EFFECTIVE SEARCH TECHNIQUES FORNON-CLASSICAL PLANNING VIA
REFORMULATION

by

Jorge A. Baier

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

Copyright(© 2010 by Jorge A. Baier

Abstract

Effective Search Techniques for Non-Classical Planning via Reflation

Jorge A. Baier
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto
2010

Automated planning is a branch of Al that addresses the problem ofa@mern course of action to
achieve a specified objective, given an initial state of the world. It is ea #rat is central to the
development of intelligent agents and autonomous robots. In the lastajeag#gdmated planning has
seen significant progress in terms of scalability, much of it achieved byebhelapment of heuristic
search approaches. Many of these advances, are only immediatelyabfmlic so-calledtlassical
planning tasks. However, there are compelling applications of planning that arelassical. An
example is the problem afeb service compositioin which the objective is to automatically compose
web artifacts to achieve the objective of a human user. In doing so, hottenhard goals but also the
preference®f the user—which are usually not considered in the classical model—rausirisidered.

In this thesis we show that many of the most successful advances in algdaiting can be lever-
aged for solving compellingion-classicalproblems. In particular, we focus on the following non-
classical planning problems: planning with temporally extended goals; pamith rich, temporally
extended preferences; planning with procedural control, and plamwnith procedural programs that
can sense the environment. We show that to efficiently solve these probleraanause a common
approachreformulation For each of these planning tasks, we propose a reformulation algoriiim th
generates another, arguably simpler instance. Then, if necessaagapeexisting techniques to make
the reformulated instance solvable efficiently. In particular, we show thiét the problems of plan-
ning with temporally extended goals and with procedural control can beaddpto classical planning.
Planning with rich user preferences, even after reformulation, cdreotapped into classical planning
and thus we develop specialized heuristics, based on existing heurisgiefhheowith a branch-and-
bound algorithm. Finally, for the problem of planning with programs thateseme show that under

certain conditions programs can be reduced to simple operators, enablingetbf a variety of existing

planners. In all cases, we show experimentally that the reformulateteprsizan be solved effectively

by either existing planners or by our adapted planners, outperformawippis approaches.

Dedication

To Daniela, Valentina, and Benjamin.

Acknowledgements

This work would have not been possible without my supervisor Sheila MtillraSheila, with
her knowledgeable and impressively broad view of Al, provided me witbrestant stream of ideas,
inspiration, and mental stimulation. | feel very grateful for her extremetijadted support to my work,
and for the significant effort she put on maximizing the span of my reseand my visibility as a
member of the Al community. There are many more reasons beyond academamitaStheila. Her
support usually exceeded the limits of the academic life and she constantynitead me optimism
and good spirit. Without any doubt, working with her was a fantastic expegie

| thank also the other members of my thesis committee: Fahiem Bacchus, Heetmgle, and
Subbarao (Rao) Kambhampati. Fahiem enriched significantly my formatiomezearcher as we had
the chance to work together in some of the work presented in this thesis. hiowenuch of the
success we obtained in the 2006 International Planning Competition, fon Wwaicollaborated not only
with ideas and experience but with several lines of C code. Hector padndadremendous amount of
feedback and help on parts of the work included in this thesis. Rao prbwvigmrtant feedback, helping
to present my work in a broader manner.

| thank my colleague friend Christian Fritz, with whom | coauthored a coufpfepers during my
studies. Working with Christian was a great pleasure. | also thank hinmésirg plenty of discussions
on other topics related to my research.

During my studies | had the opportunity to interact with a number students arfielspors from
other institutions. | want to give a special thanks tedtbr Geffner, who was my mentor in ICAPS-06
and provided me with questions that | still cannot answer well, and that @gspome of my thesis and
current research.

| thank my friends from the KR group: Shirin Sohrabi, Christian Fritz, ErsuHChristian Muise,
Toby Hu, Letao Wang, Horst Samulowitz, and Jessica Davis. And als& thgririends Marcelo Are-
nas, Pablo Barcé| Arnold Binas, Andes Lagar Cavilla, Claudia Gde; Jocelyn Simmonds, Sebasti
Sardiia, Leo Trivilo, Daisy Guerrero (and someone else that | just forgot). Without tbhppast this
experience would have been a lot harder. A hug to each one of them!

| thank the unconditional support from my parents and in-laws, who madstamyin Toronto a lot
easier, and thus contributed indirectly to the success in my studies.

Last, but far from least, | thank my wife Daniela, for her love, patienod,sacrifice. | thank her for
her continuous support even when things where not easy. Thanks dangiter Valentina, for filling
me with love by the end of my studies. Finally, thanks to my son Benjamin, for makingprhappy,
and for not being born the day of my defense ;). | love them so much!

Contents

1 Introduction 1
‘1.1 Recent Advancesin Classical Planning
‘1.2 Classical Planning Is Not Enough: AnExample 3
‘1.3 The Problems We Address e 5
1.4 Approac% ... 5
‘1.5 Outline and Contributions e 7
2 Planning: Languages and Algorithms 11
‘2.1 Classical PIanniang 11
2.1.1 STRIPS e
‘2.1.2 ADL for ClassicalPlanning
.......................................
‘2.1.4 Some Complexity Results
‘2.2 Planning as Heuristic Search 16
‘2.2.1 FF . e e
3 Heuristic Planning for Temporally Extended Goals 20
‘3.1 Introduction 20
‘3.1.1 Contributions of this Chapker
‘3.2 Preliminaries
‘3.2.1 f-FOLTL: Finite LTL with FO Quantifiers
‘3.2.2 Planning Instances i i e
‘3.2.3 Causal Rules for Arbitrary Formulae 27
‘3.3 From f-FOLTL to Parameterized NFA 29
‘3.3.1 Parameterized Finite-State Automata
‘3.3.2 The algorith%
‘3.4 Compiling PNFAs into a Planning Instance 36
‘3.4.1 Translating PNFAtoCausalRules 7

Vi

‘3.4.2 Translation to Derived Predicates (axioms) 39

‘3.4.3 Avoiding Blowups: Multiple Goals and Formula Split{ing 40
‘3.4.4 Search Space Pruning by ProgresLsion e e 42
‘3.5 Implementation and Experimelnts 3 4
‘3.5.1 AxiomsversusCausalRJIes...........................44
‘3.5.2 Comparison to State of the Art 45
‘3.6 Discussion e 46
‘3.6.1 Why a Reformulation Approach? 46
‘3.6.2 Why Not LTL and Bichi Automata? 47
‘3.7 Summary and Related Wgrk 9 4
4 Planning with Temporally Extended Preference‘s 51
‘4.1 Introduction L 51
‘4.1.1 Contributions of this Chanker 52
4.1.2 0utline e 54
‘4.2 Backgroun‘d .. 54
‘4.2.1 Relaxed Plans for Function-Free ADL DomLains 54
‘4.2.2 Preference-based Planning, 56
‘4.2.3 Brief Descriptionof PDDL3 57
‘4.3 Preprocessing PDDL3 e 59
‘4.3.1 Temporally Extended Preferences and Constraints 60
‘4.3.2 Precondition Preferenl:es 63
‘4.3.3 Simple Preferences 64
‘4.3.4 MetricFunction. 64
‘4.4 Planning with Preferences via HeuristicSearch 65
‘4.4.1 Heuristics Functions for Planning with Preferences 66
‘4.4.2 The Planning Algorithm 71
‘4.4.3 Properties of the Algorithm 73
‘4.5 Implementation and Evaluation 8 7
‘4.5.1 The Effect of Iterative Pruning 78
‘4.5.2 Performance of Heuristics 9 7
‘4.5.3 Comparison to Other Approaches 0 8
‘4.6 Discussion 82
‘4.7 Related WoJk 6 8
‘4.7.1 Other Preference Languages i v i i 86
‘4.7.2 IPC-5competitors e 87

Vii

‘4.8 Conclusions and Future Research i i e 88

5 Golog Domain Control Knowledge in State-of-the-Art Planners 90
‘5.1 Introduction e 90
‘5.1.1 Contributions 92
5.1.2 OQutline 93
‘5.2 Backgroun‘d .. 93
5.2.1 ASubsetof PDDL 2.1 93
‘5.3 A Language for Procedural Control, 94
531 Syntax 94
‘5.3.2 SeMantics 95
‘5.4 Compiling Control into the Action Theory 99
‘5.5 Exploiting DCK in State-of-the-Art Heuristic Planners 104
5.5.1 DirectUse of Translatios{mple, 104
5.5.2 Modified Program Structurel{op L 105
5.5.3 A Program-Unaware ApproadBgSiQ 107
5.6 Implementation and Experiments 07 1
5.7 Summary and Related Wi)rk 101
6 Planning with Programs that Sense 112
‘6.1 Introduction L 112
6.1.1 ContributionsandOutline 113
‘6.2 Preliminaries 411
6.2.1 The Situation CalcuILs 114
6.2.2 BasicActionTheories e 114
6.2.3 Representing Knowlecjge 16 1
6.2.4 Regression 119
‘6.2.5 Golog’s Syntax and Semankics 2 12
6.2.6 Do : APosslessVersionoDo 123
‘6.3 Semantics for Executable Golog Programs 124
‘6.4 Planning with ProgramsthatSense 127
6.4.1 Theory Compilation 129
‘6.5 From Theoryto Practice 137
6.5.1 Belief-State-Based Planners 138
6.5.2 ExtendingDKSl 140
‘6.6 Practical Relevance e 141
6.6.1 Web Service Composition 0o 141

‘6.6.2 Experimenks

‘6.7 Summary and diSCUSSION v v v e e e e e e e e e e

7 Conclusions, Related Work, and Future Work

‘7.1 CoNCIUSIONS o

‘7.1.1 Problems and Contributions
‘7.2 Other Related Work o o e e e e e e e
‘7.3 Future Work e e e e e e

Glossary of Acronyms and Abbreviations

Bibliography

A ProofsforChapterH
A.1 Proof for Propositio%l
A.2 ProofforTheorem 3Ll e
A.3 Proof for Propositioj%4

B Proofs for ChapterE{
B.1 Proof for Propositio@.l
B.2 Proof for Theore2

C Proofs for Chapter%
C.1 Proof for Propositio%.l
C.2 Proof for Propositiopi'r
C.3 Correctness (Theorem 5.1) i
C.3.1 SoundnessPart
C.3.2 CompletenessPart
C.4 Succinctness (Theorem 5.2) e e

D Proofs for Chapter%
D.1 ProofforLemma6.2
D.2 ProofforTheore@3
D.3 ProofforTheorell@4

E Golog DCK for Experiments in Chapter‘S
E.1 Golog Control for The Trucks Dom£in
E.2 Golog Control for The Storage Domain v v v v v .

E.3 Golog Control for The RoversDomain

151

162
162
163
166

168
168
170

173
173
174
174
.15

184
841

184

185

179

Chapter 1

Introduction

Automated planning is a fundamental reasoning task for autonomous agexsionally, it corre-
sponds to the problem of generating a course of action to achieve asgemfil state, given an initial
state of the world, and a description of the dynamics of the world. Differaiants of planning—more
formally known agparadigms—are created by making different assumptions about the dynamics of the
world and about the knowledge and sensing capabilities of the agentirmplest of these paradigms
is classical planning

Classical planning has seen a great deal of advancement in the lggigesymost of it due to the de-
velopment of domain-independent heuristics. Nevertheless, many corgadfitications of automated
planning do not fall under the classical paradigm. These compelling apiptisanay consider charac-
terizations of the planning objective in terms of a rich goal and prefermsmesentation. Moreover,
as opposed to classical planning, the building blocks for plans might neiniqde primitive actions
but rather relatively complex procedures. Unfortunately, as we moyenethe classical planning
paradigm, many of the highly optimized planning techniques that have led to tkistreuccess are no
longer immediately applicable.

In this thesis, we investigate how recent advances in the automated plammmguaity can be
leveraged to solve some compelling non-classical planning tasks. In tlad teis chapter, we describe
classical planning at an intuitive level. We continue by describing a in whidsical planning does not
offer a satisfactory solution. The chapter finishes by describing in setad the specific contributions
of this thesis, and outlining the remainder of this document.

1.1 Recent Advances in Classical Planning

In classical planning it is assumed that the domain is deterministic. This meaas thetion transforms

a state into a single successor state. Moreover, in classical planningsuraashat the initial state is

CHAPTER1. INTRODUCTION 2

a complete description of the world, i.e., includes all facts that hold true. Thikeisnihat the agent
knows everything that holds true as a result of performing any sequ#ractions. The objective of the
problem is to find a plan that satisfies the goal. This goal is a condition thatrassttisfied at the state
that is reached after performing the plan in the initial state (i.e., the final state).

Even though classical planning makes quite stringent assumptions, it is autdimpally hard
problem. Indeed, deciding the existence of a planrSBACE-complete (Bylander, 1994), which means
that it is very unlikely that there exists a polynomial-time algorithm to solve it. In roasts, however,
automated planners are expected to carry out tasks that can be solhedhbps with relatively low
difficulty (e.g., “deliver mail to the professors’ offices”, “organize avil using a collection of web
services”, “create a plan to transport packages to their destinatiorgs tngaks”). When non-optimal
solutions are required, these problems do not have a combinatorial aatiyriedeed, for many of them

it is possible to construct solvers that run in polynomial time (Helmert, 200620

Although automated planning has been a topic of research for threeededada number of years
planners could not scale well in domains that humans can easily solve. Othlg iast decade has
the planning community produced planning technology that can scale rsfatred in many of the
aforementioned “easy problems”.

Most of the recent success satisficing(i.e., non-optimal) planning can be attributed to the de-
velopment of domain-independent heuristics (e.g. McDermott, 1996;tBmeGeffner, 2001). These
heuristics are functions that estimate the cost of solving the planning prajiem the current state.
For example, Bonet and Geffner (2001) propose a heutigtic such thath(s) estimates the cost of
achieving the goal frors by solving a relaxed version of the problem, in which the negative effécts o
the actions are ignored. This relaxation is usually referred to adetete relaxationGiven the heuris-
tic h(s) it is possible to use standard algorithms (e.qg., best-first search) to solp&atireng problem.
Most recent planners, however, use their own specific searchthlgsr which provide a better tradeoff
between the computation time required to compute the heuristic and the nodee thgianded by the
planner.

Most of the top-performers in recent occurrences of the InterndtRlaaning Competition (IPC)
use some sort of heuristic in the search for a plan (see Figure 1.1). bfaimem rely, at least in
part, on computing a solution to the delete relaxation. The FF planner is pyodyad of the most
influential of the recent planners: a subset of the techniques it inteadiave been used by most of
the subsequent IPC winners (satisficing track). Many other planmérshown in the figure also use
techniques introduced by FF.

CHAPTER1. INTRODUCTION 3

FF (Hoffmann and Nebel, 2001) It uses domain-independent heuristics to guide search. The
heuristic is computed by finding a plan for the delete relaxatising a modification of
the Graphplan (Blum and Furst, 1997) algorithm. Uses eefbhill-climbing for search,
a modification of hill-climbing. Winner of IPC, satisficingack, in 2000.

LPG (Gerevini, Saetti, and Serina, 2003)Was inspired by local-search SAT solvers (e.g.,
walksat), this planner uses local search in the space ofpl&vinner of IPC, satisfic-
ing track, in 2002.

FAasT-DOwWNWARD (Helmert, 2006a) It uses a domain-independent heuristic that is computed
by solving relaxed causal-graph representation of thengtgnproblem. In addition, it
uses the FF heuristic. Winner of IPC, satisficing track, i640

=

SGPlars (Hsu, Wah, Huang, and Chen, 2007)It uses an optimization approach to partitig
the planning problem into different subproblems. It obgasnlutions for the subproblems
using the a modification of the heuristic planner Metric-FBifmann, 2003). Winner of
IPC, satisficing track, in 2006.

LAMA (Richter, Helmert, and Westphal, 2008) In a preprocessing phase, it computes a set of
landmarks which are sub-goals that have to be achieved before ackiewry goal. For
planning, it uses a pseudo-heuristic designed to expleitthdmarks. In addition, it uses
the FF heuristic for planning. Winner of IPC, satisficingcltain 2008.

Figure 1.1: Brief description of the winners of the last 5 International itfgnCompetitions (IPC) in

the non-optimizing (satisficing) track.

1.2 Classical Planning Is Not Enough: An Example

As noted above, a planning task must satisfy a number of restrictions im tordes classical. As
a result, many compelling applications cannot be represented within the algdsiening paradigm.
One example i€omponent software compositidn which it is necessary to create new software by
re-using existing components. An instance of this problem is Web Servieg@sition (WSC).

WSC involves the automatic composition of web services to perform some fashk,ajhigh-level
description of the tasks objective (Mcllraith, Son, and Zeng, 2001)th@mther hand, a Web Service
is a piece of software that is available via the Web, and whose featugf@ssibly) its functionality
are described using a formal language. As an example, consider tHenalek travel arrangements to
attend the IJCAI-09 conference.” This task necessitates selectingacutiag a variety of web services
to perform tasks such as booking accommodation, purchasing air tickdtpoasibly arranging other
types of transportation.

WSC is a compelling problem: both the academic community and industry have shogiderable
interest in the problem. As defined above, WSC is clearly a planning probleuertheless, researchers
have pointed out many aspects of WSC that do not fit into the classicaligarde.g. Hendler, 1999;
Mcllraith et al, 2001; Mcllraith and Son, 2002; Srivastava and Koehler, 2003rabohProkoshyna,
and Mcllraith, 2006). We enumerate some of them below.

CHAPTER1. INTRODUCTION 4

Characteristic 1 The planning problem cannot be expected to take place at the level of peraii
tions. Rathercomplex actions-which in WSC correspond to the web services themselves—are
the building blocks to construct the required plans.

Characteristic 2 Unlike the classical model, in WSC there is incomplete information about the initial
state. While this implies that we do not have complete information at planning time, ialsay
be true that we do not have complete information at execution time.

Characteristic 3 Web services havieputsandoutputsas well as preconditions and effects. Inputs and
outputs are not easy to describe in the classical paradigm. They caprbsarted with relative
ease if we allow the agent to reasoning about knowledge. For examplanatng time, we could
express that an agekhowsthat it have received an output from a service and therefore knows,
say, the price of the flight, although we still do not have such a value.

Characteristic 4 Web services can be viewed as entities that lsetiseandalter the environment. As
an example, consider the purchase of an air ticket using a web serviceeWe the environment
by acquiring new information about different alternative flights betweerotigin and the desti-
nation (e.g., prices, departure times, etc.). On the other hand, the exemfittierservice actually
changes some properties of the world (e.g., a booking is registered inlthe database, a credit
card is charged).

Characteristic 5 Compositions (i.e., plans), rather than simple sequences of actions, matp roesd
tain complex control structures involving loops, non-determinism and chdlde means that the
solution to a WSC task may look more similar to an imperative program rather thasetuance
of actions.

Characteristic 6 WSC is usually required to achiexieh goalsin the presence afch user preferences
As such, goals might not only refer to the final state, but also to differesmts that occur during
the execution of the plan. They may also refer to the order of these evesfgcify explicit time
constraints. In addition, compositions should take into account the pnefs®f the user. In our
travel example above, these may account to airline/hotel prefererreésirpd times for travel,
and preferred methods of payment. We also would expect a rich lantiuagpress preferences,
that also allows expressing preferences over events, explicit time, actoinrences, etc.

We have presented WSC as a motivating task that presents many interestiagtefstics. Many
of these characteristics, however, do appear in other compelling applgatior example, in agent
programming (or robot programming), we may require almost all of them.

The goal of this thesis isot to provide a solution to the WSC problem. Rather we use it here as a
catch-allexample, that shows many interesting problems that we are going to addreisslivesiis. To

CHAPTER1. INTRODUCTION 5

this extent, WSC can be viewed as one of many potential applications for whrdiechniques could
be applicable.

1.3 The Problems We Address

In this thesis, we deal with the following non-classical planning tasks.

e Planning with temporally extended godlBEGs) (Chapter 3). Temporally extended goals have
the ability to refer properties that may occur throughout the execution ¢tdra s such, this
problem addresses Characteristic 6 above.

e Planning with rich user preferencesin particular, we address the problem of planning with
temporally extended preferences (TEPs) (Chapter 4). This relatesata&éristic 6.

e Planning in the presence of procedural domain control knowlg@epter 5). In particular, we
consider procedural constraints expressed in a Golog-like lang@ajeg is a high-level robot
language that can be used to specify the behaviour of agents. In rétationexample, Golog can
be used to specify a “skeleton” of a solution to a planning task (such as@tésR), containing
loops and conditional constructs, but also containing “open parts” #et to be filled in by the
a planner. As such, the work presented in this chapter relates to Chitaziespecified above.

¢ Planning with programs that sen§€hapter 6). Here we assume that the building blocks for plans
are Golog programs. In addition, we consider that these programstsa the environment. To
deal with sensing, we move to a planning framework in which we can refeetkrtbwledge of
the agent. In particular, the framework deals with incomplete initial states. &g this chapter
relates to Characteristics/2, 4, and 3.

1.4 Approach

To address each of the problems described above we use a commoacippedormulation Our
reformulation algorithms will take a non-classical planning task, and genargew task. This new task
is more amenable to be solved by current state-of-the-art techniquesmia cases, we can generate
aclassicaltask from a non-classical one. In other cases, we will not obtain a taskdn be directly
exploited by current state-of-the-art techniques and thusaept existing technigues to handle the
reformulated tasks. Figure 1.2 shows a schematic view of our approach.

Our reformulation approach has the following advantages:

1. The main advantage is that in the majority of cases we generate some fetandérd output,
which can be directly input to a wide variety of planners. This is importanaliee it means

CHAPTER1. INTRODUCTION 6

Non-classical
planning task

Y

[Reformulation]

l

Reformulated
planning task

Handled by existing solver? Is not handled by existing solve
(cf. Chapters 3,5, 6) (cf. Chapter 4)

Existing Modified

Planner Planner

Figure 1.2: The reformulation approach that is taken in all chapters of thsssthin most cases we
solve the reformulated task with an existing planner. In others, we have gtbdiid extended existing
planners to handle the reformulated tasks.

that advances in classical planning can be immediately leveraged for threstassical planning
tasks.

2. Our approach is generalizable to other planning paradigms. Indesah, ite utilized in multiple
other scenarios that are not explicitly dealt with in this thesis. For exampteefarmulation
for temporally extended goals is not bound to deterministic planning, but atsbe applied in
a non-deterministic scenario. In that case our techniques admit minor modifcéhat enables
our approach to generate a non-deterministic problem with final-state gdglsSimilarly, the
approach can be applied when in the original planning instance actioesasaociated costs,
when there is incomplete knowledge, etc.

3. Our reformulation techniques are composable. That is, they can hedippsuccession in order
to address problems that are non-classical along several dimensions.

4. Areformulation approach serves abaselinefor future comparison. Indeed, if a classical plan-
ning techniqud is adapted for planning in any of the tasks for which we have propos$eufre-
lations, producing a new techniqiig thenT’ should outperform techniguieon the reformulated
task in order to prove that is a valuable approach.

5. Finally, using the reformulation approach, it is possible to gain insights intddadapt existing
techniques for these non-classical planning tasks. Indeed, byvatrséiow a planner behaves

CHAPTER1. INTRODUCTION 7

with the reformulated instance it is possible to spot potential drawbacks ofabgical approach
when solving the particular reformulated task. This information can then éx tasinspire the
development of novel heuristics that avoid those drawbacks.

