

i=1

ψi(~y,s)∧s′ = do(~ai ,s)

Analogously, there exists a set of sequences of primitive action terms{~b1, . . . ,~bn}, where each action

term in each sequence is of the form A(~t), for some action A of the language, and there exists a set of

formulae{µ1(~y,s), . . . ,µn(~y,s)}, where eachµi(~y,s) is regressable in s, such that:

Do−(δ(~y),s,s′)≡
n

∨

i=1

µi(~y,s)∧s′ = do(~bi ,s)

Proof: Theψi (resp. µi) formulae can be constructed by unrolling the definition ofDo (resp. Do−).

Note that in almost all cases forδ except for the sequence, the right-hand side ofDo (resp. Do−)

provides a formula exactly in the form required above. For the sequence, we eliminate the existential

quantifier by performing substitution ofs′′. �

The intuition behind this result is central to the compilation method proposed in this chapter. Intu-

itively this result establishes that there aren possible situations that correspond to the execution of the

program. The situation represented bydo(~ai ,s) is conditioned on formulaψi . Each of thesen possible

situations correspond to the execution of one of the branches of the tree program, and each conditionψi

is the condition under which the branch is executable. Note also that since theprogram is deterministic,

for every modelM of D there is only one executable branch. Formally, this means that ifψi(~y,s) and

ψ j(~y,s) are such that bothM |= ψi(~y,s) andM |= ψ j(~y,s) then~bi =~b j .

6.3 Semantics for Executable Golog Programs

Again, as Levesque (1996) argued, when planning with sensing, the outcome of the planning process

should be a plan which the executing agent knows at the outset will lead to a final situation in which

the goal is satisfied. When planning with programs, as we are proposing here, we need to be able to

determine when it is possible to execute a program with sensing actions and what situations could be

the result of the program. Unfortunately, Golog’s original semantics doesnot consider sensing actions

and furthermore does not consider whether the agent has the ability to execute a given program.

Example 6.2 LetD be an action theory, thenD |= φ[S0] andD 6|= ¬φ[S0], and let

∆ def
= if φ then a elseb endif.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 125

Assume furthermore thata andb are always possible. Then, it holds thatD |= (∃s)Do(∆,S0,s), i.e. δ is

executable inS0 (in fact,D |= Do(∆,S0,s)≡ s= do(a,S0)∨s= do(b,S0)). This fact is counter-intuitive

since inS0 the agent does not have enough information to determine whetherφ holds, so∆ is not really

executable.

As a first objectivetowards planning with programs that sense, we define what property a Golog

program must satisfy to ensure it will be executable. Oursecond objectiveis to define a semantics that

will enable us to determine the family of situations resulting from executing a program with sensing

actions. This semantics provides the foundation for results in subsequentsections.

To achieve our first objective, we need to ensure that at each step of program execution, an agent

has all the knowledge necessary to execute that step. In particular, we need to ensure that the program is

epistemically feasible. Once we define the conditions under which a program is epistemically feasible,

we can either use them as constraints on the planner, or we can ensure that our planner only builds plans

using programs that are known to be epistemically feasible at the outset.

The problem of knowing how to execute a plan was addressed by Davis (1994). For Golog programs,

the first approach—due to Lespérance, Levesque, Lin, and Scherl (2000)—, defines a predicateCanExec

to establish when a program can be executed by an agent. A program canbe executed by an agent if

the agent possesses a strategy functionσ that allows it to choose the right execution path. Using such a

predicate, Lesṕeranceet al. define the two notions ofknowing howto execute a program. The second

one—called “smart” know how—expresses that the agent knows how to execute a program iff there

exists a strategyσ under which it can succeed executing the program. Lespéranceet al. (2000) do not

deal however with the problem of how can the agent determine such a strategy σ.

Sardina, de Giacomo, Lespérance, and Levesque (2004) define epistemically feasible programs us-

ing the online semantics of De Giacomo and Levesque (1999). Epistemic feasibility ensures that at each

point in the execution the agent knows that there is a unique way of making a transition in the program.

This notion does not require the concept of strategy and is much closer to what we want to achieve here.

Nevertheless because Sardinaet al. (2004) define feasibility in an online rather than an offline set-

ting, we prefer using a simpler, but slightly weaker definition proposed by McIlraith and Son (2002),

which defines a self-sufficient property,ssf, such thatssf(δ,s) is true iff an agent knows how to execute

programδ in situations. We appeal to this property to characterize when a Golog program is executable.

Its definition is given below.9

9We differ from the original definition in two aspects. First, in our case, we definessf as a macro rather than a predicate.
Second, we differ on the definition of Expression 6.20, since we do notcontemplate the so-called desirable actions.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 126

ssf(nil ,s)
def
= True (6.19)

ssf(a,s)
def
= KWhether(Poss(a),s), (6.20)

ssf(φ?,s)
def
= KWhether(φ,s) (6.21)

ssf(δ1;δ2,s)
def
= ssf(δ1,s)∧ (∀s′).Do(δ1,s,s

′)⊃ ssf(δ2,s
′) (6.22)

ssf(if φ then δ1 elseδ2 endif,s) def
= KWhether(φ,s)∧

(φ[s]⊃ ssf(δ1,s))∧ (¬φ[s]⊃ ssf(δ2,s))
(6.23)

Self-sufficiency is weaker than epistemic feasibility because it sometimes may require knowledge of

certain properties when there is actually no need to require such knowledge. Differences are apparent,

however, only in very contrived cases. For example, the Golog program if φ then a elsea endif is not

self sufficient in a situations in which ¬KWhether(φ,s) but it is epistemically feasible, because no

matter what the agent knows there is a unique way of completing the program by performinga. We do

not view these differences however as an obstacle to our main purpose.

We now focus on our second objective, i.e. to define a semantics for Gologprograms with sensing

actions. To our knowledge, no such semantics exists. Nevertheless, there is related work. De Giacomo

and Levesque (1999) define the semantics of programs with sensing in anonline manner, i.e. it is

determined during the execution of the program. An execution is formally defined as a mathematical

object, and the semantics of the program depends on such an object. The semantics is thus defined in

the metalanguage, and therefore it is not possible to refer to the situations that would result from the

execution of a program within the language.

To define a semantics for executable programs with sensing, we modify the existing Golog semantics

so that it refers to the knowledge of the agent, defining aDoK macro. This new macro is such that

DoK(δ,s,s′) expands into a formula that is true if and only if the agent has the sufficient knowledge to

perform programδ in s, and gets to situations′ after doing so.

DoK(nil ,s,s′)
def
= s= s′ (6.24)

DoK(a,s,s′)
def
= Knows(Poss(a),s)∧s′ = do(a[s],s) (6.25)

DoK(φ?,s,s′)
def
= Knows(φ,s)∧s′ = s (6.26)

DoK(δ1;δ2,s,s
′)

def
= (∃s′′).DoK(δ1,s,s

′′)∧DoK(δ2,s
′′,s′) (6.27)

DoK(if φ then δ1 elseδ2 endif,s,s′) def
= Knows(φ,s)∧DoK(δ1,s,s

′)∨

Knows(¬φ,s)∧DoK(δ2,s,s
′)

(6.28)

In contrast toDo, DoK of an if-then-elseexplicitly requires the agent to know the value of the

condition. Returning to Example 6.2, if nowD 6|= KWhether(φ,S0), thenD |= ¬(∃s)DoK(∆,S0,s).

However, ifsenseφ sensesφ, thenD |= (∃s)DoK(senseφ;∆,S0,s).

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 127

A natural question to ask is when this semantics is equivalent to the original semantics. We can

prove that both are equivalent for self-sufficient programs (in the sense of McIlraith and Son (2002)).

Lemma 6.2 LetD be a theory of action such that the K fluent is reflexive, and letδ be a Golog deter-

ministic tree program. Then,

D |= (∀s).ssf(δ,s)⊃ {(∀s′).Do(δ,s,s′)≡ DoK(δ,s,s′)}

Proof: See Section D.1 (p. 184). �

The preceding lemma is fundamental to the rest of our work. In the following sections we show how

theory compilation relies strongly on the use of regression of theDoK predicate. Given our equivalence

we can now regressDo instead ofDoK which produces significantly simpler formulae.

An important point is that the equivalence of the semantics is achieved for self-sufficient programs.

Proving that a program is self-sufficient may be as hard as doing the regression ofDoK . Fortunately,

there are syntactic accounts of self-sufficiency (McIlraith and Son, 2002; Sardinaet al., 2004), such as

programs in which eachif-then-elseandwhile loop that conditions onφ is preceded by asenseφ, or

more generally that knowledge aboutφ is established prior to these constructs and persists until their

usage.

6.4 Planning with Programs that Sense

We now return to the main objective of this chapter – how to plan with programs that sense by enabling

operator-based planners to treat programs as black-box primitive actions. A plan in the presence of

sensing is a program that may contain conditionals and loops (Levesque, 1996). As such, we define a

plan as a Golog program.

Definition 6.4 (A plan) Given a theory of actionD, and a goal G we say that Golog programδ is a

plan for situation-suppressed formula G in situation s relative to theoryD iff

D |= (∃s′)DoK(δ,s,s′)∧ (∀s′).DoK(δ,s,s′)⊃G[s′].

Intuitively, the Golog programδ is a plan if it terminates and achieves the goal.

In classical planning, a planner constructs planδ by choosing actions from a setA of primitive

actions. Here we assume the planner has an additional setC of programs from which to construct plans.

Example 6.3 Consider an agent that uses the following complex action to paint objects:

δ(o)
def
=sprayPaint(o); look(o);

if ¬wellPainted(o) then brushPaint(o) elsenil endif

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 128

The actionsprayPaint(o) paints an objecto with a spray gun, and actionbrushPaint(o) paints it with a

brush. We assume that actionsprayPaint(o) well-paintso if the spray is not malfunctioning, whereas ac-

tion brushPaint(o) always well-paintso (this agent prefers spray-painting for cosmetic reasons). Action

look(o) is a sense action that senses whether or noto is well painted.

Below we show some axioms inDap andDeff that are relevant for our example.

Poss(sprayPaint(o),s)≡ have(o),

Poss(look(o),s)≡ have(o),

a = sprayPaint(o)∧¬malfunct(s)⊃ wellPainted(o,do(a,s)),

a = brushPaint(o)⊃ wellPainted(o,do(a,s))

a = scratch(o)⊃ ¬wellPainted(o,do(a,s))

The SSAs for the fluentswellPaintedis as follows.

wellPainted(x,do(a,s))≡

a = brushPaint(x)∨ (a = sprayPaint(x)∧¬malfunct(s))∨

wellPainted(x,s)∧a 6= scratch(x),

Finally, actionlook(x) informs the agent of whether or notx is well painted. We achieve this by defining

the following sensed condition:

SensedCond(look(o),s,s′)
def
= wellPainted(x,s)≡ wellPainted(x,s′).

Furthermore, for all remaining primitive actionsSensedCond is defined asTrue.

The SSA forwellPaintedsays thatx is well painted if it has just been brush painted, or it has just

been spray painted and the spray is not malfunctioning or if it was well painted in the preceding situation

andx has not been scratched. On the other hand, the SSA forK talks about a unique sensing action,

look(x), which senses whetherx is well painted.

Suppose we want to use actionδ to construct a plan using an operator-based planner. Instead of a

program, we would need to considerδ’s effects and preconditions (i.e. we would need to representδ as

a primitive action). Among the effects we must describe both physical effects (e.g., after we perform

δ(B), B is wellPainted) and knowledge effects. A rather non-trivial knowledge effect is that if we know

thato is notwellPainted, after we performδ(B), we know whether or notmalfunct.

The rest of this section presents a method that, under certain conditions, transforms a theory of

actionD and a set of programs with sensingC into a new theory,Comp[D,C], that describes the same

domain asD but that is such that programs inComp[D,C] each appear modeled by a new primitive

action.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 129

6.4.1 Theory Compilation

A program with sensing may produce both effects in the world and in the knowledge of the agent.

Therefore, we want to replace a programδ by one primitive actionprimδ, with the same preconditions

and the same physical and knowledge effects asδ. We now describe how we can generate a new theory

of action that contains this new action. Then we prove that whenprimδ is executed, it captures all world

and knowledge-level effects of the original programδ.

Our translation process is restricted to tree programs. This is because programs containing loops

can be problematic since they may have arbitrarily long executions. However, in many practical cases

loops can be replaced by bounded loops using thewhilen construct introduced in Section 6.2.

We start with a theoryD= Σ∪Dss∪Dap∪Duna∪DS0∪Kinit , describing a setA of primitive actions

and a setC of tree programs, and we generate a new theoryComp[D,C] that contains new, updated SSA,

precondition and unique name axioms.

We make the following assumptions. First we assume that the set of successor state axioms,Dss,

has been compiled from setDeff of effect axioms. Furthermore, we assume we are given a setC of

deterministic tree programsδ(~y) that contain free variables among those in~y. Vector~y can be seen as

the parameters for the complex action. Finally, each programδ(~y) is such thatD |= (∀s,~y).ssf(δ(~y),s).

Moreover, we wantprimδ to preserve the physical effects ofδ. To that end, for each fluent, we add

effect axioms forprimδ such that wheneverδ makesF true/false,primδ will also make it true/false.

Finally, because we want to preserve knowledge effects ofδ, primδ will emulateδ with respect to the

K fluent. To write these new axioms we use the regression operatorR[·, ·] of Section 6.2 because we

will need that precondition and effect axioms only talk about situations. We generate the new theory

Comp[D,C] in the following way. First, we setD′
eff := Deff, D′

ap := Dap, andD′
una := Duna. The

definition of the new preconditions and physical and knowledge effects for the new primitive actions

follow.

New Preconditions

Intuitively, sinceprimδ(~y) replacesδ(~y), we wantprimδ(~y) to be executable ins precisely whenδ(~y) is

executable ins. Note that programδ(~y) is executable ins iff there exists a situations′ that corresponds

to the execution of the program ins. In other words,primδ(~y) is executable ins iff

(∃s′)DoK(δ(~y),s,s′) (6.29)

is entailed byD. Nevertheless, we cannot add the formula in Expression 6.29 directly as aprecondition

since this formula is not uniform ins. To obtain a formula uniform ins we would want to appeal to

regression but unfortunately Expression 6.29 is not regressable!

We appeal now to results proven earlier in this chapter to transform Expression 6.29 into an equiv-

alent formula thatis regressable ins. First, by Lemma 6.2 and the fact thatδ(~y) is self-sufficient, we

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 130

know Expression 6.29 is equivalent to

(∃s′)Do(δ(~y),s,s′). (6.30)

Finally we can transform Expression 6.30 into an equivalent formula that isregressable ins, as shown

by the following remark.

Remark 6.1 Letψ1,ψ2, . . . ,ψn be the formulae of Lemma 6.1. Expression 6.30 is equivalent to:

n
∨

i=1

ψi(~y,s) (6.31)

Proof: By Lemma 6.1, Expression 6.30 is equivalent to(∃s′)
∨n

i=1ψi(~y,s)∧ s′ = do(~ai ,s). Then, we

apply quantifier elimination of the existential quantifier, which also implies eliminating all terms of the

form s′ = do(~ai ,s). �

Intuitively, the condition of Expression 6.31 summarizes the existence of a branch of the program

that is executable. Sinceψi(~y,s) is regressable ins, we formulate the precondition forprimδ as follows:

Poss(primδ(~y),s)≡R[

n
∨

i=1

ψi(~y,s),s], (6.32)

whereψi are the formulae of Lemma 6.1. Thus,primδ(~y) can be executed iff programδ could be

executed ins.

Finally note that this precondition axiom is in the form of Expression 6.3, i.e., it isa proper precon-

dition axiom because the right-hand side is a formula uniform ins. This fact follows from Theorem 6.1.

New Physical Effects

We now turn our attention to the effects ofprimδ(~y). Intuitively, we want to say here that whenevers′ is

an execution of the program ins and fluentF(~x) is true in such ans′, then we wantF(~x) to be an effect

of primδ(~y). More precisely,F(~x) is true after performingprimδ(~y) in s iff

(∃s′).DoK(δ(~y),s,s′)∧F(~x,s′) (6.33)

Note that since the program is deterministic, in each model of the theory, thereis only one situation

that can be referred bys′ in Expression 6.33.10 As in the previous step, it is not possible to add this

condition directly as an effect axiom since the Expression 6.33 is not uniform in s. Expression 6.33

is not directly regressable ins either. As a consequence, we again appeal to Lemma 6.2, to obtain the

equivalent condition:

(∃s′).Do(δ(~y),s,s′)∧F(~x,s′) (6.34)

10This means actually that Expression 6.33 is equivalent to(∃s′)DoK(δ(~y),s,s′)∧ (∀s′).DoK(δ(~y),s,s′) ⊃ F(~x,s′). We
prefer to work with Expression 6.33 however, because it is simpler.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 131

Here, we could apply Lemma 6.1 in order to obtain a regressable condition, but by doing so, we would

obtain a formula that encodes the preconditions ofδ(~y). The reason for this is thatDo makes reference to

Posswhenever a primitive action is executed. Hence, the condition forF(~x) to be true after performing

primδ in swill be the following one:

(∃s′).Do−(δ(~y),s,s′)∧F(~x,s′) (6.35)

Recall that the only difference betweenDo− andDo is that the former does not check the preconditions

of the actions that are being performed. This implies that the set of situations that are executions under

Do− is a superset of the set of situations that are executions underDo (this means that Expression 6.34

implies Expression 6.35). Since our programs are deterministic, however, only a unique situation can

result from the execution of the program in a particular model of the theoryD underDo−. Thus, given

a model of the theory,Do− andDo could only differ in the executions ofδ iff δ is not executable ins.

Otherwise, both formulae coincide in terms of the situations that are regardedas executions. As a result,

by usingDo− instead ofDo we may define the effects ofprimδ in cases in whichδ is not executable in

s. This is not a problem, since we only will consider performingδ when its preconditions are satisfied.

Indeed, our definition of plan (Def. 6.4) ensures that this is the case.

As with the preconditions, the final step is to transform Expression 6.35 into aregressable formula.

We can do this using Lemma 6.1.

Remark 6.2 Letµ1, . . . ,µn and~b1, . . . ,~bn be respectively the formulae and action sequences of Lemma 6.1.

Then, Expression 6.35 is equivalent to the following expression regressable in s.

n
∨

i=1

µi(~y,s)∧F(~x,do(~bi ,s)) (6.36)

Proof: Follows directly by substitutings′ in F(~x,s′) in the formula of Lemma 6.1 and then eliminating

the existential quantifier. Sinceµi(~y,s) is regressable ins, the resulting expression is clearly regressable

in s. �

The new effect axioms forF are generated as follows. For each relational fluentF(~x,s) in the

language ofD that is not theK fluent, and each complex actionδ(~y) ∈C we add the following positive

and negative effect axioms toD′
eff:

a = primδ(~y)∧R[
n

∨

i=1

µi(~y,s)∧F(~x,do(~bi ,s)),s]⊃F(~x,do(a,s)), (6.37)

a = primδ(~y)∧R[
n

∨

i=1

µi(~y,s)∧¬F(~x,do(~bi ,s)),s]⊃¬F(~x,do(a,s)), (6.38)

whereµ1, . . .µn and~b1, . . . ,~bn are respectively the formulae and action sequences of Lemma 6.2.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 132

New Sensed Condition

We now turn our attention to the generation of the new sensed condition for action primδ. In order to

capture all the knowledge effects ofδ, our new actionprimδ must emulateδ’s dynamics with respect to

theK fluent. More precisely, suppose we performδ in situations. Assume further thats′ is K accessible

from s, and that performingδ in s leads to situationdo([a1, . . . ,an],s). If do([a1, . . . ,an],s′) is alsoK-

accessible fromdo([a1, . . . ,an],s), then we want to replicate this by makingdo(primδ,s
′) K-accessible

from do(primδ,s).

It is rather simple to find a condition independent ofK that expresses the necessary and sufficient

conditions under which a situationdo([a1, . . . ,an],s′) is K-accessible fromdo([a1, . . . ,an],s) given that

s′ is K-accessible froms. This is given by the following result.