The notion of exploiting reformulation to solve planning problems is not newmesprevious
work however reformulates the domain description — effectively the transi#tystem (e.g. Palacios
and Geffner, 2006; Yoon, Fern, Givan, and Kambhampati, 2008)er@revious work (e.g. Gazen and
Knoblock, 1997; Helmert, 2009) represents the entire planning problaardifferent language. Our
work is more focused on the reformulation of the plannitjective where our notion of objective is
defined in the large to include temporally extended goals, preferenakalssmdomain control knowl-
edge. Itis only in Chapter 6 that we more closely align ourselves to agmeahat reformulate the
entire problem. We discuss related work in each of the technical chajtiégris document and also in
Section 7.2.

1.5 Outline and Contributions

The remainder of this document is organized as follows. Chapter 2 desdhib basics of classical
planning and current state-of-the-art techniques. This chapterdesothe necessary background for
most of the rest of the document: Chapters 3,14, 5. The necessargrbank for Chapter|6 will be
given within the chapter. We draw conclusions and discuss future waCkapter 7.

The major contributions of this thesis follow.

Planning with Temporally Extended Goals using Heuristic Seech (Chapter 3)

As we have noted above, many compelling applications have planning gdadsdheot naturally char-
acterized as conditions to achieve in fimal state. In this chapter we deal with the problem of planning
with TEGs. TEGs refer to properties that must hold over intermediate andébsfates of a plan. Cur-
rent techniques for planning with TEGs only consider pruning the sepate during planning vigoal
progression(e.g. Bacchus and Kabanza, 1998). Nevertheless, as we notegl dfwvastest classical
domain-independent planners rely on heuristic search. We proposthadiier planning with TEGs
using heuristic search. Thus, we reformulate planning task with TEGs irgquvalentlassicalplan-
ning task. With this translation in hand, we exploit heuristic search to deternpltamaOur translation

is based on the construction of nondeterministic finite automata for the TEGrdplese two alternative
translations: the first generates a task that contains operators with coabéftects, and the second
(more efficient) usederived predicatesa way to describe predicates of the domain using an axiomatic
definition.

We prove the correctness of our algorithm and analyze the complexity afthking representation.

CHAPTER1. INTRODUCTION 8

The translator is fully implemented and available. We show that our appraasistently outperforms
existing approaches to planning with TEGs.

An abridged version of this chapter appeared in the Proceedings of’8&fBaier and Mcllraith,
2006b).

Heuristic Planning with Temporally Extended Preferences (Qapter 4)

As previously observed, the objectives of many planning applicatiorstatesd not only in terms of hard
goals but also in terms of preferences. In this chapter we focus ondbhepr of planning in the pres-
ence of rich user preferences. Planning with preferences invobteanty finding a plan that achieves
the goal, it requires finding preferred(and ideally optimal) plan that achieves the planning objective,
where preferences over plans are specified as part of the plameut. In this chapter we propose
a technique for accomplishing this objective. Our technique can deal with &lass of preferences,
including temporally extended preferencednlike simple preferences which express desired proper-
ties of the final state achieved by a plan, TEPs can express desirezttigspf the entire sequence of
states traversed by a plan, allowing the user to express a much richépsefevences. Our technique
involves reformulating a planning problem with TEPs into an equivalent pignproblem containing
only simple preferences. This conversion is accomplished by augmentioggireal planning domain
with a new set of predicates and actions for updating these predicates.

The resulting task is not classical, since it contains preferences. Tathisve provide a collection
of new heuristics and a specialized search algorithm that can guide theeptawards preferred plans.
Under some fairly general conditions our method is able to find a most prdfplan—i.e., an optimal
plan. It can accomplish this without having to resort to admissible heuristicghvoften perform
poorly in practice. Nor does our technique require an assumption oictedtiplan length or make-
span, as is the case of SAT/CSP-based approaches. We have implemerdpgroach in a planning
system we call HPlan-P, and used it to compete in the 5th International Riag@ompetition, where it
achieved distinguished performance in Qealitative Preferencesack.

A version of this chapter appeared publishedAtificial Intelligence(Baier, Bacchus, and Mcll-
raith, 2009).

Golog-Like Domain Control Knowledge in State-of-the-Art Planners (Chapter 5)

In the context of planning, Golog-like programs (Levesque, Reitepérasce, Lin, and Scherl, 1997)
are suitable for declaring procedural constraints that restrict thetsepace significantly, allowing a
solver to find solutions more quickly. These procedural constraintsepeay-step specifications—Ilike
those usually specified by an imperative program—of how a goal mustiieved. Additionally, Golog

allows specifying non-determinism in its programs. These provide “opeg’ghat must be filled in by

CHAPTER1. INTRODUCTION 9

the planner.

Thus, Golog programs can be used to specify plan skeletons, whictbbaweproposed as an ap-
proach to WSC (Mcllraith and Son, 2002). Golog, however, can alsoskee to represerdomain
control knowledgéDCK). DCK, used in conjunction with blind search has proven a to be eesse
ful technique for increasing planning speed, sometimes by orders ofitudgn It is only successful
however when very well-crafted control knowledge can be written.

The contribution of this chapter is threefold. First, we propose a neweptoal control language
for representing DCK, specifically tailored for planning applications. [Bhguage is closely inspired
by Golog, offering natural constructs for DCK specification, such aatitth and nondeterminism.

We show that any planner that can input planning tasks in PDDL (thertutedactoinput standard
of the planning community) is able to plan with our DCK. We do this by giving anrélgo that
reformulates any PDDL planning task and a control program, into an @eguiy program-free PDDL
task whose plans are only those that “behave” according to the contigrigm.

Third, we show that the resulting planning task is amenable for use with dandependent heuris-
tic planners. In particular, we propose three approaches. Thecinstr¢l-aware) directly uses the re-
sulting PDDL task, the second (control-unaware) uses the set oftopead the original task to compute
the heuristic, and the third (control-aware) uses a modified set of opefadm the resulting PDDL task
to compute the heuristic to better inform the heuristic about the control. Oeriexgnts on familiar
planning benchmarks show that the combination of DCK and heuristics gedoketter performance
than using DCK with blind search and than using heuristics alone.

A version of this chapter appeared in the Proceedings of ICAPS Oiel(Braritz, and Mcllraith,
2007).

Planning with Programs that Sense (Chapter 6)

In this chapter we address the problem of planning by compgsiogyams rather than or in addition
to primitive actions. The programs that form the building blocks of such glansthemselves, contain
both sensing and world-altering actions. This is primarily motivated by thelgmolof automated
composition of component software, since Web services are prograneaithgense and act. Our further
motivation is to understand how to exploit macro-actions in existing operasgebplanners that plan
with sensing. We study this problem in the language of the situation calculpealipy to Golog to
represent our programs. To this end, we propose an offline exesatioantics for Golog programs with
sensing. We then propose a compilation method that transforms our action thidtoprograms into
a new theory where programs are replaced by primitive actions. Thisesnabto use state-of-the-art,
operator-based planning techniques to plan with programs that serseftricted but compelling class
of programs. Finally, we discuss the applicability of these results to existiagatip-based planners

that support sensing and illustrate the computational advantage of plamitingrograms that sense

CHAPTER1. INTRODUCTION 10

via an experiment. The work presented here is cast in the situation calctiduditate formal analysis.
Nevertheless, both the results and the algorithm can be trivially modified tdPlake. as input and
output. This work has broad applicability to planning with programs or mactioras with or without
sensing.

An abridged version of this chapter appeared in the Proceedings digkaier and Mcllraith,
2006a).

Chapter 2

Planning: Languages and Algorithms

This chapter describes necessary background in classical plaftiiingt describes classical plan-
ning, along with the popular formalisms and languages used to repressafptablems. It finishes by
describing some of the most successful techniques developed in thevageérs to effectively solve
these problems.

2.1 Classical Planning

A classical planning task (or instanc& a tuplel = (F,s,0,G), whereF is a finite set of facfs

S € F is the initial state O is a finite set of action operators, agdis a goal condition. An action
operatoro € O maps a state into another state. The classical planning problem consistdirag fn
sequence of action operat@sa, - - - a,, which, when applied to the initial state, will produce a state that
satisfies the goal conditiaf.

Classical planning, as defined above, requires todimgplan. However, in most applications we
are required to find high-quality solutions. Although adding a quality measurediately means that
we are out of the classical planning paradigm, the quality of solutions is stiidered when evaluating
a planner’s performance. A usual quality measure for plans is somé&oasion defined over the set of
possible plans. The planning community usually distinguishes between @ahagrgiven such a cost
function, will seek for an optimal solution, and planners that will not. In trenfer case, we use the
termoptimalplanner to refer to such a planner, and in the latter will use the $atsficingplanner.

The planning community has developed a variety of languages to define ganstances. STRIPS
(Fikes and Nilsson, 1971) and ADL (Pednault, 1989) are two of the nrogtipent languages for the
representation of classical planning problems. We describe them in ntaibbddow. Additionally, we

1AIthough not required by the model, facts are usually representeddtyfiler ground literals.

11

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 12

briefly describe PDDL, a language designed to represent plannitdepns that is used as a standard
in the planning community. We explicitly leave out a review of the SAS+ formalisackBtbm and
Nebel, 1995), as it has little relevance to the contents presented in this thesis.

2.1.1 STRIPS

STRIPS (Fikes and Nilsson, 1971), is the oldest and most used formalisprésent classical planning

problems. Here, operators are described as trige=x{0),add(0),del(0)). Each of the components of

the triple is a list of facts inF. List pre(o) contains thepreconditionsof the operator, i.e., the facts

that must hold true prior to the application of operatotist add(o)—the add-listof o—contains the

positive effects 0b. Finally, listdel(o)—thedelete-listof o, contains the negative effects of an operator.
A planning state is simply a collection of factsin An operator is applicable in stagéff pre(o) C

s. The result of applying operatorin s, denoted as(s,0), is defined as

v(s,0) = (s\ del(o)) Uadd(0).

2.1.2 ADL for Classical Planning

In Pednault's ADL formalism (1989), facts i are typically first-order ground atoms formed from

a finite set of predicateBred and a finite set of object®bjs? On the other hand, preconditions and
effects, can now be more than simple lists of ground predicate literals. ARtopditions can be
arbitrary boolean formulae, existentially or universally quantified overstteof object®Objs ADL

effects can beonditional which means that adds and deletes can be conditioned on the satisfaction of
arbitrary boolean formulae. Effects can alsoumversalin the sense that they affeall objects that
satisfy a certain condition. For example, assume we are describing a doimai@ @bjects can contain
other objects. Further, assume actinovéx,y,z) moves objeck from locationy to locationz and in

the process moves all objectsxro z as well. The precondition for this action is ju(X,y); i.e., the
objectx has to be at locatiop, while its effects can be defined by the list:

Eff = {add at(x,2),Vv[in(v,x) = add at(v,z)],del at(x,y), Vv[in(v,x) = del at(v,y)]}

Thus, the location of the objegtand all objects insid& changes ta.

In addition to more expressive preconditions and effects, ADL also allomtbe representation of
functions. This means that states can contain, in addition to propositiots| $&ntences of the form
f(C) = z, wheref is a function nameg'is a tuple of objects i®bjs andzis an object imObjs Actions
can change the functions by assigniii@) a different value as an add effect.

?Itis also standard to utilize ground predicate facts in STRIPS, even thtbegiotion of object is not really required.

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 13

(:action LOAD-TRUCK

:parameters (7pkg - package 7truck - truck 7loc - place)
:precondition (and (at 7truck 7loc) (at 7pkg 7loc))
reffect (and (not (at 7pkg ?loc)) (in 7pkg 7truck)))

(:action DRIVE-TRUCK
:parameters (7truck - truck 7loc-from - place 7loc-to - place 7city - city)
:precondition
(and (at 7truck ?loc-from) (in-city 7loc-from 7city) (in-city 7loc-to 7city))
:effect
(and (not (at 7truck ?loc-from)) (at ?truck 7loc-to)))

Figure 2.1: Two operators defined in thagisticsdomain. Actions have parameters, preconditions,
and effects. Parameters are of a spetyfie Positive effects are described by positive literals, while
negative effects are represented by negated literals.

Finally, in ADL, Goal can be any formula (possibly quantified) that describes a condition that mus
be satisfied by a goal state. For more details on ADL we refer the readedt@mBlt’s paper (1989).

2.1.3 PDDL

ThePlanning Domain Definition Languag®DDL) was proposed by McDermott (1998) as a standard
input language for the first International Planning Competition. Since itptire many planners have
adopted and thus it has becomédeafactostandard input language.

Although PDDL is a standard, there are many variants of the languageedndew features have
been introduced with almost every planning competition. Current versfdrisDL allow the definition
of ADL planning problems, but also go beyond ADL, by allowing the usexjress explicit time and
functional fluents (cf. PDDL2.1, Fox and Long, 2008grived predicate®r axioms (cf. PDDL2.2,
Edelkamp and Hoffmann, 2004), temporally extended preferencesaddchnstraints (cf. PDDLS3,
Gerevini, Haslum, Long, Saetti, and Dimopoulos, 2009), abjgct fluentgcf. PDDL3.£3‘). We will
give a more in-depth description of PDDL3 later in this document (Section,425¥), just before we
describe our techniques for planning with preferences.

PDDL separates the definition of a planning instance in two partsdahgain definitionand the
problem definition The domain part describes domain-specific elements, including a deataohtlee
predicates used to describe the domain, and a definition of the object tylmesover, the dynamics
of the domain is defined using a set of action operators. Figure 2.1 shewigfinition of two action
operators used in tHegisticsplanning benchmark.

3No formal publication exists at the moment. Sgep://ipc.informatik.uni-freiburg.de/Pdd1Extension for
details.

http://ipc.informatik.uni-freiburg.de/PddlExtension

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 14
In the problem definition, one declares the objects, of the problem, the inétal and the goal.

2.1.4 Some Complexity Results
Complexity of STRIPS planning

Classical planning, even in the limited STRIPS formalism, is a hard problem, ataldished by the
following theorem.

Theorem 2.1 (Bylander, 1994)PLAN SAT, i.e, the problem of deciding whether there exists a plan for
a STRIPSplanning instance | i#SPACE-complete.

Proof sketch: First, note that because there até! tates, in the worst case an instance can be such
that a plan has to visit all states before achieving the goal. The size of inglaen STRIPS formalism
could be therefore exponential jH. A “real-world” example of the need for exponential plans is the
classicalTowers of Hanogame.

However, for determining plan existance we do not need to construchaiace we know that the
plan is of size at most2!, we can verify existence with a non-deterministic polynomial-space algorithm
shown in Figuré 2.2, witls = so, andn = 271, Such an algorithm does not need more than polynomial
space, since its parametecan be represented efficiently with lodpits. This means thatlUlAN SAT is
in NPSPACE. Membership irPSPACE follows from Savitch’s theorem (1970).

The proof that PAN SAT is PSPACE-hard is tedious, and we do not replicate it here. In short, the
proof follows from the fact that the transitions of any polynomial-spaag@@unachine can be encoded
by a polynomial number of operators. Details can be found in Bylandapsp(1994). [

Another problem of interest is that of finding a plan of bounded lengtlafgiven instance. This
problem is als®®SPACE-complete.

Theorem 2.2 (Bylander, 1994)PLANMIN, i.e., the problem of deciding whether there exists a plan for
a STRIP Splanning instance | with k or fewer actions, where Kk is given as inptRSRACE-complete.

Proof sketch: PLAN SAT is reducible to PANMIN in polynomial space, since we just need to output
(1,k) for k = 2171, This provesPSPACE hardness. Furthermore, it is possible to determine the exis-
tence of a plan with at mostactions by calling algorithm of Figure 2.2, with= k. This proves that
PLANMIN is in PSPACE. |
Although R.AN SAT and R ANMIN arePSPACE-complete in general, under some restrictions these
problems can be shown to be lower in the polynomial hierarchy. Indeed: ihedify RLAN SAT, by
restricting the plan length to be boundedfiiyl |), wherep(n) is a polynomial inn with p(n) > n, then
the resulting decision problem P-complete (see e.g. Baral, Kreinovich, and Trejo, 2000). On the
other hand, Helmert (2003, 2006b) has shown that for many of theipbenchmarks that have been

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 15

1: function PLAN-EXISTS(states, naturaln)
2: if G is satisfied bysthen
3 return true
4. elseifn> 0then
5: for somes' that is a successor sfdo
6 if PLAN-EXISTS(S,n—1) then return true
7 end for
8: else returnfalse
9: endif
10: end function

Figure 2.2: A nondeterministic, polynomial-space algorithm to determine the resésfgan of length

at mosin

used in the International Planning CompetitionAR MIN and R.AN SAT are inNP. As an example, in
thelogisticsdomain, RAN SAT is in P, whereas PANMIN is NP-complete. Thélocks worldhas also
be proven to b&lP-complete for RANMIN and tractable for PAN SAT (Gupta and Nau, 1992).

Another important aspect is the relationship between the complexity of plaemsésanglan gen-
eration Although it is the latter task which is of more interest, there are fewer resudimhble in the
literature. Note that since plans could be exponential in the size of the prqdiéen generation is gen-
erally in EXPTIME. This complexity gap appears even when plan existence is tractable. Eordes
Jonsson and &kstdm (1998) have shown a family of planning instances in which plan exisisrece
tractable task whereas plan generation is exponential.

Complexity of ADL vs. STRIPS

Any ADL problem can be translated into a STRIPS instance. Howevetirexisompilation techniqgues—
such as Gazen and Knoblock's (1997)—are worst-case exponditialwort case cannot be improved
if we are willing to preserve the length of plans polynomially (Nebel, 20003, thns ADL is strictly
more succinct than STRIPS.

ADL planning, however, is still #SPACE-complete problem. Observe that the algorithm of Fig-
ure 2.2 also requires polynomial space even if the preconditions amdsedie complex formulae.

Interestingly, most of the top-performing approaches to classical plgimernally utilize a STRIPS-
like representation. In fact, all planners shown in Figure 1.1 first trem#h@ ADL instance into one
that is essentially a STRIPS one (without conditional or quantified effegeals).

Most of the reformulation algorithms we propose later in this document gendBL problems.
As we will see, this has some practical implications if we want to use some stéte-aft planners.
Most of these issues can be addressed by moving to more expredsens sor by utilizing ADL-native

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 16

solvers. More details are discussed in Chapters 3 and 4.

2.2 Planning as Heuristic Search

Many state-of-the-art domain-independent planners use domainendept heuristics to guide the
search for a plan. Heuristics estimate the cost of achieving the goal froent@n state. They can
be used with standard search algorithms, and are usually key to goodnpanice. They are typically
computed by solving a relaxed version of the original problem.

There are a few domain-independent relaxations that are widely usedri®nt planners. One
of them corresponds to ignoring the negative effects of actions. Thigation is called thalelete-
relaxation

Definition 2.1 (Delete-Relaxation)Let | be STRIPS planning instance. The delete relaxation of I,
denoted T, is a instance just like | but in which operators@have an empty delete list.

Classical planners likeasp(Bonet and Geffner, 2001) and FF (Hoffmann and Nebel, 2001)ngmo
others, use this relaxation to compute its heuristic.

We will focus our attention on the delete-relaxation, but we do not want to arbrief note on
Helmert's relaxation of the causal graph of a task (2006a). Here, timaidds represented by a set of
variables (SAS+ representation).c&usal graphrepresents dependencies between variables. If such a
graph is acyclic, a solution to the problem can be computed in polynomial time. Hislceusal graph
heuristic (2006a) is computed by relaxing the causal graph (by ignodrtgic preconditions) to the
point that it becomes acyclic. Then, polynomial algorithms are used to obtaistemation of the cost
to a solution.

The rest of the section describes key aspects of the FF planner. diee®@o reasons to look into
this planner more closely. First, FF is one of the most influential plannesajed in the last decade:
many other classical planners used techniques developed by FF in sgmeSeeond, some of the
heuristics we propose in Chapters 4 and 5 are modifications of the stafidaeliristic.

221 FF

FF (Hoffmann and Nebel, 2001) is a classical planner that employs tieufisward search to find a
plan. The key novel aspects of the planner are its heuristic, and ithssgarithm. We describe each
of those in turn.

FF Heuristic

The FF heuristic for a state is computed by finding a plan fromin the delete-relaxation of the

problem. This plan is referred to eslaxed plan FF computes the relaxed plan using a modification of

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 17

the GRAPHPLAN planner (Blum and Furst, 1997). It thus, computeslaxed planning grapfwhich is

the graph that would be generated bgA&&HPLAN for the delete-relaxation. This graph is composed of
fact layers—orrelaxed states-and action layers. The action layer at lemelontains all actions whose
preconditions are contained in the relaxed state at depilne relaxed state at deptht 1 contains all

the facts that hold at layer+ 1 and is generated by applying all the positive effects of actions in action
layern.

Since in the delete relaxation, actions have no negative effectglthed planning grapleontains
no mutexes (mutually exclusive facts or actions). This implies that, to find a plargnly need to
expand the graph just until the point at which the goal is satisfied. FF despurelaxed plan for the
goals by regression from the goal facts in the graph to the currentssfblbe length of this plan is then
used as a heuristic estimator of the cost for achieving the goal. Hencefentéfer to the FF heuristic
value ash™F (s). This takes polynomial time, since it only implies a traversal of the graph, evbias is
polynomial in the size of the problem.

Before explaining some details on the extraction algorithm, note that if the gealnbt appear in
any fact layer of the relaxed graph, then the problem is proven urigdelvdo some extent, this dead
end detection can be quite powerful. We exploit this power in Chapter 4n wieedesign a pruning
function for planning with preferences.

The FF extraction algorithm (Figure 2.3) has a built-in heuristic that aims ataixtg thesmallest
possible relaxed plan. The objective is to be as close as possible fromtimabsolution td * from s
Specifically, the heuristic rule specifies that whenever an achieving getibiever) is chosen, then we
prefer always thearliestachiever, i.e., the one that appears at the lowest level in the relaxdd dfap
there are ties, it will prefer the achiever that has the lowestondition costwere the precondition cost
is defined as the sum of the levels at which the achiever’s precondititsfiest appear in the relaxed
graph.

FF's Search Algorithm

The FF's search algorithm is less relevant to this thesis. We explain it lasieally to introduce

the concept ohelpful action which is one the most interesting enhancement introduced in the search
algorithm. Later, in Chapter 4, we mention an extension to ourA#RP system that benefits from this
technique.

FF uses two search algorithms that are used in turn. The figgifeaced hill climbing(EHC), a
modification of the standard hill-climbing search. If EHC fails to find a plan, thetandard best first
search is invoked, in which™ F (s) is used as the evaluation function.

EHC is a greedy and incomplete algorithm for planning. It builds a plan bppeng a sequence

“4The length of the optimal plan fromin the delete relaxation is usually referred tohdgs). Its computatiorNP-hard
(Bylander, 1994).

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 18

1: function EXTRACTPLAN (plan graphSAcS: - - - An—1Sh, goalG)
2 fori=n...1do

3 G; < goals first reached at leviel

4 end for

5: fori=n...1do

6 for all g € G; not marked TRUE at timedo

7 Find min-costa € A such thag € add(A;_1)

8 RR_1 — RR_1U{a}

9 forall f € preqa) do

10: Giayerof() = Gayerof(f) U{ f}

11: end for

12: for all f € add(a) do

13: mark f as TRUE at times— 1 andi.
14: end for

15: end for

16: end for

17: return RP
18: end function

Figure 2.3: The FF extraction algorithm (Hoffmann and Nebel, 2001)wesea relaxed planning graph
as a succession of pairs of state and action layers, and a set ofge@&.feayerof(f) denotes the depth
of the fact layer at whicH first appears.

of improvement phases. In each phase, it takes the currensstatesearches for a descendans,of,
such thah™F (s') < hFF(s), i.e, such that its heuristic value has improved. Osi¢es been found, the
actions that lead te are added to the current plan prefix, and a new improvement phasetési stiine
pseudo-code for EHC is shown in Figure 2.4.