Proposition 6.4 Let D be a theory of action, letδ be a Golog deterministic tree program, and let

a1, . . . ,an be action terms. Then the following holds:

D |= (∀s′,s).K(s′,s)∧DoK(δ,s,do([a1, . . . ,an],s))⊃

{K(do([a1, . . . ,an],s
′),do([a1, . . . ,an],s))≡

n
∧

i=1

SensedCond(ai ,do([a1, . . . ,ai−1],s),do([a1, . . . ,ai−1],s
′))} (6.39)

Proof: The proof is by induction onn. First we prove that for all 1≤ i ≤ n,

D |= (∀s′,s).K(s′,s)∧DoK(δ,s,do([a1, . . . ,an],s))⊃ Poss(ai ,do([a1, . . . ,ai−1],s
′).

Then, the proof is rather straightforward using the successor state axiom for K and simplifying away the

terms containingPoss. �

Note that this result suggests that the sensed condition for a new actionprimδ corresponds precisely to
n

∧

i=1

SensedCond(ai ,do([a1, . . . ,ai−1],s),do([a1, . . . ,ai−1],s
′)) (6.40)

when the situation that results from the execution ofδ is do([a1, . . . ,an],s).

Our last step for the definition of the sensed condition of an action involves relating Expression 6.40

with the situations that actually refer to the executions of the programδ (for now we’ve been using

do([a1, . . . ,ai−1],s) to show the structure of an execution only). As we have done for the physical

effects, we characterize the situations that may result from the execution of δ as all situationss′ that

satisfy the formula:

Do−(δ,s,s′) (6.41)

As in the case of physical effects, by usingDo− instead ofDo we may define the knowledge effects of

primδ in cases in whichδ is not executable ins; this is not a problem here either because we only allow

the application of possible actions when planning.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 133

Recall that by Lemma 6.1 we obtain explicit situation termsdo(~b1,s), . . . ,do(~bn,s) that refer to the

execution ofδ. These situations are precisely the ones we use define the sensed condition of primδ.

For eachδ(~y) ∈C, our new theory will contain the following definition for the sensed condition of

primδ(~y).

SensedCond(primδ(~y),s,s
′)

def
=

R
[

n
∨

i=1

µi(~y,s)∧
|~bi |
∧

j=1

SensedCond(bi j ,do(~bi |
j−1
1 ,s),do(~bi |

j−1
1 ,s′)),{s,s′}

]

, (6.42)

whereµ1, . . .µn and~b1, . . . ,~bn are respectively the formulae and action sequences of Lemma 6.2. Fur-

thermorebi j denotes thej-th element of sequence~bi and~bi |
k
ℓ denotes the subsequence of~bi that contains

all elements between theℓ-th and thek-th element. Finally,|~b| denotes the number of action terms in~b.

Intuitively, the right-hand side of Expression 6.42 establishes thatdo(primδ,s
′) is K-accessible from

do(primδ,s) only if s′ is accessible froms and there is one executable branch, characterized by~bi

conditioned onµi(~y,s), that satisfies the condition in Expression 6.40 that we discussed above. Note

that because the program is deterministic, in a particular model of the theory only one branch actually

corresponds to an execution. Thus the external disjunction captures thefact that there are onlyn ways

in which the program may be executed; as we have been insisting in this chapter, this does notmean

that two different branches may be executed at the same time.

Finally, note that becauseSensedCond(a,s,s′) expands into a formula that is uniform ins ands′,

R in Expression 6.42 is applied over a formula that is regressable ins ands′. Thus, by Theorem 6.1 it

follows that the sensing condition for our new action is a formula uniform insands′, and hence has the

form that we require in Expression 6.7.

New Unique Names Axioms

For eachδ(~y), δ′(~x) ∈C such thatδ(~y) 6= δ′(~x) addprimδ(~x) 6= primδ′(~y) toD′
una. For each actionA of

the language of the original theoryD and eachδ(~y) ∈C, addA(~x) 6= primδ(~y) toD′
una.

The New Basic Action Theory

Compile a new set of SSAsD′
ss fromD′

eff, and replace the successor state axiom forK with the one that

refers to the actions inD′
ss, which in particular will now refer to the sensed conditions of the actions

primδ(~y) for all δ(~y) ∈C. The new theory is defined as follows.

Comp[D,C] = Σ∪D′
ss∪D

′
ap∪D

′
una∪DS0∪Kinit .

We now turn to the analysis of some properties of the resulting theoryComp[D,C].

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 134

Theorem 6.2 If D is consistent and C contains only deterministic tree programs thenComp[D,C] is

consistent.

Proof: The consistency property (Reiter, 2001, pg. 31) follows from the formof the effect axioms and

fact that the programs we are considering are deterministic. �

Now we establish a complete correspondence at the physical level between our original programs

and the compiled primitive actions after performingprimδ.

Theorem 6.3 LetD be a theory of action such thatKinit contains the reflexivity axiom. Let C be a set

of deterministic Golog tree programs. Finally, letφ be a situation-suppressed formula such thatφ[s] is

regressable in s. Then,

Comp[D,C] |= (∀s,s′).DoK(δ,s,s′)⊃ (φ[s′]≡ φ[do(primδ,s)])

Proof: See Section D.2 (p. 184). �

It is worth noting that the preceding theorem is also valid whenδ does not contain sensing actions.

Also, there is a complete correspondence at a knowledge level between our original complex actions

and the compiled primitive actions after performingprimδ.

Theorem 6.4 LetD be a theory of action such thatKinit contains the reflexivity axiom. Let C be a set of

deterministic Golog tree programs, andφ be a situation-suppressed formula such thatφ[s] is regressable

in s. Then,

Comp[D,C] |= (∀s,s1).DoK(δ,s,s1)⊃ {Knows(φ,s1)≡ Knows(φ,do(primδ,s))}. (6.43)

Proof: See the Section D.3 (p. 185). �

Now that we have established the correspondence betweenD andComp[D,C] we return to planning.

In order to achieve a goalG in a situations, we now obtain a plan using theoryComp[D,C]. In order to

be useful, this plan should have a counterpart inD, since the executor cannot execute any of the “new”

actions inComp[D,C]. The following result establishes a way to obtain such a counterpart.

Theorem 6.5 LetD be a theory of action, C be a set of deterministic Golog tree programs, andG be a

formula of the Situation Calculus. Then, if∆ is a plan for G in theoryComp[D,C] and situation s, then

there exists a plan∆′ for G in theoryD and situation s. Moreover,∆′ can be constructed from∆.

Proof sketch: We construct∆′ by replacing every occurrence ofprimδ in ∆ by δ. Then we prove that∆′

also achieves the goal, from Theorems 6.3 and 6.4. �

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 135

Example 6.3 (cont.) The result of applying theory compilation to the basic action theory of our ex-

ample follows.

By unrolling of Do andDo− for δ(o), we obtain the following formulae and action sequences that

correspond to Lemma 6.1:

ψ1(o,s) = Poss(sprayPaint(o),s)∧

Poss(look(o),do(sprayPaint(o),s))∧

¬wellPainted(o,do([sprayPaint(o), look(o)],s))∧

Poss(brushPaint(o),do([sprayPaint(o), look(o)],s)),

(6.44)

ψ2(o,s) = Poss(sprayPaint(o),s)∧

Poss(look(o),do(sprayPaint(o),s))∧

wellPainted(o,do([sprayPaint(o), look(o)],s)),

(6.45)

with

~a1 = [sprayPaint(o), look(o),brushPaint(o)], (6.46)

~a2 = [sprayPaint(o), look(o)]. (6.47)

On the other hand, forDo− we obtain the following:

µ1(o,s) = ¬wellPainted(o,do([sprayPaint(o), look(o)],s)) (6.48)

µ2(o,s) = wellPainted(o,do([sprayPaint(o), look(o)],s)) (6.49)

with

~b1 = [sprayPaint(o), look(o),brushPaint(o)], (6.50)

~b2 = [sprayPaint(o), look(o)]. (6.51)

New Precondition By simplifying the expression of Expression 6.32, we obtain the following pre-

condition axiom forprimδ:

Poss(primδ(o),s)≡ have(o,s). (6.52)

New Effect and Successor State AxiomsFor the fluentwellPainted, the negative effect axiom of the

form of Expression 6.38 simplifies to:

a = primδ(o)∧R[(¬wellPainted(o,S2)∧¬wellPainted(o,S1))∨

(wellPainted(o,S2)∧¬wellPainted(o,S2)),s]⊃

¬wellPainted(o,do(a,s)),

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 136

whereS1 = do([sprayPaint(o), look(o),brushPaint(o)],s) andS2 = do([sprayPaint(o), look(o)],s). It is

easy to verify that:

R[wellPainted(o,S1),s] = True,

R[wellPainted(o,S2),s] = ¬malfunct(s)∨wellPainted(o,s).

Substituting, the negative action reduces to the futile axiom:

a = primδ(o)∧False⊃ ¬wellPainted(o,do(a,s)). (6.53)

Similarly, the positive effect axiom obtained forwellPainted:

a = primδ(o)∧R[(¬wellPainted(o,S2)∧wellPainted(o,S1))∨

(wellPainted(o,S2)∧wellPainted(o,S2))]⊃

¬wellPainted(o,do(a,s)),

whereS1 andS2, are defined as before, reduces to

a = primδ(o)⊃ wellPainted(o,do(a,s)). (6.54)

Considering the new effect axiom forprimδ(o), the new SSA forwellPaintedis therefore:

wellPainted(o,do(a,s))≡

a = brushPaint(o)∨a = primδ(o)∨

a = sprayPaint(o)∧¬malfunct(s)∨

wellPainted(o,s)∧a 6= scratch(o),

which means thato is well painted afterprimδ(o) is performed.

New Sensed Condition Now we focus our attention on theK axiom. The Expression 6.42 simplifies

to:

SensedCond(primδ(o),s,s′)
def
= R

[

µ1(o,s)∧ (wellPainted(o,S2)≡ wellPainted(o,S′2)))∨

µ2(o,s)∧ (wellPainted(o,S2)≡ wellPainted(o,S′2))),{s,s
′}

]

whereS2 is as defined above andS′2 = do([sprayPaint(o), look(o)],s′). After performing regression, the

expression simplifies into:

SensedCond(primδ(o),s,s′)
def
=

(malfunct(s)∧¬wellPainted(o,s))≡ (malfunct(s′)∧¬wellPainted(o,s′))

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 137

Thus, our new primitive action senses the truth value of the (situation-suppressed) formulamalfunct∧

¬wellPainted(o) in the current situation. Observe that sensing the truth value of this formula isequiva-

lent to sensing the truth value of its negation, which can be written as¬wellPainted(o)⊃ ¬malfunct.

Clearly, the process has captured the world-altering effect ofδ(o), namely thatwellPainted(o).

Moreover, it is easy to confirm a conditional knowledge effect:

Knows(¬wellPainted(o),s)⊃ KWhether(malfunct,do(primδ(o),s)).

Note that our theory compilation can only be used for complex actions that canbe proved self-

sufficient for all situations. As noted previously, an alternative was to use the conditions that need to

hold true for a program to be self-sufficient as a precondition for the newly generated primitive actions.

Indeed, formulassf(δ,s) encodes all that is required to hold ins to be able to know how to executeδ,

and therefore we could have added something likePoss(primδ(~y),s)≡R[(∃s′)Do(δ,s,s′)∧ssf(δ,s),s]

instead of Expression 6.32. This modification keeps the validity of Theorems 6.3 and 6.4 only if no

actions of the original theory have preconditions that mention knowledge, and provided we extend

regression forKnows following Scherl and Levesque (2003). The resulting precondition however, may

contain complex formulae referring to the knowledge of the agent, which we view as problematic for

practical applications. On the other hand, Reiter’s version of the Situation Calculus does not allow

actions with knowledge preconditions. The good news is that most Web services are self-sufficient by

design.

Finally, the compilation method we have described here is only defined for programs that contain

primitive actions, i.e. it does not allow programs to invoke other programs. However, the method can

be extended for a broad class of programs that include such calls. If there are no unbounded recursions

or the programs can be stratified with respect to recursive calls, it is always possible to iteratively apply

the compilation method presented until all programs have been reduced to a primitive action.

6.5 From Theory to Practice

We have shown that under certain circumstances, planning with programs can be in theory reduced

to planning with primitive actions. In this section we identify properties necessary for operator-based

planners to exploit these results, with particular attention to some of the more popular existing planners.

There are several planning systems that have been proposed in the literature that are able to consider the

knowledge of an agent and (in some cases) sensing actions. These include Sensory Graphplan (SGP)

(Weld, Anderson, and Smith, 1998), the MDP-based plannerGPT (Bonet and Geffner, 2000), the model-

checking-based plannerMBP11 (Bertoli, Cimatti, Roveri, and Traverso, 2001), the logic-programming-

11MBP does not consider sensing actions explicitly, however they can be ‘simulated’ by representing within the state the last
action executed.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 138

based plannerπ(P) (Son, Tu, and Baral, 2004), the knowledge-level plannerPKS (Petrick and Bacchus,

2002), and Contingent FF (CFF) (Hoffmann and Brafman, 2005).

All of these planners are able to represent conditional effects of physical actions, therefore, the

representation of the physical effects ofprimδ is straightforward. Unfortunately, the representation of

the knowledge effects ofprimδ is not trivial in some cases. Indeed, without loss of generality, suppose

thatC contains only one programδ(~y). After theory compilation, the SSA for theK fluent inComp[D,C]

has the general form:

K(s′,do(a,s))≡ (∃s′′).s′ = do(a,s′′)∧K(s′′,s)∧Poss(a,s′′)∧ϕ(s)∧
∧

j

{

(∀~y).a = primδ(~y)∧α j(~y,s)⊃
∧

i

βi j (~y,s)≡ βi j (~y,s
′′)

}

, (6.55)

whereϕ(s) describes the knowledge effect for the original actions inD, and therefore does not mention

the action termprimδ. Intuitively, as before,βi j are the (regressed) properties that are sensed andα j are

the (regressed) conditions of if-then-else constructs that had to be truefor the program to senseβi j .

From the syntax ofK, we determine the following requirements for achieving planning with pro-

grams that sense in practical planners.

1. The planner must be able to representconditionalsensing actions. These are theα j formulae

appearing in (6.55).

2. The planner must be able to represent thatprimδ senses the truth value of, in general, arbitrary

formulae. This is becauseβi j in (6.55) could be any first-order formula.

Most of the planners do not satisfy these requirements directly. However, in most cases one can

modify the planning domain, and still plan with our compiled actions. Below we showhow this can be

done.

6.5.1 Belief-State-Based Planners

All the planners we investigated, exceptPKS, are in this category. They represent explicitly or implicitly

all the states in which the agent could be during the execution of the plan (sometimes calledbelief

states). They are propositional and cannot represent functions12.

Among the planners investigated,SGPis the only one that cannot be adapted to achieve requirement

1. The reason is that sensing actions inSGPcannot have preconditions or conditional effects. Others

(π(P), MBP) can be adapted to simulate conditional sensing actions by splittingprimδ into several

actions with different preconditions.

Regarding requirement 2,SGPandMBP can handle arbitrary (propositional) observation formulae.

However, all the remaining planners are only able to sense propositions (GPT, π(P), PKS, andCFF). In

12GPT can indeed represent functions, but with limited, integer range.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 139

GPT, or in any other propositional planner able to handle actions that have bothphysical and knowledge

effects, this limitation can be overcome by adding two extra fluents for eachprimδ action. For each

formula βi j , add the the fluentsFi j and Gi j to the compiled theory. FluentFi j (~y,s) is such that its

truth value is equivalent to that of formulaβi j (~y,s). The SSA forFi j can be obtained by the following

expression (Lin and Reiter, 1994):

Fi j (~y,do(a,s))≡R[βi j (~y,do(a,s)),s]. (6.56)

Furthermore, we addFi j (~y,S0) iff βi j (~y,S0), for all possible constant vectors~y of the appropriate size.

To define the knowledge effects ofprimδ, we require a little additional effort. For many planners, the

semantics for actions that modify the world and sense at the same time is that the sensing (observation)

is doneafter the world-level effects have been applied to the world. In contrast, our Situation Calculus

formulation ofprimδ implicitly assumes that the sensing is done before the effects are applied in the

world. We need therefore, to modify our theory in order to simulate a sensingeffect on the immediate

past. To that end, we define the fluentGi j (~y,do(a,s)) is such that its truth value is equivalent to that of

βi j (~y,s) (i.e., it “remembers” the truth value thatβi j had in the previous situation). The SSA forGi j is

simply Gi j (~y,do(a,s))≡ Fi j (~y,s).

To modelprimδ in these planners we can obtain theirworld-leveleffects by looking into the SSA

of every fluent (Pednault, 1989). On the other hand, theknowledge-leveleffect is simply thatprimδ(~y)

senses the truth value of fluentGi j (~y,do(a,s)), for all i, conditioned on whetherα j(~y,s) is true. The

correctness of this approach is justified by the following result.

Proposition 6.5 Let Comp[D,C] be a theory of action that contains axiom(6.55), and fluents Fi j and

Gi j . ThenComp[D,C] entails that(6.55)is equivalent to

K(s′,do(a,s))≡ (∃s′′).s′ = do(a,s′′)∧K(s′′,s)∧ϕ(s,s′′)∧Poss(a,s′′)∧
∧

j

{

a = primδ(~y)∧α j(~y,s)⊃
∧

i

Gi j (~y,do(a,s))≡Gi j (~y,do(a,s′′))
}

.

Proof: Follows from the correctness of regression. �

The immediate consequence of this result is that

Comp[D,C] |= α j(~y,s)⊃
∧

i

KWhether(Gi j (~y),do(primδ,s)),

which intuitively expresses thatprimδ(~y) is observing the truth value ofGi j (~y).

As we mentioned, the previous construction works with planners likeGPT, where actions can have

both world effectsandobservations. However, this still doesn’t solve the problem completely for the

planners likeπ(P) and CFF, since (currently) they do not support actions with both world-level and

knowledge-level effects. Nonetheless, this can be addressed by splitting primδ into two actions, say

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 140

Physδ andObsδ. Action Physδ would have all the world-level effects ofprimδ and actionObsδ would

be a sensing action that observesFi j . In this case, we also need to add special preconditions for action

Physδ, since we would need it to be performed always and onlyimmediately after Obsδ. Such an

axiomatization is described by Baier and McIlraith (2005).

6.5.2 ExtendingPKS

Currently,PKS (Petrick and Bacchus, 2002) is one of the very few planners in the literature that does

not represent belief states explicitly.13 Moreover, it can represent domains using first-order logic and

functions. Nevertheless, it does not allow the representation of knowledge about arbitrary formulae. In

particular it cannot represent disjunctive knowledge.

PKS, does not directly support requirement 2 either. Moreover, its reasoning algorithm is not able to

obtain reasonable results when adding the fluentsFi j andGi j , due to its incompleteness.

PKS deals with knowledge of an agent using four databases. Among them, database Kw stores

formulae whose truth values are known by the agent. In practice, this meansthat if an action senses

propertyp, then p is added toKw after performing it. While constructing a conditional plan, theKw

database is used to determine the properties on which it is possible to condition different branches of

the plan.PKS’s inference algorithm,IA , when invoked withε can return valueT (resp.F) if ε is known

to be true (resp. false) by the agent. On the other hand, it returnsW (resp.U) if the truth value ofε is

known (resp. unknown) by the agent.

Nevertheless, sinceKw can only store first-order conjunctions of literals, this means that in some

cases, information regarding sensing actions of the type generated by our translation procedure would

be lost. E.g., if¬ f andg are known to the planner and an action that sensesf ∨g∧h is performed,PKS

is not able to infer that it knows the truth value ofh. For cases like this, this limitation can be overcome

by the extension we propose below.

We propose to allowKw to contain first-order CNF formulae. In fact, assume thatKw can contain a

formulaΓ1(~x)∧Γ2(~x)∧ . . .∧Γk(~x), whereΓi is a first order clause, and free variables~x are implicitly

universally quantified. We now modifyPKS’s inference algorithmIA by replacing rule 7 of the algorithm

of Bacchus and Petrick (1998) by the following rule. We assume the procedure is called with argument

ε:

7. If there existsφ(~x) = Γ1(~x)∧ . . .∧Γk(~x) ∈ Kw and a ground instance ofφ, φ(~x/~a) is such that (1)

~a are constants appearing inK f , (2) There exists anαm∈ Γi such thatαm(~x/~a) = ε, (3) For every

Γ j (j 6= i) there exists aβ ∈ Γ j such thatIA (β(~x/~a)) = T, and (4) For everyαℓ ∈ Γi (ℓ 6= m),

IA (αℓ(~x/~a)) = F. Then,return(W) .

13Probably the planner by Pistore, Marconi, Bertoli, and Traverso (2005) is the only other exception.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 141

N CFF PKS CFF+seek PKS +seek

1 0.01 5.19 0.0 0.01

2 0.1 nomem 0.01 0.01

3 5.01 nomem 0.01 0.08

4 nomem nomem 0.02 0.77

5 nomem nomem 0.03 5.89

Table 6.1: Instances of the briefcase domain with sensing solved byPKS andCFF. “nomem” means the

planner ran out of memory.

Theorem 6.6 The modified inference algorithm of PKS is sound.

Proof sketch: The proof is based on the following facts (1) The modification only affects when the algo-

rithm returns aW (2) The new rule’s conclusions are based on the following valid formulaeKWhether(α∧

β,s)∧Knows(α,s)⊃ KWhether(β,s), KWhether(α∨β,s)∧Knows(¬β,s)⊃ KWhether(α,s), and

Knows(α,s)∨Knows(β,s)⊃ Knows(α∨β,s). �

To actually use actionprimδ to plan with PKS, we need to divide it into two primitive actions,

a world-altering action, sayPhysδ, and a sensing action, sayObsδ. Action Obsδ has the effect of

addingβi j —in CNF—to theKw database. On the other hand,Physδ contains all the world effects of

primδ. Again, through preconditions, we need to ensure that actionPhysδ is performed only and always

immediately afterObsδ. This transformation is essentially the same that was proposed for belief-state-

based planners that cannot handle actions with both physical and knowledge effects, and can be proved

correct (Baier and McIlraith, 2005).

This extension toPKS’ inference algorithm is not yet implemented but is part of our future work.In

the experiments that follow, we did not need to use this extension since the sensed formulae were simple

enough.

6.6 Practical Relevance

There were at least two underlying motivations to the work presented in this chapter that speak to its

practical relevance.

6.6.1 Web Service Composition

Web services are self-contained programs that are published on the Web. The airline ticket service at

www.aircanada.com, or the weather service at www.weather.com are examples of Web services. Web

services are compellingly modeled as programs comprising actions that effect change in the world (e.g.,

booking you a flight, etc.) as well as actions that sense (e.g., telling you flightschedules, the weather

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 142

in a particular city, etc.). Interestingly, since Web services are self-contained, they are generally self-

sufficient in the formal sense of this term, as described in this chapter. As such, they fall into the class

of programs that can be modeled as planning operators. This is just what isneeded for WSC.

WSC is the task of composing existing Web services to realize some user objective. Planning your

trip to the KR2006 conference over the Web is a great example of a WSC task. WSC is often conceived

as a planning or restricted program synthesis task (McIlraith and Son, 2002). Viewed as a planning

task, one must plan with programs that sense to achieve WSC. While there hasbeen significant work

on WSC, few have addressed the issue of distinguishing between world-altering and sensing actions,

fewer still have addressed the problem of how to represent and plan effectively with programs rather

than primitive (one step) services. This work presents an important contribution towards addressing the

WSC task.

6.6.2 Experiments

Beyond WSC, the second more general motivation for this work was to understand how to plan with

macro-actions or programs, using operator-based planners. The advantages of using operator-based

planners are many, including availability of planners and the ability to use fastheuristic search tech-

niques. In general, the search space of plans of lengthk is exponential ink. When using macro-actions

usually we can find shorter plans (composed by such macro-actions), therefore, the planner will effec-

tively explore an exponentially smaller search space. When planning with sensing actions, plans are

normally contingent, i.e. they have branches to handle different situations.The search space, therefore,

is much bigger and any reduction in the length of the plan may exponentially reduce the time needed for

planning.

To illustrate the computational advantages of planning with programs that sense, we performed

experiments with a version of thebriefcasedomain (Pednault, 1988), enhanced with sensing actions. In

this domain, there areK rooms. The agent carries a briefcase for transporting objects. In anyroom r,

the agent can perform an actionlook(o) to determine whethero is in r. In the initial state, the agent is

in roomLR. There areN objects in rooms other thanLR. The agent does not know the exact location of

any of the objects. The goal is to be inLRwith all the objects.

We performed experiments withPKSandCFF for K = 4 andN = 1, . . . ,5. Each planner was required

to find a plan with and without the use of macro-actionseek(o) (Figure 6.1).seek(o) was compiled into

a primitive action by our technique. We compared the running time of the planners using a 2 GHz

linux machine with 512MB of main memory.PKS was run in iterative deepening mode. Table 6.1

shows running times for both planners with and without theseekaction. These experiments illustrate

the applicability of our approach in a domain that is challenging for state-of-the-art planners when only

simple primitive actions are considered.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 143

seek(o) =go(R1); look(o); if at(o,R1) then grasp(o);go(LR)

elsego(R2); look(o); if at(o,R2) then grasp(o);go(LR)

elsego(R3); look(o); if at(o,R3) then grasp(o);go(LR)

elsego(R4); look(o); if at(o,R4) then grasp(o);go(LR)

endIf endIf endIf endIf

Figure 6.1: Programseekis a tree program that makes the agent move through all the rooms looking for

o and then bringing it toLR

6.7 Summary and discussion

In this chapter we addressed the problem of enabling operator-based planners to plan withprograms.

A particular challenge of this work was to ensure that the proposed method worked for programs that

include sensing, though all the contributions are applicable to programs without sensing. We studied the

problem in the situation calculus, using Golog to represent our programs. We did this to facilitate formal

analysis of properties of our work. Nevertheless, because of the well-understood relationship between

ADL and the situation calculus (Pednault, 1989), the results apply very broadly to the class of planning

operators represented in the popular plan domain description language PDDL (McDermott, 1998).

Our contributions include a compilation algorithm for transforming programs intooperators that

are guaranteed to preserve program behaviour for the class of self-sufficient deterministic Golog tree

programs. Intuitively, these are programs whose execution is guaranteed to be finite and whose outcome

is determinate upon execution. We then showed how to plan with these new operators using existing

operator-based planners that sense. In the case ofPKS, we proposed a modification to the code to enable

its use in the general case. For those interested in Golog, a side effect ofthis work was to define an

offline transition semantics for executable Golog programs.

There were two underlying motivations to this work that speak to its practical relevance. The first

was to address the problem of WSC. The class of programs that we can encapsulate as operators cor-

responds to most, if not all, Web services. As such, this work provides animportant contribution to

addressing WSC as a planning task. Our second motivation was the use of programs to represent macro-

actions and how to use them effectively in operator-based planners. Again, our compilation algorithm

provides a means of representing macro-actions as planning operators.Our experimental results, though

in no way rigorous, illustrate the effectiveness of our technique.

Chapter 7

Conclusions, Related Work, and Future

Work

7.1 Conclusions

In this thesis, we have investigated how recent advances in classical planning can be leveraged to ef-

fectively solve some non-classical planning tasks. The planning tasks wehave focused on may include

rich temporally extended goals and preferences. As well, they may need plans whose building blocks

are programs rather than primitive actions, or they may be required to conform to some pre-specified

procedural skeleton. Planning problems containing those characteristicsappear in a wide variety of com-

pelling applications, including component software composition, web servicecomposition, and agent

programming.

To solve these non-classical planning tasks we employ a common approach:reformulation. Our

reformulation algorithms will take a non-classical planning task problem, and generate a new task.

This new task is more amenable to be solved by current state-of-the-art techniques. In some cases,

the reformulation results in aclassicalplanning task. In other cases, we generate another non-classical

planning task that necessitates adaptation of existing planning techniques.

Our approach has a number of advantages. The foremost is that for most of the problems we deal

with we produce a standard output, which can be directly input to a wide variety of planners. An-

other advantage is that the approach is composable. Thus, for example, ifone wants to plan with

temporally extended preferences using Golog DCK, we could first reformulate the problem using the

techniques in Chapter 5—obtaining an instance with no procedural control—and then apply the tech-

niques in Chapter 4 to obtain a “regular” planning instance with only simple preferences. On the other

hand, our reformulation approach can give insights to researchers adapting classical techniques for the

144

CHAPTER 7. CONCLUSIONS, RELATED WORK, AND FUTURE WORK 145

non-classical problems we deal with. An example of this can be seen in Chapter 5, where we design the

H-opsheuristic that specifically addresses particular problems of the FF heuristicin the reformulated

instances.

For each of the non-classical planning tasks that we examined, we showed that we can obtain im-

provement, often very significant, over existing approaches in terms of theefficiency of plan generation.

We conclude, therefore, that the reformulation techniques we presentedare powerful tools, that usually

enable the application of state-of-the-art classical techniques for non-classical planning tasks, allowing

us to solve them more effectively.

The rest of this chapter contains a recapitulation of the problems we have addressed and our contri-

butions. Finally, we sketch potential future work.

7.1.1 Problems and Contributions

We have examined four significant types of non-classical planning tasksin this thesis. Our contribution

and analysis is both theoretical and experimental. In what follows we summarize some of the most

significant contributions.

Planning with Temporally Extended Goals In these problems, goals express conditions that hold

throughout the execution of the plan and are therefore more expressive than properties that only refer

to the final state. We proposed a method for planning with temporally extended goals using heuristic

search, one of the current most effective approaches in classical planning. To this end, we reformulate

planning task with TEGs into an equivalentclassicalplanning task. With this translation in hand, we

exploit heuristic search to determine a plan. Our translation is based on the construction of a parame-

terized nondeterministic finite automaton that provably accepts the models of the TEG. These automata

have the advantage that can be represented in a compact way in a planningdomain. In our experiments,

we showed that our approach consistently outperforms existing techniques for planning with TEGs that

were only based in formula progression combined with blind search.

Planning with Temporally Extended Preferences Here the task is to find a plan that optimizes a

quality function that is dependent on those preferences. Our techniqueinvolves reformulating a plan-

ning problem with TEPs into an equivalent planning problem containing only simple preferences. Since

the resulting task is not classical, we provide a collection of new heuristics and a specialized search algo-

rithm that can guide the planner towards preferred plans. We prove thatunder some fairly general condi-

tions our method is able to find a most preferred plan—i.e., an optimal plan. We have implemented our

approach in a planning system we called HPlan-P, and used it to compete in the5th International Plan-

ning Competition, where it achieveddistinguished performancein theQualitative Preferencestrack.

CHAPTER 7. CONCLUSIONS, RELATED WORK, AND FUTURE WORK 146

Planning and Reasoning with Procedural DCK We have shown that Golog is amenable to repre-

senting DCK in planning by defining a PDDL semantics for Golog programs.

Additionally, we show that any planner that can input planning tasks in PDDLis able to plan with

our Golog DCK. We do this by giving an algorithm that reformulates any PDDLplanning task and a

control program, into an equivalent, program-free PDDL task whose plans are only those that “behave”

according to the control program.

Finally, we show that the resulting planning task is amenable to use with domain-independent heuris-

tic planners. In particular, we propose three approaches. Our experiments on familiar planning bench-

marks show that the combination of DCK and heuristics produce better performance than using DCK

with blind search and than using heuristics alone.

Planning and Reasoning with Programs that Sense In this problem, the building blocks for plans

are programs instead of or in addition to primitive actions. We propose and prove the correctness of a

compilation method that transforms our action theory with programs into a new theory where programs

are replaced by primitive actions. This enables us to use state-of-the-art,operator-based planning tech-

niques to plan with programs that sense for a restricted but compelling class of programs. Finally, we

discuss the applicability of these results to existing operator-based planners that support sensing and il-

lustrate the computational advantage of planning with programs that sense viaan experiment. This work

has broad applicability to planning with programs or macro-actions with or without sensing. In our ex-

periments, we have shown that planning with the compiled instances can resultin orders of magnitude

of improved performance.

7.2 Other Related Work

Each of the technical chapters of the thesis describes work that is closelyrelated to the topic that is

exposed therein. However, there are several pieces of work that have also applied reformulation to

planning. We group them in two sets and we describe some of them below.

In the first set, we consider work that reformulates classical planning instances into classical in-

stances in a different representation language. Gazen and Knoblock (1997) provide an algorithm to

transform ADL planning instances into STRIPS planning instances. This allows to use techniques de-

veloped for STRIPS for the more expressive, but still classical, ADL formalism. Their translation is

worst-case exponential. Edelkamp and Helmert (1999) proposed an algorithm to convert STRIPS clas-

sical tasks into the SAS+ representation (Bäckstr̈om and Nebel, 1995). The algorithm was extended and

improved by Helmert (2009). Viewing planning problems in the SAS+ may be very useful as this repre-

sentation is compact and makes the structure of the problem more apparent. Indeed, the structure under-

lying the SAS+ representation has been exploited by successful enhancements to heuristic-search-based

CHAPTER 7. CONCLUSIONS, RELATED WORK, AND FUTURE WORK 147

planners. An example is the causal graph heuristic (Helmert, 2006a), improved landmark extraction

(Richteret al., 2008), and analysis of planning complexity (Giménez and Jonsson, 2007).

In the second set we include work that is more related to our work, and thathas addressed the prob-

lem of reformulating non-classical planning instances into classical or deterministic planning. Palacios

and Geffner (2006) reformulate conformant planning problems into classical planning problems. As

with our reformulations, this allows them to exploit classical planning technology and thus greatly im-

prove over previous approaches. The techniques we present in this thesis seem to be compatible with

their translation. We conjecture that many conformant instances with TEGs could be reduced to classical

planning by composing our techniques and Palacios and Geffner’s (2006). Also Yoon, Fern, and Givan

(2007) and Yoonet al. (2008) reformulate probabilistic planning problems into deterministic problems.

In doing so, like us, they greatly benefit from deterministic planning technology. Again, it is fairly con-

ceivable to think that our techniques could be used along with theirs in caseswhere there are TEGs or

TEPs.

The focus of the aforementioned related work is to reformulate the entire problem into one described

in significantly different language. In most of our work however (Chapters 3, 4, and 5) we reformulate

the planning objective, leaving most of the structure of the problem untouched. In particular, we do

not alter the transition model as we input a deterministic instance and output a deterministic one. This

means that our techniques can also be extended, with little effort, to other transition models (e.g., non-

deterministic settings). In those cases our input and output instances wouldbe non-deterministic.

7.3 Future Work

The work presented in this thesis suggest many avenues for future work. In what follows we list a subset

of these directions.

Improved Heuristics for TEGs We have shown that off-the-shelf heuristic approaches can be very

effective for planning with TEGs. However, as we illustrated in Section 4.6,there are cases in which

relaxed plan heuristics are pretty uninformative. In particular, while planning with TEGs that are safety

goals (e.g., of the form2φ), relaxed plan heuristics are not informative at all. This happens because

the predicate that represents the acceptance of2φ is true at any legal state, and thus true in always in

any successor of such as state in the delete relaxation. A potential avenueof research is to investigate

how recent techniques that more closely approximate the planning problem (e.g. Baier, 2007; Benton

et al., 2007; Coles, Fox, Long, and Smith, 2008) may also be successful in producing better heuristics

for TEGs.

Another avenue is the investigation of how other heuristics, such as the causal graph heuristic

(Helmert, 2006a), can be exploited to provide better guidance for TEGs.

CHAPTER 7. CONCLUSIONS, RELATED WORK, AND FUTURE WORK 148

Landmarks as TEGs An effective technique to enhance the performance of classical planners is the

use oflandmarks(Hoffmann, Porteous, and Sebastia, 2004; Richteret al., 2008). Landmarks essen-

tially specify a sequence of sub-goals that need to be achieved before reaching the goals defined in the

planning task. As such, they can be specified as TEGs. However, current techniques for planning with

landmarks, do not recognize these as being TEGs. For example, the LAMAplanner (Richteret al.,

2008) uses a pseudo-heuristic that is computed from its landmarks. This pseudo-heuristic seems quite

ad hoc, and seems to have some problems as it may not recognize certain dead ends. We hypothesize that

viewing landmarks as TEGs and exploiting techniques such as ours may provide a more fundamental

view to planning in the presence of landmarks.

New Heuristics for Planning with Preferences The branch-and-bound algorithm that we have de-

fined for planning with preferences finds a sequence of plans of increasing quality. After a plan is found,

the only piece of information we use in the next planning round is the metric of thelast plan found. We

use this metric to prune by bounding. However, it is there is more information that we could use after

finding a plan. In particular, after finding a plan, we know that there are certain preferences that can,

for sure, be achieved from certain states. This suggests that there should be a way of producing new

heuristics (or modify existing ones) in order to account not only for heuristic information but forcertain

information.

TEGs and TEPs under Other Types of DCK We mentioned in the previous section that TEGs and

TEPs could be integrated with Golog DCK by composing our reformulation algorithms. However, other

types of DCK, like for example HTNs (Erolet al., 1994), could also benefit from the techniques we have

proposed. Sohrabiet al. (2009) have very recently made a contribution to this problem by extending

the HTN formalism to support PDDL3 preferences, and proposing heuristics based on our reformulated

instances.

More General Golog DCK Control in State-of-the-Art Planners In Chapter 5 we considered a

subset of Golog for the specification of procedural control. Our subset does not consider procedures—

which are standard in Golog—, and does not consider concurrency—which is standard in the ConGolog

language (De Giacomoet al., 2000). Fritzet al. (2008) have shown that, under certain conditions, it

is possible to translate ConGolog DCK intro PDDL. It remains an open question, however, whether or

not this translation can be exploited well by state-of-the-art planners directly. From our experience with

Golog, we conjecture that this might not be the case, and thus new modifications to ourH-opsapproach

might provide better guidance in the presence of concurrency and procedures.

Glossary of Acronyms and Abbreviations

Notation Description

ADL Action Description Language 12

BA Büchi automata 47

BFQ Boolean Formula with Quantifiers 93

DCK Domain Control Knowledge 9, 90

EPNF Extended Prenex Normal Form 26

f-FOLTL Finite First-Order Linear Temporal Logic 21, 22

FSM Finite state machine 49

Golog alGOl in LOGic. A high-level action-centric language for programmingagents

(Levesqueet al., 1997)

5, 121

HTN Hierarchical task network 89, 92,110

IPC International Planning Competition. Seehttp://ipc.icaps-conference.org/. 2

LTL Linear Temporal Logic 20, 22, 23

PDDL Planning Domain Definition Language (McDermott, 1998) 9,13, 93

PDDL3 Version of PDDL that supports preferences and hard constraints 57

PNFA Parameterized NFA 29,35

PSLNFA Parameterized State-Labeled NFA 29,29

149

http://ipc.icaps-conference.org/.

Glossary of Acronyms and Abbreviations 150

Notation Description

SSA Successor state axiom 115

TEG Temporally extended goal. 5, 7,20

TEP Temporally extended preference. 5, 52

WSC Web service composition. 2, 113

Bibliography

Bacchus, F. and Ady, M. (1999). Precondition Control. URL

http://www.cs.toronto.edu/~fbacchus/Papers/BApre.pdf. Unpublished manuscript.

Bacchus, F. and Kabanza, F. (1998). Planning for Temporally Extended Goals.Annals of Mathematics

and Artificial Intelligence, 22(1-2), 5–27.

Bacchus, F. and Kabanza, F. (2000). Using temporal logics to express search control knowledge for

planning.Artificial Intelligence, 116(1-2), 123–191.

Bacchus, F. and Petrick, R. (1998). Modeling an agent’s incomplete knowledge during planning and

execution. InProceedings of the 6th International Conference on Knowledge Representation and

Reasoning (KR), pp. 432–443. Morgan Kaufmann Publishers, San Francisco, CA.