The search fog' is a simplebreadth-firstsearch. During this search however, only the successors
of a node that are produced byalpful actionare added to the search space.

Definition 2.2 (Helpful Actions) Let F be the set of facts in variable;@fter the plan extraction of the
algorithm of Figure 2.3 finishes. The helpful actions for state s are thosenadiiat are applicable in

1: function EHC(initial statel, goalG)

2 plan+— EMPTY

3 S|

4 while h(s) # 0do

5: from s, search fos' such that(s') < h(s).
6 if no such state is fountthen

7 return fail

8 end if

9: plan«+ planoc “actions on the path tg””
10: sS—¢

11: end while

12: return plan

13: end function

Figure 2.4: Enforced Hill Climbing (EHC) (Hoffmann and Nebel, 2001)

CHAPTER 2. PLANNING: LANGUAGES AND ALGORITHMS 19

s and that achieve a fact in F.

The restriction to use helpful actions only to generate successors irethdtbffirst phase contributes
to the incompleteness of the EHC algorithm. Nevertheless, the impact that it peganrmance is such
that it is still worth to use it. Hoffmann and Nebel (2001) show that this tectenmpntribute to the
overall performance of FF.

Other classical planning systems use similar concepts. For example, AstiDFOWNWARD and
LAMA use preferred operatorsin the case of KST-DOWNWARD, this notion is defined analogously to
helpful actions but for the causal graph heuristic. LAMA on the othadhases the FF helpful actions.

FF uses a handful of additional techniques that are important forrpeaftce. Among them is the
goal agendawhich specifies an ordering between the goals that are achieved.aisayistic is used
to order helpful actions. We refer the reader to the original paper foe hetails.

Chapter 3

Heuristic Planning for Temporally
Extended Goals

3.1 Introduction

As we have seen in the first chapter, compelling applications of planningrectije ability to express
goals and/or preferences that refer to properties that must be aglgevarious states during the ex-
ecution of the plan. Examples of these include achieving several goalsdession (e.g., deliver all
the priority packages and then deliver the regular mail, pick up mail from tlilerooen before making
deliveries to offices, book my hotel after you book my flight), safety geath as maintenance of a
property (e.g., always maintain at least 1/4 tank of fuel in the truck, emayrcredit card is never over
its limit), conditional temporal goals (if the robot reaches a low battery levehdukl immediately
recharge), and achieving a goal within some number of steps (e.qg., tkeniust refuel at most 3 states
after its final delivery). All these goals are knowntasporally extended goaf$EGSs), since they refer
to different states of the execution in a temporal manner. We distinguish @kgglisitly from temporal
goals The former do not refer to time in an explicit way while the latter do.

TEGs are typically represented (see e.g. Bacchus and Kabanza us88$Linear Temporal Logic
(LTL) (Pnueli, 1977). This logic allows specifying properties of infinitgqgences of states, and there-
fore it can be naturally used for representing TEGs.

In the current literature, however, there is a clear mismatch between $thie-art techniques used
for classical planning and the techniques used for planning with TEGsngnhe few planners that are
able to plan with TEGs we find TURAN (Bacchus and Kabanza, 1998). TiLAN can be configured
to use human-encoded, domain-dependent heuristics, but in the alifahese it simply useslind

search to plan for a goal. In addition, it will prune from the search sffaase states that can be proven

20

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 21

to violate the LTL formula. This is achieved througpmgressiormechanism, which re-writes the LTL
formula, into an equivalent one, which is written in terms of a property thatttvdoe checked in the
current state and a property that has to be checked in a successoA statie can be effectively pruned
if the progressed formula is equivalentfadse i.e., it is logically unsatisfiable.

Blind search in conjunction with state pruning via progression of the LTintda can be very effec-
tive when the LTL formula is intended to constrainomntrol the search. Indeed, Bacchus and Kabanza
(2000) have shown that the efficiency of classical planning can bdisagrtly improved by expressing
domain-specific search-control knowledge in the form of LTL constsaiLPLAN, enhanced with
such rules, won first place in the International Planning Competition in 2@@2dcoded track).

Nevertheless, state pruning by TEG progression will not provide amyipg for many natural LTL
properties—and therefore no improvement whatsoever over blindrse@unsider, for example, the
property “eventuallyp”. Such a goal will never progress false Without getting into the technical
details of why this is true, we explain this in an intuitive mal%elntuitively, such a goal formula
progresses ttalsein a statesif and only if it is not possible to reacp by any means froms. Although
the latter statement could be true &tthe only way to actually prove it would be by doing some kind
of domain analysis. Such an analysis is not done by progression lgeitasi® mechanism that only
manipulates the LTL goal formula syntactically.

On the other hand, as noted earlier, among the fastest domain-indeppladerers are those that
use heuristics. In planning for a TEG a heuristic should be expected to estimeacost of achieving
the TEG. However, it is not clear how to adapt current heuristic method@&€s. This is due to the
fact that current heuristics only work for final-state goals.

3.1.1 Contributions of this Chapter

In this chapter we propose a method for performing heuristic search oniptaproblems with TEGs
by exploiting the relationship between temporal logic and automata. Our abpias follows. Given
planning problem for a TEG, we transform it into a classical planninglprotand apply a domain-
independent heuristic search planner to actively guide search totherdmal. This new augmented
domain, contains additional predicates that allow us to describe the (Ilibvement of the TEG.
In particular, in this new domain there isciassical goalthat is satisfied iff the TEG of the original
problem is achieved.

The contributions of this chapter are the following:

1. We introduce a new logic for describing TEGs: the f-FOLTL logic. fiHQ is a version of
LTL which we madify to include first-order (FO) quantifiers and to be intetgd only by finite

More technically< p always progresses fov O< p which never reduces to false, independent of the truth valyeiof
the current state.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 22

computations. While this logic is not new, its application to planning is new. Its neeles the
construction of a sound translation algorithm. Moreover, we argue thatrioie intuitive when
dealing with finite plans.

2. We provide and prove the correctness of an algorithm that giverF&ILITL formula ¢, gen-
erates a parametrized, nondeterministic finite automata (PMNEA)Wwhose is the set of models
of ¢. Parametrized automata avoid grounding the goal formula, and in doinyad, Eoten-
tial blowups. In addition a parametric translation can be better exploited bypgiathat do not
ground the planning instance. Nevertheless, the sizg & worst-case exponential in the size of

. This motivates our next contribution.

3. We provide a simplification technique that allows reducing the size of thdtirescompilation.
In particular, this avoids blowups of simple goals that are quite “natural” inrphey with TEGs.

4. We provide two alternative methods for representing the PNFA within aipigaiomain. In both
translations, each of the states of the PNFA is represented by a planeitigate. In particular
the accepting states of the PNFA are regular predicates. The outputhofiethods is a PDDL
problem description, making our approach amenable to use with a varielgssiaal planners.
The first method defines the dynamics of the new predicates using goessem (Waldinger,
1977); the second, defines them axiomatically, using PDDL axioms (Hoffraad Edelkamp,
2005), a recent extension to the PDDL language. By representing tR& BNthe planning
domain we actually provide a compilation of TEGs into classical goals.

5. We show, through an experimental analysis, that our approacti,witte the heuristic search
planners FF and FF; consistently outperforms non-heuristic techniques. The analysis isatarr
out in benchmark domains extended with TEGs. We also experimentally eltbetvthe worst-
case exponential blowup does not manifest itself for practical goals.

3.2 Preliminaries

In this section we define the background for the rest of the chaptertaiteby introducing f-FOLTL,
a logic for representing quantified TEGs for finite plans. We continue bigddly defining the planning
instance for TEGs, and by reviewing regression, a technique that wikée in the rest of the chapter.

3.2.1 f-FOLTL: Finite LTL with FO Quantifiers

LTL (Pnueli, 1977) allows specifying temporal properties about infinitpisaces of states. Therefore,
it can be naturally used to express temporally extended goals (see echuBamnd Kabanza, 1998). In

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 23

this chapter we introduce f-FOLTL, a variant of LTL, that we use toespnt our TEGs. f-FOLTL, as
opposed to LTL, is interpreted ovénite computationsather than over infinite ones.

There are two motivations for introducing a new logic to represent TE@s.fifst motivation is a
methodological one: we want to apply state-of-the-art planning techpédoglanning with TEGs, and
current technology generally only applies to the generation of finite, liseguences of actions. The
second motivation—a more pragmatical one—is that our translation to finite-stitewgll be done by
representing a TEG by an automaton. Logics with infinite models, like LTL ,irede use of Bchi
automata, which have an accepting condition that is difficult to expressiapke £xpression involving
domain predicates.

f-FOLTL is not a new logical language; the decidability of a slightly diffénegrsion was analyzed
by Cerrito, Mayer, and Praud (1999). However, to the best of oankedge, it has not been used for
representing planning goals before.

Syntax

f-FOLTL formulae augment LTL formulae with first-order quantification dndthe use of the dis-
tinguished predicaténal, which is only true in final states of computation. As usual, we assume our
f-FOLTL formulae are built using standard temporal and boolean cdiweedrom a setS of sym-

bols for predicates and functio‘ﬁsWe denote byCro(S) the set of first-order formulae over the set of
symbolsS, the boolean connectives A, and the quantifiey.

Definition 3.1 (f-FOLTL formula) The set’(S) of f-FOLTL formulae over set of symbols S is the
least satisfying the following properties.

1. The O-arity predicatefinal, true or false are in £(S).

2. Ifp € Lro(S) theny € L(S).

3. Y, Y Ax, O, oryp Uy, are all in L(S) if » and x are in L(S).

4. (¥VX) ¢, (IX)p are in L(S) if so isep.

As usual, a f-FOLTLsentencés a formula with no free variables. Moreover, to simplify the nota-
tion, we assume precedence of theonnective over the connective.
Semantics

f-FOLTL formulae are interpreted over finite computations. Finite computatoadinite sequences
of first-order interpretations that share a common domain and a common @téigm for function
symbols.

2Note thatconstantsare function of arity 0.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 24

Definition 3.2 (Finite First-Order Computation) Given a set of symbols for predicates and functions
S, afinite first-order computation 08 is a sequence = S - - - Sh, Where eachis= o is a first-order
interpretation<D,IF,IiP>, whereD is the (unique) non-empty domaify, is a (unique) interpretation
for function symbols in S, arjzi, is an interpretation for predicate symbols in S.

As a consequence of interpreting a formula using these computations, itpriogdesrigid func-
tions, i.e., all constants and functions in the language refer to the same @ltjangstime point.

Definition 3.3 (Truth of an f-FOLTL Formula) Let ¢ be an fFOLTL formula, o be a finite first-
order computation over domai®, and v be a function mapping the variables into elements in
D. Moreover, leto; denote the suffix$.1---sy of o. We say that = ¢ (i.e., o is a model ofp) iff
(o0,v) = ¢, for anyv. Furthermore,

e (oj,v) = finaliffi =n.

e (0j,v) = true and(oj, v) - false.

(oi,v) E ¢, wherey is a first-order formula ¢ € £(9)) iff (s5,v) = ¢.

<Ui7y>):_‘()0 iff <Ui7y> %‘P'

(o1,v) =Y A xiff (oi,v) =9 and(oi,v) = X

(oi,v) E Opiffi <nand(oit1,v) = ¢.

(oi,v) =y Uyiffthere exists a g {i,...,n} suchthato,v) = x and forevery ke {i,..., j—1},
(o, v) = .

(oi,v) = (¥X) , iff for every ac D, (oi,v[x — @) = ¢, wherev[x — a] differs fromv only in that
it assigns a to the variable x.

Standard temporal operators suchahsays(0O), eventually(<), andrelease(R), typical binary
connectives such ag D, =, and the existential quantifierare defined in terms of these basic elements

as follows.
(V) B (= A=), (¢ 2 ¥) E'(=pv),
(o= 1) E' (@A) V (~pA—), (3x) L' (v%) —p,
(Y Ry) dzefﬂ(ﬁwUﬂx), O dZEf(falseRw),
O aef (trueUp).

The definitions fowalid andsatisfiableformula are the same as in LTL. They follow.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 25

Definition 3.4 (Valid formula) We say that a formula is valid, denoted by= ¢, if for every compu-
tationo, o = ¢.

Definition 3.5 (Satisfiable formula) We say that a formula is satisfiable, if for some computation
o= ¢

Asin LTL, any f-FOLTL formula can be rewritten as formula that specifiesst'emporal condition
that must hold in the first state and a condition that has to be verified in the flofj®tate. Identity (1)
below can be used to transform any formula to that form. That and othetitide below are key to the
design of the algorithm that transforms f-FOLTL formulae to automata.

Proposition 3.1 Let ¢ ¢, and xy be fFOLTL formulae, and assume variable x is not freeyin The

following formulae are valid.

1. pUx=xVyYAO(ypUx),
2. ~Ogp = final vV Oy,
3. pUEX) ¢ = (3 (¥ Us),
4. PR(VX)p = (vX) (P Re),
5. YyRx=xA(finalVyvVO(pRy)).
Proof: See Section A.1 (page 162). [|

Limiting f-FOLTL to finite computations results in several obvious discrepanici¢he interpreta-
tion of LTL and f-FOLTL formulae. In particular, discrepancies canemsth LTL formulae whose
models can only be infinite. For example, in f-FOLTL the formulge > Oy) A DO() D Oyp) is equiv-
alent tod—(p V). This is because ip or 1) were true in some state of a model, the model the formula
would have to be an infinite sequence of states. A second example is theotfiula Op which in
f-FOLTL is notequivalent top A OOp. If it were, Op could never be true in computations with a single
state. The interpretation of thie operator, represented by identity 2 of Proposition 3.1, is also a source
of discrepancies. The reader familiar with LTL, will note that identity 2 regdatTL's equivalence
—-Op = O=p. This formula does not hold in f-FOLTL becauSe is true in a state iff there exists a
next state that satisfies Since our logic refers to finite sequences of states, the last state ahealeh
has no successor, and therefore in such states holds for anyy.

Although there are differences between LTL and f-FOLTL, their exgike power is similar when it
comes to describing temporally extended goals for finite planning. Indde@LiTL has the advantage
that it is tailored to refer to finite plans. As a consequence, we can exgoats that cannot be expressed

with LTL. Some examples follow.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 26

Example 3.1 The following are temporal f-FOLTL goals together with their intuitive meaning.

e <(final A (3c) (corridor(c) A at(Robotc))): In the final stateat(Robotc) for some corridorc.
This is one way of encoding final-state goals in f-FOLTL.

e O((closedD1) AO—closedD;)) D OOOclosedD;)): If D; was closed at plan stépand then
becomes opened at plan siep1, then it must be closed by plan step 3, for everyi.

o (Vry,r2). priorityOver(ri,r2) O ((—deliveredry) Udeliveredry)) A &deliveredrz)): If ri has
priority overry thenr, must be delivered, but not beforg

o O(p(a) AOOfinal): p(a) must hold true two states before the plan ends. This is an example of a
goal that cannot be expressed in LTL, since it does not haviértileconstant.

When writing f-FOLTL goals, one has to be careful not to use formulaerérpiire infinite plans,
since they may be reduced to a contradictory formula. Indeed, the algonthpresent in the next
section will automatically generate a non-accepting automaton for some offtherédae.

The algorithm we present in the next section generates an automaton ¢eptsamodels of f-
FOLTL formula expressed in a syntactical form that we eatended prenex normal form

Definition 3.6 (Extended Prenex Normal Form (EPNF)) A formula is inextended prenex normal form
(EPNF) if it is of the form(Q1x1)(Q2X2) - - (QnXn) ¢, Where Q € {V,3} and all quantifiers that occur
in ¢ quantify on first-order, atemporal, subformulae.

Some formulae that are not in EPNF, have an EPNF equivalent. For exaingds be proven
that (vx) O(P(x) D (3y) ©Q(x,y)) is equivalent to(vx) O(P(x) D <(3y) Q(x,y)), which is in EPNF.
However, there are formulae that do not have an EPNF equivalenfigxgP(x) A ¢Q(X)).

3.2.2 Planning Instances

To simplify the exposition of the concepts of this chapter, we represemiplginstances using causal
rules instead of STRIPS or ADL operators. A planning instances is a téple, G, 7), whereZ is the
initial state represented as a set of first-order (ground) positive faris;thedomain descriptiong is

a temporal formula describing tlypal, and7 is a (possibly empty) set aferived predicatelefinitions,
which are predicates that are defined in terms of other fluents of the domain.

A domain description is a tupl® = (Ob s C,R), whereObjsis a finite set of objectg] is a set of
causal rulesandR a set ofaction precondition rulesCausal rules correspond to positive and negative
effect axiomsn the Situation Calculus (Pednault, 1989; McCarthy and Hayes, 1969)suéis, we
remark that any planning instance described in ADL (plus derived mtsircan be described in terms

of causal rules (plus derived predicates) and vice versa.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 27

Ry Ry Rs Ry
o . 04 .02
! (612 ﬁzs KD34
%
Dl D2
J, Robot
Cy C

Figure 3.1: The robot domain.

We represent positive and negative causal rules by the tapk, c(X), f (X)) and(a(x),c(X), ~f (X))
respectively, wher@(x) is anaction term f(X) is afluent term andc(X) is a first-order formula, each
of them with free variables among thosexn (a(X), ?(X), /(X)) € C expresses that fluent liter&(x)
becomes true after performing actia(x) in the current state if conditio®(X) holds. As with ADL
operators (Pednault, 1989), the conditic(x), can contain quantified FO subformulae. Finally, we
assume that for each action-fluent pair, there exists at most one pasitivene negative causal rule
in C. Free variables it are assumed to be universally quantified. TheJ&aif action precondition
rules consists of tuple&(X), (X)), such thag(X) is an action term, and(X) is a first-order condition.
Intuitively (a,7) € R means that it is possible to execuatén a state that satisfies conditioan Free
variables inC or R are assumed to be universally quantified.

Example 3.2 Consider the robot domain defined by Bacchus and Kabanza (19<&).ihstance of this
domain, depicted in Figure 3.1, there is a robot, some objects and six locafiomsof the locations
correspond to roomsRy,...,Ry), and two of them represent the corrid@; (andC;). Rooms are
connected by doors, which can be opened or closed. The robot canbebween connected rooms,
close or open doors, and grasp or drop objects. It can hold onet @bgetime. The causal rules for this
domain are the following.

Positive Negative
(oper(d),true,openedd)) (clos€d),true,~openedd))
(grasp(0), true, holding(o)) (grasp(0),true,~handempty

(releas€o), true,handempty (releaséo), true, —holding(0))
(movéx,y),0 = robotV holding(o),at(o,y)) | (movéx,y),0=robotV holding(o), —at(o, X))

3.2.3 Causal Rules for Arbitrary Formulae

The causal rules of a domain describe the dynamics of individual fluelmisever, to model an NFA
in a planning domain, we must also know the dynamics of arbitrary complex faensuch as for
example, the causal rule fat(o, R1) A holding(o).

To obtain these rules one can use regression, a well-known technigoduicgéd by Waldinger
(1977), and then extended for ADL by Pednault (1989), and fugbeeralized by Reiter (1991). Since

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 28

regression is well-studied in the literature and is not central to this chapterwe only show the form
of causal rules for arbitrary formulae. For more details on the corrsstoiethis approach, we refer the
reader to Reiter’s book (2001) or Pednault’s paper (1989).

To characterize the causal rules without articulating them explicitly, we int@&elow the relation
causes that holds over the set of valid causal rules for arbitrary formulae. d&fi@ition for causes
below only includes rules for negation and conjunction since disjunctiondislfoom these. Here, we
assume that(X) is a boolean formula of fluents with free variables among the vector of Vesi&b
Furthermoref'is a vector of variables or constants.

Definition 3.7 causes is the least set that satisfies the following properties:
1. (basecase) If (a,c,(—)f) € C then(a,c,(—)f) € causes.

2. (instantiation & negation) If (a(X),®3 ,(X),«(X)) € causes, then,

(a) (a(X),x=tA®;,(X),a(f)) € causes, and

(b) (a(X),x=tA®P;,(X),~~a(f)) € causes.

3. (conjunction) If the following causal rules are inauses:

(a(x), @54 (%), a(tr)), (a(x), g 4 (%), ~(t1)),
(a(x), @1 5(X), B(t2)), (a(x), @ 5(x),~B(t2))

then the following are also inauses:

(@) (a()?),dJ;r’a/\ﬁ,a(tZ) A B(f2)) € causes, where
D2 ong = (Paa(RAPL5(X) V (a(R) APy (AP 5(X)) V (BR) APy 5(R) AP, (X))
(b) (a(X), Py 05 ~(alti) AB(E2))), Whered, ;= Py, () VP 5(X).

Rules such as this will be extensively used to produce the translated dofftandownside of this
approach is its space complexity; the size of the conditions in the causal &g @v exponentially,
as it is shown by the following proposition.

Proposition 3.2 Let ¢ be a an atemporal formula with n binary boolean connectives such that all its

atomic sub-formulae are fluent ground terms. Moreover, let F be thefsgomic sub-formulae a.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 29

Then, assuming no simplifications are made, the aggregated size olused cales for(—)¢ is Q(4"m),
where m is the size of the smallest causal rule among all flueatk .f

Proof: Straightforward by solving a recursive equation for a lower bound ersite of the causal rules
for . |

For this reason we will also provide a more efficient translation, basedaved predicates. We
will introduce this translation in the following chapters.

3.3 From f-FOLTL to Parameterized NFA

It is a well known fact that for every LTL formula, there exists a Bchi automatcHA@ that accepts
an infinite state sequeneeif and only if o |= ¢ (Vardi and Wolper, 1994). In this section, we provide
an algorithm for the construction of parameterized finite state automata (RN&2gccept the models
of -FOLTL formulae in EPNF. This translation step is essential to converMiB&s into standard,
final-state goals.

The rest of the section starts by introducing parameterized automata. Teseitbes an algorithm
that accepts models of f-FOLTL formulae, and establishes it correctRasaly, it comments on how
these automata can be simplified.

3.3.1 Parameterized Finite-State Automata

Parameterized finite-state automata represent families of finite-state autorhataptit to these au-
tomata are models of f-FOLTL formulae, which are either rejected or aateptee first automaton
we utilize is the parameterized, state-labeled, finite-state automaton (PSLAFSLNFA is like a
nondeterministic finite-state automaton (NFA) but with two main differences. fif$tedifference, is
that its states are labeled with first-order formulae. Intuitively, wheneeeatomaton is in staggla-
beledL(q), it checks that all formulae ih(q) are true in the interpretation that is at the beginning of its
input. The second main difference is that PSLNFA are parameterizedywigans that its acceptance
condition can be affected by a set of parameters. The parametersialdesthat may occur free in the
labels of the states. A formal definition of a PSLNFA follows.

Definition 3.8 (PSLNFA) A parameterized state-labeled NFA (PSLNFA) is a tuple
A= <Q,Z(S,D>,5, La r?ZQ07F>a

where Q is a finite set of states, angd Q Q is a set of initial states. The alphak®tS D) is a set of
first-order Lgo(S)-interpretations over the same domdh such that they assign the same denotation

3A Buichi automaton is an extension of a finite state automaton to infinite inputs.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 30

to all function symbols in S§ C Q x Q is a transition relation; FC Q is the set of final stategis a
string of variables;" € {V,3}* is a string of quantifiers such tha&ft | = |x|, and the labeling function
L : Q — 24709 s such that ifp € L(q) then all the free variables af are inX.

A PSLNFA with no quantifiers accepts a string of interpretatigns. s, iff there is a pathyg. .. gn
from an initial automaton state to a final automaton state such that labels of tieetstaézsed are true
in the corresponding interpretation (i.e., all formulad.iio;) are true ins). When adding quantifiers,
the free variables in the labels are interpreted based on the quantifiersor example, if a PSLNFA
contains a single parameterand its quantifier is &, then the PSLNFA accepss. . . s, if for all ways
of interpretingx, there is a path to an accepting state with the condition above.

To give a formal definition of the language accepted by a PSLNFA wealaffew more concepts.
For any PSLNFAA = (Q,%(S D), 6,L,I,X Qo, F), we define an automaton augmented with function
that maps variables of the language to elements of the dabalinis augmented automaton is denoted

by A-v, and formally corresponds to a tuple that contaires a new element.

Definition 3.9 (Run of a Quantifier-Free, Augmented PSLNFA) A run of an augmented automaton
with no quantifiers A= (Q,%(S,D),,L,e,e,Qo,F,v) over a string §s1--- S, € Z(S D)* is a string of
automaton statep = qod1 - - - gn Such that(qj,qj+1) € 6, and(s,v) = L(qi), for alli € {0,1,...,n},
andall je {0,1,...,n—1}.

A string will be accepted by an augmented automaton with no quantifiers if thaneirsfor it that
ends in a final state. Formally,

Definition 3.10 (Strings Accepted by a Quantifier-Free Augmented PISNFA) A string of interpre-
tationso € Z(S,D)* is acceptedy an augmented automaton with no quantifiers A iff there exists a run
of A,p=QqoQ1---gnONno, suchthatge F.

Now we are ready to define when a string is accepted by a regular aughiBINFA. The ac-
ceptance condition is strongly related to the definition of truth of a first-diaterula. Intuitively, for
PSLNFAA - v with an initial quantifielv (respectivelyd), we will say that a string is accepted iff all
(respectively, some) of the augmented automaten’ accepts the string, wheté extendss with an
assignment for a new variable. Formally,

Definition 3.11 (String Accepted by a PSLNFA) String o € 2(S D)* is acceptedby an augmented
PSLNFA with quantifiers A= (Q,Z(S,D),d,L,VI,xX,Qo,F,v), where V is eithely or 3 and x is a
variable, iff when V=V (respectively, when ¥ 3) ¢ is accepted by automaton

A/ = <Q7Z(S7D)767L7r7)?7Q07F7V[X_> a}),

for all (respectively, for some)aD.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 31

Finally, we are now able to define the language accepted by a PSLNFA.

Definition 3.12 (Language Accepted by a PSLNFA)A PSLNFA A= (Q,%(S D), 6,L,I", X, Qo,F) ac-
cepts the set of alt € 2(S,D)*, such that is accepted by all augmented automatonsg Aor everyv

that assigns elements 1 to variables inx.

Example Consider the PSLNFA = ({do,q1},2,0,L,I" Xy, {do},{a1}), whered = {(qo,01), (d1,01)},
andL(qo) = P(x) andL (1) = Q(x,Yy). A accepts the models ¢¥x). (Vy). P(x) AOOQ(X,y) if ' =WV
and accepts the models @fx). (Jy).P(x) A OOQ(x,y) in casel’ = V3. Figure 3.2 shows a graphical
representation of a PSLNFA that can accept the models of €ithgOoP(x) or (3x) OP(X).

3.3.2 The algorithm

The translation algorithm is a modification of the one proposed by Gerth, ,Pédedi, and Wolper
(1995). In contrast to their algorithm, ours generates a PSLNFA insfema8iachi automaton.

To represent a node of the automaton, the algorithm uses Eeatfs data structuréode which
is a tuple(NamelncomingNew Old,Next. The fieldNamecontains the name of the noderoming
is the list of node names with an outgoing edge leadinjltale New contains first-order formulae
that must hold at the current state but that have not been processlel dlgorithm;Old contains the
formulae that must hold in the nodes that have been processed by thhaigdlextcontains temporal
formulae that have to be true in the immediate successdi®dé

In the following, suppose we want to build a PSLNFA for sentepde EPNF. We denote the string
of quantifiers and variables at the beginningby QPrefix(p). To generate the PSLNFA, we strip
QPrefix(p) from ¢ and then leave the formula just in terms of the temporal operétarsdR, and the
binary boolean operators andv. We then push al's inside such that they occur only in front of
first-order formulae. The resulting formula, say,is the input for the procedure we describe below.
Note that the construction will start with a single node that contairis its Newfield.

When processing nodé, the algorithm checks whether there are pending formulakein If there
are none, then the node can be added to\tbéeSet Two cases can hold:

1. If there is already a node ModeSetwith the same field®ld andNext, then itsincominglist is
updated by adding those nodesNis incoming list. (Line 4).

2. If there is no such node, théhis added tdNodeSet Then, a new node is created for processing
if final ¢ OIld. This node containhl in its incoming list, and the fielthewset toN’s Nextfield.
The fieldsNextandOld of the new node are empty. (Lines 5-12).

Intuitively, in this case we are creating a new node, successor to thentuwode, intended to
verify the formulae in théNextset. Notice that the new node will only be createéirifil ¢ Old,

since that is the only case in which a node can have a successor.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 32

Otherwise, ifNewis not empty, formula is removed fromNewand added t®Id. Then,

1. In casey is a literal, or of the form(Vx) ¢(x), or (3x) #(x), then if —n is in Old, the node is
discarded (a contradiction has occurred). Otherwjde,added tdOld and the node continues to
be processed.

2. Otherwise:

(@) Ifn=¢ A, bothy, andy are added ttNew
(b) If n =01, theny is added tdNext

(c) If nis one ofp V1, U1, or pRyY, thenN is split into two nodes. The seétewl(n)
andNew2(n) are added, respectively, to theewfield of the first and second nodes. These

functions are defined as follows:

n Newl(n) New2(n)
eV | {p} {v}
eUy | {9,0(pUy)} {v}
Ry | {¢,final VO(oRY)} | {9}

The intuition of the split lies in standard f-FOLTL equivalences. For exampléiy is
equivalent ta) V (¢ A O(¢U1)), thus one node verifies the conditign whereas the other
verifiesp AO(pU1).

Definition 3.13 (A~ (q)) LetA(q) be the value of the Old field for node g, when node g has been pro-
cessed. We define (q) as the set containing all the literals ify(q) or formulae of the form{Qx) ¢,
wherey is a first-order (atemporal) formula.

For an EPNF formulg, we define PSLNFAA, = (Q,Z(S,D),4,L,I,X,Qo,F), where
e Q={n|ne NodeSe},
e Qo={qe Q]Init € Incomingq)}.

X is the maximal subsequence of variableQiPrefix(yp), andl is the maximal subsequence of

quantifiers inQPrefix ()

4 is such that(q,q') iff gandq’ are connected in the graph (i.g.¢ Incomindq)).

F = {g€ Q|Next(q) = § and—final ¢ A~ (q)}.

L(q) is equal taA~(q) \ {final, —final}.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 33

Algorithm 3.1 Converts an f-FOLTL formulg into a graph used to defirg,.

1:
2:

10:

12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

function ExPAND(NodeNodeSét
if New(Node =) then
if 3N € NodeSetandOId(N) = Old(Nodg andNextN) = NextNode then
IncomingdN) < IncomingN) U IncomingNode
return NodeSet
else iffinal ¢ Old(Nodg then
return EXPAND([Name— Father« newnameg),
Incoming— NaméNode,
New« NextNode,Old « ()
Next— 0],{Node UNodeSet
else ifNext(Node = () then return {Node} UNodeSet
else returnNodeSet > Nodeis discarded
end if
else
choosey € New(Nodeg
NewNode — NewNode \ {n}
if 7 #£ Trueandn # Falsethen
Old(Node < Old(Nodg U {n}
end if
if nis a literal,(Qx) ¢, Trueor Falsethen
if n = Falseor -1 € Old(Node then
return (NodeSet > Nodeis discarded
else
return ExpAND(NodeNodeSet
end if
else ifn = O¢p then
NextNode — NextNode U{p}
return EXPAND(NodeNodeSet
else ifn = p A then
NewNode «— New(Node U ({y,v} \ Old(Nodé)
return ExrAND(NodeNodeSet
elseifn = Vv or Ry or pU then
Nodel < SplitNodgNodeNew1(n))
Node « SplitNodg Node New2 (7))
return ExPAND(Node2,ExPAND(Nodel,NodeSet))
end if
end if
end function
function SPLITNODE(Nodeg)
NewNode— [Name— newnamé), Father<— Namé&Node
Incoming— IncomingNode,New«— New(Nodg U¢, Old« Old(Nodg,Next— Next(Node]
return NewNode
end function
function GENGRAPHp)
ExPAND([Name— Father— newnamé), Incoming— {Init },New«— {,},0ld < 0], 0)
end function

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 34

. 0:
Initial graph: New= {true UP(x)}
Oold =
Next= {}

___--""Node Ois splitintwo--____

B

PoE
1: 2:
New= JL{true, Otrue UP(x) New= {P(x)}
old = {} old={}
Next={} Next={}
:some iterations later:
1: 2:
New= New=
Old = ‘:Vrt%ue} Oold = {{P}(x)}
Next= {true UP(x)} Next={}
¢ (two new successors are created) ¢
3: 4:
New= {true UP(x)} ch}N,: E;
Qld = {}, Next— {}
Next= {} -
a few steps later...
1: 2.
New= {} New =
Old = {true} Old = {P(x) }
Next= {true UP(x)} Next={}
final grapp \/4' ¢
New=
Oold = {{
Next= {}
Resulting automaton e O

Figure 3.2: Algorithm execution for formulg'x) GP(x).

Figure 3.2 shows an example of the generation of a PSLNFABOrOA(X).

This theorem states the correctness of the algorithm.

Theorem 3.1 Let A, be the automaton constructed by our algorithm from &CLTL formula in
EPNF. Then 4 accepts exactly the models:of

Proof: See Section A.2 (page 163). [

An immediate consequence of this theorem is that our algorithm generategogpting automata
for temporal formulae that are only satisfied by infinite models, and that teusaatisfiable f-FOLTL
formulae. Sometimes this would be reflected by the fact that the automaton aloeave accepting
states at all (this happens ferA O(p D Oy) ADO(yp D Op), or by the fact that some state visited
by all paths to an accepting state is labeled with an inconsistent first-omeunltee (this is the case of
OP(a) A (YXx) O(P(x) D OP(x))). In the former case we are able to recognize that the goal is intrinsically

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 35

unachievable by just looking at the automaton, whereas in the latter wetadmiitan general, since
checking whether the labeling formulae are consistent is undecidable.

Simplifying PSLNFAs into PNFAs

The algorithm presented above often produces automata that are mueh thigg the optimal. To
simplify the automata, we have used a modification of the algorithm proposetebgeni and Holz-
mann (2000). This algorithm uses a simulation technique to simplify the automataxpériments
conducted by Fritz (2003), it was shown to be slightly better than LTL2ADdn(ele, Giunchiglia, and
Vardi, 1999) at simplifying Bichi automata.

To apply the algorithm directly, we need an automaton representation in waidgditions rather than
states are labelled with formulae. To that end, we introduce parameteriZesi(RNFAS). Intuitively,

a PNFA is like a PSLNFA but such thaansitions—not states—are labeled with first-order formulae.
Formally, a PNFA is a tuplé = (Q,Z(SD),4,I,X, Qo,F), whereQ, Qo, F, I', X, and (S, D) are
defined as in PSLNFAs. Finally, the labeled transition relafiima subset of) x 2£70(S x Q.

As before, given an assignment of variables to domain variahlege can define an augmented
version ofA denoted byA-v. A run of A-v over the string of states = s;---5, € Z(SD)* is a
sequence = o0z - - - Oy Wherego € Qo, and for some labdl such that(g;,L,q 1) €6, (S41,7) =L,
foralli € {0,...,n—1}. Runyp is acceptingif g, € F. Finally, the acceptance for PNFAs is defined
analogously to that of PSLNFAs, and therefore we omit it here.

It is straightforward to convert a PSLNFA to an equivalent PNFA byirgldne initial state and
copying labels of states to any incoming transition. Figure 3.3 shows exanfi&d-As generated by
our implementation for some f-FOLTL formulae. The automaton for formula (barameterized on
variablex, which is indicated beside the state name.

Size complexity of the NFA

In theory, the resulting automaton can be exponential in the size of formula imdfst case. Simplifi-
cations reduce the number of states of the PNFA significantly.

Proposition 3.3 Let be in negated normal form, then the number of states,dg&°(¢).

Proof: Note that the Algorithm 3.1 generates a new node if there is no previouskngximde with
identical Old and Next fields. In the worst case it will generate all plausible nodes, which is doun
by the total number of possible combinations @kd and Next This number is upper-bounded by
25ublp) 5 2sUbY) wheresul(y) is the number of subformulae gf The proof is concluded by observing
thatsub(y) = O(|¢)|). [

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 36

{}

{(vd)closedd),
—at(Robot, Ry),
{~,—1p} / \ ai(x, Ry) }
I’
har(Robon Ry, ‘
{ﬁgp7 ﬁw} {—at(Robot, Ry) } U atk Ry)}
(a

) (b)

Figure 3.3: Simplified PNFA (a)0(¢ D Oy) A O(¢ D Oyp), and (b) O(at(RobotR;) D
O<(Vd) closedd)) A (Yx) CDat(x,Ra).

{(vd)closedd),
—at(Robot, Ry)

Unfortunately, the upper bound above is tight. There are simple cases adrgroposed translation
blows up.

Proposition 3.4 Any PNFA for formulabpi A Cp2 A ... A<, where a, po,. .., Pn are propositions,
has at leas®" states.

Proof: See Section A.3 (page 166). [

Intuitively, each state of the PNFA for the above mentioned formula keepk tfaa particular
combination of propositions that has been true in the input read so faerteless, in Section 3.4.3 we
describe techniques that wilbt blow up the planning domain when transforming formulae like the one
in Proposition 3.4. Also, it is critical to note that in practice, the number of stHtb§-As for natural
goals were generally equivalent to the size of our formulae (see Sechpn 3

3.4 Compiling PNFAs into a Planning Instance

We are now ready to show how the PNFA can be encoded in a planningdastlmis will be essential
to transform TEGs into classical final-state goals.

During the execution a plamay - - - an, a set of planning states= 55 - - - &, is generated. In what
follows we make no distinction between a planning state (which are sets ofdfiost-order facts) and
a first-order interpretation. Thus,sfis a planning state, we say that an atomic groundP4c} is true
ins(i.e.,sk=P(0) if and only if P(C) € s. This definition extends trivially to non-atomic formulae.

In the planning domain, each state of the automaton is represented by a Mazatformally, for
each statey of the automatorA we add to the domain a new flueB§(X), wherex is the vector of
variables used in the definition 8f The translation is such that if a sequence of actm@s - - - a, is
performed in statg, generating the succession of states ss; - - - S5, thenEq(C) is true ins,, for a
vector of constants, if and only if there is a rup of A, - v on ¢ that ends in statg, wherev assigns

the variables irXto constantg.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 37

Once the PNFA is modelled within the domain, the temporal goal in the newly gedestamain
is reduced to a property of the final state alone. Intuitively, this propentyesponds to the accepting
condition of the automaton.

To represent the dynamics of the states of the automaton, there are twatalessnThe first is to
modify the domain’scausal rulesto give an account of their change. The second, is to define them
asderived predicatesr axioms The derived predicates approach we introduce here prove to be more
efficient, both in theory and in practice.

Henceforth, we assume the following:

e We start with a planning instanc&, D, G, T), whereg is a temporal formula in f-FOLTL.

e Temporal goal is translated to the PNFAg = (Q,Z,5,I,X,Qo,F), with ' =V; -- -V, andX =
X1+ Xn-

¢ To simplify notation, we denote byred(q) the set of predecessors gf E.g., in Fig.| 3.3(b),
pred(do) = {Co, th }-

o We defineApq(X) as the formuld/ 4, ;AL E.g., in Fig.! 3.3(b) Aq,,q, = (V) closedd) A

—at(Robot R;). Note that< corresponds to the variable vectorAg, and therefored are all the
variables that may appear freelp q(X).

e For first-order formulae, we denote its grounded version gyund(y). This formula is equiva-
lent toy, but that has no quantifiers. Note that it is possible to compute this formulaarogng
domains we are dealing with have a finite number of objegtaind is defined as follows,

© if © is an atomic proposition
def | —ground(w)) if op=-

ground(?¥)) Aground(y) if o =1 Ax
Nacobjsground(i(@)) — if ¢ = (Vx)1(x)

3.4.1 Translating PNFA to Causal Rules

Recall that we have translated our TEG into a PNFA and to encode this PNRA planning domain,
we have introduced fluent;, one for each statg of the automaton. The final step is defining the
dynamics of this domain. We propose two methods to do that.

In the first translation, we encode the dynamics of the fligrds causal rules. For each fludt
we generate a new set of causal rules. The resulting new rules @@ tadtie sef’, which is initialized
to 0. In the second, we define the dynamicsEgfaxiomatically, through the so-called PDDL derived

predicates.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 38

{closedDy),
—at(Robot, Ry) {closec(Dl)
—at(Robot, Rl)

ath4

{ —at(Robot, Ry),

{—at(Robot Ry)} U atlx Ra)}

Figure 3.4: A PNFA ford(at(Robot R;) D O<closedDy)) A (¥Yx) COat(X, Ra).

We later show that the second translation is much more efficient than the flistinfroduction
of the first one is justified for a pragmatic reason, since not many stdtesadrt planners are able to
handle derived predicates.

New Causal Rules

To understand the intuition behind the translation, consider the NFA showigimeF3.3(b). Sup-
poseEy, is false in a state;. After performing actiorg;, fluentEg, must become true in the result-
ing state,s 4, iff either Eq, was true ins and —at(Robot R;) A at(Oq,Ry) is true ins; or Eg, was
true ins and-at(Robot R;) A (Vd) closedd) A at(O1,R4) is true ins_1. Note that—at(Robot Ry) A
(vd)closedd) A at(O1,R4) can be true irs 1 because made the property true, or because it was true
in 5 anda did not make it false.

To write the positive causal rule fdfq, (X) on actiona, we must only refer to the state prior to
the execution ofa. To do so, we appeal to regression. For each adiothe positive action rule
(8, @, g, (X),Eq(X)) is added t€’, whered, ¢ (X) stands for:

Vo B A P goundinnam) ¥ Apat) AP i q)): (3.1)
pePred(q)\{q}

Note that®, ground(»,) IS @ condition obtained by regression.

Apg
For the negative case, consider stgg®f the automaton. IEy, is true in some statg, then when
getting to states_; after performingg, it will become false if-at(Robot R;) holds ins 1 andit does
not happen that ik, is true ins and—at(Robot Ry) A closedDy) is true ins 1.
Again, we need to appeal to regression. For each aetitire positive action ruléa, CD;Eq, —Eq) is

added taC’, where®_ ¢ () stands for:

2800 A (P ground(rga() ¥ Aaa() A TP ind(aga) (3.2)

Note that)\q q(X) is false if there is no self transition o

Example 3.2 (cont.) Inthe robots domain, consider the automaton constructed for forfial@Robot R;)
O<closedD)) A (Vx) &Oat(x,R4) shown in Figure 3.4. We would add the following positive causal

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 39

rule for fluentEgy, and actiorclosgXx).
(clos€x),Eq, (X) A [at(O1,R4) A —at(Robot Ry) A closedD1)V

at(O1,Rq) A —at(Robot Ry) Ax=D1)]V
Eqo(X) Aat(O1,Ra) A —at(Robot Ry), Eg, (X))

New Initial State

The original initial state must also be modified, since it now must include whientsi, are initially
true. The new set of factg is the following:

7' ={Eq(c1,...,Cn) | (C1,...,Cn) € ObjS', p€ Qo,and for some, g, (p,L,q) € 6,Z = Apq(C1,---,Cn)}-

l.e., are the factBq(cy, . . . ,Cn) such thaty is reachable for some initial stapehrough a transition whose
label is a fact that is true if.

New Goal & Planning Instance

Intuitively, the automator®g accepts iff the temporally extended gdalis satisfied. Therefore, the
new goalG’ = QPrefix(G). V per Ep(X1,. .-, Xn), is defined according to the acceptance condition of the
NFA, i.e. the goal is achieved K¢ is in some final state. Note th&t is a non-temporal goal.

The final planning instande is (ZUZ',CUC',R,G', T).

Size Complexity

Since we have generated a standard planning instance, the complexitisibagroblem associated
is still PSPACE-hard. However, we the size of the new problem is worst-case expahierthe size of
the original problem. This is stated by the following proposition.

Proposition 3.5 The size o€’ is wost-case |Q[2°Y) where/ is the maximum size of a grounded tran-
sition in Ag, and n is the number of action terms in the domain.

Proof: For each of thgQ| predicates we need new rules. From Proposition 3.2, each of them is
worst-case exponential on the size of the (grounded) transition formula. |

3.4.2 Translation to Derived Predicates (axioms)

In this translation we propose to write a derived predicate definitioE§ox). However, as we saw
previously, the truth value oEy(X) in s1 depends on whether some fluefg(X) hold true in the
previous state, whergis a state of the automaton. Therefore, we need a way to represent ig state

what fluentsE, were true in the previous state.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 40

Thus, for each statg of the automaton we use an auxiliary fluétrevy(X) which is true in a plan
statesiff Eqwas true in the previous state. The dynamics of fllRetg(X) is described by the following
causal rules, which are addeddo

(@,Eq(X), Prew(X)), (a,~Eq(X),~Prew(X)),

for each actiora. The following definitions are also added7d:

Eq(X) = \/ Prevp(X) A Apq(X),

pEpred(q)
New Initial State

The new initial state must specify which fluents of the fdPmev, are true. These are precisely those
facts that correspond to the initial state of the automaton.

7' = {Prey(cy,...,cn) |q € Qo, (C1,...,C1) € Objs'}.

New Goal & Planning Instance

The new goal is defined by’ = (Vix1) -+ (VaXn) V per Ep, @and the new planning instance(BUZ’,C U
C'\R,G", TUT').

Size Complexity

Planning with the new translated theory is theoretically as hard as planning @ithi¢final theory. The
amount of additional effort required to update newly created fluentdlécted in the size of .

Proposition 3.6 The size off’ is O(n|Q|¢) where/ is the maximum size of a transition i Aand n is
the number of action terms in the domain. The siz&€ @ only Q\n|Q)|).

3.4.3 Avoiding Blowups: Multiple Goals and Formula Splitting

In the previous section we saw that the size of the resulting translationdeparthe number of states
in the automaton|Q|, and, in the case of using the regression approach, it is worst-cageemntial in
the size of the transitions. Previously, we also saw [@ais worst-case exponential in the size of the
temporal formula. This means that we could be generating quite big translatiensf we choose to
use derived predicates.

Below we present two techniques that will reduce the size of the translafibe.first one aims
at reducing total number of states of the automata, while the seconds aindsieingethe size of the
transitions, an issue that is critical when using regression. These taelrdce not guaranteed to always

reduce significantly the size of the resulting translation.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 41

Multiple Goals

Fortunately, there is a way to sometimes reduce this size complexity by regarfdimyula as specifying

a goal composed of multiple individual goals. Consider for example the farge: Gpi A ... APn,
which we know has an exponential NFA. We know thatill be satisfied if each of the conjunctsp;

is satisfied. If instead of generating a unique NFA fowe generated differentNFA for each<p,

then we could just plan for a goal equivalent to the conjunction of thepsaeee conditions of each of
those automata. For this particulaithis means that the number of states in the new planning instance
is linear inn instead of exponential.

If the TEG, without its quantifier prefix, corresponds to a formula in whighttip-level operators are
boolean, then we consider each of the (temporal) subformulae as aemts subgoal, and therefore
we build an automaton for each of them.