Bäckstr̈om, C. and Nebel, B. (1995). Complexity Results for SAS+ Planning.Computational Intelli-

gence, 11(4), 625–655.

Baier, J. and McIlraith, S. (2005). Planning with Programs that Sense. In 5th Workshop on Nonmono-

tonic Reasoning, Action and Change (NRAC), pp. 7–14. Edinburgh, Scotland.

Baier, J. A. (2007). Improving Relaxed-Plan-Based Heuristics. InFirst ICAPS Workshop on Heuristics

for Domain-independent Planning: Progress, Ideas, Limitations, Challenges. Providence, RI.

Baier, J. A., Bacchus, F., and McIlraith, S. A. (2009). A Heuristic Search Approach to Planning with

Temporally Extended Preferences.Artificial Intelligence, 173(5-6), 593–618.

Baier, J. A., Fritz, C., and McIlraith, S. A. (2007). Exploiting Procedural Domain Control Knowledge

in State-of-the-Art Planners. InProceedings of the 17th International Conference on Automated

Planning and Scheduling (ICAPS), pp. 26–33. Providence, Rhode Island, USA.

Baier, J. A. and McIlraith, S. A. (2006a). On Planning with Programs thatSense. InProceedings of

the 10th International Conference on Knowledge Representation and Reasoning (KR), pp. 492–502.

Lake District, UK.

151

http://www.cs.toronto.edu/~fbacchus/Papers/BApre.pdf

BIBLIOGRAPHY 152

Baier, J. A. and McIlraith, S. A. (2006b). Planning with First-Order Temporally Extended Goals Using

Heuristic Search. InProceedings of the 21st National Conference on Artificial Intelligence (AAAI),

pp. 788–795. Boston, MA.

Baier, J. A. and McIlraith, S. A. (2006c). Planning with Temporally Extended Goals Using Heuristic

Search. InProceedings of the 16th International Conference on Automated Planning and Scheduling

(ICAPS), pp. 342–345.

Baier, J. A. and McIlraith, S. A. (2007). On Domain-Independent Heuristics for Planning with Qualita-

tive Preferences. In7th Workshop on Nonmonotonic Reasoning, Action and Change (NRAC).

Baier, J. A. and McIlraith, S. A. (2008). Planning with Preferences.Artificial Intelligence Magazine,

29(4), 25–36.

Baral, C., Kreinovich, V., and Trejo, R. (2000). Computational complexity of planning and approximate

planning in the presence of incompleteness.Artificial Intelligence, 122(1-2), 241–267.

Benton, J., Kambhampati, S., and Do, M. B. (2006). YochanPS: PDDL3 Simple Preferences and Partial

Satisfaction Planning. In5th International Planning Competition Booklet (IPC-2006), pp. 54–57.

Lake District, England.

Benton, J., van den Briel, M., and Kambhampati, S. (2007). A Hybrid LinearProgramming and Relaxed

Plan Heuristic for Partial Satisfaction Problems. InProceedings of the 17th International Conference

on Automated Planning and Scheduling (ICAPS), pp. 34–41. Providence, RI.

Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001). Planning in Nondeterministic Domains

under Partial Observability via Symbolic Model Checking. InProceedings of the 17th International

Joint Conference on Artificial Intelligence (IJCAI), pp. 473–478. Seattle, WA, USA.

Bienvenu, M., Fritz, C., and McIlraith, S. (2006). Planning with Qualitative Temporal Preferences. In

Proceedings of the 10th International Conference on Knowledge Representation and Reasoning (KR),

pp. 134–144. Lake District, England.

Blum, A. and Furst, M. L. (1997). Fast Planning Through Planning Graph Analysis. Artificial Intelli-

gence, 90(1-2), 281–300.

Bonet, B. and Geffner, H. (2000). Planning with Incomplete Information as Heuristic Search in Belief

Space. InProceedings of the 5th International Conference on Artificial IntelligencePlanning and

Systems (AIPS), pp. 52–61.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search.Artificial Intelligence, 129(1-2), 5–33.

BIBLIOGRAPHY 153

Bonet, B. and Geffner, H. (2006). Heuristics for Planning with Penaltiesand Rewards using Compiled

Knowledge. InProceedings of the 10th International Conference on Knowledge Representation and

Reasoning (KR), pp. 452–462.

Brafman, R. and Chernyavsky, Y. (2005). Planning with Goal Preferences and Constraints. InPro-

ceedings of the 15th International Conference on Automated Planning andScheduling (ICAPS), pp.

182–191. Monterey, CA.

Bylander, T. (1994). The Computational Complexity of Propositional STRIPS Planning. Artificial

Intelligence, 69(1-2), 165–204.

Cerrito, S., Mayer, M. C., and Praud, S. (1999). First Order Linear Temporal Logic over Finite Time

Structures. InProceedings of 6th International Conference on Logic Programming and Automated

Reasoning (LPAR), LNCS, volume 1705, pp. 62–76. Tbilisi, Georgia.

Claßen, J., Eyerich, P., Lakemeyer, G., and Nebel, B. (2007). Towards an Integration of Golog and

Planning. InProceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI),

pp. 1846–1851.

Coles, A., Fox, M., Long, D., and Smith, A. (2008). A Hybrid Relaxed Planning Graph-LP Heuristic

for Numeric Planning Domains. InProceedings of the 18th International Conference on Automated

Planning and Sched. (ICAPS), pp. 52–59.

Coles, A. I. and Smith, A. J. (2007). Marvin: A Heuristic Search Plannerwith Online Macro-Action

Learning.Journal of Artificial Intelligence Research, 28, 119–156.

Cresswell, S. and Coddington, A. M. (2004). Compilation of LTL Goal Formulas into PDDL. In

Proceedings of the 16th European Conference on Artificial Intelligence (ECAI), (edited by R. L.

de Mántaras and L. Saitta), pp. 985–986. IOS Press, Valencia, Spain.

dal Lago, U., Pistore, M., and Traverso, P. (2002). Planning with a Language for Extended Goals. In

Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pp. 447–454. Edmon-

ton, Alberta, Canada.

Daniele, M., Giunchiglia, F., and Vardi, M. Y. (1999). Improved Automata Generation for Linear

Temporal Logic. InProceedings of the 11th International Conference on Computer Aided Verification

(CAV), LNCS, volume 1633, pp. 249–260. Springer, Trento, Italy.

Davis, E. (1994). Knowledge Preconditions for Plans.Journal of Logic and Computation, 4(5), 721–

766.

BIBLIOGRAPHY 154

De Giacomo, G., Lesṕerance, Y., and Levesque, H. (2000). ConGolog, A Concurrent Programming

Language Based on the Situation Calculus.Artificial Intelligence, 121(1-2), 109–169.

De Giacomo, G. and Levesque, H. (1999). An Incremental Interpreterfor High-Level Programs with

Sensing. InLogical foundation for cognitive agents: contributions in honor of Ray Reiter, (edited by

H. Levesque and F. Pirri), pp. 86–102. Springer Verlag, Berlin.

Delgrande, J. P., Schaub, T., and Tompits, H. (2007). A General Framework for Expressing Preferences

in Causal Reasoning and Planning.Journal of Logic and Computation, 17, 871–907.

Dimopolus, Y., Gerevini, A., Haslum, P., and Saetti, A. (2006). The Benchmark Domains of

the Detrministic Part of IPC-5. In5th International Planning Competition Booklet (IPC-2006).

http://zeus.ing.unibs.it/ipc-5/.

Do, M. B., Benton, J., van den Briel, M., and Kambhampati, S. (2007). Planning with Goal Utility

Dependencies. InProceedings of the 20th International Joint Conference on Artificial Intelligence

(IJCAI), pp. 1872–1878. Hyderabad, India.

Edelkamp, S. (2006a). On the Compilation of Plan Constraints and Preferences. InProceedings of the

16th International Conference on Automated Planning and Scheduling (ICAPS). To appear.

Edelkamp, S. (2006b). Optimal Symbolic PDDL3 Planning with MIPS-BDD. In5th International

Planning Competition Booklet (IPC-2006), pp. 31–33. Lake District, England.

Edelkamp, S. and Helmert, M. (1999). Exhibiting Knowledge in Planning Problems to Minimize State

Encoding Length. InProceedings of the 5th European Conference on Planning (ECP), pp. 135–147.

Edelkamp, S. and Hoffmann, J. (2004). PDDL2.2: The Language for the Classical Part of the 4th Inter-

national Planning Competition. Technical Report 195, Computer Science Department, University of

Freiburg.

Edelkamp, S., Jabbar, S., and Naizih, M. (2006). Large-Scale Optimal PDDL3 Planning with MIPS-

XXL. In 5th International Planning Competition Booklet (IPC-2006), pp. 28–30. Lake District,

England.

Erol, K., Hendler, J., and Nau, D. (1994). HTN Planning: Complexity and Expressivity. InProceedings

of the 12th National Conference on Artificial Intelligence (AAAI), volume 2, pp. 1123–1128.

Etessami, K. and Holzmann, G. J. (2000). Optimizing Büchi Automata. InProceedings of the 11th

International Conference on Concurrency Theory (CONCUR), LNCS, volume 1877, pp. 153–167.

Springer, University Park, PA.

http://zeus.ing.unibs.it/ipc-5/

BIBLIOGRAPHY 155

Feldmann, R., Brewka, G., and Wenzel, S. (2006). Planning with PrioritizedGoals. InProceedings of

the 10th International Conference on Knowledge Representation and Reasoning (KR), pp. 503–514.

Lake District, England.

Ferrein, A., Fritz, C., and Lakemeyer, G. (2005). Using Golog for Deliberation and Team Coordination

in Robotic Soccer.Künstliche Intelligenz, 19(1), 24–31.

Fikes, R. and Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of Theorem Proving

to Problem Solving.Artificial Intelligence, 2(3/4), 189–208.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning and executing generalized robot plans.

Artificial Intelligence, 3, 251–288.

Fox, M. and Long, D. (2003). PDDL2.1: An Extension to PDDL for Expressing Temporal Planning

Domains.Journal of Artificial Intelligence Research, 20, 61–124.

Fritz, C. (2003). Constructing B̈uchi Automata from Linear Temporal Logic Using Simulation Relations

for Alternating B̈uchi Automata. InProceedings of the 8th International Conference on Implementa-

tion and Application of Automata (CIAA), LNCS, volume 2759, pp. 35–48. Springer, Santa Barbara,

CA.

Fritz, C., Baier, J. A., and McIlraith, S. A. (2008). ConGolog, Sin Trans: Compiling ConGolog into

Basic Action Theories for Planning and Beyond. InProceedings of the 11th International Conference

on Knowledge Representation and Reasoning (KR), pp. 600–610. Sydney, Australia.

Gastin, P. and Oddoux, D. (2001). Fast LTL to Büchi Automata Translation. InProceedings of the 13th

International Conference on Computer Aided Verification (CAV’01), (edited by G. Berry, H. Comon,

and A. Finkel),LNCS, volume 2102, pp. 53–65. Springer, Paris, France.

Gazen, B. C. and Knoblock, C. A. (1997). Combining the Expressivity of UCPOP with the Efficiency

of Graphplan. InECP97, pp. 221–233. Toulouse, France.

Gerevini, A., Dimopoulos, Y., Haslum, P., and Saetti, A. (2006). 5th International Planning Competition.

http://zeus.ing.unibs.it/ipc-5/.

Gerevini, A., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. (2009). Deterministic planning

in the fifth international planning competition: PDDL3 and experimental evaluation of the planners.

Artificial Intelligence, 173(5-6), 619–668.

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning Through Stochastic Local Search and Temporal

Action Graphs in LPG.Journal of Artificial Intelligence Research, 20, 239–290.

http://zeus.ing.unibs.it/ipc-5/

BIBLIOGRAPHY 156

Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. (1995). Simple on-the-fly automatic verification of

linear temporal logic. InProceedings of the 15th International Symposium on Protocol Specification,

Testing and Verification (PSTV), pp. 3–18. Warsaw, Poland.

Giménez, O. and Jonsson, A. (2007). On the Hardness of Planning Problems with Simple Causal

Graphs. InProceedings of the 17th International Conference on Automated Planning and Scheduling

(ICAPS), pp. 152–159.

Giunchiglia, E. and Maratea, M. (2007). Planning as Satisfiability with Preferences. InProceed-

ings of the 22nd AAAI Conference on Artificial Intelligence (AAAI), pp. 987–992. Vancouver, British

Columbia.

Gupta, N. and Nau, D. S. (1992). On the Complexity of Blocks-World Planning. Artificial Intelligence

, 56(2-3), 223–254.

Haslum, P. (2007). Openstacks SP-NCE domain. URL

http://users.rsise.anu.edu.au/~patrik/ipc5.html.

Helmert, M. (2003). Complexity results for standard benchmark domains in planning. Artificial Intelli-

gence, 143(2), 219–262.

Helmert, M. (2006a). The Fast Downward Planning System.Journal of Artificial Intelligence Research,

26, 191–246.

Helmert, M. (2006b). New Complexity Results for Classical Planning Benchmarks. InProceedings of

the 16th International Conference on Automated Planning and Scheduling (ICAPS), pp. 52–62.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks.Artificial Intelli-

gence, 173(5-6), 503–535.

Hendler, J. (1999). Is there an intelligent agent in your future?Nature Web Matters, March. URL

http://www.nature.com/nature/webmatters/agents/agents.html.

Hoffmann, J. (2003). The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric

State Variables.Journal of Artificial Intelligence Research, 20, 291–341.

Hoffmann, J. and Brafman, R. (2005). Contingent Planning via HeuristicForward Search with Im-

plicit Belief States. InProceedings of the 15th International Conference on Automated Planningand

Scheduling (ICAPS), pp. 71–80. Morgan Kaufmann, Monterey, CA, USA.

Hoffmann, J. and Edelkamp, S. (2005). The Deterministic Part of IPC-4:An Overview. Journal of

Artificial Intelligence Research, 24, 519–579.

http://users.rsise.anu.edu.au/~patrik/ipc5.html
http://www.nature.com/nature/webmatters/agents/agents.html

BIBLIOGRAPHY 157

Hoffmann, J. and Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through Heuristic

Search.Journal of Artificial Intelligence Research, 14, 253–302.

Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered Landmarks in Planning.Journal of Artificial

Intelligence Research, 22, 215–278.

Hsu, C.-W., Wah, B., Huang, R., and Chen, Y. (2007). Constraint Partitioning for Solving Planning

Problems with Trajectory Constraints and Goal Preferences. InProceedings of the 20th International

Joint Conference on Artificial Intelligence (IJCAI), pp. 1924–1929. Hyderabad, India.

Hui, B., Liaskos, S., and Mylopoulos, J. (2003). Requirements Analysis for Customizable Software

Goals-Skills-Preferences Framework. InProceedings of the 11th IEEE International Conference on

Requirements Engineering (RE), pp. 117–126.

Jonsson, P. and B̈ackstr̈om, C. (1998). Tractable Plan Existence Does Not Imply Tractable Plan Gener-

ation. Annals of Mathematics and Artificial Intelligence, 22(3-4), 281–296.

Kabanza, F. and Thiébaux, S. (2005). Search Control in Planning for Temporally ExtendedGoals. In

Proceedings of the 15th International Conference on Automated Planningand Scheduling (ICAPS),

pp. 130–139.

Kim, P., Williams, B. C., and Abramson, M. (2001). Executing Reactive, Model-based Programs

through Graph-based Temporal Planning. InProceedings of the 17th International Joint Conference

on Artificial Intelligence (IJCAI), pp. 487–493.

Korf, R. E. (1987). Planning as Search: A Quantitative Approach.Artificial Intelligence, 33(1), 65–88.

Kvarnstr̈om, J. and Doherty, P. (2000). TALplanner: A temporal logic based forward chaining planner.

Annals of Mathematics Artificial Intelligence, 30(1-4), 119–169.

Lesṕerance, Y., Levesque, H., Lin, F., and Scherl, R. (2000). Ability and Knowing How in the Situation

Calculus.Studia Logica, 66(1), 165–186.

Levesque, H. (1996). What is Planning in the Presence of Sensing? InProceedings of the 13th National

Conference on Artificial Intelligence (AAAI), pp. 1139–1146. Portland, Oregon.

Levesque, H. and Lakemeyer, G. (2007).Cognitive robotics. Handbook of Knowledge Representation.

Elsevier.

Levesque, H., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. B. (1997). GOLOG: A Logic Program-

ming Language for Dynamic Domains.Journal of Logic Programming, 31(1-3), 59–83.

BIBLIOGRAPHY 158

Levesque, H. J. (2005). Planning with Loops. InProceedings of the 19th International Joint Conference

on Artificial Intelligence (IJCAI), pp. 509–515. Edinburgh, Scotland.

Lin, F. and Reiter, R. (1994). State Constraints Revisited.Journal of Logic and Computation, 4(5),

655–678.

McCarthy, J. and Hayes, P. J. (1969). Some Philosophical Problems from the Standpoint of Artificial In-

telligence. InMachine Intelligence 4, (edited by B. Meltzer and D. Michie), pp. 463–502. Edinburgh

University Press.

McDermott, D. V. (1996). A Heuristic Estimator for Means-Ends Analysis in Planning. InProceedings

of the 3rd International Conference on Artificial Intelligence Planning andSystems (AIPS), pp. 142–

149.

McDermott, D. V. (1998). PDDL — The Planning Domain Definition Language.Technical Report

TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.

McIlraith, S. and Son, T. C. (2002). Adapting Golog for Composition of Semantic Web Services. In

Proceedings of the 8th International Conference on Knowledge Representation and Reasoning (KR),

pp. 482–493. Toulouse, France.

McIlraith, S. A. and Fadel, R. (2002). Planning with complex actions. In9th International Workshop

on Non-Monotonic Reasoning (NMR), pp. 356–364. Toulouse, France.

McIlraith, S. A., Son, T. C., and Zeng, H. (2001). Semantic Web Services. IEEE Intelligent Systems,

16(2), 46–53.

Moore, R. C. (1985). A formal Theory of Knowledge and Action. InFormal Theories of the Com-

monsense World, (edited by J. B. Hobbs and R. C. Moore), chapter 9, pp. 319–358. Ablex Publishing

Corp., Norwood, New Jersey.

Nau, D. S., Cao, Y., Lotem, A., and Muñoz-Avila, H. (1999). SHOP: Simple Hierarchical Ordered

Planner. InProceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI),

pp. 968–975.

Nebel, B. (2000). On the Compilability and Expressive Power of Propositional Planning Formalisms.

Journal of Artificial Intelligence Research, 12, 271–315.

Palacios, H. and Geffner, H. (2006). Compiling Uncertainty Away: Solving Conformant Planning

Problems using a Classical Planner (Sometimes). InAAAI.

Pednault, E. (1988). Synthesizing plans that contain actions with context-dependent effects.Computa-

tional Intelligence, 4(4), 356–372.

BIBLIOGRAPHY 159

Pednault, E. P. D. (1989). ADL: Exploring the Middle Ground Between STRIPS and the Situation

Calculus. InProceedings of the 1st International Conference of Knowledge Representation and Rea-

soning (KR), pp. 324–332. Toronto, Canada.

Petrick, R. P. A. and Bacchus, F. (2002). A Knowledge-Based Approach to Planning with Incomplete

Information and Sensing. InProceedings of the 6th International Conference on Artificial Intelligence

Planning and Systems (AIPS), pp. 212–222. Toulouse, France.

Pistore, M., Marconi, A., Bertoli, P., and Traverso, P. (2005). AutomatedComposition of Web Services

by Planning at the Knowledge Level. InProceedings of the 19th International Joint Conference on

Artificial Intelligence (IJCAI), pp. 1252–1259.

Pnueli, A. (1977). The temporal logic of programs. InProceedings of the 18th IEEE Symposium on

Foundations of Computer Science (FOCS), pp. 46–57.