Formally, lety be a TEG with its quantifier prefix removed. Let functigty) = {1, 02,...,¢n}
correspond to the set of all subformulaemivhose top-level operator is a temporal one, and such that
they are maximal under subformulae inclusion (i.e., no pair of different elespgandy; in Y(y) are
subformulae of each other). For each of ¢hec Y{¢) we construct a PNFA, and compute its accepting
condition,G;, expressed in terms of its accepting predicates. The final (classicdlrgo@sponds to a
formula like , but in which ally; € Y(p) are replaced b;.

Example 3.3 Let d:efD(p D OQq) Vv (Or ASs). HereY(p) = {O(p D <€q),<r,<sh. The final (clas-
sical) goal condition corresponds® V (G2 A G3), whereG;, G, andGs correspond to the accepting
conditions of automata farn(p O <©q), <r, and<s.

Formula Splitting

On the other hand a formula transformation can be used to reduce the simetadnsition formulae.
Consider for example the propositional formualds’ o Adep closedd). The automaton generated for
this formula has transitions of sizB|, and therefore the causal rules have size exponential|inin
this case, however, we could use the fact thé equivalent to\ ., Oclosedd), and use the method
described above to generai® automata with a single proposition in their transitions. Again, in this
case we go from an exponential translation to a polynomial one. The dramesion we have done to
formulaca is what we calformula splitting

Splitting can be generalized to any combination of boolean formulae. In ournmepltion, before

generating the automata, we preprocess the TEG formula using the folMAG@J_T L equivalences:

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 42

and other similar equivalences that hold for the temporal connedtivesd O, effectively “pulling”
binary connectives up in the formulae. With this technique, we generate antseata but avoid the
risk of exponential explosion.

The formal implementation is given by Algorithm 3.2. TheL$r function calls repeatedly the
BREAKUP function until a fixed point is reached.REAKUP simply applies one an f-FOLTL identity

generating an equivalent formula.

Algorithm 3.2 A simple algorithm for splitting formulae to avoid blowups
1: function BREAKUP(f-FOLTL formula)
2: if ¢ unifies withO(y A x) then

3 return O(BREAKUP(1))ABREAKUP(Y))

4 else ifp unifies withy) U(y Vv ¢) then

5 return BREAKUP(y))UBREAKUP(x) V BREAKUP(y))UBREAKUP(()

6: else ifp unifies withyy R(x A ¢) then

7

8

9

return BREAKUP())UBREAKUP(x) A BREAKUP(y))UBREAKUP(()
end if
: end function
10: function SpLIT(f-FOLTL formulay)
11 1« o stripped fromQPrefix(y)

12: repeat
13: Y —)
14: 1) «—BREAKUP(3))

15: until ¢’ =
16: end function

3.4.4 Search Space Pruning by Progression

As previously noted, planners for TEGs such as TAR are able to prune the search space by pro-
gressing temporal formulae representing the goal. A stet@runed by progression if the progressed
temporal goal irs is equivalent tofalse. Intuitively, this means that there is no possible sequence of
actions that when executedsnvould lead to the satisfaction of the goal.

Using our approach we can also prune the search space in a similar wajustfate the intuition
in the propositional case. Suppose we have constructed an NFA forgpegitional TEGS. Since our
NFAs have no non-final states that do not lead to a final state, if at soteedsiting the plan all fluents
Eq are false for everyg € Q, then this means that the goal will never be satisfied. We can also do this in
the first-order case by considering the quantifiers of the TEG.

In the planning domain the pruning can be achieved in two ways. One waydslto a

QPrefix(¢p) \/ Eq(%)

aeQ

as a state constraint (safety constraint The other way is to add this condition to all of the action’s

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 43

Prb.| Comp.| No.| CR+FF| DP+FFy
CR/DP|Sts.| t| /7] t Y4
1/.02/.02] 2|.02| 6|.02 6
2(.02/.01 2|.02| 8|.01 8
3/.09/.06| 15/.04|10|.04| 10
4|.06/.07/ 5|.03| 6/|.02 6
5/.07/.03 6|.04|15|.03| 15
6|.49/.39 37|.19|16|.16| 16
7/.05/.03] 6/|.05 9|.11| 10
8|.07/.06| 15/.05/10|.04| 12
9/.01/.02f 4/|.03|18|.03| 18
10| .04/.05] 6]|.07|32|.05| 15
11|.08/.04 5]|.06|22|.03| 20
12| .09/.02] 5|.50| 25|.03| 24
13|.09/.05 6| m| —|.04| 28
14| .32/.05 5| m| -|.10| 33
15|.07/.03 5|.11|31|.09| 34
16| .09/.04/ 10| m| -|.07| 46

Table 3.1: A comparison between the two translation approaches for higpr®on the Robots domain.

preconditions (Bacchus and Ady, 1999; Rintanen, 2000). This sleapproach however, implies re-
gressing the precondition, so it is prone to the worse-case expondatiaifodiscussed above.

This means that we are able to add certain types of TDCK to our planning defisimply
adding the TDCK to the goal. Currently, though, our logic does not hav&dhkemodality that is used
in TLPLAN, which enables it to tailor the control depending on the goal.

3.5 Implementation and Experiments

We implemented a compiler that takes a planning domain and a TEG in EPNF f-F@&Triput and
generates a classical planning problem as described in Section 4.rmotbethe program can convert
the new problem into PDDL, thereby enabling its use with a wide variety of plann

It is hard to perform an accurate experimental analysis of our appfoatwo reasons. First, there
are no standard benchmark problems for planning with TEGs. Second,aidhe planners for TEGs
is heuristic, so it is not hard to contrive problems easily solvable by owoaph but completely out of
the reach of non-heuristic planners.

The rest of the section is divided in two parts. First, it provides an evaluafithe relative perfor-
mance of the two translations we have proposed. Then it provides anafyhis performance of our

approach relative to that of existing planners.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 44

Prb.| DP+FFy | TPBA/is+«c | TPBA/is | TPBA/is+c | TPBA/s
[t| ¢ t| ¢ t| ¢ t] ¢

1| .00 2| .06/ 2| 03] 2| 0.24] 2| 0.44|2
2| .01 5| .51| 15| 30|563| 0.96| 5|44.42| 5
3| .01| 6| .58| 17|29.56/563 1.3| 5/4791 5
4| 02| 7| 1.20| 25 m| -—-| 3.29 7 m| —
5| .01 13| 1.53| 34 m| -—| 11.66/10 m|—
6| .01| 16| 1.68| 38 m| —| 28.87|12 m| —
7| .02| 17| 2.00| 45 m| —| 82.57|15 m| —
8| .02| 17| 2.13| 49 m| —| 35.69/17 m| —
9| .03| 21| 2.50| 52 m| -—| 13.37/20 m| —
10| .07| 41| 7.18] 91 m —1126.25/ 35 mi|—
11| .09| 46| 8.66/101 m| - m| — m| —
12| .10| 49|10.06|113 m| - m| — m| —
13| .28| 67/19.89|131 m| - m| — m| —
14|2.45| 74|28.28|236 m| - m| — m| —
15/4.54/115|43.07| 300 m - m| — m| —

Table 3.2: Our approach compared to search control witthBautomata

Domain Problems solved Speedup (s) Length ratio (r)

FFy |TLPLAN| s<2|2<s<10/10<s< 100/100< s< 1000| s> 1000 r=1{1<r<13| r>13
ZenoTravel25)] 21(84%) 9(36%) 0] 1(11%) 2(22%) 5(56%)1(11%)| 8(89%) 1(11%) 0
Logistics(23) |23(100%) 17(74%) 1(6%)| 4(24%) 4(24%) 6(35%)|2(12%)| 14(82%) 2(12%) 1(6%0)
Robot(16) 16(100%) 9(56%) 0| 4(44%) 3(33%) 2(22%) 0] 5(56%) 4(44%) 0%

Table 3.3: Performance of our approach compared to'RINPin 3 benchmark domainsSpeedumand
thelength ratioare shown for instances that were solved by both plan$gsedugresp.length ratio
is the time taken (resp. plan length obtained) by TAR over that of our approach.

3.5.1 Axioms versus Causal Rules

We have seen in theory that both of our translations have an exponeat&ttease, and that the trans-
lation to axioms is more compact. In this section we analyze how this is reflectedperfioemance of
real planning systems.

We designed and ran a suite of problems in the robot domain (as per Figo3ek} the relative
effectiveness of the two translations. In each experiment, we compiledatheipg problem to PDDL.
To evaluate the translation to causal rules (CR), we used FF as ourtlteplasning engine (CR+FF).
For the translation to derived predicates (DP), we usegd fEHP+FFy), an extension of FF proposed by
Thiébaux, Hoffmann, and Nebel (2005) that supports derived predica

Table 3.1 presents results obtained for various temporal goals by bathtoépslations. The second
and third columns show statistics about the translation. The second colums thteatime taken in each
translation, and the third shows the number of states of the automata rejorgsea goal. The rest of
the columns show the time)(and length {) of the plans for each approach. The character ‘m’ stands

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 45

for ran out of memory

Although the relative performance in many cases is comparable, the diprizdicates approach is
never inferior to the causal rules approach, and sometimes it is cleadyicup

The causal rule approach may generate problems that cannot bechbpdlee FF planner, even
when the number of states in the automata is quite low. That is the case of gua¢ni4, which cor-
responds to the formula>[(AllIn(R4) V AllIn(R3)) A OAlIClosed] A ¢Dat(04,Cy), whereAllClosed
stands for a formula where all doors are closed, Atth(r) stands for “all objects are in” Although
the automaton for this goal is relatively simple, the grounded formulae in thsiticars (which are
needed by the causal rules approach), are quite big. This prodeigekakge conditions in conditional
effects, causing FF to run out of memory in the preprocessing phasehiah whis planner converts
ADL operators into STRIPS operators.

Since we have shown that the causal rule approach is not superiomerthed predicates approach,
in the next subsection we focus our attention only on the derived presliappeoach.

3.5.2 Comparison to State of the Art

We have compared the performance of our translation in conjunction withelgginst TLRAN and the
planner presented by Kabanza andélfaux (2005) (henceforth, TPBA), which useiécBi automata
to control search. The TPBA planner is not heuristic and is implemented ien8zh It offers four
templates to write automata. We conducted experiments in the robots domainlfothgaéit into these
templates. We have used one of them, which is of the forfpy A O(Op2 A ... AOOPR)...).4 Results
are shown in Table 3.2

TPBA is significantly outperformed by our approach, even in the presehextra control informa-
tion added by hand (this is indicated by the ‘+c’ in the table). In dfs mode ATiBBble to solve every
problem but more slowly and with inferior quality. In the bfs mode with no cdnmformation, TPBA
fails for goal 4, which is O must eventually be &,, then atR4, then atC,, then atR3, and finally at
C.". On the other hand, TPBA fails in bfs mode with control information for gb@l which is defined
as “eventuallyO; at Ry, then eventually all objects iR4, and finally all objects irC;.” The control
information added by hand in this case is “do not close any doors.”

On the other hand, Tahle 3.3 presents a comparison of our approadh.BndN in three domains.
For each domain, we designed a set of reasonably natural TEGs. ZBatiTravel(a travel agency
domain) and_ogistics(a package delivery domain) are benchmark domains from past IPGetTa
feeling for the types of goals we used, here is an example of a goal #ethn@lravedomain:“persons
P, and B want to meet in some city and then eventually bejaai@ G." Our third test domain, the
Robotdomain (Bacchus and Kabanza, 1998) describes a robot that maves=ebeooms and carries

4Three more are available. One is for classical goals, another is fbc ¢ydinite) goals, and the third is very similar to
the one we are using.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 46

objects. An example of a goal in the robot domain“igpen all the doors, then deliver objects to the
rooms, and then close all doors”

Since most of the goals were unsolvable by TER (exceeding the 1GB RAM limit), we needed
to add extra TDCK to TLPAN so that it could show more of its potential. We conclude that our
approach significantly outperforms TLRN. This can be seen in trgpeedupnetric in the table, where
a significant percentage of the problems are solved over two ordersgrfitude faster. Note that in
some cases, the plans that are returned are slightly longer than thoseeaotigif LR.AN. This is
usually the case with heuristic planners, where there is a tradeoff betwyadiemality and speed. Some
plans are not solved by KFin the ZenoTravel domain, which is due to the presence of universally
guantified disjunctive goals.

The translation times for each of these problems was very low; in most casas iegs than 15%
of the planning time. Furthermore, the rati,|/|¢|, whereA, is the number of states oA,

, and|o|
is the size of the TEG never exceeds 1.0, which illustrates that our automata translation dodswot b
up easily for natural TEGs.

The results shown, although good, are not surprising. We have cethpar heuristic approach
to the blind-search approach (plus pruning) of ThR. Consequently, these results were expected.
TLPLAN is particularly good when used with classical goals and a fair amount aFtagied TDCK.
Our approach has the advantage that it is able to guide the searchveffeivards the satisfaction of
a TEG with no need for hand-coded TDCK.

3.6 Discussion

There are two decisions at the core of our approach that desethkerfdiscussion. The first, has to do
with the decision to choose a reformulation approach, and the second withdlee of language for
TEGs. We discuss both decisions below.

3.6.1 Why a Reformulation Approach?

Instead of designing a specific heuristic for TEGs, we chose a refatiolapproach, which, as we
have seen, may blow up the representation exponentially. Why is a refdionudgproach justifiable
when it is conceivable that specific heuristics could be adapted to plan ®&{#Es7T

There are three reasons why we think the reformulation approach h&somés own. First, as
we have seen, we generate PDDL output, which can be usesyolDDL-compliant planner. This
is important because it means that potentially any advance in classical glasarirbe leveraged for
planning with TEGs.

Second, a reformulation approach serves as a useful benchméukui@ comparison. Since TEGs

are very relevant, we expect future work that adapts classical agipes to TEGSs. Those extensions

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 47

however, will only be of value if they can be proven to be superior to tlyggd algorithm when applied
to the translated problem. Thus, we think our reformulation approach sertfie planning community
by providing a uniformbaselinefor future experimental comparison.

Third, using the reformulation approach, it is possible to gain insights alesigjming specific
heuristics for TEGs. As an example, consider that we wanted to adagléxed plan heuristic in FF
for TEGs. To anyone deciding to take such an approach we would recodnimeeplicate somehow the
information that is provided by the extra automata predicates during the dgbtese expansion, rather
than to adapt the progression algorithm to evaluate the formula in the rel@tes. sVhy? The answer
is a pragmatic one. Updating the truth values of predicates is quite an easitagkessing a formula,
on the other hand, might need some effort, especially regarding simplificttatrthe designer of the
heuristic might not want to pay. Our automata basically en@ildeossible waysn which a formula
could be progressed. We pay a price for computing this representatipioncehowever. Such a price
would be paid multiple times (maybe more than one could afford) if progressioconiputed during
heuristic computation.

By observing in which cases an algorititoes not do well using the translated domain, one could
adapt the heuristic il to do better in these cases. It is thus conceivable and quite possible tB& a T
adaptation of an algorithm originally designed for classical goals may ootpethe original algorithm
used in conjunction with our reformulation.

3.6.2 Why Not LTL and Buchi Automata?

A fundamental design decision of this work is the use of a finite logic, f-FOLdver the standard
LTL logic. As we argued above, the main motivation is to provide a languaggdals that is more
compatible with classical planning technology, in which plans returned ate. fin

The use of f-FOLTL has several practical advantages. One adyaigdhat formulae that would
require infinite plans are not allowed by the logic, sometimes even generatmgata that accept the
empty language. This allows most planners to immediately realize that the goabkishievable.

Another advantage of f-FOLTL over LTL, is that there is a very cledatienship between ac-
ceptance condition of automata for f-FOLTL, and the representation o€dmdition in the planning
domain. Indeed, being at an accepting state of a PNFA is equivalentdptatg; and therefore equiva-
lent to satisfying the f-FOLTL formula. The acceptance condition can jpesented directly from the
automaton, without any extra information.

With an LTL approach, throughi&hi automata (BA), there is not always a clear relationship be-
tween being in an accepting state and satisfying the LTL formula. The mamresthat the acceptance
condition for a BA requires visiting an accepting state infinitely often. To gldhis, consider the two
Biichi automata shown in Figure 3.5. The automaton shown in (a) has onlgtites. Clearly in this
case it is not possible to interpret being in an accepting state as satisfyiggahas we do with PNFA.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 48

-p
q

O——QD J—

T p
() (b)

Figure 3.5: Bichi automata for (aj(p O Oq) and (b)dp. The automaton (a) is generated by LTL2BA
(Gastin and Oddoux, 2001), whereas (b) was built by hand.

Otherwise we could accept as valid an empty plan starting from an initial plgustate where is true,
andq s false. On the other hand, in general we cannot expect to intergrieéimy in an accepting state
as rejection. For the contrived automata fgp shown in Figure 3.5(b), we would not accept an empty
plan as a solution if the initial state already satisfiesAlthough such an automaton is not generated
by standard LTL-to-BA algorithms, we cannot guarantee that similar situatiomsot occur for other
formulae.

We think that an approach that uses BA is indeed feasible if we have addiimdarmation as to
what is exactly being checked in each state. This information is usually adakble in the graphical
representation of the BA but it is usually available in the internal data-stegtised to construct the
automaton. For example, the algorithm to construct BAs by Gardih (1995) that we have adapted, the
Nextq) field contains the formula that needs to be checked in the next state whileweartomaton
stateq. Next(q) can be used to determine whether or not we should accept a finite planmé&thed
requires evaluating the formula as if the current state repeated f& AgeCresswell and Coddington
(2004) have shown, given an LTL formula it is possible to construct a non-temporal formula that
evaluates to true in a stasaf and only if ¢ is true in a model that contains an infinite repetitiorsof
Such a formula could be somehow encoded in the planning problem to ttpdetermine when a plan
has been found.

Nevertheless, the drawback of the approach sketched above is thratation such as thidextq)
formula, might not be available from off-the-shelf LTL-to-BA softwaifkhis is because typically BAs
are simplified, which usually implies post-processing the automaton. A specidification to the
simplifying algorithms might also be needed in order to keep information sudleatq) even after
simplification. Arguably, such modifications are not straightforward.

5The repetition of the final state is what Bacchus and Kabanza (1998headling of the final state. This is the standard
way in which one usually determines whether or not an LTL formula is sedigfy a finite plan.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 49

3.7 Summary and Related Work

In this chapter we proposed a method for reformulating planning instandesinst-order TEGs into
classical planning instances. With this reformulation in hand, we exploitedidemdependent heuris-
tic search to determine a plan. Our compiler generates PDDL so it is equallyabla¢a use with any
PDDL-compliant classical planner.

There are many advantages to the quantifiers in our f-FOLTL languagadition to providing a
richer language for goal specification, f-FOLTL also results in moreiefit goal processing. Proposi-
tionalizing out quantifiers, as must be done in previous approaches tadbiem, increases the size of
the reformulation as a function of the size of the domain and arity of prediicetfes TEG. In particular,
a propositional encoding requires grounding both the initial state of thenatéoand their transitions,
making the compilation specific to the instance of the problem.

We tested our approach on more than 60 problems over 3 standard bekaomeins, compar-
ing our results to TLPAN. Using our method, the BFplanner often produced orders of magnitude
speedup compared to TILRN, solving some planning problems TLEN was unable to solve. Since
FFy propositionalizes its domains, it does not fully exploit the strength of ourdider goal encoding.

There are several pieces of related work. Rintanen (2000) prooseformulation of a subset
of LTL into a set of ADL operators, which is restricted to a very limited set B{GE. Pistore and
colleagues (e.g. dal Lago, Pistore, and Traverso, 2002) used dattremcode goals for planning with
model checkers. Their approach uses different goal languages aot heuristic.

Cresswell and Coddington (2004) briefly outline a means of compiling LTimédae to PDDL.
They translate LTL to deterministic finite state machines (FSM) using progreéBacchus and Ka-
banza, 1998), and then translate the FSM into an ADL-only domain. Tleptieg condition must
be determined by simulating an infinite repetition of the last state. Further, thef ulterministic
automata makes it very prone to exponential blowup with even simple goalawilhers’ code was un-
available for comparison. They report that their technique is no moréegifithan TLRAN (Cresswell
and Coddington, 2004), so we infer that our method is superior.

Kabanza and Tkbaux’s work|(2005) is distinct because they are able to generate igiviteyclic
plans. They compile infinite propositional LTL into aiBhi automaton. Then they use the automaton to
guide planning by following a path in its graph from initial to final state, backireg as necessary. The
planner is more prone to get lost and the restriction to one automaton maklkeeitahle to blowup. Ina
recent poster publication (Baier and Mcllraith, 2006c), we have ptede similar approach for propo-
sitional TEGs. Besides the expressiveness and efficiency issutesirelgropositionalizing TEGs, the
reformulation presented generates only ADL operators, which, asrshere, are less efficient both in

theory and in practice.

CHAPTER 3. HEURISTIC PLANNING FOR TEMPORALLY EXTENDED GOALS 50

Finally, Edelkamp (2006a) provides a reformulation of PDBII&O PDDL2.2 by encoding propo-
sitionalized LTL hard constraints and preferences iniwi8 automata. The approach cannot be used
directly to provide heuristic search guidance to achieve TEGs becausedhptance condition of a
Biichi automata requires visiting final states an infinite number of times.

5pDDL3 supports a subset of LTL first-order temporally extended garadspreferences. It will be introduced in more
detail in Section 4.2.3.

Chapter 4

Planning with Temporally Extended
Preferences

4.1 Introduction

As we have seen in Chapter 2, classical planning requires a plannat &odian that achieves a specified
goal. In practice, however, not every plan that achieves the goalalgglesirable. Moreover, many
applications requires returning plans that satisfy rich user prefesence

When we use the term rich user preferences, we refer to a rangesibf@properties that a user
would potentially like their plans to optimize. Given some task to be achieved; ossr have prefer-
ences over what goals to achieve, and under what circumstancesmiBlyealso have preferences over
howgoals are achieved — properties of the world that are to be achieved, mathta avoided during
plan execution, and/or adherence to a particular way of doing some drthdl tasks at hand. Interest-
ingly, with the exception of Markov Decision Processes (MDPs), naatrisser preferences have only
recently been integrated into Al automated planning.

Planning with preferences involves not only finding a plan that achieesgdél, it requires finding
one that achieves the goal while also optimizing the user’s preferencésrtthately, finding an opti-
mal plan can be computationally expensive. In such cases, we wouldsatikeathe planner to direct
its search towards a reasonably preferred plan.

Planning with preferences is motivated by many applications. Indeed, miaferences play a sig-
nificant role in human decision making, it is not hard to argue that most redd¢iywlanning applications

will require some kind of preference reasoning. To mention a few, censtii@ Robocup@Home Sce-

51

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 52

nari&, in which a robot achieves a variety of goals in a domestic environment. &uchot would
be required to constantly plan to achieve hard goals but would also cerbamgquired to take into
account the preferences of their users. There exist many applicatiGudtware environments too.
Requirements Engineering could be also viewed as a planning problemdasehtve is to optimize a
function in which the company’s or the user’s preferences play a signtfiole (e.g. Hui, Liaskos, and
Mylopoulos, 2003). Finally, component software composition and WS©tter compelling applica-
tions.

In this chapter we provide a technique for planning with a rich class of psferences. Most
notably this class includegemporally extended preferencebhe difference between a TEP and a so-
calledsimplepreference is that a simple preference expresses some desiredypofpbe final state
achieved by the plan, while a TEP expresses a desired property ofgthense of states traversed by
the plan. For example, a preference that a shift worker work no mone2tbaertime shifts in a week is
a temporally extended preference. It expresses a condition on anseqofedaily schedules that might
be constructed in a plan. Planning with TEPs has been the subject of research (e.g. Delgrande,
Schaub, and Tompits, 2007; Son and Pontelli, 2006; Bienvenu, Fritaviatichith, 2006). It was also
a theme of the 5th International Planning Competition (IPC-5).

The technique we propose in this chapter is able to plan with a class ofgmeésr that includes
those that can be specified in the Planning Domain Definition Language P[EHr8viniet al., 2009).
PDDL3 was specifically designed for IPC-5. It extends PDDL2.2 to irglaong other things, fa-
cilities for expressing both temporally extended and simple preferencesewte temporally extended
preferences are described by a subset of LTL. It also suppoatstifiting the value of achieving dif-
ferent preferences through the specification of a metric function. Thecnfienction assigns to each
plan a value that is dependent of the specific preferences the plaresafidfe aim in solving a PDDL3
planning instance is to generate a plan that satisfies the hard goals atrdiotss/hile achieving the
best possible metric value, optimizing this value if possible or at least retuenhigh value plan if
optimization is infeasible.

Our technique is a two-step approach. The first step exploits the compilationiqee we have
presented in the previous chapter to convert planning problems with TERgIizalent problems con-
taining only simple preferences defined over an extended planning doffersecond step solves the
reformulated instance with a specialized solver that we have developed.

4.1.1 Contributions of this Chapter

The main contributions of this chapter follow.

e We use the reformulation approach of the previous chapter to show hovortalgpextended

1http ://www.ai.rug.nl/robocupathome/

http://www.ai.rug.nl/robocupathome/

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 53

preferences can be transformed into simple preferences (i.e., pregsrthat only refer to the
final state). Although this contribution is a straightforward application ofestisting method, it

is important because allovesy planner for simple preferences to plan for TEPs. Also, it enables
the use of distance-bases heuristics for TEGs.

e We develop a set of new heuristics, and a search algorithm that cantdkpkee heuristics to
guide the planner towards preferred plans. Many of our heuristicexdracted from aelaxed
plan graph Previous heuristics for classical planning, however, are not wilidsto planning
with preferences. The heuristics we present here are specificaljnédgo address the tradeoffs
that arise when planning to achieve preferences.

Our search algorithm is also very different from previous algorithmsd uselanning. We prove
that it has a number of attractive properties, including the ability to find optitagalspwithout
having to resort to admissible heuristics. This is important because admissibistits generally
lead to unacceptable search performance. Our method is also able totimdlg@ans without
requiring a restriction on plan length or make-span. This is important besaakeestrictions do
not generally allow the planner to find a globally optimal plan. In addition, theckealgorithm
is incremental in that it finds a sequence of plans each one improving omdhieys. This is
important because in practice it is often necessary to trade off computatiowitimglan quality.
The first plans in this sequence of plans can often be generated fackhgand provide the user
with at least a working plan if they must act immediately. If more time is available |gfogitom
can continue to search for a better plan. The incremental search prisessmploys a pruning
technique to make each incremental search more efficient. The heurislisgarch algorithm
presented here can easily be employed in other planning systems.

e Our third and final contribution is that we have brought all of these idegetiier into a working
planning system called HRN-P. Our planner is built as an extension of the TR system
(Bacchus and Kabanza, 1998). The basic TAR system uses LTL formulae to exprefsmain
control knowledgethus, LTL formulae serve to prune the search space. However| AlLPas
no mechanism for providing heuristic guidance to the search. In contnastmplementation
extends TLRAN with a heuristic search mechanism that guides the planner towards plans that
satisfy TEPs, while still pruning those partial plans that violate hard canttraWe also ex-
ploit TLPLAN'’s ability to evaluate quantified formulae to avoid having to convert the prater
statements (many of which are quantified) into a collection of ground instaites is impor-
tant because grounding the preferences can often yield intractabdydargain descriptions. We
use our implementation to evaluate the performance of our algorithm and tazaribky rela-
tive performance of different heuristics on problems from both the 3ImpleandQualitative

Preferencesracks. We observe that planning performance is improved when usitgthistics

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 54

we propose. We also show that pruning is a technique that is sometimes bal toitimding
good-quality plans.

4.1.2 Outline

In the rest of the chapter we first provide some necessary bacldyrdtis includes a formal definition
of preference-based planning and a brief description of the feavfifef®DL3 that our approach can
handle. In Section 4.3 we describe the first part of our approach—achgthcompiling a domain with
temporally extended preferences into one that is solely in terms of simple (i stte) preferences.
Section 4.4 describes the heuristics and search algorithm we have dalelioplso presents a number
of formal properties of the algorithm, including characterizing variouglitimms under which the algo-
rithm is guaranteed to return optimal plans. Section 4.5 presents an ertengirical evaluation of the
technique, including an analysis of the effectiveness of various cotidnisaof the heuristics presented
in Section 4.4. Section 4.7 summarizes our contributions and discusses wetatedfter which we

provide some final conclusions.

4.2 Background

For the rest of this chapter, we assume familiarity with STRIPS and ADL plgn(ciescribed in Sec-
tions 2.1.1 and 2.1.2). We also assume familiarity with planning as heuristic Sgar@®ection 2.2).
Section 4.2.1 describes a variation of the well-known approach to computimaid-independent
heuristics based on the computation of relaxed plans that is used by oneplancompute heuris-
tics. As opposed to most well-known approaches, our method is able tteh&bd domains directly
without having to pre-compile the domain into a STRIPS domain. Then, Sectidh defines for-
mally the preference-based planning problem. Section|4.2.3 describelatiming domain definition
language PDDL3, a recent version of PDDL that enables the definitibardfconstraints, preferences,

and metric functions.

4.2.1 Relaxed Plans for Function-Free ADL Domains

To compute heuristics for function-free ADL domains one can first tansthe domain to STRIPS,
using a well-known procedure described by Gazen and Knoblock’§188d then compute the heuristic
as usual. This is the approach taken by some systems (e.g. FF) but nafelyuhis procedure can lead
to a considerable blow up in the size of the original instance.

Our planner handles ADL domains, but takes a different approachardicular, it computes the
relaxed planning graph directly from the ADL instance, using an apprsauilar to that taken by
the MARVIN planning system (Coles and Smith, 2007). To effectively handle relaXsd domains

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 55

(in which effects can be conditioned on negative facts), the relaxed stgieesent both the facts that
becometrue and the facts that beconfalse after executing a set of actions. To that end, the relaxed
states are divided into two parts: a positive part, that represents aactsddnd a negative part, that
represents deleted facts.

When computing a relaxed graph for a stgtthe set of relaxed states is a sequence of pairs of fact
sets(Fy",Fy),..., (R, Ry), with Fy” = sandF; = s°, wheres® is the set of facts not is (i.e., the
complement o8). Furthermore, if actiom appears in the action layer at deptlall facts that are added
by aare included in the positive relaxed state at deﬁgm, whereas facts that are deletedagre added
to F,,. Moreover, all facts in layek are copied to layek+ 1 (i.e. F;” € R, andR- C R ,).

Special care has to be taken in the evaluation of preconditions and cogditioanditional effects
for actions, because negations could appear anywhere in those cosdilio evaluate a formula in a
relaxed state, we evaluate riegation normal fornrfNNF) instead. In NNF, all negations appear right
in front of atomic formulae. A formula can easily be converted to NNF by jmgshegations in using
the standard rules3.f =V.—f, =V.f = J.-f, =(fi A fp) = ~f1 v = fy, =(frVv fy) = -f1 A fp, and
-—f=f.

Now assume we want to determine whether or not the formigarue in the relaxed stat&, ", F,)
in the graph with relaxed stat¢g,,Fy) --- (R, F.)+ (Fy",Fy). Furthermore, let’ be the NNF of
¢. To evaluatep we instead evaluaté’ recursively in the standard way, interpreting quantifiers and
boolean binary operators as usual. When evaluating a positivef fage return the truth value of
f € F". On the other hand, when evaluating a negative fétwe return the truth value df € F_. In
short,—f is true at deptlk if f was deleted by an action or was already false in the initial state. More
formally,

Definition 4.1 (Evaluation of an NNF formula in a relaxed state) Let the relaxed planning graph con-
structed from the initial state s in a problem where the set of objects of théepnds Objs béF,",F;) -+ (R, Fo).
The following cases define wherevaluates to true at level k of the relaxed graph, which is denoted as

(R R .
o if ¢ is an atomic formula thetF",F") o iff ¢ € R
e if =—f, where f is an atomic formula, thef,", F_") }r:gqs iff o c R
o if o= AE then(RER) o iff (REFO) v and (RERO) ¢
o if g =9 V¢ then(RER) o iff (RERO) v or (RS RO &

o if g =Vx1, then(R',F") ¢ iff for every o Objs (" F) |
formulay with all free instances of x replaced by o.

gz/J(x/o), where)(x/0) is the

2In our implementation, bounded quantification is used so that this conditiobbecehecked more efficiently. In particular,

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 56

e if ¢ =3x.¢p, for some ce Objs (F.",F) =v(x/0).

rg

The standard relaxed plan extraction has to be modified slightly for the AB&. ddow, because
actions have conditional effects, whenever a facd made true by actioa there is a particular set of
facts that is responsible for its addition, i.e. those that made both the piéeord a and the condition
in its conditional effect true. When recursing from a subgbale add as new subgoals all those facts
responsible for the addition df (which could be in either part of the relaxed state).

As is the case with STRIPS relaxed planning graphs, whenever d faagkeachable from a state
by performing a certain sequence of legal actions, themwentually appears in a fact layer of the graph.
The same happens in these relaxed graphs. This is proven in the follomingsition.

Proposition 4.1 Let s be a planning state, R (F,",Fy) (F{",F;) -+ (R4, Fyy) be the relaxed planning
graph constructed from s up to a fixed point, antle an NNF formula. I% is true after performing a
legal sequence of actiong a-a in s, then there exists somekm such thaf{F,",F"))EQS.

Proof: See Appendix B. [

This proposition verifies that the relaxed planning graph is in fact a rietexxaf the problem. In
particular, it says that if the goal is not reachable in the relaxed planmamhdhen it is not achievable
by a real plan.

Besides being a desirable property, this reachability result is key to somesiitg properties of
our search algorithm. In particular, as we see later, it is essential to grtham some of the bounding
functions we employ will never prune an optimal solution (under certairoredse assumptions).

4.2.2 Preference-based Planning

We now introduce the preference-based planning formulation followingrBad Mcllraith |(2008).

An instance of the PBP problem is a péir=<), wherel is a standard planning instance. Further-
more, < is a transitive and reflexive relation A x P, whereP contains precisely all plans fér The
= relation is the formal mechanism for comparing two plansl fointuitively p; < pz stands for Py
is at least as preferred aglan p,.” Moreover, we use < p» to abbreviate thap; < p2 andp, £ p1.
Thus,p; < pz holds true if and only ifp; is strictly preferred tqp,.

Definition 4.2 (Preferece-based Planning)Given an instance N- (I, <), the preference-based plan-
ning problem consists of finding any plan in the set

AN = {p € P|there is no p€ P such that p=< p}.

this means that not every object@bjsneed be checked.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 57

1. $S1---S = (always ¢) iff Vi:0<i<n skEo¢

2. 81 S | (sometime ¢) iff 3i:0<i<n skE®

3. 0SS = (at end ¢) iff sif=¢

4. $S1---S = (sometime-after ¢¢p) iff ViifskE¢thendj:i<j<n s

5. SS1-- S [= (sometime-before ¢ 1) iff ViifsE¢thendj:0<j<i, sjE=9

6. S0S1--S F (at-most-once ¢) iff Vi:o<i<n if§SE¢thendj:|j>i, Vk:k>], s ¢

Figure 4.1: Semantics of PDDL3'’s temporally extended formulae that do notianeexplicit time.
The trajectoryss: - - - s represents the sequence of states that results from the executioreaceqt
actionsa; - - - ap.

Intuitively, the set/\\ contains all the optimal plans for an instarceith respect to<. Observe
that now, as opposed to classical planning, we are interested in any ptasdptimalbased on<.

Below, we define PDDL3, which defines therelation in a quantitative way. At the end of the
following section we define precisely the PBP problem in PDDL3.

4.2.3 Brief Description of PDDL3

PDDL3 was introduced by Gerevieit al. (2009) for the 5th International Planning Competition. It
extends PDDL2.2 by enabling the specificatiorpagferencesindhard constraints It also provides a
way of defining ametric functionthat defines the quality of a plan dependent on the satisfaction of the
preferences.

The current version of our planner handles the non-temporal anchmmeric subset of PDDL3,
which was the language used for tQealitative Preferencesack in IPC-5. In this subset, temporal
features of the language such as durative actions and timed fluents atgoported. Moreover, prefer-
ence formulae that mention explicit times (e.g., using operators suchtédsn andalways-within)
are not supported. Numeric functions (PDDL fluents) are not supgeitker. The rest of this section
briefly describes the new elements introduced in PDDL3 that we do support.

Temporally Extended Preferences and Constraints

PDDL3 specifies TEPs and temporally extended hard constraints in & stibspiantified LTL (Pnueli,
1977). These LTL formulae are interpreted owejectories which in the non-temporal subset of
PDDL3 are sequences of states that result from the execution of aslegaénce of actions. Figure
4.1 shows the semantics of LTL-based operators that can be used in tdyngxtended formulae. The
first two operators are standard in LTL; the remaining ones are abbomgahat can be defined in terms
of standard LTL operators.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 58

Temporally Extended Preferences and Constraints

Preferences and constraints (which can be viewed as being prderérat must be satisfied) are de-
clared using the constraints construct. Each preference is given a name in its declaration, to allow
for later reference. By way of illustration, the following PDDL3 code defitwo preferences and one
hard constraint.

(:constraints
(and
(preference cautious
(forall (7o - heavy-object)
(sometime-after (holding 7o)
(at recharging-station-1))))

(forall (71 - light)
(preference p-light (sometime (turn-off 71))))

(always (forall 7x - explosive) (not (holding ?7x)))))

The cautious preference suggests that the agent be at a recharging station somégirmelefs
held a heavy object, wherepslight suggests that the agent eventually turn all the lights off. Finally,
the (unnamed) hard constraint establishes that an explosive objecitdznheld by the agent at any
point in a valid plan.

When a preference ixternallyuniversally quantified, it defines a family of preferences, contain-
ing an individual preference for each binding of the variables in thentifiex. Therefore, preference
p-light defines an individual preference for each object of typght in the domain. Preferences
that are not quantified externally, likeautious, can be seen as defining a family containing a single
preference.

Temporal operators cannot be nested in PDDL3. Our approach vavéohandle the more general
case of nested temporal operators.

Precondition Preferences

Precondition preferences are atemporal formulae expressing cosditianshould ideally hold in the
state in which the action is performed. They are defined as part of the 'agti@tondition. For
example, the preference labeledon below specifies a preference for picking up objects that are not
heavy.

(:action pickup :parameters (?b - block)

(:precondition (and (clear 7b)

(preference econ (not (heavy 7b)))))
(:effect (holding ?b)))

Precondition preferences behave something like conditional action cbisey. are violated each
time the action is executed in a state where the condition does not hold. In the exmmpleecon

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 59

will be violated every time a heavy block is picked up in the plan. Thereforgetpeeferences can be
violated a number of times.

Simple Preferences

Simple preferences are atemporal formulae that express a preféoermegtain conditions to hold in
the final state of the plan. They are declared as part of the goal. Fompéxathe following PDDL3
code:

(:goal (and (delivered pckl depotl)
(preference truck (at truck depotl))))

specifies both a hard goaldk1 must be delivered atepot1) and a simple preference (thatuck
is atdepot1). Simple preferences can also be externally quantified, in which casedlagy represent
a family of individual preferences.

Metric Function

The metric function defines the quality of a plan, generally depending orréfierences that have been
achieved by the plan. To this end, the PDDL3 express$ist+violated name), returns the number

of individual preferences in theame family of preferences that have been violated by the plan. When
name refers to a precondition preference, the expression returnsutmber of timeshis precondition
preference was violated during the execution of the plan.

The quality metric can also depend on the functienal-time, which, in the non-temporal subset
of PDDL3, returns the plan length, and the actual duration of the plan in m@eessive settings.
Finally, it is also possible to define whether we want to maximize or minimize the matddyav we
want to weigh its different components. For example, the PDDL3 metric functio
(:metric minimize (+ (total-time)

(* 40 (is-violated econ))
(* 20 (is-violated truck))))

specifies that it is twice as important to satisfy preferesioen as to satisfy preferenaeruck, and
that it is less important, but still useful, to find a short plan.

In this chapter we focus on metric functions that mention amlyal-time or is-violated func-
tions, since we do not allow function symbols in the planning domain.

4.3 Preprocessing PDDL3

As described in the previous section, PDDL3 supports the definition of textypextended preferences
in a subset of LTL. A brute force method for generating a preferred plauld be to generate all

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 60

plans that realize the goal and then to rank them with respect to the PDDLI8 fonetrtion. However,
evaluating plans once they have been generated is not efficient bebaus could be many plans that
achieve the goal. Instead, we need to be able to provide heuristic guidatize ptanner to direct

it towards the generation dfigh-qualityplans. This involves estimating the merit of partial plans by
estimating which of the TEPs could potentially be satisfied by one of its exter(sindshus estimating
the metric value that could potentially be achieved by some extension). Withsucistic information
the planner could then direct the search effort towards growing thepnasiising partial plans.

To actively guide the search towards plans that satisfy the problem’s WERvelop a two-part
approach. The first component of our approach is to exploit the teabmigresented in Chapter 3 to
convert a planning domain containing TEPs into one containing an equisaeof simple (final-state)
preferences. Simple preferences are quite similar to standard goalefihress soft goals), and thus
this conversion enables the second part of our approach, which itetudexxisting heuristic approaches
for classical goals to obtain heuristics suitable for guiding the planner totharachievement of this
new set of simple preferences. The development and evaluation of iees&euristics for simple
preferences is one of the main contributions of our work and is desciibt#te next section. That
section also presents a new search strategy that is effective in explogsghleuristics.

In this section we describe the first part of our approach: how the igods of Chapter 13 can
be exploited to compile a planning domain containing TEPs into a domain containingsiorple
preferences. Besides the conversion of TEPs we also describe daeal with the other features of
PDDL3 that we support (i.e., those described in the previous section).

4.3.1 Temporally Extended Preferences and Constraints

In Chapter 3 we presented a technique that can construct an autofgatam a temporally extended
formula . The automato®, has the property that it accepts a sequence of states (e.g., a sequence
of states generated by a plan) if and only if that sequence of states satfisfieriginal formulap.
The technique works for a rich subset of first-order linear temporat imgmulas that includes all of
PDDL3's TEPs. It also includes TEPs in which the temporal operatomsested, which is not allowed
in PDDL3. To encode PDDL3 preference formulae, each preferfarosula is represented as an au-
tomaton. Reaching an accepting condition of the automaton correspondsstgirsg the associated
preference formula.

The techniques presented in Chapter 3 were aimed at planning with tempateltged goals, not
preferences. Up to the construction of the automata for each temporalhdextérmula, our approach
is identical to that taken in Chapter 3. However, Chapter 3 proposes ¢hef uerived predicates or
regression to embed the automata in the planning domain. In this Chapter, avehmsen a different
approach that is more compatible with the underlying TAR system we employed in our implemen-

tation. In the rest of the section, we give some more details on the constratatomata and the way

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 61

we embed these automata into a planning domain.

From PDDL3 to PNFA

The compilation process first constructs a parameterized nondeterminigtistite automaton (PNFA)
A, for each temporally extended preference or hard constraint exrassan LTL formula.

PDDL3 preferences, however, are not written using standard LHradprs. Thus we first trans-
form each PDDL3 operator into a standard formula. Below give a ddidlardefinition of theToLTL
operator, which transforms PDDL3 temporally extended formulas into f-HOL

e ToLTL(Qxyp) = QXToLTL(¢), for Q € {V,3}.

o ToLTL(—¢) = —ToLTL(y).

e TolLTL(p*1) = TolLTL(y)* ToLTL(v), for any Boolean connective

e TolLTL(always(y)) = OToLTL(p).

e TolLTL(sometime(p)) = OToLTL(yp).

e TolLTL(at-end(y)) = OOToLTL(yp).

e TolLTL(at-most-once(y)) = O(¢’ D ¢’ U(final v O=¢")), wherep’ = ToLTL(y).

e TolLTL(sometime-before(p,1))=0-¢"V (¢’ A=) U A=’ AOOY'), whereToLTL(p) =
¢, andToLTL(y)) = ',

e TolLTL(sometime-after(yp,))=0(¢ D OY'), whereToLTL(p) = ¢', andToLTL(¢)) = 1)'.

e TolLTL(p) = ¢ if ¢ does not if none of the previous expansions apply.

Our transformation generates a formula that is equivalent to the origiealasnshown by the fol-

lowing result.

Proposition 4.2 Let ¢ be a PDDL3 formula, and be the states generated by a plan. Thep- ¢ iff
Int(o) = ToLTL(y), where In{o) represent the obvious map of a sequence of planning states into a
first-order computation (defined in Definition 3.2/,p! 24).

Proof: Straightforward from the PDDL3 and f-FOLTL semantics. |

With our preferences represented in f-FOLTL, we run the algorithmhafgfer 3 to obtain a PNFA
for PDDL3 temporally extended preferences. Figure 4.2 shows two dgearapPNFA constructed for
PDDL3 formulae.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 62

(true) @
(delivered 7x)

(exists (7¢) (delivered 7x)
(loaded ?x)

(true)

(and (cafe ?c)

(at ?¢)))
—
(implies (loaded 7x)
(\\4//} (delivered ?7x))
— (true)
(implies (loaded 7x)
(a)

(delivered 7x))

(b)

Figure 4.2: PNFA for (a)Xsometime (exists (?c) (and (cafe 7c) (at ?c)))), and (b) (forall
(7x) (sometime-after (loaded ?7x) (delivered 7x))). In both PNFAQ is the initial state and the
accepting states are indicated by a double circle border.

A PNFA is useful for computing heuristics because it effectively regmtssall the different paths
to the goal that can achieve a certain property; its states intuitively “moniterptbgress towards
satisfying the original temporal formula. Therefore, while expandinglaxeel graph for computing
heuristics, one is implicitly considering all possible (relaxed) ways of satigfyre property.

Representing the PNFA Within the Planning Problem

After the PNFA has been constructed it must be embedded within the planoingi This is ac-
complished by extending the original planning problem with additional presicthat represent the
state of the automaton in each plan state. If the planning domain has multiple TEPsigasally the
case), a PNFA is constructed for each TEP formula and then embeddéutiviiplanning domain with
automaton-specific automata-state predicates. That is, the final planoimgmrwill contain distinct
sets of automata-state predicates, one for each embedded automaton.

To represent an automaton within the domain, we define a predicate spgdligirautomaton’s
current set of states. When the automaton is parameterized, the predisatgyhments, representing
the current set of automaton states for a particwiple of objectsIn our example, the fadtaut-state
q0 A) represents that objedtis in automaton statg0. Moreover, for each automaton we define an
accepting predicate The accepting predicate is true of a tuple of objects if the plan has satiséied th
temporal formula for the tuple.

Rather than modify the domain’s actions so that the automata state can beyprgmited as
actions are executed (as was in Chapter 3) we instead modified the ungleflyfLAN system so
that after every action it would automatically apply a specified seautbmata updates Automata
updates work like pseudo-actions that are performed automatically while auteessor is generated.
When generating the successorstafter performing actiora, the planner builds the new stateby

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 63

adding and deleting the effects af When this is finished, it processes the automata updatessover
generating a new successtr The states’ is then regarded as the actual successeafter performing
a. The compilation process can then avoid changes to the domain’s actiomssteat] insert all of
the conditions needed to transition the automata state in one self-containedratigitice domain
specification.