Reiter, R. (1991).The Frame Problem in the Situation Calculus: A Simple Solution (sometimes) and

a completeness result for goal regression, pp. 359–380. Artificial Intelligence and Mathematical

Theory of Computation: Papers in Honor of John McCarthy. Academic Press, San Diego, CA.

Reiter, R. (2001).Knowledge in Action: Logical Foundations for Specifying and Implementing Dynam-

ical Systems. MIT Press, Cambridge, MA.

Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks Revisited. InProceedings of the 23rd

AAAI Conference on Artificial Intelligence (AAAI), pp. 975–982. Chicago, IL.

Rintanen, J. (2000). Incorporation of Temporal Logic Control into PlanOperators. InProceedings of

the 14th European Conference on Artificial Intelligence (ECAI), (edited by W. Horn), pp. 526–530.

IOS Press, Berlin, Germany.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces.Artificial Intelligence, 5, 115–135.

Sanchez, R. and Kambhampati, S. (2005). Planning Graph Heuristics forSelecting Objectives in Over-

Subscription Planning Problems. InProceedings of the 15th International Conference on Automated

Planning and Scheduling (ICAPS), pp. 192–201. Monterey, CA.

Sardina, S., de Giacomo, G., Lespérance, Y., and Levesque, H. (2004). On the Semantics of Deliberation

in IndiGolog – From Theory to Implementation.Annals of Mathematics and Artificial Intelligence,

41(2-4), 259–299.

Savitch, W. J. (1970). Relationships Between Nondeterministic and Deterministic Tape Complexities.

Journal of Computer and System Sciences, 4(2), 177–192.

BIBLIOGRAPHY 160

Scherl, R. and Levesque, H. (2003). Knowledge, Action, and the Frame Problem.Artificial Intelligence

, 144(1–2), 1–39.

Scherl, R. B. and Levesque, H. J. (1993). The Frame Problem and Knowledge-Producing Actions. In

Proceedings of the 11th National Conference on Artificial Intelligence (AAAI), pp. 689–695.

Smith, D. E. (2004). Choosing Objectives in Over-Subscription Planning.In Proceedings of the 14th

International Conference on Automated Planning and Scheduling (ICAPS), pp. 393–401. Whistler,

Canada.

Sohrabi, S., Baier, J., and McIlraith, S. A. (2009). HTN Planning with Preferences. InProceedings of

the 21st International Joint Conference on Artificial Intelligence (IJCAI). Pasadena, California. To

appear.

Sohrabi, S., Prokoshyna, N., and McIlraith, S. A. (2006). Web Service Composition Via Generic Pro-

cedures and Customizing User Preferences. InProceedings of the 5th International Semantic Web

Conference (ISWC), pp. 597–611. Athens, Georgia.

Son, T. C., Baral, C., Nam, T. H., and McIlraith, S. A. (2006). Domain-Dependent Knowledge in

Answer Set Planning.ACM Transactions on Computational Logic, 7(4), 613–657.

Son, T. C. and Pontelli, E. (2004). Planning with Preferences using Logic Programming. InProceedings

of the 7th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR),

(edited by V. Lifschitz and I. Niemela), number 2923 in LNCS, pp. 247–260. Springer.

Son, T. C. and Pontelli, E. (2006). Planning with preferences using logicprogramming.Theory and

Practice of Logic Programming, 6(5), 559–607.

Son, T. C., Tu, P. H., and Baral, C. (2004). Planning with Sensing Actions and Incomplete Information

Using Logic Programming. InProceedings of the 9th International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR), Lecture Notes in Computer Science, volume 2923, pp.

261–274. Springer, Fort Lauderdale, FL, USA.

Srivastava, B. and Koehler, J. (2003). Web Service Composition - Current Solutions and Open Problems.

In In: ICAPS 2003 Workshop on Planning for Web Services, pp. 28–35.

Thiébaux, S., Hoffmann, J., and Nebel, B. (2005). In defense of PDDL axioms. Artificial Intelligence,

168(1-2), 38–69.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox,D., Hähnel, D., Rosenberg,

C. R., Roy, N., Schulte, J., and Schulz, D. (1999). MINERVA: A Second-Generation Museum Tour-

Guide Robot. InICRA, pp. 1999–2005.

BIBLIOGRAPHY 161

van den Briel, M., Nigenda, R. S., Do, M. B., and Kambhampati, S. (2004). Effective Approaches for

Partial Satisfaction (Over-Subscription) Planning. InProceedings of the 19th National Conference

on Artificial Intelligence (AAAI), pp. 562–569.

Vardi, M. Y. and Wolper, P. (1994). Reasoning about Infinite Computations. Information and Compu-

tation, 115(1), 1–37.

Waldinger, R. (1977). Achieving Several Goals Simultaneously. InMachine Intelligence 8, pp. 94–136.

Ellis Horwood, Edinburgh, Scotland.

Weld, D. S., Anderson, C. R., and Smith, D. E. (1998). Extending Graphplan to Handle Uncertainty &

Sensing Actions. InProceedings of the 15th National Conference on Artificial Intelligence (AAAI),

pp. 897–904.

Yoon, S. W., Fern, A., and Givan, R. (2007). FF-Replan: A Baseline for Probabilistic Planning. In

Proceedings of the 17th International Conference on Automated Planningand Scheduling (ICAPS),

pp. 352–359.

Yoon, S. W., Fern, A., Givan, R., and Kambhampati, S. (2008). Probabilistic Planning via Determiniza-

tion in Hindsight. InProceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI).

Zhu, L. and Givan, R. (2005). Simultaneous Heuristic Search for Conjunctive Subgoals. InProceed-

ings of the 20th National Conference on Artificial Intelligence (AAAI), pp. 1235–1241. Pittsburgh,

Pennsylvania, USA.

Appendix A

Proofs for Chapter 3

A.1 Proof for Proposition 3.1

Now we prove identities independently.

1. We prove thatψUχ≡ χ∨ψ∧©(ψUχ).

From Def. 3.3,〈σi ,ν〉 |= ψUχ iff there exists aj ∈ {i, . . . ,n} such that〈σ j ,ν〉 |= χ and for every

k∈ {i, . . . , j−1}, 〈σk,ν〉 |= ψ.

In the right-hand side of the expression, we can substitutej ∈ {i, . . . ,n} by “ j = i or j ∈ {i +

1, . . . ,n}”, which converts the expression into the disjunction of the following statements.

(1) there exists aj = i such that〈σ j ,ν〉 |= χ,

(2) there exists aj ∈ {i + 1, . . . ,n} such that〈σ j ,ν〉 |= χ and for everyk ∈ {i + 1, . . . , j −1},

〈σk,ν〉 |= ψ and〈σi ,ν〉 |= ψ.

(1) is simply equivalent to〈σi ,ν〉 |= χ. On the other hand, (2) reduces to〈σi ,ν〉 |= ψ∧©(ψUχ).

This can be verified straightforwardly in two relevant cases: wheni < n or wheni ≥ n.

2. We prove that¬©ϕ≡ final∨©¬ϕ. Indeed by Def. 3.3,〈σi ,ν〉 |= ¬©ϕ iff i ≥ n or 〈σi+1,ν〉 6|= ϕ.

Without loss of generality we assumei ≤ n. By Def. 3.3 the statement is true iff〈σi ,ν〉 |= final or

〈σi+1,ν〉 |= ¬ϕ, from where the result follows immediately.

3. We proveψU(∃x)ϕ ≡ (∃x)(ψUϕ). From Def. 3.3, the formula is true iff there exists aj ∈

{i, . . . ,n} such that there exists aa∈ D such that〈σ j ,ν[x→ a]〉 |= ϕ and for everyk∈ {i, . . . , j−

1}, 〈σk,ν〉 |= ψ. Becausex does not appear free inψ we can rewrite the expression in the equiva-

lent form: there exists aa∈ D such that there exists aj ∈ {i, . . . ,n} such that〈σ j ,ν[x→ a]〉 |= ϕ

162

APPENDIX A. PROOFS FORCHAPTER 3 163

and for everyk ∈ {i, . . . , j −1}, 〈σk,ν[x→ a]〉 |= ψ. The result follows straightforwardly from

here.

4. ψR(∀x)ϕ ≡ (∀x)(ψRϕ) can be proved by rewriting theR in terms of anU, then applying the

previous identity, and then going back to an expression containingR.

5. We proveψRχ≡ χ∧ (final∨ψ∨©(ψRχ))..

ψRχ≡ ¬(¬ψU¬χ) (by definition ofR)

≡ ¬(¬χ∨¬ψ∧©(¬ψU¬χ)) (by identity 1)

≡ (χ∧ (ψ∨¬©(¬ψU¬χ)))

≡ (χ∧ (ψ∨final∨©(¬(¬ψU¬χ)))) (by identity 2)

≡ (χ∧ (ψ∨final∨©(ψRχ))) (by definition ofR)

A.2 Proof for Theorem 3.1

Before starting with the proof, we formally define some concepts and abbreviations that we use in the

proofs.

Definition A.1 (Old−(q)) We define Old−(q) as the set containing all the literals in Old(q) or formulae

of the form(Qx)ϕ, whereϕ is a first-order (atemporal) formula.

If X is a set of temporal formulae, we denote by
∧

X the conjunction the elements inX.
∧

X reduces

to True if X is empty.

We define the abbreviationβ(q) in the following way:

β(q)
def
=







©
∧

Next(q) if Next(q) 6= ∅

True otherwise.

We are now going to prove some intermediate results that will allow us to prove themain result rather

straightforwardly. In most of the intermediate lemmas, we assume that we construct an automaton for a

quantifier-free formula, which may contain free variables. Intuitively, thisquantifier-free formula is the

actual parameter received by the translation algorithm. This, however, does not mean that the result of

Theorem 3.1 holds for formulae with free variables. It is just convenientto do it this way to facilitate

the proof.

Lemma A.1 (Analogous to Lemma 4.2 by Gerthet al. (1995)) If nodes q1 and q2 are split from a

node q (in lines 32-35), then the following property holds.

APPENDIX A. PROOFS FORCHAPTER 3 164

(
∧

Old−(q)∧
∧

New(q)∧β(q)
)

≡
(

∧

Old−(q1)∧
∧

New(q1)∧β(q1)
)

∨
(

∧

Old−(q2)∧
∧

New(q2)∧β(q2)
)

Similarly, when node q is updated to become a new node q′ (in lines 20-31), the following holds

(
∧

Old−(q)∧
∧

New(q)∧β(q)
)

≡
(

∧

Old−(q′)∧
∧

New(q′)∧β(q′)
)

Proof: Follows directly from the properties of f-FOLTL. �

Following the proof by Gerthet al. (1995), we define an ancestor relation between nodesR, such

that(p,q) ∈R iff Father(q) = Name(p). Let R∗ be the transitive closure ofR. A node isrootedif it has

no ancestors; i.e.,Father(q) = Name(q).

Lemma A.2 (Analogous to Lemma 4.3 by Gerthet al. (1995)) Let p be a rooted node, and Qp =

{qi |(p,qi) ∈ R∗}. Let ℵ be the set of formulas that are in New(p), when it is created. Let Next(qi)

be the values of the field Next for qi at the end of the construction. Then, the following holds:

∧

ℵ ≡
∨

qi∈Qp

(

∧

∆−(qi)∧β(qi)
)

.

Proof: By induction in the construction using Lemma A.1. �

Lemma A.3 Let graph Gϕ be generated by the algorithm for formulaϕ. Let R= {r1, . . . , rn} be the

successors of node p. Moreover letψ =
∧

Next(p). Then the graph that results by invoking the al-

gorithm withψ, Gψ, is isomorphic with the graph that results from removing every state from Gϕ that

is unreachable by the nodes in R. Furthermore, the isomorphism is such that if it maps q to q′, then

∆(q) = ∆(q′).

Proof: Since nodes inR are direct successors ofp, we know that there exists a common ancestorr ′ in

G of all nodes inR such that, at the beginning of its construction,New(r ′) is equal toNext(p).

Likewise, when invoking the algorithm withψ, the starting node, sayr ′′, will contain itsNewfield

equal toψ. We start mapping noder ′ to r ′′. Each time we split a node into two nodes, we look atGϕ

and map the two successors accordingly. We repeat this process recursively.

The resulting mapping is effectively an isomorphism, since graphGψ is constructed using the same

procedure as the subgraph ofGϕ rooted inr ′. �

For the following lemmas,ϕ is an f-FOLTL formula whose quantifiers do not scope over temporal

formulae, andν is any variable assignment for all free variables inϕ.

APPENDIX A. PROOFS FORCHAPTER 3 165

Lemma A.4 If there is an accepting runρ= q0q1 · · ·qn for σ in Aϕ ·ν, and Next(q0) = ψ, then there is

an accepting run forσ1 in Aψ ·ν.

Proof: Sinceq1 is successor ofq0, the proof results directly from Lemma A.3. �

Lemma A.5 If ρ= q0q1 · · ·qn is an accepting run forσ = s0s1 · · ·sn in Aϕ ·ν, then〈σ0,ν〉 |= ∆−(q0).

Proof: Sinceρ is a run,〈s0,ν〉 |=
∧

∆−(q0) \ {final,¬final}. Also, since∆−(q0) contains no temporal

formulae,〈σ0,ν〉 |=
∧

∆−(q0)\{final,¬final}. Now we have two cases.

• n = 0. Sinceq0 is final, we know¬final 6∈ ∆−(q0) (by definition of final state). Now, whether or

notfinal ∈ ∆−(q0), 〈σ0,ν〉 |=
∧

∆−(q0).

• n> 0. Sinceq0 has a successor, thenfinal 6∈ ∆−(q0) (see condition in line 6 in the algorithm).

Now, whether or not¬final ∈ ∆−(q0), 〈σ0,ν〉 |=
∧

∆−(q0).

�

Lemma A.6 If there is an accepting run forσ in Aϕ ·ν, then〈σ,ν〉 |= ϕ.

Proof: By induction in the length ofσ.

• Base case (σ = s0). Then, there is an initial stateq in Aϕ ·ν which is also final. By Lemma A.5,

〈σ,ν〉 |=
∧

∆−(q). Sinceq is final, we have thatNext(q) = ∅. From Lemma A.2, we conclude

immediately that〈σ,ν〉 |= ϕ.

• Induction. Supposeρ = q0q1 . . .qk is an accepting run forσ in Aϕ · ν. Then, by Lemma A.5,

〈σ0,ν〉 |= ∆−(q0). Moreover, from Lemma A.4, there is an accepting run forσ1 in Aψ ·ν, where

ψ = Next(q0).

By inductive hypothesis,〈σ1,ν〉 |= Next(q0). Therefore, by f-FOLTL equivalence, we have that

〈σ,ν〉 |= ∆−(q0)∧©Next(q0). Then, by Lemma A.2, we conclude immediately that〈σ,ν〉 |= ϕ.

�

Lemma A.7 If 〈σ,ν〉 |= ϕ, then there is an accepting run forσ in Aϕ ·ν.

Proof: By induction in the length ofσ.

• Base case (|σ|= 1). By Lemma A.2, we have that

〈σ,ν〉 |=
∧

∆−(q)∧β(q), (A.1)

for some initial stateq.

We can conclude the following.

APPENDIX A. PROOFS FORCHAPTER 3 166

1. Next(q) = ∅. This is because if|σ|= 1, then〈σ,ν〉 6|= ©ξ for everyξ.

2. The condition above and (A.1) imply〈σ,ν〉 |=
∧

∆−(q).

3. Moreover, since〈σ,ν〉 6|= ¬final, we know¬final 6∈ ∆−(q).

From 1. and 3. we conclude thatq is final. From 2., we conclude that〈s0,ν〉 |=
∧

∆−(q). Hence

σ has an accepting run inAϕ ·ν.

• Induction. By Lemma A.2, we conclude thatσ |=
∧

∆−(q)∧β(q) for some initial stateq. We

have two cases.

– Next(q) = ∅. In this caseσ0 |=
∧

∆−(q). As before, this means thats0 |=
∧

∆−(q), and

thereforeq can be the initial state of a run.

Furthermore, since|σ|> 0,σ 6|= final. Hence, there must be a transition fromq to a stateq′,

which by the algorithm construction is such that∆−(q′) = ∅, is final, and has a transition to

itself. This means thatσ has an accepting run inAϕ, in fact such run isq(q′)n.

– Next(q) 6= ∅. Again, we haves0 |=
∧

∆−(q). Since, as before,σ 6|= final, we have a transition

from q to q′. Stateq′ was initially invoked withNew(q′) = Next(q′), so, by Lemma A.3 and

the induction hypothesis, we have that any run forσ1 from q′ has an accepting run inAψ,

with ψ =
∧

Next(q′). Since any path inAψ has an isomorphic path inAϕ, thenσ has a run

in Aϕ.

�

We are now ready to prove the main result.

Proof (for Theorem 3.1) : Let ϕ by such thatψ = Q1x1Q2x2 ·Qnxnϕ and such that no quantifiers inϕ

scope over temporal formulae. Now, by Lemmas A.7 and A.5 we observe thatif ν is an assignment of

the free variables inϕ.

Aϕ ·ν acceptsσ iff 〈σ,ν〉 |= ϕ (A.2)

Now, letℑ be such thatσ |= ψ iff 〈σ,ν〉 |= ϕ, for all ν ∈ ℑ. Note that by definitionAψ acceptsσ iff

Aϕ ·ν acceptsσ, for all ν ∈ ℑ. By semantics of f-FOLTL and A.2, this last assertion can only hold true

iff σ |= ψ. This concludes the proof. �

A.3 Proof for Proposition 3.4

Let P= {p1, p2, . . . , pn}, and letσ= s1,s2, . . . ,s2n be an arbitrary sequence of all subsets ofP. Formally,

eachsi contains an element in 2P and no pair of statessi ,sj ∈ σ are equal ifi 6= j. Moreover, for each

APPENDIX A. PROOFS FORCHAPTER 3 167

statesi , we denote bysi∗ the state inσ such thatsi∗ = P\ si . Finally, letA = 〈Q,Σ(S,D), δ, ǫ, ǫ,Q0,F〉

be the PNFA forϕ
def
= 3p1∧3p2∧ . . .∧3pn.

Note that becauseA accepts the models ofϕ, processingsisi∗ leads the automaton to an accepting

state, for anyi.

Claim: Let ρi = qoqqf andρ j = q0q′q′f be (accepting) runs ofA on, respectively,sisi∗ andsjsj∗ , and

si 6= sj , thenq 6= q′. Proof: Let us assume the contrary, i.e., that there exist two different states in

σ, si andsj , such that there are (accepting) runsρi = qoqqf andρ j = q0qq′f in A for sisi∗ andsjsj∗ ,

respectively.

Becausesi 6= sj , we divide the rest of the proof into two cases:

Case 1 (si∗ (sj∗) In this case,q0qq′f is an accepting run forsjsi∗ . This implies a contradiction because

if A is a PNFA forϕ, thensjsi∗ is not be accepted becausesj ∪si∗ does not include all propositions

in P.

Case 2 (sj∗ (si∗) In this case,q0qqf is an accepting run forsisj∗ . This implies a contradiction, analo-

gous to the previous case.

Notice that the claim immediately implies that there are at least 2n states inA, since 2n different

states are visited when acceptingsisi∗ , for eachsi ∈ σ. �

Appendix B

Proofs for Chapter 4

B.1 Proof for Proposition 4.1

In this section we prove Proposition 4.1. First, we prove three intermediate results that will be used by

the final proof.

The first intermediate result says that if an NNF formulaφ over P is true in a states (denoted as

s |=
rg
φ), thenφ will also be true in a relaxed state(F+,F−) if every proposition that is true ins is also

true in such a relaxed state. This is proven in the following lemma.

Lemma B.1 Let P be a set of propositions,φ be an NNF formula, and s,F+,F− ⊆ P be states. Then if

s |=
rg
φ, and(F+,F−) is such that:

1. (F+,F−) |=
rg

p, for every p∈ s, and

2. (F+,F−) |=
rg
¬p, for every p∈ sc,

then(F+,F−) |=
rg
φ.

Proof: The proof that follows is by induction on the structure ofφ.

Base cases (φ= p or φ= ¬p) They both follow directly from the conditions of this Lemma.