Syntactically, the automata updates are encoded in the domain as firstardatde that contain
theadd anddel keywords, just like regular TLEAN action effect specifications. For the automata of
Figure 4.2(b), the update would include rules such as:

(forall (?x) (implies (and (aut-state qO0 7x) (loaded ?7x))
(add (aut-state gl 7x))))

That is, an objectx moves from statgo to q1 whenever(loaded 7x) is true.

Analogously, we define an update for the accepting predicate, whichfisimed immediately after
the automata update—if the automaton reaches an accepting state then we amiekphimg predicate
to the world state.

In addition to specifying how the automata states are updated, we also ngeetify svhat ob-
jects are in what automata states in the initial state of the problem. This means waugomnt the
problem’s initial state by adding a collection of automata facts. Given the origit@l state and
an automaton, the planner computes the states that every relevant tupjea$ @an be in after the
automaton has inputed the problem'’s initial state, and then adds the codagpdarcts to the new
problem. In our example, the initial state of the new compiled problem contaitsdtating that both
A andB are in states|y anddp.

If the temporally extended formula originally described a hard constraingdbepting condition
of the automaton can be treated as an additional mandatory goal. Durich 8esalso use TLEAN'S
ability to incrementally check temporal constraints to prune from the seaad® $pose plans that have
already violated the constraint.

4.3.2 Precondition Preferences

Precondition preferences are very different from TEPs: theytaragoral, and are associated with the
execution of actions. If a precondition preferemds violatedn times during the plan, then the PDDL3
function (is-violated p) returnsn.

Therefore, the compiled problem containe@vdomain functionis-violated-counter-p, for
each precondition preference famgy This function keeps track of how many times the preference has
been violated. Itis initialized to zero and is (conditionally) incremented whariessassociated action
is performed in a state that violates the atemporal preference formula. ¢askevhere the preference
is quantified, the function is parameterized, which allows us to compute the naftimes different

objects have violated the preference.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 64

For example, consider the PDDIp3 ckup action given above. In the compiled domain, the original
declaration is replaced by:

(:action pickup :parameters (?b - block)
(:precondition (clear ?7b))
(:effect (and (when (heavy 7Db)
(increase (is-violated-counter-econ) 1)))
(holding ?b))) ;; add (holding ?b)

4.3.3 Simple Preferences

As with TEPs, we add neaccepting predicatet® the compiled domain, one for each simple preference.
We also define updates, analogous to the automata updates for thesingquegglicates. Accepting
predicates become true iff the preference is satisfied. Moreover, ifréferpnce is quantified, these
accepting predicates are parameterized: they can be true of some tupltgsadé and at the same time
be false for other tuples.

4.3.4 Metric Function

For each preference familyame , we define a newdomainfunctionis-violated-name. The return
values of these functions are defined in terms of the accepting predifatésniporally extended and
simple preferences) and in terms of the violation counters (for precongiteferences). If preference
p is quantified, then thés-violated-p function counts the number of object tuples that fail to satisfy
the preference.

By way of illustration, the TLRAN code that is generated for the preference p-light defined in

Section 4.2.B is:

(def-defined-function (is-violated-p-light)
(local-vars 7x) ;3 ?x is a local variable
(and (:= ?x 0) ;3 ?x initialized to O
(forall (71) (light 71)
(implies (not (preference_p-light_satisfied 71))

(:= 7x (+ ?x 1)))) ;5 increase ?x by 1 if
;; preference not satisfied
(:= is-violated-p-light 7x))) ;; return total sum

wherepreference_p-light_satisfied isthe accepting predicate defined for preference p-light.
Note our translation avoids grounding by using quantification to refer tdlcts of typelight.

If the original metric function contains the PDDL3 functidmotal-time), we replace its occur-
rence by the TLPAN function (plan-length), which counts the number of actions in the plan. Thus,

actions are implicitly associated a unitary duration.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 65

The metric function in the resulting instance is defined just as in the PDDL 3tiwiibut by making
reference to these new functions. If the objective was to maximize the fangddonvert the sign of the
function body. Therefore, we henceforth assume that the metric is sliwdye minimized.

In the remainder of the chapter, we use the notaiistviolated(p,N) to refer to the value of
is-violated-p in a search nodsl. We will sometimes refer to the metric function lels and we will
useM(N) to denote the value of the metric in search nbde

4.4 Planning with Preferences via Heuristic Search

As we have discussed earlier in this document, forward-chaining sgaigéd by heuristics has proved
to be a powerful and useful paradigm for solving planning problemsshsvn above, the automata
encoding of temporally extended preferences allows us to automatically atifraelomain with addi-
tional predicates that serve to keep track of the partial plans’ progressds achieving the TEPs. The
central advantage of this approach is that it converts the planning doraie teith simple preferences.
In particular, now the achievement of a TEP is marked by the achievemantasfcepting predicate for
the TEP, which is syntactically identical to a standard goal predicate.

This means that, in the converted domain, standard techniques for competirigfilc distances to
goal predicates can be utilized to obtain heuristic distances to TEP accepmthiggtes. For example,
the standard technique based on a relaxed planning graph (Hoffmdmedsel, 2001), which approx-
imates the distance to each goal and each TEP accepting predicate caal bbe lisuristically guide a
forward-chaining search.

Nevertheless, although the standard methods can be fairly easily modified imathiger, our aim
here is to develop a search strategy that is more suitable to the problem pinglavith TEPs. In
particular, our approach aims to provide a search algorithm with three nairdés. First, the planner
should find good plans, which optimize a supplied metric function. Secorithuild be able to generate
optimal plans, or at least be able to generate an improvement over an epistingFinally, since in
some contexts it might be very hard to achieve an optimal plan—and heneatalgal of search effort
could be required—we want the algorithm to find at least one plan as quiskppssible.

Heuristic search with non-admissible heuristics, like the relaxed goal det@maployed in planners
like FF can be very effective at quickly finding a plan. However, thdgrafio assurances about the
quality of the plan they find. On the other hand, if an admissible heuristic is tiseglan found is
guaranteed to be optimal (assuming the heuristic is admissible with respect upfied plan metric).
Unfortunately, admissible heuristics typically perform poorly in practicen@and Geffner, 2001).
Hence, with an admissible heuristic the plan often fails to find any plan. Thisisatiypunacceptable
in practice.

In this section we develop a heuristic search technique that exploits thmlsgteacture of the

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 66

translated planning domains in order to (a) find a plan fairly rapidly usingnaamionissible heuristic
and (b) generate a sequence of improved plans that, under some faidsajeonditions, terminates
with an optimal plan by using a bounding technique. In particular, our se¢aohnique allows one to
generate better plans—or even optimal plans—if one has sufficient campataesources available.
It also allows one to improve on an existing plan and sometimes prove a plan ptifvalo

In the rest of the section we begin by describing a set of differentigteufunctions that can serve
to guide the search towards satisfying goals and preferences. Thatesaribe our search algorithm
and analyze some of its properties.

4.4.1 Heuristics Functions for Planning with Preferences

Our algorithm performs a forward search in the space of states guidezlinigtics. Most of the heuristic
functions given below are computed at a search mMéds/ constructing a relaxed graph as described
in Section 4.2.1. The graph is expanded from the planning state corresgdadl and is grown until
all goal facts and alpreferencdacts (i.e., instances of the accepting predicates) appear in the relaxed
state or a fixed point is reached. The goal facts correspond to thegbalsl and the preference facts
correspond to instantiations of the accepting predicates for the convdztesl

Since in our compiled domain we need to update the automata predicates, tadypseoin Sec-
tion[4.2.1 is modified to apply automata updates in action layers after all regtiansabave been
performed. On the other hand, because our new compiled domain h&ashgna addition we modify
the procedure in Section 4.2.1 ignore all effects that directly affect the value of a function. This
means that in the relaxed worlds, all preference counters will have the gaue as in the initial state
s. Note that since preference counters do not appear in the conditiammnditional effects or in the
preconditions of actions, Proposition 4.1 continues to hold for relationts;fa particular, it holds for
accepting predicates.

Below we describe a suite of heuristics that can be computed from thedeajesqeh and can be used
for planning with preferences. They are designed to guide the seavelnd® (1) satisfying the goal,
and (2) satisfying highly valued preferences, i.e., those prefer¢inaesre given a higher weight in the
metric function. However, highly valued preferences can be verytoeadhieve and hence guiding the
planner towards the achievement of such preferences might yieldeptabte performance. To avoid
this problem, our approach tries to account for the difficulty of satisfyirgegpences as well as their
value, ultimately attempting to achieve a tradeoff between these two factors.

Goal Distance Function G)

This function returns an estimate of the number of actions needed to acheayaat(planning problems

often contain a hard “must achieve” goal as well as a collection of mefes).G is the same as the

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 67

heuristic used by the FF planner but modified for the ADL case. The vatuened byG is the number
of actions contained in a relaxed plan that achieves the goal.

Preference Distance FunctionP)

This function is a measure of how hard it is to reach the various prefefants. Itis based on a heuristic
proposed by Zhu and Givan (2005) for conjunctive hard goalsabapted to the case of preferences.
Let P be the set of preference facts that appear in the relaxed graph tatid Jde the depth at which

f first appears during the construction of the graph. TIRg\) = Zfepd(f)k, for some paramete.
Notice that unreachable preference facts (i.e., those not appearirgrigldiked graph) do not affets

value.

Optimistic Metric Function (O)

The O function is an estimate of the metric value achievable from a searchhadée search space.
O does not require constructing the relaxed planning graph. Rathegmpeute it by assuming (1) no
further precondition preferences will be violated in the future, (2) TtBBsare violated and that can be
proved to be unachievable frohh are regarded as false, (3) all remaining preferences are regasded
satisfied, and that (4) the value @fotal-time) is evaluated to the length of the plan corresponding to
N. To prove that a TER is unachievable frorV, O uses a sufficient condition. It checks whether or not
the automaton fop is currently in a state from which there is no path to an accepting state. Examples
of LTL formulae that can be detected by this technique as always beirifigidlie the future are those
of the form (always ¢). Indeed, as soon gsbecomes false, from no state in the automaton’s current
set of states will it be possible to reach an accepting state.

AlthoughO clearly underestimates the set of preferences that can be violated plaargxtending
N it is not necessarily a lower bound on the metric value of any plan exteMdinigwill be a lower
bound when the metric function is non-decreasing in the number of violatfdrpnces. As we will
see later, lower bounds for the metric function can be used to soundlg grarsearch space and speed
up search.

Definition 4.3 (NDVPL metric functions) LetZ be a (preprocessed) PDDL3 planning instance, let the
setl” contain its preferences, and leéngth(N) be the length of the sequence of action that generated
N. A metric function M isnon-decreasing in the number of violated preferences and in plan length
(NDVPL) iff for any two nodes N and’M holds that:

1. IflengthN) > lengthN’), and for every g I', is-violated(p,N) > is-violated(p,N’), then
M(N) > M(N’), and

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 68

2. If (total-time) appearsin M, andlengtiN) > length(N’), and for every g I, is-violated(p,N) >
is-violated(p,N’), then MN) > M(N’).

NDVPL metrics are natural when the objective of the problem is to minimize the nfietration (as in
our preprocessed instances). Problems with NDVPL metrics are thosedh whlating preferences
never improves the metric of the plan. Furthermore, adding more actions ta éhplafail to satisfy
any new preferences can never improve its metric. Below, in Remark 4 4eevthandditivemetrics,
which were the only metrics used in IPC-5, satisfy this condition.

Proposition 4.3 If the metric function is NDVPL, then(®) is guaranteed to be a lower bound on the
metric value of any plan extending N.

Proof: The optimistic metric only regards as violated those preferences that argbpyraviolated in
every successor M (i.e., in every state reachable frdshby some sequence of actions). It regards as
satisfied all remaining preferences. ThatQsis evaluating the metric in a hypothetical nadg such
that for any nod&\’ reachable fronN and for everyp € ' is-violated(p,No) < is-violated(p,N’).
Furthermore, becaud® evaluates the plan length to that Nf our hypothetical node is such that
length(No) = length(N) and hence we haveength(Np) < length(N’). Since the metric func-
tion is NDVPL, it follows from Definition 4.3 that for every succesd¢rof N, M(No) < M(N’). It
follows thatO(N) returns a lower bound on the metric value of any plan extending [

The O function is a variant of théoptimistic weight” heuristic in the PPAN planner (Bienvenu
et al, 2006). PRAN progresse4TL preferences (as defined by Bacchus and Kabanza (1998))ghr
every node of the search space. The optimistic weight assumes as falsiffetiose LTL preferences
that have progressed to false.

Best Relaxed Metric Function B)

TheB function is another estimate of the metric value achievable by extending a\hdtatilizes the
relaxed planning graph grown from the state corresponding to obtain its estimate. In particular,
we evaluate the metric function in each of the relaxed worlds of the plannaghgnd takd3 to be
the minimum among these values. The metric function evaluated in a relaxedwydfllv), evaluates
theis-violated functions directly orw, and evaluategtotal-time) as the length of the sequence of
actions that corresponds kb

For the case of NDVPL metric functionB,is similar toO, but can return tighter estimates. Indeed,
note that the last layer of the relaxed graph contains a superset oktfieegnce facts that can be made
true by some successor to the current state. Also, because the cdanfamscondition preferences
are not updated while expanding the graph, the value ofiheiolated functions for precondition

preferences is constant over the relaxed states. This represents ticéd Bspumption that no further

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 69

precondition preferences will be violated. The metric value of the relaxetileszdoes not increase (and
sometimes actually decreases), since the number of preference faetsgrem deeper relaxed worlds.
As a result, the metric of the deepest relaxed world is the one that will beneetinyB. This value
corresponds to evaluating the metric function in a relaxed state whergs{djolated functions for
precondition preferences are identical to the onel,if2) preference facts that do not appear in the
relaxed graph are regarded as violated, and (3) all remaining pnetrare regarded as satisfied. This
condition (2) is stronger than condition (2) in the definition#&bove. Indeed, no preference that is
detected as unsatisfiable by the method describe® ftain appear in the relaxed graph, since there is
no path to an accepting state of that preference. Hence, no actioneaadelthe accepting predicate
for the preference.

By using the relaxed graptB can sometimes detect preferences that are not satisfiable by any
successor o but that cannot be spotted &)s method. For example, consider we have a preference
¢ = (sometime f), and consider further that fatis not reachable from the current state. The myopic
O function would regard this preference as satisfiable, because it igajpessible to reach the final
state of the automaton for formula (the automaton fof looks like the one in Figure 4.2(a)). On
the other handf might not appear in the relaxed graph—becafise unreachable from the current
state—and therefor® would regardy as unsatisfiable.

These observations lead to the conclusion Bi&t) will also be a lower bound on the metric value
of any successor df under the NDVPL condition.

Proposition 4.4 If the metric function is NDVPL, then(R) is guaranteed to be a lower bound on the
metric value of any plan extending N.

Proof: Proposition 4.1 implies that all preference facts that could ever be achiigvgome successors
of N will eventually appear in the deepest relaxed world. Because the metric\>NDhis implies
that the metric value of the deepest relaxed world is also the minimum, and tteesefdh a value will
be returned by th8 function. Now we can apply the same argument as in the proof for Propo4itio
since the returned metric value corresponds to evaluating the metric in a atipatimode in which all
is-violated counters are lower or equal than those of any plan exterding |

Discounted Metric Function (D(r))

TheD function is a weighting of the metric function evaluated in the relaxed worldsumewg, w, . . . , Wy
are the relaxed worlds in the relaxed planning graph, where at depth and thewp = (s,s°), i.e., the
positive and negative facts of the state whece) is being evaluated. Then the discounted mebig,),
is: -

D(r) = M(wWo) + > _(M(Wi11) —M(w)r', (4.1)
i—0

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 70

whereM(w;) is the metric function evaluated in the relaxed wosdandr is a discount factor (& r <
1).

TheD function is optimistic with respect to preferences that appear earlier inldéeetegraph (i.e.,
preferences that seem easy) and pessimistic with respect to prefeithat appear later (preferences
that seem hard). Intuitively, tHe function estimates the metric value of plans extending the current state
by “believing” more in the satisfaction of preferences that appear to siere®bserve tha¥l (wi 1) —

M(w;) is the amount of metric valugainedwhen passing from relaxed wonlg to w; 1. This amount

is then multiplied byr', which decreases aincreases. Observe also that, although the metric gains are
discounted, preferences that are weighted higher in the PDDL3 metridsdlhave a higher impact on
the value oD. That is,D achieves the desired tradeoff between the ease of achieving a poefenad

the value of achieving it.

A computational advantage of th# function is that it is easy to compute. As opposed to other
approaches, this heuristic never needs to make an explicit selection akthegnces to be pursued by
the planner.

Finally, observe that whenis close to 1, the effect of discounting is low, and when it is close to
0, the metric is quickly discounted. Wheris close to 0 théD function is myopic in the sense that it
discounts heavily those preferences that appear deeper in the graph.

Algorithm 4.1 HPLAN-P’s search algorithm

1: function SEARCH-HPLAN-P(initial stateinit, goal formulagoal, a set of hard constraint¥Constraints
metric function METRICFN, heuristic function $ERHEURISTIC)

2: frontier — INITFRONTIER(init) > initialize search frontier
3. closed« ()
4: bestMetric—worst case upper bound
5: HEURISTICFN «— G
6: while frontier is not emptydo
7 current < Best element fronfrontier according to HURISTICFN
8: if ~CLosED?(current closed and current satisfieshConstraintghen
9: if METRICBOUNDFN(current) < bestMetricthen > pruning by bounding
10: if current satisfieggoal and its metric is< bestMetricthen
11: Output plan forcurrent
12: if this is first plan foundhen
13: HEURISTICFN « USERHEURISTICFN
14: frontier «— INITFRONTIER(init) > search restarted
15: ReinitializeclosedList
16: end if
17: bestMetric— METRICFN(current)
18: end if
19: succ— successors afurrent
20: frontier «+ mergesuccinto frontier
2L closed« closedJ {current}
22: end if
23 end if

24: end while
25: end function

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 71

4.4.2 The Planning Algorithm

Our planning algorithm searches for a plan in a seriepifodesThe purpose of each of these episodes
is to find a plan for the goal that has a better value than the best found $o &ach planning episode
a best-first search for a plan is initiated using some of the heuristics mopd®ve. The episode ends
as soon as it finds a plan whose quality is better than that of the plan foural pmetious episode. The
search terminates when the search frontier is empty. The algorithm is slsoMlgaithm 4.1.

When search is started (i.e., no plan has been found), the algorithm eggsathdistance function
(G) as its heuristic in a standard best-first search. The other heuristiggared in this first planning
episode. This is motivated by the fact that the goal is a hard condition thatmasatisfied. In some
problems the other heuristics (that guide the planner towards achievirgfearpd plan) can conflict
with achieving the goal, or might cause the search to become too difficult.

After finding the first plan, the algorithm restarts the search from scrhtdfihis time it uses some
combination of the above heuristics to guide the planner towards a pefdere. Let USERHEURIS-
Tic() denote this combination. $ERHEURISTIC() could be any combination of the above heuristic
functions. Nevertheless, in this chapter we consider only a small suleépossible combinations. In
particular, we consider onlgrioritized sequences of heuristics, where the lower priority heuristics are
used only to break ties in the higher priority heuristics.

Since achieving the goal remains mandatorgeBHEURISTIC() always uses as the first priority,
together with some of the other heuristics at a lower priority. For examplejdmmthe prioritization
sequenc&D(0.3)0. When comparing two states of the frontier, the planner first looks & foection.
The best state is the one with low@rvalue (i.e., lower distance to the goal). However, if there is a tie,
then it use®(0.3) (the best state being the one with a smaller value). Finally, if there is still a tiesst us
the O function to break it. In Section 4.5, we investigate the effectiveness efakesuch prioritized
heuristics sequences.

Pruning the Search Space

Once we have completed the first planning episode (UShge want to ensure that each subsequent
planning episode vyields a better plan. Whenever a plan is found, it will anhgturned if its metric is
lower than that of the last plan found (line/10).

Moreover, in each episode we can use the metric value of the previousig fadan to prune the
search space, and thus improve search performance. In each plapmsode, the algorithm prunes
from the search space any nddehat we estimate cannot reach a better plan than the best plan found
so far. This estimate is provided by the functioremMkicCBOUNDFN(), which is given as an argument
to the search algorithm. MrrRicBouNnDFN(N) must compute or estimate a lowerbound on the metric
of any plan extendingy.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 72

Pruning is realized by the algorithm in liné 9, when the condition inithHeecomes false. As the
value ofbestMetricgets updated (line 17), the pruning constraint imposes a tighter boundgaosre
partial plans to be rejected.

The O andB heuristic functions defined above are well-suited to be usedEERMBOUNDFN().
Indeed, we tried both of them in our experiments. On the other hand, it issigue to “turn-off”
pruning by simply passing a null function aseMRICBOUNDFN().

Discarding Nodes in Closed List

Under certain conditions, our algorithm will also prune nodes that revjgam state that has appeared
in a previously expanded node. This is done for efficiency, and allosvalgorithm to avoid considering
plans with cycles.

The algorithm keeps a list of nodes that have already been expandexhiarthbleclosed just as
in standard best-first search. Furthermore, wtwgmentis extracted from the search frontier, its state is
checked against the set of closed nodes (line 8). If there exists aimduke closed list with the same
state and a better or equal heuristic value (i.eQ€ED?(current, closed is true), then the nodeurrent
will be pruned from the search space.

Note that for two states to be identical in the compiled planning instance evelgaropredicate has
to coincide and, moreover, values assigned to each ground functionasledo coincide. In particular,
this means thats-violated counters in two identical states are also identical, i.e., the preferences are
equally satisfied. Nevertheless, two search nodes with identical statediltdne assigned different
heuristic values. Given the way we have defineseBHEURISTIC(), different heuristic values will be
assigned to nodes with identical states only when the metric function depen@stal-time). If
the (total-time) function appears positively in the metric (i.e., the metric is such that for otherwis
equally preferred plans, longer ones are never preferred to sbads), then discarding of nodes cannot
prune any node that leads to an optimal plan. We discuss this further inxhgseation.

Finally, note that the cycles we are eliminating are those that occur in the conmstagice hot
those occurring in the original instance. Indeed, in the original instame thight be LTL preferences
that can be satisfied by visiting the same state twice. For example consideefaepce:eventu-
ally turn the light switch on and sometime after turn it. ofny plan that contains the actidarn-on
immediately followed byturn-off satisfies the preference but also visits the same state twice. In our
compiled domains however such a plan will not produce a cycle, and tinenefll not be pruned. This
is because the set of current states of the preference’s automaforeserted by the automata domain
predicates—changes when performing those actions; indeed it chHfamiges non-accepting state to an

accepting state.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 73

4.4.3 Properties of the Algorithm

In this section we show that under certain conditions our search algoriguaranteed to retummptimal
andk-optimalplans. We will prove this result without imposing any restriction on treeRHEURIS-
Tic() function. In particular, we can still ensure optimality even if this function edmissible. In
planning this is important, as inadmissible heuristics are typically required &mpuade search perfor-
mance.

The first requirement in our proofs is that the pruning performed bylgeithm issound

Definition 4.4 (Sound Pruning) The pruning performed by Algorithm 4.1ssundiff whenever a node
N is pruned (line 9) the metric value of any plan extending N exceeds thentbiound bestMetric.

When Algorithm 4.1 uses sound pruning, no state will be incorrectly prdireed the search space.
That is, nodeN is not pruned from the search space if some plan extending it can achieggic-value
superior to the current bound. To guarantee that the algorithm perfaworsd pruning it suffices to
provide a lowerbound function as input to the algorithm.

Theorem 4.1 If METRICBOUNDFN(N) is a lower bound on the metric value of any plan extending N,
then Algorithm 4.1 performs sound pruning.