Induction We have the following cases

• if φ=ψ∧ξ, thens|=
rg
ψ ands|=

rg
ξ. By inductive hypothesis, also(F+,F−) |=

rg
ψ and(F+,F−) |=

rg
ξ.

It follows from Definition 4.1 that(F+,F−) |=
rg
φ.

• if φ= ψ∨ ξ, then the proof is analogous to the previous case.

• if φ= ∀x.ψ, then for everyo∈Objswe have thats |=
rg
ψ(x/o). By inductive hypothesis, for every

o∈Objsthen(F+,F−) |=
rg
ψ(x/o), hence by Definition 4.1, we have that(F+,F−) |=

rg
φ.

168

APPENDIX B. PROOFS FORCHAPTER 4 169

• if φ= ∃x.ψ, the proof is analogous to the previous case.

�

The final intermediate result is actually a version of Proposition 4.1 but for simple facts.

Lemma B.2 Let s be a planning state, R= (F+
0 ,F

−
0)(F+

1 ,F
−
1) · · ·(F+

m−1,F
−
m−1)(F

+
m ,F

−
m) be the relaxed

planning graph constructed from s up to a fixed point. Moreover, let sn be the state that results after

performing a legal sequence of actions a1 · · ·an in s, then there exists some k≤m such that(F+
k ,F

−
k) |=

rg
f , for every f∈ s, and such that(F+

k ,F
−
k) |=

rg
¬ f for every f∈ sc.

Proof: SinceRhas been constructed to a fixed point,F+
m−1 = F+

m andF−
m−1 = F−

m , andm> 0. Moreover,

assume that the set of states generated by performing the action sequenceover s is s1 · · ·sn (i.e., state

si is generated after performing the sequence of actionsa1 · · ·ai over s). The following proof for the

lemma is by induction on the length of the action sequence,n.

Base Case (n= 0) We prove that in this case we can considerk = 0. In this case the sequence of actions

performed ons is empty. By definition of the construction ofR, F+
k = F+

0 = s andF−
0 = F−

k = sc. Let

f be an arbitrary fact.

1. f ∈ s. Then, by Definition 4.1,(F+
k ,F

+
k) |=

rg
f , for k = 0 concluding the proof for this case.

2. f ∈ sc. Then, again by Definition 4.1, we obtain(F+
k ,F

−
k) |=

rg
¬ f , for k = 0.

Induction Let us assume that the theorem is true forn−1. We now prove that it is also true forn. We

divide this proof into four cases. Again, assumef is an arbitrary fact.

1. f ∈ sn and f ∈ sn−1. This case is trivial, since by inductive hypothesis we have that(F+
k ,F

−
k) |=

rg
f

for somek≤m.

2. f 6∈ sn and f 6∈ sn−1. Again, by induction hypothesis(F+
k ,F

−
k) |=

rg
¬ f for somek≤m.

3. f ∈ sn and f 6∈ sn−1. Then,an must have added factf when performed insn−1. We now prove

that actionan is executable at some levelk′ ≤m−1 of the relaxed graph, and that it will add fact

f to the relaxed graph at levelk′ +1≤m.

Let us assume that the precondition of actionan is ϕP and that the condition of the conditional

effect that addsf isϕc. Then since both formulae are satisfied insn−1, we have that

sn−1 |=rgϕP∧ϕc. (B.1)

Moreover, by inductive hypothesis, we have that there exists ak′ ≤msuch that

(F+
k′ ,F

−
k′) |=

rg
p, for everyp∈ sn−1 (B.2)

(F+
k′ ,F

−
k′) |=

rg
¬p, for everyp∈ sc

n−1 (B.3)

APPENDIX B. PROOFS FORCHAPTER 4 170

At this point, we can safely assume also thatk′ <m, because ifk′ were equal tom, then (B.2) and

(B.3) also hold fork′ = m−1, because the graph has been constructed to a fixed point.

Now, we combine equations (B.2), (B.3), and (B.1) with Lemma B.1 to conclude that(F+
k′,,F

−
k′) |=

rg
ϕP∧ϕc. Action an is therefore executable at levelk′ of the relaxed graph, and the conditionϕc,

which enables the conditional effect that addsf is also true at levelk′. Therefore,f is added to

the relaxed graph at levelk = k′ +1≤m, concluding the proof for this case.

4. f 6∈ sn and f ∈ sn−1. Proof is analogous to previous case.

�

Now we are ready to prove our result.

Proof (Proposition 4.1) : By Lemma B.2, we know that there exists ak≤m such that for eachp∈ sn,

(F+
k ,F

−
k) |=

rg
p, and for eachp∈ sc then(F+

k ,F
−
k) |=

rg
¬p. Becausesn |=rgφ it follows from Lemma B.1

that(F+
k ,F

−
k) |=

rg
φ. �

B.2 Proof for Theorem 4.2

Before we start our proof we prove a lemma which establishes that, under the conditions of Theorem

4.2, if two nodes with exactly the same state have differentB, D, or O metric value, then their lengths

must also differ analogously.

Lemma B.3 Let N1 and N2 be two search nodes that correspond to the same planning state s. Fur-

thermore, let the metric M of the instance be NDVPL and depend on(total-time). If R(N1)≤ R(N2),

and:

1. R is either O or B, or

2. M is ATT and R is D.

thenlength(N1)≤ length(N2).

Proof: We divide the proof in two cases.

Case 1:R is eitherO or B. ThenR(N1) = M(N′
1), whereN′

1 is a hypothetical node with the samelength

asN1 but in which possibly more preferences are satisfied. Analogously,R(N2) = M(N′
2) for a nodeN′

2

with the samelength asN2. Therefore,

M(N′
1)≤M(N′

2). (B.4)

Because the planning state associated toN1 andN2 are identical, we know thatN′
2 andN′

1 are such that

they satisfy exactly the same preferences, i.e., ifΓ is the set of preferences of the planning instance,

APPENDIX B. PROOFS FORCHAPTER 4 171

for all p∈ Γ we have thatis-violated(p,N′
1) = is-violated(p,N′

2). Now, using the contra-positive

of implication (2) in the NDVPL definition (Def. 4.3) and Equation B.4, we have that length(N′
1) ≤

length(N′
2). This implies thatlength(N1)≤ length(N2), and concludes the proof for this case.

Case 2:R is D andM is ATT. BecauseM is ATT, then by Equation 4.1,D(N1) = M(N1)+ R1, where

R1 is an expression that does not depend on(total-time), i.e. it onlydepends onN1’s state. Likewise,

D(N2) = M(N2)+ R2, whereR2 only depends on the state ofN2. Since both the states corresponding

to N1 andN2 are equal, we have thatR1 = R2. Hence, becauseD(N1) ≤ D(N2) we have thatM(N1) ≤

M(N2), which by the contra-positive of implication (2) in the NDVPL definition (Def. 4.3) implies that

length(N1)≤ length(N2). This concludes this case, finishing the proof. �

Now we are ready to prove our result. First, note that the search is restarted from scratch after the

first plan is found. This also means that the closed list is reinitialized. Second, note that if two nodesN1

andN2 have the same state associated to them then both theG and theP functions evaluated on these

nodes return the same value. Therefore, if USERHEURISTIC(N1) ≤ USERHEURISTIC(N2), then this

means that the tie breaker functions used, sayR, is such thatR(N1) ≤ R(N2) whereR is eitherO, B or

D.

The sketch of the proof is as follows. We assume that a nodeN that leads to an optimal plan is

discarded by the algorithm. Then we prove that if this happens then either theoptimal was found or

there is a node in the frontier that can be extended to another optimal plan.

Assume there exists an optimal planp1 = a1a2 · · ·an that traverses the sequence of statess0s1 · · ·sn.

Let N1 be a node formed by applyingp1 on s0. Because the metric is NDVPL, we assume that this

plan contains no cycles (otherwise, had the plan contained any cycles, byremoving them we could not

make it worse). Suppose further that at some point in the search, there isa nodeN that is generated by

applyinga1a2 · · ·a j in the initial state (withj < n) and that is discarded by the algorithm in line 8. This

means that there exists another closed node, sayNC that is associated the same state asN, and that is

such that

USERHEURISTIC(NC)≤ USERHEURISTIC(N). (B.5)

Both nodes are associated the same statesj , hence theis-violated counters are identical for each

preference. This means thatNC is constructed froms0 by a sequence of actionsb1b2 · · ·bk. This sequence

of actions gets to the same statesj , hence the sequencep2 = b1b2 · · ·bka j+1 · · ·an is also a plan.

Let N2 be a node that would be constructed by applyingp2 in s0. Now we prove thatN2 also

corresponds to an optimal plan. We have two cases.

Case 1:The metric depends on(total-time). Because the Inequality B.5 implies thatR(NC)≤ R(N),

whereR is eitherO, D or B, by Lemma B.3, we have thatlength(NC) ≤ length(N), and therefore

k≤ j. We clearly have thatlength(N2)≤ length(N1), furthermore because all precondition counters

are identical, it follows from the NDVPL condition thatM(N2) ≤M(N1). Given thatN1 represents an

APPENDIX B. PROOFS FORCHAPTER 4 172

optimal plan, we conclude thatM(N2) = M(N1), and thereforeN2 also represents an optimal plan.

Case 2:The metric does not depend on(total-time). Therefore, because nodeN2 reaches the same

state asN1 does andM only depends on properties encoded in the state,M(N1) = M(N2) and henceN2

also represents an optimal plan. This concludes case 2.

Now, we know that sinceNC, a predecessor ofN2 was expanded by the algorithm, one of the fol-

lowing things happen:

1. A successor ofNC is in frontier. In this case, the condition of Def. 4.5 follows immediately.

2. N2 is in the closed list. This implies that the condition of Def. 4.5 is also satisfied.

3. A successor ofNC has been discarded by the algorithm. In this case, such a successor alsoleads

to an optimal plan. This means that we could apply the same argument in this prooffor such a

node, leading to eventually satisfy the condition of Def. 4.5 since the algorithmhas visited finitely

many nodes.

Appendix C

Proofs for Chapter 5

We here provide the proofs of the two theorems, that is, we prove the correctness (sound and com-

pleteness) of our translations, and we prove the succinctness of the resulting PDDL planning instance.

C.1 Proof for Proposition 5.1

We first need to prove the following Lemma.

Lemma C.1 Letσ0 andσ′ be programs. Then if

[σ0;σ′,s0] ⊢ [σ1;σ′,s1] ⊢ . . . ⊢ [σn;σ′,sn]

then[σ0,s] ⊢k [σk,sk], for all k ∈ [0,n].

Proof: By induction inn.

Base case (n = 0). The property is trivially true.

Induction. Let the property hold forn = p we prove it forn = p+ 1. We know that[σp;σ′,sp] ⊢

[σp+1;σ′,sp+1]. By definition ofTr we have that[σp+1,sp+1] ∈ Tr([σp,sp],a), for somea. By definition

of ⊢, the previous statement implies[σp,sp] ⊢ [σp+1,sp+1], which concludes the proof. �

Proof (Proposition 5.1) : We assume that the following holds:

q0 = [σ1;σ2,s] ⊢ q1 ⊢ q2 ⊢ . . . ⊢ qk−1 ⊢ qk = [nil,s′] (C.1)

It is easy to see the following facts.

1. By definition ofTr if σ is a program that is notnil, the only possible transitions over[σ;σ2, r]

produce a configuration[σ′;σ2, r ′].

173

APPENDIX C. PROOFS FORCHAPTER 5 174

2. Since the last configuration in the sequence of Expression C.1 is[nil,s′] then, necessarily, at some

intermediate configuration is of the formqp = [nil;σ2, r ′′′], for somep∈ [0,k−1].

From (1) and (2) we conclude that for allj ∈ [1, p], q j = [σ j ;σ2,sj], for somesj andσ j .

Now, we apply Lemma C.1 and conclude from[σ1;σ2,s] ⊢p [nil;σ2,sp] that[σ1,s] ⊢p [nil,sp]. More-

over, by definition ofTr, we have that[nil;σ2,sp] ⊢ [σ2,sp], and thusqp+1[σ2,sp]. This concludes the

proof.

�

C.2 Proof for Proposition 5.4

We divide the proof for each of three the cases.

1. The argument for this is similar to the one we use in the proof for Proposition5.1. A transition

on the while loop state[whileφdoσ,s], will produce either[nil ,s], or [σ;whileφdoσ,s]. In the

latter case, since we know that the while terminates (i.e., eventually transitions to[nil,s′]), we can

argue—by definition ofTr—that this can only happen if[σ;whileφdoσ,s]⊢∗ [nil;whileφdoσ,s′′],

such that all states traversed in between such a computation are of the form[σp;whileφdoσ,sp].

Furthermore,[nil;whileφdoσ,s′′] ⊢ [whileφdoσ,s′′]. From state[whileφdoσ,s′′] we can apply

the same reasoning, and finally conclude that allqi are of the required form.

2. From 1. above it is straightforward to verify thatqk = [whileφdoσ, rk], for somerk, since[σ′;whileφdoσ, rk]

cannot transition to[nil,s′] in one step. Furthermore, letqi = [whileφdoσ, r i], and let i < k.

By definition of Tr, this can only happen iffqi+1 is not [nil,s′]. In turn, by definition ofTr,

qi+1 6= [nil,s′] iff r i |= φ.

3. The proof for this follows straightforwardly from the form of the statesin the sequence and

Lemma C.1.

C.3 Correctness (Theorem 5.1)

We divide our proof into two parts: a soundness and a completeness result. Throughout the proof,

we denote byIσ,n,n′ the planning instance that results by first invokingC(σ,n, []) and then following

the remaining steps of the compilation, if such a call toC returns(L,L′,n′) for someL and someL′.

Moreover,Iσ,n,n′ ’s initial state requiresstate= sn in the initial state, and the goal requiresstate= sn′ .

Note thatIσ, as it is defined in the compilation section, corresponds toIσ,0,nfinal.

We start by proving three intermediate results.

APPENDIX C. PROOFS FORCHAPTER 5 175

Lemma C.2 Letσ be a program, let I be a planning instance with initial state Init, and let Iσ,n,n′ be the

instance generated by the compilation with the usual operator lists L and L′. Assumeσ1 is a subprogram

ofσ, such that C(σ1,n1,E1) was invoked during the top-level compilation, returning(L1,L′
1,n

′
1). Finally,

let α= a0a1 · · ·ap be a plan for Iσ,n,n′ . Let a0 · · ·a j be a prefix ofα such that Succ(Init ,a0 · · ·a j ,s′) and

s′ |= state= sk, for some k such that n1≤ k< n′1, then aj is an instance of an operator in L1 ·L′
1.

Proof: Assume thata j is an instance of an operator inL ·L′ but not inL1 ·L′
1. Since all operators that

where generated byC while compiling a subprogram ofσ′ are also inL1 · L′
1, there must be another

subprogram ofσ, sayσ′′, that is not a subprogram ofσ′ such that the compilation ofσ′′ generated an

operator not inL1 ·L′
1 that is possible whenstate= sk. The recursive definition of theC operator does

not admit this. Ifσ′ andσ′′ are two non-overlapping subprograms, the new preconditions that restrict

thestatevariable are defined in such a way that they can never overlap for the same value ofstate. �

Lemma C.3 Let σ be a program with no program variables. Let I be a planning instance with initial

state Init, and let Iσ,n,n′ be the instance generated by the compilation. Assumeσ1 is a subprogram ofσ,

such that C(σ1,n1, []) was invoked during the top-level compilation, returning(L1,L′
1,n

′
1). Furthermore,

let α= a0a1 · · ·ap be a plan for Iσ,n,n′ such that, when executed in Init, generates the sequence of states

s0s2 · · ·spsp. Moreover, assume there exist two integers i and j, such0 ≤ i ≤ j ≤ p and such that

si |= state= sn1, sj |= state= sn′1
and for all r such that i< r < j, sr |= state= su with n1≤ u< n′1.

Finally, let I′σ′,n1,n′1
be the instance that results from compilingσ′ by calling C(σ1,n1, []) on instance

I ′, where I′ is an instance with the operators from I, and such that its initial state is just like si but with

no occurrence of the state fluent, and is such that its goal is empty.

Thenα′ = aiai+1 · · ·a j is a plan for I′σ′,n1,n′1
.

Proof: By Lemma C.2, actions inaiai+1 · · ·a j are instances of operators inI ′σ′,n1,n′1
. Moreover, since the

initial state ofI ′σ′,n1,n′1
is si , the sequenceα′ is also executable onI ′σ′,n1,n′1

, as while executingα′ onI ′σ′,n1,n′1

the planning states traversed are identical those states traversed while performing the subsequenceα′ of

α in Iσ,n,n′ . Finally, after performingα′, we reach a state wherestate= sn′1
, and henceα′ is a plan for

I ′σ′,n1,n′1
. �

We are now ready to prove the soundness part of the theorem.

C.3.1 Soundness Part

The statement we are now proving follows.
⇒ (Soundness):

Given a planα for instance Iσ = (Dσ,Pσ), show that Filter(α,D) is a plan for I = (D,P)

under the control ofσ.
We prove this in several steps.

APPENDIX C. PROOFS FORCHAPTER 5 176

Lemma C.4 Let σ be a program, I= (D,P) a planning instance, andα a plan for planning instance

Iσ = (Dσ,Pσ). Then Filter(α,D) is a plan for I.

Proof: Note that the preconditions of actions inDσ are strictly more restrictive than their counterparts in

D, as the original preconditions are conjoined with additional ones. Thus, whenever an actiona of Dσ is

executable in a states anda is a domain action as opposed to any of the newly introduces bookkeeping

actions, then the corresponding actiona′ in D is executable insas well. Further, note that the additional

effects ofa in Dσ compared toa′ in D only affect the new bookkeeping predicates and functions (bound,

map, and state). Therefore, since the initial and goal state ofIσ differ from their counterparts inI only

in terms of these bookkeeping predicates and functions,Filter(α,D) achieves the goal ofP and thus

Filter(α,D) is a plan forI = (D,P). �

To prove that the action sequenceFilter(α,D) is also a plan under the control ofσ, we have to show

that the automatonAσ,I accepts it. We do this by induction over the structure of the programσ in the

following two lemmata.

Lemma C.5 Letσ be a program without theπ(x-t) construct, I= (D,P) a planning instance, andα a

plan for planning instance Iσ,n,n′ = (Dσ,Pσ). Then Filter(α,D) is an execution ofσ in I.

Proof: Throughout this proof we will refer to the compilation resultC(σ,n,E) = (L,L′,n′) used to

constructIσ,n,n′ . Since there are noπ(x-t) constructs, we can assume that theE argument ofC is always

empty and can ignore anyboundandmappreconditions and effects upon these predicates for now. The

program does not contain any program variables.

The proof proceeds by induction over the structure ofσ as follows:

σ = nil: By definition ofC, bothL andL′ are empty, and therefore no operators are included inDσ.

Thus the plan is empty. The empty sequence is accepted byAσ,I , because[nil,s] is a final state.

σ = a,a∈ A: By definition of the translation, the only operator inDσ is actiona. Thus, the only

potentially possible action in any state wherestate= sn is a. Since the goal, by construction,

requiresstate= sn+1, thenα = a, anda must be possible in the initial state. From Eq. 5.4 we

know thata is accepted byAσ,I .

σ = φ?: By definition of the translation, the only operator inDσ is test n n1, which is potentially

possible in any state wherestate= sn. Since the goal, by construction, requiresstate= sn+1,

α = test n n1, and since this is a plan, we know that its preconditions are satisfied in the initial

state, henceInit |= φ and thusAσ,I accepts1 ε= Filter(α,D) by Eq. 5.6.

1We denote the empty sequence of actions byε.

APPENDIX C. PROOFS FORCHAPTER 5 177

These are the base cases. Now for the induction steps:

σ = (σ1;σ2): Assume thatC(σ1,n,E) andC(σ2,n1,E) where invoked while compilingσ, for somen1.

By construction ofI , any planα = a0a1 · · ·an for Iσ can be partitioned into two partsα1 andα2

such thatα = α1α2, and such thatstate= sn1 in the states′ that results after performingα1 over

Iσ.

Let us defineI ′ = I , then, by Lemma C.3,~a1 is a plan forI ′σ1,n,n1
. Moreover, let us defineI ′′ as a

planning instance whose initial state iss′ but with no information about the state. By Lemma C.3,

α2 is a plan forI ′′σ2,n1,n2
.

By induction hypothesis we know that the automatonAσ1,I ′ accepts any plan forI ′σ1,n,n1
for I ′.

Analogously,Aσ2,I ′′ accepts any plan forI ′′σ2,n1,n2
.

It now follows from the definition ofTr (Eq. 5.7) and a similar argument as in the proof for

Lemma C.3 thatα1α2 is also accepted byAσ,I .

σ = (σ1|σ2): From the definition ofC we know that any plan forIσ,n,n2+1 must start with eithernoopn (n+

1) or noopn (n1+1). After that, by induction hypothesis and Lemma C.3, the only possible ac-

tion sequences are those that are plans forIσ1,n+1,n1 or Iσ2,n1+1,n2. These sequences are accepted

by their respective automataAσ1,I andAσ2,I . By its definition, the language accepted byAσ,I is the

union of the two languages of these automata, and the additionalnoopactions are filtered out.

σ = if φ thenσ1elseσ2: From the definition ofC for this case we know that any plan forIσ,n,n3 must

start with eithertest n n′ or test n n′′, with n′ = n+1 andn′′ = n1 +1, depending on whetherφ

holds in the initial state. After that, by induction hypothesis and Lemma C.3, the onlypossible

action sequences are those that are plans forIσ1,n′,n1 or Iσ2,n′′,n2. These sequences are accepted by

their respective automataAσ1,I andAσ2,I , by induction hypothesis. By its definition, the language

accepted byAσ,I is the one accepted by the former ifφ holds in the initial state, and otherwise the

language of the latter. Thenoopandtestactions are filtered out.

σ = whileφdoσ′: From the definition ofC for this case we know that any plan forIσ,n,n′ , with n′ =

n1 +1, must start with eithertest n n′′, with n′′ = n+1, if φ holds in the initial state, ortest n n′,

otherwise. In the former case, by Lemma C.3, the only action sequence possible will start with

a plan forIσ′,n′′,n1 which, by induction hypothesis, is accepted by the automatonAσ′,I , followed

by noopn1 n which, inductively, implies that it is followed by a plan forIσ,n,n′ . By definition

of Aσ,I , in the case wheres |= φ, it accepts sequences which begin with sequences accepted by

Iσ′,n′′,n1, followed by any other sequence accepted byAσ,I . Otherwise, ifφ does not hold initially,

test n n′, which is possible whenφ doesn’t hold, leads to a final state ofIσ,n,n′ and the filtered

plan is empty. AnalogouslyAσ,I accepts the empty language ifφ doesn’t hold. Thus,Aσ,I accepts

any plan forIσ,n,n′ .

APPENDIX C. PROOFS FORCHAPTER 5 178

σ = σ′∗: From the definition ofC for this case and Lemma C.2 we know that any plan forIσ,n,n2, must

either consist ofnoop(n,n2), which after filtering results in the empty plan which is trivially

accepted byAσ,I , or a plan forIσ′,n,n1 followed bynoop(n1,n) and, recursively, any other plan for

Iσ,n,n′ . In the latter case, by induction hypothesis, any such plan is accepted by the sequence of

automatonAσ′,I andAσ,I , which precisely meets the definition ofAσ,I .

�

Now for the case with program variables.

Lemma C.6 Letσ be a program, possibly withπ(x-t) constructs, I= (D,P) a planning instance, and

α a plan for planning instance Iσ = (Dσ,Pσ). Then Filter(α,D) is an execution ofσ in I.

Proof: The proof proceeds by induction over the number ofπ(x-t) constructs inσ.

If σ is program variable free (π(x-t) does not occur), then, trivially by Lemma C.5 the proposition

holds.

Assumeσ = π(x-t)σ′, and letα′ = a0a1 · · ·an such thatα′ · f reen1(x) is a plan forIσ. First, we prove

that there exists ano∈Objssuch thata0a1 · · ·an is a plan forIσ′|x/o.

Let us assume that the state trajectory generated when performinga0a1 · · ·an in Init is s0s1 · · ·sn.

Observe the actions in the plan cannot deletemap(x) or deletebound(x,o). Furthermore, ifbound(x,o)

is true in a certain state, no action will addbound(x,o′) for anyo′ different fromo. Hence, there exists

a j (0≤ j ≤ n) such that

• si 6|= map(x) andsi 6|= bound(x,o), for anyo∈Ob jsand anyi < j.

• si |= bound(x) andsi |= map(x,v) for all i s.t. j ≤ i ≤ n and somev∈Objs.

We claim thata0a1 · · ·an is a plan forIσ′|x/v. The proof for the claim is split in two parts: (a) we

prove that the sequencea0a1 · · ·an is legally executable inIσ′|x/v, then (b) we prove that it reaches the

goal.

For proving (a), note that the only difference betweenIσ andIσ′|x/v are the preconditions of some of

its operators. For each occurrence ofbound(x)→map(x,xi) (for somexi) in an operator inIσ there is

an occurrence ofxi = v in Iσ′|x/v. It is easy to see that the preconditions of the firstj−1 actions of the

sequence,a0a1 · · ·a j−2, are satisfied inIσ′|x/v. Indeed, note that becausebound(x) is not added by these

actions inIσ, by the definition ofC, it means that the subformula of the precondition of the operator of

Iσ that evaluated to true at that point is identical to that of the respective operator in Iσ′|x/v. Now let’s

focus on actiona j−1. This actionadds bound(x) andmap(x,v). By the construction ofC this means that

the precondition evaluatedbound(x)→map(x,xi) to be true in the state werea j−1 was performed (this

happens becausebound(x) is false). Because after performinga j−1, map(x,v) is added, it means that

APPENDIX C. PROOFS FORCHAPTER 5 179

the parameterxi of the operator took valuev, while satisfying all additional preconditions. On the other

hand, inIσ′|x/v, the condition to be checked by the respective operator is insteadxi = v, which we know

can be made true while satisfying additional preconditions of the operator, becausea j−1 was executable

in Iσ. For the remaining part of the sequence,a ja j+1 · · ·an the proof is analogous. When performed in

Iσ, some of these actions will evaluatebound(x)→ map(x,xi) to true, with the side effect of making

the parameterxi equal tov. On the other hand, inIσ′|x/v, the same effect is achieved but by the explicit

xi = v in the precondition. Hence, the precondition inIσ′|x/v will also be satisfied.

The proof for (b) is straightforward. Since the goal does not mention any bookkeeping predicates,

the sequenceα′ produces the same state inIσ′|x/v asα′ · f reen1(x) in Iσ.

The proof now follows from Lemma C.5. �

C.3.2 Completeness Part

The statement we are now proving follows.
⇐ (Completeness):

Given a planα for I under the control ofσ, show that there exists a planα′ for Iσ, such that

α= Filter(α′,D).
The proof again proceeds by induction over the structure of the program σ, and again we first show

the case for programs withoutπ(x-t) constructs, i.e. without program variables.

Lemma C.7 Letσ be a program without theπ(x-t) construct, I= (D,P) a planning instance, andα a

plan for I under the control ofσ, then there exists a planα′ for Iσ,n,n′ such thatα= Filter(α′,D).

Proof: We will again refer to the compilation resultC(σ,n,E) = (L,L′,n′) used to constructIσ,n,n′ , and

occasionally also to variables occurring in the particular compilation case considered in the induction

proof. Again, since there are noπ(x-t) constructs, we can assume that theE argument ofC is always

empty and can ignore anyboundandmappreconditions and effects upon these predicates for now. The

program does not contain any program variables.

By assumption we know thatAσ,I accepts the planα. The induction over the structure ofσ is as

follows:

σ = nil: Aσ,I only accepts the empty language, since there are no transitions defined for thenil program,

but [nil,s] is an accepting state for any statesoverI . Thusα= ε. Since both initial an goal state of

Iσ,n,n′ only requirestate= sn on top of the original initial and goal state ofI , andn′ = n,α′ = ε=α

is also a plan forIσ,n,n′ andα= Filter(α′,D).

σ = a,a∈ A: In this caseα= a. Since in the compilationE is empty, the preconditions of the operator

corresponding toa in Iσ,n,n′ are the same as those fora in I , except thatstate= sn has to hold.

This condition already true in the initial state ofIσ,n,n′ . Also, a goal state ofIσ,n,n′ is reached

APPENDIX C. PROOFS FORCHAPTER 5 180

after executinga in Iσ,n,n′ , since the new operator, by definition ofC hasstate= sn+1 as an effect,

which, by construction, is the only additional requirement in the goal state ofIσ,n,n′ compared to

I . Thusα is a plan forIσ,n,n′ , and triviallyα= Filter(α,D).

σ = φ?: Again, the plan has to be the empty sequence, since this is the only one accepted byAσ,I . Also,

by definition ofAσ,I , the initial stateInit of I satisfiesφ. Let α′ = test n n′. This is a plan for

Iσ,n,n′ , because by its construction in the definition ofCtestits precondition isstate= sn∧φ. This

is satisfied since the initial state ofIσ,n,n′ is like that ofI plus the assertion thatstate= sn. Sinceφ

cannot mention the new special fluentstateits truth value does not differ between the initial state

of Iσ,n,n′ and that ofI itself. Further,test n n′ setsstate= sn′ as its only effect (E is empty), thus

satisfying the goal ofIσ,n,n′ . Finally,α= ε= Filter(test n n′,D).

These are the base cases. Now for the induction steps:

σ = (σ1;σ2): We start this case by stating an intermediate result.

Claim: If α is accpeted byAσ,I , thenα can be decomposed into two partsα1 andα2, such that

α = α1α2, and such that[nil ;σ2,s′] ∈ Tr([σ1;σ2, Init],α1), for somes′ and such that[nil ,s′′] ∈

Tr([σ2,s′],α2). Intuitively, this means that the automaton’s state[nil ;σ2,s′] is part of an accepting

path of states forα. Proof: Straightforward (but lengthy) by induction on the structure ofσ1.

Let us assume thatα = α1α2, for α1 andα2 as defined above. Furthermore let us defineI1 as

an instance just likeI except that its goal is to get to states′ (as defined above). Moreover, we

defineI2 to be just likeI but such that its initial state iss′. Observe now thatα1 andα2 are clearly

accepted byAσ1,I1 andAσ2,I2. Indeed, this follows straightforwardly from the claim and the fact

that the transition function forAσ1,I1 andAσ2,I2 are subsets of the transition function forAσ,I .

By induction hypothesis, there are plansα′
1,α

′
2 for I1

σ1,n1,n′1
andI2

σ2,n2,n′2
for any two integersn1,n2,

such thatα1 = Filter(α′
1,D) andα2 = Filter(α′

2,D). Choosingn2 = n′1 as defined by the compi-

lation ofσ1 with parametern = n1, we get that the initial state ofI2
σ2,n2,n′2

is a goal state ofI1
σ1,n1,n′1

and thusα′ = α′
1 ·α

′
2 is a plan forIσ,n,n′ . Since the concatenation does not introduce any new

actions we getα= Filter(α′,D).

σ = (σ1|σ2): By definition,Aσ,I accepts the union of the sets of plans forσ1 andσ2, i.e. α is accepted

by eitherAσ1,I or Aσ2,I .

Assume it is a plan under the control ofσ1 (i.e., it is accepted byAσ1,I). By induction hy-

pothesis there is a planα1 for Iσ1,n1,n′1
for any integern1, such thatα = Filter(α′

1,D). Then

α′ = noopn (n+1) ·α′
1 ·noopn1 (n2+1) is a plan forIσ,n,n2+1, wheren2 is defined in the compi-

lation, and since thenoopactions are filtered againα = Filter(α′,D). The case whenα is a plan

under the control ofσ2 is analogous with the planα′ = noopn (n1+1) ·α′
2 · noopn2 (n2+1),

n1,n2 are defined by the compilation.

APPENDIX C. PROOFS FORCHAPTER 5 181

σ = if φ thenσ1elseσ2: Depending on whether or notInit |= φ, α is a plan under the control ofσ1 or

σ2, i.e. it is either accepted byAσ1,I or Aσ2,I . AssumeInit |= φ. Then,α1 is accepted byAσ1,I , and

by induction hypothesis, there is a planα′
1 for Iσ1,n1,n′1

for any integern1 s.t. α = Filter(α′
1,D).

Thenα′ = test n (n+1) ·α′
1 ·noopn1 n3 is a plan forIσ,n,n′ and by definition ofFilter we have

α = Filter(α′,D). Analogously whenInit 6|= φ, α′ = test n (n1+1) ·α′
2 ·noopn2 n3 is a plan for

Iσ,n,n′ and againα= Filter(α′,D).

σ = whileφdoσ′: The induction step for this case is itself by induction. We refer to this induction as

“inner induction”, and to the other as “outer induction”. The inner inductionis on the length of

the action sequenceα.

As our inner base case, assume thatInit 6|= φ, thenα = ε (|α| = 0). Thentest n n′ is a plan for

Iσ,n,n′ for any integern, because by construction the precondition for this test action is¬φ∧state=

sn, and its effect assertsstate= sn′ . Also ε= Filter(test n n′,D). This concludes the proof for the

inner base case.

Now, as our inner induction hypothesis, we assume the theorem holds for all sequences of actions

whose length is strictly less thatk. Moreover, assume|α|= k. In this case, we have thatInit |= φ,

and thenα = ασ′ ·α′′ is a plan forIσ,n,n′ , whereασ′ is a sequence accepted byAσ′,I , andα′′ is

accepted byAσ,I ′ , whereI ′ is like I except that the initial state is the state reached after executing

ασ′ in Init. Then, by outer induction hypothesis there is a planα′
σ′ for Iσ′,n3,n′3

for any integer

n3, s.t. ασ′ = Filter(α′
σ′ ,D), and by inner induction hypothesis there is a planα′′′ for I ′σ,n2,n′2

for any integern2 s.t. α′′ = Filter(α′′′,D). Choosingn2 = n andn3 = n+ 1 we get thatα′ =

test n (n+1) ·α′
σ′ ·noopn1 n ·α′′′ is a plan forIσ,n,n′ , wheren1 is defined by the compilation for

σ. Finally, again,α= Filter(α′,D).

σ = σ′∗: We again require an inner induction on the length ofα. Assume thatα= ε, thennoopn n′ is

a plan forIσ,n,n′ and triviallyα= Filter(noopn n′,D). This concludes the proof for the base case

of the inner induction. Assume now for the inner induction case that the theorem holds for all

sequences of length less thank, where|α|= k. In this case,α = α1 ·α2 whereα1 is accepted by

Aσ′,I andα2 is accepted byAσ,I ′ whereI ′ is like I except that the initial state is the state reached

after executingασ′ in Init. Then, by outer induction hypothesis there is a planα′
1 for Iσ′,n3,n′3

for

any integern3 s.t. α1 = Filter(α′
1,D), and by inner induction hypothesis there is a planα′

2 for

I ′σ,n2,n′2
for any integern2 s.t. α2 = Filter(α′

2,D). Choosing bothn3 = n andn2 = n we get that

α′ = α′
1 ·noopn1 n·α′

2 is a plan forIσ,n,n′ , wheren1 is defined by the compilation. Again, by the

two induction hypotheses and the fact thatnoopn1 n is filtered out,α= Filter(α′,D).

�

Now for the case with program variables.

APPENDIX C. PROOFS FORCHAPTER 5 182

Lemma C.8 Letσ be a program over a planning instance I= (D,P) (possibly containingπ(x-t) con-

structs), andα a plan for I under the control ofσ, then there exists a planα′ for Iσ,n,n′ such that

α= Filter(α′,D).

Proof: The proof proceeds by induction over the number ofπ(x-t) constructs occurring inσ. The base

case, where this number is zero, is given by Lemma C.7.

Otherwise, assumeσ = π(x-t,σ′) for some arbitrary other programσ′ over I . By the definition of

Aσ,I , α is accepted by some automatonAσ|x/o,I where inσ all occurrences ofx are replaced by some (but

in all occurrences the same)o such that(o, t) ∈ τD∪ τP. We show that (i)α′ = α · f ree n1(x) is a plan

for Iσ,n,n′ for any integern, wheren1 is defined in the compilation ofσ usingn as the integer parameter.

We further need to show that (ii) in a states′ reached after performingα′ in any states that satisfies

¬bound(x)∧¬(∃y).map(x,y), we again gets′ |= ¬bound(x)∧¬(∃y).map(x,y). Obviously, the initial

stateInit has this property for all program variables occurring inσ.

(i) By assumptionα is accepted byAσ|x/o,I for someo, i.e. after replacing all occurrences ofx in σ

with o, and is a plan forI . By induction hypothesis and Lemma C.7 there exists a planα′
1 for Iσ|x/o,n,n′

for any integern such thatα = Filter(α′
1,D). We show that this is also a plan forIσ,n,n′ after minor

modifications to the occurring test actions, and which in particular do not result in a different result

when applyingFilter. Compileσ as defined usingC(σ,n, []) = (L,L′,n′). For any test action occurring

in α′
1 whose corresponding operator definition inL hasx as a formal parameter, addo as an additional

argument at the position wherex appears in the operator definition, creating a new sequenceα′
2. We

show that this sequence is a plan forIσ,n,n′ : Let a1 be the first action inα′
2 whose corresponding operator

definition inL hasx as a formal parameter. The corresponding actual parameter iso. Then, since in the

initial states of Iσ,n,n′ we have thats |= ¬bound(x)∧¬(∃y).map(x,y), s satisfies the preconditions of

a1, because the only preconditions on top of those defined inIσ|x/o,n,n′ arebound(x)→map(x,o). The

action will further have as an effectbound(x) map(x,o). Hence, all following actionsak in α′
2 whose

corresponding operator inL hasx as a formal parameter, will also be possible and have the same effects

as in Iσ|x/o,n,n′ (by construction ofσ|x/o), because also they haveo as actual parameter, and sinceα′
2

cannot mention any actionf ree ni(x), for any i, we have for all statess′′ visited later on during the

execution ofα′
2 that s′′ |= bound(x)∧map(x,o) which entails the preconditions ofak in Iσ,n,n′ . Since

further only the truth value ofboundandmapare changed compared to the effects inIσ|x/o,n,n′ , the goal,

which by construction doesn’t mention either of these predicates, is reached at the end. Hence,α′
2 is a

plan forIσ,n,n′ . Alsoα= Filter(α′
2 · f ree n1(x),mD).

(ii) Clearly, since for anyni , f ree ni(x) has¬bound(x)∧ (∀y).¬map(x,y) as an effect, any states′

reached after executingα′
2 · f ree n1(x) in any other state satisfies this. �

Theorem 5.1 then follows directly from Lemmata C.6 and C.8 forn = 0 andnf inal as defined by the

compilationC(σ,0, []) = (L,L′,nf inal).

APPENDIX C. PROOFS FORCHAPTER 5 183

C.4 Succinctness (Theorem 5.2)

Proof:Theorem 5.2

The compilation of each programming construct, as defined byC, introduces a constant number of

new operators intoIσ or extends the definition of one of the operators ofI with a constant number

of additional preconditions and effects. In all cases, the size of the newpreconditions and effects is

bounded by a constant factor in the number of elements ofE. From the definition ofC for π it follows

that the maximal length ofE occurring during the compilation ofσ is exactly the number of nestedπ

constructs,k. Hence, if the program has sizen, then there are no more thann programming constructs.

Since also each construct is considered exactly once byC, there can be no more thann operators inIσ,

each of sizeO(k+ p), wherep is the size of the largest operator in the original instance. Hence, overall

Iσ has sizeO(k ·n). �

Appendix D

Proofs for Chapter 6

D.1 Proof for Lemma 6.2

Before proving this lemma, we prove an intermediate result.

Lemma D.1 LetD be a theory of action containing the reflexivity axiom for K. Then,

D |= (∀s).KWhether(φ,s)⊃ {(φ[s]⊃ Knows(φ,s))∧ (¬φ[s]⊃ Knows(¬φ,s))}

Proof: LetM |= D. Now, assumeM |= φ[s]. If M |= KWhether(φ,s), thenM |= Knows(φ,s) or

M |= Knows(¬φ,s). However,M 6|= Knows(¬φ,s) since otherwise, by reflexivity we would have

M |= ¬φ[s] which would be a contradiction. Hence it is the case thatM |= Knows(φ,s).

On the other hand, if we assumeM |= ¬φ[s] we conclude by analogy thatM |= Knows(¬φ,s).

This implies that any model ofD satisfies the formula of the lemma, and concludes the proof. �

Proof (Lemma 6.2) : For the (⇐) direction, observe that ifM is a model ofD andD contains the re-

flexivity axiom,M|= Knows(φ,s) impliesM|= φ[s], for anys. The rest of the proof is straightforward

since in all cases of programs, the formula forDoK clearly implies that forDo.

For the (⇒) direction, the proof proceeds by induction in the structure ofδ. We use the definition of

ssf, plus Lemma D.1 to show in all cases the formula that corresponds toDo implies the formula that

corresponds toDoK . �

D.2 Proof for Theorem 6.3

We first prove the following Lemma.

184

APPENDIX D. PROOFS FORCHAPTER 6 185

Lemma D.2 LetD be a theory of action such thatKinit contains the reflexivity axiom. Let C be a set of

Golog deterministic tree programs. Then, for all fluents F in the language ofD that are not K, and for

everyδ ∈C such thatD |= ssf(δ,s), theoryComp[D,C] entails

DoK(δ,s,s′)⊃ (F(~x,s′)≡ F(~x,do(primδ,s)))

Proof: LetD′ = Comp[D,C]. Becauseφ[s] is regressable insall its atoms can be reduced in to formulae

that only refer to either situation-independent predicates or fluent predicates. Then, it suffices to prove

that

1. D′ |= DoK(δ,s,s′)∧F(~x,s′)⊃ F(~x,do(primδ,s))), and

2. D′ |= DoK(δ,s,s′)∧F(~x,do(primδ,s))⊃ F(~x,s′).

Proof for 1: SupposeM is a model ofD′ such thatM |= (DoK(δ,s,S′)∧F(~x,S′)), for some situation

denoted byS′. From Proposition 6.3 and Lemma 6.2, we have thatM |= Do−(δ,s,S′)∧F(~x,S′), and

thatM |= µi(s)∧F(~x,S′), for someµi of Lemma 6.1 . Since regression is correct andM also satisfies

axiom (6.37), it follows immediately thatM |= F(~x,do(primδ,s)).

Proof for 2: AssumeM is a model forD′ such thatM |= (DoK(δ,s,s′)∧F(~x,do(primδ,s))), for any

situationss, s′. By the successor state axiom ofF , and correctness of regression, we conclude that

M |= F(~x,do(primδ,s)) iff

M |=(Do−(δ,s,S1)∧F(~x,S1))∨

F(~x,s)∧ (∀s2)(Do−(δ,s,s2)⊃ F(~x,s2)),

for some situationS1. Sinceδ is deterministic and given thatM|= DoK(δ,s,S′), by Proposition 6.3 and

Lemma 6.2, we have thatM|= S1 = s′. The assertion above reduces toM|= F(~x,s′)∨F(~x,s)∧F(~x,s′),

from which we conclude thatM |= F(~x,s′). �

Proof (Theorem 6.3) :The proof of the theorem is now straightforward by using Lemma D.2. �

D.3 Proof for Theorem 6.4

First we need the following result.

Lemma D.3 LetD be a theory of action such thatKinit contains the reflexivity axiom. Furthermore, let

δ be a Golog deterministic tree program.

D |= K(s′,s)∧K(do([a1, . . . ,an],s
′),do([a1, . . . ,an],s))⊃

{DoK(δ,s,do([a1, . . . ,an],s))⊃ Do(δ,s′,do([a1, . . . ,an],s
′))}

APPENDIX D. PROOFS FORCHAPTER 6 186

Proof: We proceed by induction in the structure ofδ. We first observe that from the successor state

axiom forK

D |=
n

∧

i=0

K(do([a1, . . . ,ai],s
′),do([a1, . . . ,ai],s))

Now letM be a model ofD. Observe that for any situation-suppressed formulaφ if

M |= Knows(φ,do([a1, . . . ,ai],s))

for somei ≤ n thenM |= φ[do([a1, . . . ,ai],s′)]. The rest of the proof is straightforward. �

LetD′ = Comp[D,C]. It suffices to prove the theorem for any arbitrary situation-suppressed fluent

symbolF different fromK. By expanding the definition ofKnows, it suffices to prove

D′ |= (∀~x,s,s1).DoK(δ,s,s1)⊃

{(∃s′′)(K(s′′,s1)∧F(~x)[s′′])≡

(∃s′′)(K(s′′,do(primδ,s))∧F(~x)[s′′])},

Proof: (⇒) We prove that

D′ |= (∀~x,s,s1).DoK(δ,s,s1)⊃

{(∃s′′)(K(s′′,s1)∧F(~x)[s′′])⊃

(∃s′′)(K(s′′,do(primδ,s))∧F(~x)[s′′])},

SupposeM |=D′ and that for some situation denoted byS′′,

M |= DoK(δ,s,s1)∧K(S′′,s1)∧F(~x)[S′′],

Notice thatM |= s⊑ s1, and sinceM |= K(S′′,s1), there exists situation denoted byS′′′ such that

M |= S′′′ ⊑ S′′ and such that

M |= DoK(δ,s,s1)∧K(S′′′,s)∧K(S′′,s1)∧F(~x)[S′′]. (D.1)

Now observe thatM|= Do−(δ,s,s1) (from Lem. 6.2 and Prop. 6.3). By Lemma 6.1, there is a formula

µi such that

M |= µi(s)∧s1 = do([a1, . . . ,an],s)

Now, we use Proposition 6.4 to conclude that:

M |= µi(s)∧
n

∧

i=1

SensedCond(ai ,do([a1, . . . ,ai−1],s),do([a1, . . . ,ai−1],s
′)

SinceM satisfies the SSA forK, and (D.1), we obtain that:

M |= K(do(primδ,S
′′′),do(primδ,s)), (D.2)

APPENDIX D. PROOFS FORCHAPTER 6 187

Finally, from Lemma D.3 we know that

M |= Do(primδ,S
′′′,do([a1, . . . ,an],S

′′′)),

and thus we can use part of the Proof for Theorem 6.3 to argue that also:

M |= F(~x,do(primδ,S
′′′)). (D.3)

(⇒) follows from Eqs. D.2 and D.3.

(⇐) Suppose that for some situationS′′,

M |= DoK(δ,s,s1)∧K(S′′,do(primδ,s))∧F(~x)[S′′]

From the successor state axiom ofK, for someS′′′,

M |= DoK(δ,s,s1)∧K(do(primδ,S
′′′),do(primδ,s))∧K(S′′′,s)∧F(~x)[do(primδ,S

′′′)].

SinceM satisfies the SSA forK, we have that

M |= µi(s)∧
n

∧

i=1

SensedCond(Ai ,do([A1, . . . ,Ai−1],s),do([A1, . . . ,Ai−1],s))

For someµi of Lemma 6.1, and some sequence of actionsA1, . . . ,An.

In addition, since the program is deterministic, we conclude thats1 = do([A1, . . . ,Ai−1],s). Now, by

using Proposition 6.4 and the fact thatM |= K(S′′′,s) we obtain:

M |= K(do([A1, . . . ,Ai−1],S
′′′),do([A1, . . . ,Ai−1],s)) (D.4)

Now, the proof follows with an argument similar to that of Theorem 6.3. SinceM|= F(~x)[do(primδ,S
′′′)],

then

M |= Do−(δ,S′′′,S1)∧F(~x,S1)

However, since the program is deterministic, by Lemma we have that:S1 = do([A1, . . . ,Ai−1],S′′′), and

thus,

M |= F(~x,do([A1, . . . ,Ai−1],S
′′′)) (D.5)

(⇐) follows from Eqs. D.4 and D.5. �

Appendix E

Golog DCK for Experiments in Chapter 5

This section shows the Golog code utilized for generating the experimental results in Section 5.6. The

code is written in Prolog syntax. Note that quantifiers and thepi construct receivetypedvariables (the

type follows the variable in the declaration). Finally,final pred(~c) is a new fact, added to the initial

state at pre-processing time wheneverpred(~c) is part of the goal.

E.1 Golog Control for The Trucks Domain

proc(trucks_control04,

star(

pi(current_location,location,

[

% get the current location

?(at(truck1,current_location)),

% unload everything

while(exists(area,truckarea,

exists(pack,package,

in(pack,truck1,area))),

pi(area,truckarea,

pi(pack,package,

[

?(in(pack,truck1,area)),

unload(pack,truck1,area,current_location)

])

)

),

% deliver any thing you want

while(exists(pack, package,

exists(loc, location,

and(at(pack,loc),

188

APPENDIX E. GOLOG DCK FOR EXPERIMENTS IN CHAPTER 5 189

final_location(pack, loc)))),

pi(pack,package,

pi(loc,location,

pi(t1,time,

pi(t2,time,

deliver(pack,loc,t1,t2)))))

),

% while there’s a package here whose destination is

% elsewhere and there’s space in the truck,

% load the truck with such a package

while(and(exists(area,truckarea, free_(area,truck1)),

exists(pack, package,

and(at(pack,current_location),

exists(loc, location,

and(not(loc=current_location),

final_location(pack, loc)))))),

pi(pack,package,

pi(loc, location,

[

?(and(not(loc=current_location),

and(

at(pack,current_location),

final_location(pack, loc)))),

pi(area,truckarea,

load(pack,truck1,area,current_location))

]

)

)

),

% if there is a package in the truck

if(exists(pack,package,

exists(area,truckarea,

in(pack,truck1,area))),

% then drive to its destination

pi(pack,package,

pi(area,truckarea,

[

?(in(pack,truck1,area)),

pi(newloc,location,

[

?(final_location(pack,newloc)),

pi(t1,time,

pi(t2,time,

drive(truck1,current_location,newloc,t1,t2)))

])

]

APPENDIX E. GOLOG DCK FOR EXPERIMENTS IN CHAPTER 5 190

)

),

% else are there any packages not at its final destination?

if(exists(loc1,location,

exists(pack,package,

exists(loc2,location,

and(at(pack,loc2),

and(final_location(pack,loc1),

not(loc1=loc2)))))),

% then drive where the truck is needed

pi(loc1,location,

pi(pack,package,

pi(loc2,location,

[

?(and(at(pack,loc2),

and(final_location(pack,loc1),

not(loc1=loc2)))),

pi(t1,time,

pi(t2,time,

drive(truck1,current_location,loc2,t1,t2)))

]

)

)

),

% else stay here

[])

)

]

)

)

).

E.2 Golog Control for The Storage Domain

proc(storage_control03,

star(

pi(cr,crate,

pi(cs,storearea,

pi(d,depot,

[

% bind cr with a crate that should be (and is not at) depot d

?(and(finally_in(cr,d),not(in(cr,d)))),

% bind cs with a store area inside some container

?(exists(cont,container,

and(on(cr,cs),in(cs,cont)))),

% move to (assume you are in a depot storage area)

APPENDIX E. GOLOG DCK FOR EXPERIMENTS IN CHAPTER 5 191

if(not(exists(tr,transitarea,at(hoist0,tr))),

[

while(not(exists(cloc,storearea,

and(at(hoist0,cloc),

connected(cloc,loadarea)))),

pi(a1,storearea,

pi(a2,storearea,

move(hoist0,a1,a2)))),

% go out to the load area (if necessary)

pi(a1,storearea,go_out(hoist0,a1,loadarea))

],

[]),

pi(a,area,

pi(p,place,

lift(hoist0,cr,cs,a,p))), % lift the crate

pi(entry_point,storearea,

[

?(and(connected(loadarea,entry_point),in(entry_point,d))),

if(and(clear(entry_point),

exists(free_store,storearea,

and(connected(entry_point,free_store),

clear(free_store)))),

[

go_in(hoist0,loadarea,entry_point),

star(pi(a1,storearea,

pi(a2,storearea,

move(hoist0,a1,a2))))

],

% get into depot d

[]

)

]),

pi(sa,storearea,

pi(a,area,

drop(hoist0,cr,sa,a,d)))

]

))))).

E.3 Golog Control for The Rovers Domain

proc(rovers_control01,

[

while(exists(w,waypoint,and(finally_communicated_soil_data(w),

not(communicated_soil_data(w)))),

pi(soil_waypoint,waypoint,

pi(r,rover,

APPENDIX E. GOLOG DCK FOR EXPERIMENTS IN CHAPTER 5 192

[

?(and(finally_communicated_soil_data(soil_waypoint),

not(communicated_soil_data(soil_waypoint)))),

?(equipped_for_soil_analysis(r)),

% navigate until we get to the waypoint were the soil is

while(not(at(r,soil_waypoint)),

pi(w1,waypoint,

pi(w2,waypoint,

navigate(r,w1,w2)))),

pi(s,store, % take a soil sample

[sample_soil(r,s,soil_waypoint),

star(pi(w1,waypoint, % navigate for a while

pi(w2,waypoint,

navigate(r,w1,w2)))),

pi(w1,waypoint, % communicate the data

pi(w2,waypoint,

pi(l,lander,

communicate_soil_data(r,l,soil_waypoint,w1,w2)))),

drop(r,s) % drop the contents of the store

]

)

]

)

)

),

while(exists(w,waypoint,and(finally_communicated_rock_data(w),

not(communicated_rock_data(w)))),

pi(rock_waypoint,waypoint,

pi(r,rover,

[

?(and(finally_communicated_rock_data(rock_waypoint),

not(communicated_rock_data(rock_waypoint)))),

?(equipped_for_rock_analysis(r)),

% navigate until we get to the waypoint were the rock is

while(not(at(r,rock_waypoint)),

pi(w1,waypoint,

pi(w2,waypoint,

navigate(r,w1,w2)))),

pi(s,store, % take a rock sample

[sample_rock(r,s,rock_waypoint),

star(pi(w1,waypoint, % navigate for a while

pi(w2,waypoint,

navigate(r,w1,w2)))),

APPENDIX E. GOLOG DCK FOR EXPERIMENTS IN CHAPTER 5 193

pi(w1,waypoint, % communicate the data

pi(w2,waypoint,

pi(l,lander,

communicate_rock_data(r,l,rock_waypoint,w1,w2)))),

drop(r,s) % drop the contents of the store

]

)

]

)

)

),

while(exists(resolution,mode,

exists(obj,objective,

and(finally_communicated_image_data(obj,resolution),

not(communicated_image_data(obj,resolution))))),

pi(target_objective,objective,

pi(target_resolution,mode,

pi(r,rover,

pi(cam,camera,

[% bind target_object and target_resolution

?(and(finally_communicated_image_data(target_objective,

target_resolution),

not(communicated_image_data(target_objective,

target_resolution)))),

?(and(equipped_for_imaging(r),

and(on_board(cam,r),

supports(cam,target_resolution)))),

% move rover to the calibration target

while(not(exists(o,objective,

exists(w,waypoint,

and(at(r,w),

and(visible_from(o,w),

calibration_target(cam,o)))))),

pi(w1,waypoint,

pi(w2,waypoint,

navigate(r,w1,w2)))),

pi(obj,objective,

pi(w,waypoint,

calibrate(r,cam,obj,w))),

% move rover to a location where the objective is visible

while(not(exists(w,waypoint,

and(at(r,w),

visible_from(target_objective,w)))),

pi(w1,waypoint,

pi(w2,waypoint,

navigate(r,w1,w2)))),

APPENDIX E. GOLOG DCK FOR EXPERIMENTS IN CHAPTER 5 194

pi(wp,waypoint, % take the image

take_image(r,wp,target_objective,cam,target_resolution)),

star(pi(w1,waypoint, % navigate for a while

pi(w2,waypoint,

navigate(r,w1,w2)))),

pi(l,lander, % communicate image data

pi(w1,waypoint,

pi(w2,waypoint,

communicate_image_data(r,l,target_objective,

target_resolution,w1,w2))))

]

)

)

)

)

)

]

).

	Introduction
	Recent Advances in Classical Planning
	Classical Planning Is Not Enough: An Example
	The Problems We Address
	Approach
	Outline and Contributions

	Planning: Languages and Algorithms
	Classical Planning
	STRIPS
	ADL for Classical Planning
	PDDL
	Some Complexity Results

	Planning as Heuristic Search
	FF

	Heuristic Planning for Temporally Extended Goals
	Introduction
	Contributions of this Chapter

	Preliminaries
	f-FOLTL: Finite LTL with FO Quantifiers
	Planning Instances
	Causal Rules for Arbitrary Formulae

	From f-FOLTL to Parameterized NFA
	Parameterized Finite-State Automata
	The algorithm

	Compiling PNFAs into a Planning Instance
	Translating PNFA to Causal Rules
	Translation to Derived Predicates (axioms)
	Avoiding Blowups: Multiple Goals and Formula Splitting
	Search Space Pruning by Progression

	Implementation and Experiments
	Axioms versus Causal Rules
	Comparison to State of the Art

	Discussion
	Why a Reformulation Approach?
	Why Not LTL and Büchi Automata?

	Summary and Related Work

	Planning with Temporally Extended Preferences
	Introduction
	Contributions of this Chapter
	Outline

	Background
	Relaxed Plans for Function-Free ADL Domains
	Preference-based Planning
	Brief Description of PDDL3

	Preprocessing PDDL3
	Temporally Extended Preferences and Constraints
	Precondition Preferences
	Simple Preferences
	Metric Function

	Planning with Preferences via Heuristic Search
	Heuristics Functions for Planning with Preferences
	The Planning Algorithm
	Properties of the Algorithm

	Implementation and Evaluation
	The Effect of Iterative Pruning
	Performance of Heuristics
	Comparison to Other Approaches

	Discussion
	Related Work
	Other Preference Languages
	IPC-5 competitors

	Conclusions and Future Research

	Golog Domain Control Knowledge in State-of-the-Art Planners
	Introduction
	Contributions
	Outline

	Background
	A Subset of PDDL 2.1

	A Language for Procedural Control
	Syntax
	Semantics

	Compiling Control into the Action Theory
	Exploiting DCK in State-of-the-Art Heuristic Planners
	Direct Use of Translation (Simple)
	Modified Program Structure (H-ops)
	A Program-Unaware Approach (Basic)

	Implementation and Experiments
	Summary and Related Work

	Planning with Programs that Sense
	Introduction
	Contributions and Outline

	Preliminaries
	The Situation Calculus
	Basic Action Theories
	Representing Knowledge
	Regression
	Golog's Syntax and Semantics
	Do-: A Poss-less Version of Do

	Semantics for Executable Golog Programs
	Planning with Programs that Sense
	Theory Compilation

	From Theory to Practice
	Belief-State-Based Planners
	Extending pks

	Practical Relevance
	Web Service Composition
	Experiments

	Summary and discussion

	Conclusions, Related Work, and Future Work
	Conclusions
	Problems and Contributions

	Other Related Work
	Future Work

	Glossary of Acronyms and Abbreviations
	Bibliography
	Proofs for Chapter 3
	Proof for Proposition 3.1
	Proof for Theorem 3.1
	Proof for Proposition 3.4

	Proofs for Chapter 4
	Proof for Proposition 4.1
	Proof for Theorem 4.2

	Proofs for Chapter 5
	Proof for Proposition 5.1
	Proof for Proposition 5.4
	Correctness (Theorem 5.1)
	Soundness Part
	Completeness Part

	Succinctness (Theorem 5.2)

	Proofs for Chapter 6
	Proof for Lemma 6.2
	Proof for Theorem 6.3
	Proof for Theorem 6.4

	Golog DCK for Experiments in Chapter 5
	Golog Control for The Trucks Domain
	Golog Control for The Storage Domain
	Golog Control for The Rovers Domain