Proof: If nodeN is notin closed and is pruned from the search space thengaRMBOUNDFN(N) >
bestMetric If METRICBOUNDFN() is a lower bound on the metric value of any plan extentinthen
(b) METRICBOUNDFN(N) < M(Np) for any solution nodéN, extendingN. By putting (a) and (b)
together we obtain that i is not in closed and it is pruned, thén(N,) > bestMetri¢ for every
solution nodeN, extending\, i.e., pruning is sound. |

As proven previously in Section 4.4.1, if the metric function is NDVPLandB will both be lower
bound functions, and therefore provide sound pruning. Notice al$tttimaing off” pruning by having
METRICBOUNDFNY() return a value that is always less tHastMetri¢ also provides sound pruning.

The second requirement for optimality has to do with the discarding of closgelsrperformed in
line 8. To preserve optimality, the algorithm must not remove a node that chtolegplan that is more
preferred than any plan that can be achieved by extending nodesdhmaitaliscarded. Formally,

Definition 4.5 (Discarding of Closed Nodes Preserves OptimalityYhe discarding of nodes by Algo-
rithm 4.1 preserves optimality iff for any node N that is discarded in[line 8getieeither already an
optimal node (i.e., plan) dlin the closed list or there exists a node N in frontier that can be extended to
a plan with optimal quality.

The condition defined above holds when using NDVPL metrics under fa@gral conditions. In
particular, it holds for any NDVPL metric that is independent(eétal-time). It also holds if the

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 74

NDVPL metric depends offtotal-time), andO or B is used as a first tie breaker af@ror P in
UserHEURISTIC(). Finally, it will hold if D is used as the first tie breaker for NDVPL metric functions
that areadditive on total-time

Definition 4.6 (Additive on total-time (ATT)) A metric function M is additive on total time (ATT) iff it
is such that MN) = Mp(N) + M+t (N), where M(N) is an expression that does not mention the function
(total-time), and Mr(N) is an expression whose only plan-dependent functi¢tidsal-time).

Intuitively, an ATT metric is a sum of a function that only depends onitfi&iolated functions, and
a function that include$total-time) but does not include anys-violated functions. Now we are
ready to state our result formally.

Theorem 4.2 The discarding of nodes done by Algorithm 4.1 preserves optimality if therikm
performs sound pruning, the metric function M is NDVPL and:

1. Misindependent dftotal-time), Or

2. M is dependent oftotal-time) and O or B are used as the first tie breaker$ERHEURIS-
Tic() after G or P, or

3. Mis ATT and D is used as the first tie breaketdseRHEURISTIC() after G or P.

Proof: See Appendix B. [

An important fact about sound pruning is that it never prunes optimakgtam the search space,
unless another optimal plan has already been found. An important em@rssxof this fact, is that the
search algorithm will be able to find optimal plans under fairly generalitiond. Our first result says
that, under sound pruning, optimality is guaranteed when the algorithm terminate

Theorem 4.3 Assume Algorithm 4.1 performs sound pruning, and that its node discppieserves
optimality. If it terminates, the last plan returned, if any, is optimal.

Proof: Each planning episode has returned a better plan, and the algorithm stgpshen the final
planning episode has rejected all possible plans. Since the algorithmprewes or discards a node
that can be extended to an optimal unless an optimal plan has already bedrtien no plan better
than the last one returned exists. |

Theorem 4.3 still does not guarantee that an optimal solution will be foucalise the algorithm
might never terminate. To guarantee this we must impose further conditione#tatt the explored
search space to be finite. Once we have these conditions, optimality is easyé¢ospce the search

must eventually terminate.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 75

Theorem 4.4 Assume the following conditions hold:
1. The initial value of bestMetric (worst case upper bound) in Algorithnisifihite;

2. The set of cycle-free nodes N such thE@TRICBOUNDFN(N) is less than the initial value of
bestMetric is finite;

3. Algorithm 4.1 performs sound pruning;
4. Node discarding in Algorithm 4.1 preserves optimality.
Then Algorithm 4.1 is guaranteed to find an optimal plan, if one exists.

Proof: Each planning episode only examines nodes with estimated metric value—givBteD
RICBOUNDFN—that is less thabestMetric By assumption 2, this is a finite set of nodes, so each
episode must complete and the algorithm must eventually terminate. Now thefollsuls from The-
orem 4.3. [|

In Theorem 4.4, condition 1 is satisfied by any implementation of the algorithnutiest a suffi-
ciently large number for the initial value testMetric Moreover, Theorem 4.1 shows how condition
3 can be satisfied, and Theorem 4.2 shows how condition 4 can be sat&iedition 2, however, can
sometimes be falsified by a PDDL3 instance. In particular, the metric functiobeaefined in such a
way that its valuémprovesas the number of violated precondition preferences increases. UWraleas
metric function the plans’ metric values might improve without bound as the plgthémcreases. This
would mean that the number of plans with metric value less than the intitial bbaatMetric becomes
unbounded, and condition 2 will be violated. We can avoid cases like thia thigemetric function is
bounded on precondition preferences

Definition 4.7 (BPP metrics) Let the individual precondition preferences for a planning instance P
berl, and let U denote the initial value of bestMetric. A metric functiobasinded on precondition
preference¢BPP) if there exists a valug for each precondition preference @ I' such that in every
node N withMETRICBOUNDFN(N) < U, p; is never violated more than times.

BPP metrics are such that the-violated functions are always smaller than a fixed bound in every
node with metric value lower thad. This property guarantees that there are only a finite number of
plans with value less thdd, and ultimately enables us to prove another optimality result:

Corollary 4.1 Assume that the metric function for planning instance P is BPP and assurdiicos
1, 3, and 4 in Theorem 4.4 hold. Then Algorithm 4.1 finds an optimal plan.for P

Proof: We need only prove that the set of nodésvith METRICBOUNDFN(N) < bestMetricis finite.
This will satisfy condition 2 and allow us to apply Theorem 4.4. The BPP comdéitsures that each

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 76

precondition functiong; in N can only have a value in the rangerPdor some fixed valug;). Since
the precondition functions are the only functions in the planning instancedthaining elements of
the state are boolean predicates), this means that only a finite number oérttifféates can have this
property. [

Note that the NDVPL property, which we could use to satisfy condition (4hiecfem 4.4¢loes not
imply necessarily the BPP property. As an example suppose a domainpylkeferef is a precondition
preference, angoalPref1 andgoalPref2 are final-state preferences. Assume we are usin@the
function as METRICBOUNDFN and that the metric for a nodéis defined as:

M(N) =is-violated(goalPref1,N)*is-violated(precPref,N)+is-violated(goalPref2,N).
4.2)
M is clearly NDVPL since it cannot decrease as plans violate more prefssehloweverM does not
necessarilyincreaseas more preferences are violated, which can lead to situations in whichwee ha
an infinite set of goal nodes with the same metric value. Indeed, asstubBref?2 is an unreachable
preference that cannot be detected by the relaxed graph (i.e., it ist@tdhwon't be detected by our
B bounding function). Moreover, assume the planner has found a natsdtisfiegoalPref1. As-
sumingprecPref can be violated by some action in the planning instance, there might be infinige plan
that could be generated that violgieecPref repeatedly while still satisfyingoalPref1. Because
the is-violated functions are represented within the state, those plans cannot be elimiyatteel b
algorithm since they will not produce cycles.

The BPP and NDVPL properties are quite natural conditions on the metgtidan Indeed, itis rea-
sonable to assume that violated preferences are undesirable. Hgfme should become (arbitrarily)
worse as the number of preferences it violates becomes (arbitrarilgy.l&gch a property is sufficient
to guarantee both the NDVPL and the BPP conditions. dadditivefamily of metric functions satisfies
both conditions, and it is defined as follows.

Definition 4.8 (Additive metric function) A PDDL3 metric function isdditive if it has the form M=
S oG x is-violated(p;), where ¢ > 0.

Remark 4.1 Additive metric functions satisfy the NDVPL condition and satisfy the BPP conditien w
METRICBOUNDFN is either B or O.

Additive metric functions were used in all of the problems in the qualitativeepeetce track of IPC-5.
Therefore, our algorithm—when usirt@ or B for pruning—is guaranteed to find an optimal solution
for these problems, given sufficient time and memory. In practice, haywawe to restrictions of time
and memory, the algorithm finds the optimal solution only in the most simple problemgheOther
larger problems it returned the best plan its completed planning episodesifothe time alloted.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 77

k-Optimality

Instead of searching for an optimal plan among the set of all valid plarspoght be interested in
restricting attention to a subset of the valid plans. For example, there migkddngrce usage limitations
that might further constrain the set of plans that one is willing to accept. Thistrb&the case when
a shift worker cannot be asked to work more than one overtime shift ie tags, or a plane cannot
log more than a certain number of continuous kilometers. If the set of plamgsdnterested in can
be characterized by a temporally extended property, it suffices to atidasproperty to the set of hard
constraints. The optimality results presented above, will allow the plannewdttignoptimal plan from
among the restricted set of plans, regardless of the property used.

For some interesting properties, however, we can find optimal plans wadder conditions on the
metric function than those required in the general case above. This issbgfoaexample, when we
are interested in plans whose length is bounded by a certain value.

Several existing preference planners are able to find plans that tamabpmong the set of plans
with restricted length or makespan. For example, AP (Bienvenuet al., 2006) when given a bourid
is able to find an optimal plan among those with lengtr less. Similarly, both the system by Brafman
and Chernyavsky (2005) anch®LAN-P (Giunchiglia and Maratea, 2007) return optimal plans among
those plans of makespam wheren is a parameter. It should be noted, however, that such plans need
not be globally optimal. That is, there could be plans of longer length or rmakethat have higher
value than the plan returned by these systems. Our algorithm, on the otkecharreturn the globally
optimal plan under conditions described above. If we are interestecgveowin plans of restricted
length then our algorithm can retukroptimal plans under weaker conditions.

Definition 4.9 (k-optimal plan) A plan is koptimaliff it is the optimal among the set of plans of length
i <k.

To achievek-optimality, we force the algorithm to search in the space of plans whose lengtinaller
than or equal td, by imposing an additional hard constraint that restricts the length of the plan

Theorem 4.5 Assume Algorithm 4.1 uses sound pruning, and that the set of initial farstraints
contains the formul@total-time) < k. Then, the returned plan (if any) is k-optimal.

Proof: Since the space of plans of length upkids finite, each planning episode will terminate with
an improved plan (if any exists). Because of sound pruning, no nadéearongly pruned from the
search space. Hence, the last returned plan (if any) is optimal. |

Note that this result does not require restrictions on the metric function asictondition 2 in
Theorem 4.4. Thus, this result is satisfied by a broader family of metri¢itumrscthan those that satisfy
Theorem 4.4; for example, it is satisfied when using NDVPL metrics sucheashin Equation 4.2.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 78

4.5 Implementation and Evaluation

We have implemented our ideas in the planner.k¥p-P. HRLAN-P consists of two modules. The
first is a preprocessor that reads PDDL3 problems and generatasnéngl@groblem with only simple
preferences expressed as a TR domain. The second module is a modified version of TAR that

is able to compute the heuristic functions and implements the algorithm of Section 4.4.

Recall that two of the key elements in our algorithm are the iterative pruniagegir and the heuris-
tics used for planning. In the following subsections we evaluate the e#eetss of our planner in
obtaining good quality plans using several combinations of the heuristicsaa tAstbed, we use the
problems of the qualitative preferences track of IPC-5, all of whichaorEPs. The IPC-5 domains
are composed of two transportation domaifBP andtrucks, a production domaimpenstacks, a do-
main which involves moving objects by using machines under several restsrtiorage, and finally,
rovers, which models a rover that must move and collect experiments (for more detailsefer the
reader to the IPC-5 booklet (Dimopolus, Gerevini, Haslum, and Saet#)2dach domain consists of
20 problems. The problems in theicks, openstacks, androvers domains have hard goals and prefer-
ences. The remaining problems have only preferences. Prefeiartbese domains impose interesting
restrictions on plans, and usually there is no plan that can achieve them all.

At the end of the section, we compare our planner against the other pdatha¢ participated in
IPC-5. The results are based on the data available from IPC-5 (GerBiimopoulos, Haslum, and
Saetti, 2006) and our own experiments.

4.5.1 The Effect of Iterative Pruning

To evaluate the effectiveness of iterative pruning we compared therperhce of three pruning func-
tions: the optimistic metric®), the best relaxed metri8), and no pruning at all. From our experiments,
we conclude that most of the time pruning can only produce better resultsthpruning, and that,
overall, pruning withB usually produces better results than pruning v@th

To compare the different strategies, we ran all IPC-5 problems @idmd no pruning, with a 30-
minute timeout. The heuristics used in these experiments were the four taprpied strategies on
each domain, under pruning wigh

The impact of pruning varies across different domains. In three of tmeaths, the impact of
pruning is little. In thestorage and TPP domains, pruning has no effect, in practice. In theers
domain, the impact is slimO performs as good aB does, and no pruning, on average, produces
solutions with a 0.05% increase on the metric. An increased impact is obserhegkrucks domain,
where the top-performing heuristics improve the metric of the first plan fdyn80.60% undeB
pruning, while unde© pruning the metric is improved by 28.02% on average, and under no pruning
by 21.33% on average. Finally, the greatest impact can be observed opetistacks domain. Here,

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 79

B produces 13.63% improvement on average, while both no pruning anthgrwith O produce only
1.62% improvement.

In general, pruning has a noticeable impact when, during search, hec&equently proven that
certain preferences witlot be satisfied. In the case of theenstacks domain for example, most pref-
erences require certain products (which are associatedvddrg to bedelivered On the other hand,
the goal usually requires a number of orders tcshipped To ship an order one is required to start
the order, and then ship it. However, to deliver a product associatecovd#ro, one needs toake
the product aftep has been started and before thbas been shipped. Thus, whenever an ocdisr
shipped, théB function automatically regards as unsatisfiable all preferences that énvtite delivery
of an unmade product associated wathThis occurs frequently in the search for plans for this domain.
The initial solution, which ignores preferences, produces a plan witinaie-productctions. As the
search progresses, states that finish an order early are constamihd@way, which in turn favours
addingmake-producactions.

A side effect of pruning is that it can sometimes prove (when the conditiofsemrem 4.3 are met)
that an optimal solution has been found. Indeed, the algorithm stops orofrtbstsimplest problems
across all domains (therefore, proving it has found an optimal plamp ffruning was used the search

would generally never terminate.

45.2 Performance of Heuristics

To determine the effectiveness of various prioritized heuristic seqad®eetion 4.4.1) we compared
42 heuristic sequences usiBgas a pruning function, allowing the planner to run for 15 minutes over
each of the 80 IPC-5 problem instances. All the heuristics Gaas the highest priority (therefore,
we omitG from their names). Specifically, we experimented withB, OP, PO, BP, PB, andBD(r),
D(r)B, OD(r), D(r)Oforr € {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1}.

In general, we say that a heuristic is better than another if it produces pléim better quality,
where quality is measured by the metric of the plans. To evaluate how goadiatitas, we measure
the percent improvement of the metric of the last plan found with respect toéhec of the first plan
found. Thus, if the first plan found has metric 100, and the last has méirib@ percent improvement
is 80%. Since a first plan is always found usiBgits metric value is always the same, regardless of the
heuristic we choose. Hence this measure can be used to objectively eopepformance.

Tablel 4.1 shows the best and worst performing heuristics in each of thaide tested. In many
domains, several heuristics yield very similar performance. Moreoweamclude that the heuristic
functions that use the relaxed graph are key to good performancell problems, savel' PP, the
heuristics that used the relaxed graph had the best performanceadéefd PP is pathological in the
gualitative preference track. However, upon looking at the actuabptamersed during the search we
observed that it is not the case tiits agoodheuristic for this problem, indeeadis almost totally blind

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 80

Domain 1Plan | >1Plan Worst heuristics

Best heuristics

openstacks | 18 14 BP[13.77], DO(1)[13.63],| D(0)B[7.56], for 1 €
DB(1)[13.63], BD(1)[13.63],| {0.01,0.05,0.1}: DO(r)[7.63]
B[13.63] and DB()[7.63]

trucks 5 4 D(0)O[30.68], OD(0)[30.68] PB[5.35], OP[5.35], PO[5.35]

0[12.02]

storage 16 9 BO[37], OB[37], B[37], O[37],| PO[21.04], PB[21.04], BP[24.18],
BD(0.05)[35.62], OD(0.05)[35.55]| OP[24.18]
BD(0)[35.42]

rovers 11 9 D(0.1)O[17.15], D(0.1)B[17.15]] BP[6.97], OP[7.16], B[10.85]]

D(0.3)B[16.91], D(0.3)0[16.91]; OB[10.85], BO[10.85], O[10.85]
0(0.01)D[16.47], O(0.05)D[16.47]
TPP 20 20 0[40.32], BO[32.02], B[32.02]/ for r < 0.9: BD()[9.03],
OB[33.97] OD(0.9)[10.98]

Table 4.1: Performance of different heuristics in the problems ofhalitative Preferencetrack of
IPC-5. The second column shows the number of problems where at feagtam was found. The third,
shows how many of these plans were subsequently improved upon by timepldhe average percent

metric improvement wrt. the first plan found is shown in square brackets.

since in most state® is equal to 0. Rather, it turns out that heuristics based on the relaxpd gra
poor in this domain, misguiding the search. In Section 4.6, we explain scenariosdh adr heuristics
can perform badly, and give more details on WIFP is one of these cases.

4.5.3 Comparison to Other Approaches

We entered HPAN-P in the IPC-RQualitative Preferencesack (Gereviniet al, 2006), achieving 2nd
place behind SGPIlar{Hsuet al,, 2007). Despite HPAN -P’s distinguished standing, SGP#aperfor-
mance was superior to HRN-P’s, sometimes finding better quality plans, but generally solving more
problems and solving them faster. SGRlarsuperior performance was not unigue to the preferences
tracks. SGPlandominated all 6 tracks of the IPCdatisficing plannecompetition. As such, we con-
jecture that their superior performance can be attributed to the partitioningigees they use, which
are not specific to planning with preferences, and that these techmigulelsbe combined with those of
HPLAN-P. This is supported by the fact that HiN -P has similar or better performance than SGPlan
on simple planning instances, as we see in experiments shown at the endsettios.

HPLAN -P consistently performed better therps-sDD (Edelkamp, Jabbar, and Naizih, 2006) and
MIPS-XXL (Edelkamp, 2006b); HEAN -P can usually find plans of better quality and solve many more

problems.MiPS-BDD andMIPS-XXL use related techniques, based on propositiofi@hBautomata, to

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 81

handle LTL preferences. We think that part of our superior perfageaan be explained because our
compilation does not ground LTL formulae, avoiding blowups, and alsalsthe heuristics are easy
to compute. For exampleiPs-xxL andMmIPS-BDD were only able to solve the first two problems (the
smallest) of thepenstacks domain, whereas HRAN -P could quickly find plans for almost all of them.
In this domain the number of preferences was typically high (the third instlredy contains around
120 preferences). On the other hand, something similar occurs s#tditage domains. In this domain,
though, there are many fewer preferences, but these are quaniificed. details can be found on the
results of IPC-5 (Gereviret al, 2006).

While we did not enter th&imple Preferencetsack, experiments performed after the competition
indicate that HRAN -P would have done well in this track. To perform a comparison, we raplanner
for 15 minutéé on the first 20 instanc%sof each domain. In Table 4.2, we show the performance
of HPLAN-P’s best heuristics compared to all other participants, in those domainich all four
planners solved at least one problem. UAR-P was able to solve 20 problems in all domains, except
trucks, where it could only solve the 5 simpler instances (see Table 4.3 for detdlie tracks domain).
In the table, #S is the number of problems solved by each approactRaialis the average ratio
between the metric value obtained by the particular planner and the metric abbgiraur planner.
Thus, values over 1 indicate that our planner is finding better planseat®alues under 1 indicate the
opposite. The results for HRN-P were obtained on an Intel(R) Xeon(TM) CPU 2.66GHz machine
running Linux, with a timeout of 15min. Results for other planners were etadafrom the IPC-5
official results, which were generated on a Linux Intel(R) Xeon(TM)CGP00GHz machine, with a 30
min. timeout. Memory was limited to 1GB for all processes.

We conclude that SGPlgnypically outperforms HBAN-P. SGPlag, on average, obtains plans
that are no more than 25% better in terms of metric value than those obtained.byw HP. Moreover,
in the most simple instances usually Hf -P does equally well or better than SGRJésee Table 4.3).
HPLAN-P can solve more instances than those solvedtdmharf>, MiPs-xxL andMIPs-BDD. Fur-
thermore, it outperform&ocharf> and MiPs-xxL in terms of achieved plan quality. HRN-P’s
performance is comparable to thatmiPs-BDD in those problems that can be solved by both planners.
Finally, we again observed that the best-performing heuristics in domaiestb#nTPP are those that
use the relaxed graph, and, in particular, Ehkeuristic.

We ran a final comparison between SGRland HR.AN -P on theopenstacks-nce domain (Haslum,
2007). openstacks-nce is a re-formulation of the originalpenstacks simple-preferences domain that
does not include actions with conditional effects. These two domains seatedly equivalent in the
sense that plans in one domain have a corresponding plan with equal qu#iyother. The results are
shown in Tablé 4.4. We observe that H¥ -P consistently outperforms SGP¥aacross all instances

3In IPC-5, planners where given 30 min. on a similar machine.
4OnIy thepathways domain has more than 20 problems.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 82

Domain HPLAN-P SGPlag Yochar® MIPS-BDD MIPS-XXL
#S | Ratio | #S | Ratio | #S Ratio #S Ratio #S Ratio
TPP 20 1 20| .78-81] 11| 1.02-1.07] 9 | 0.94-0.99| 9 | 1.68-1.78
openstacks | 20 1 20 | .89-.92| * * 2 2.5 18 | 6.45-6.81
storage 20 1 20 | .74-76] 5 | 3.86-3.95] 4 1 4 15.41
pathways 20 1 20 17 4 1.02 10 0.79 16 | 1.19-1.21

Table 4.2. Relative performance of HEN-P’s best heuristics for simple preferences, compared to
other IPC-5 participantsRatio compares the performance of the particular planner andaANPP’s.
Ratio> 1 means HPAN-P is superior, and Ratia 1 means otherwise. #S is the number of problems
solved. “*” means the planner did not compete in the domain.

of this domain, obtaining plans that are usually at least 50% better in qualitpl3®ebserve that the
performance of HPAN -P is consistent across the two formulations, which is not the case with SiGPlan

4.6 Discussion

In previous sections, we proposed a collection of heuristics that casdakin planning with TEPs and
simple preferences in conjunction with our incremental search algorithnur kexperimental evaluation
we saw that in most domains the heuristics that utilize the relaxed planning i@ ose that provide
the best performance. Given the limited number of domains in which we havta@apportunity to test
the planner, it is hard—and might be even be impossible—to conclude which et combination
of heuristics to use. It is even hard to give a justified recipe for their Hegvever, some situations in
which our heuristics perform poorly can be identified and analyzed vBet® describe two reasons for
potential poor performance.

The first reason for potentially poor performance is due to our choiasio prioritized sequences
of heuristics. We have chosen the goal distaGc® appear as the first priority to guide the planner
towards satisfying the must-achieve goals for a pragmatic reason: thesgbalmost important thing
to achieve. However, this design decision sometimes makes the search aigodtls excessively on
goal achievement to the detriment of preference satisfaction. This iesoees particularly relevant
when there are interactions between the goal and the preferencesd€rpfor example, a situation in
which a preferencg canonly be achievedfter achieving the goal. Furthermore, assume the goal
is the conjunctionfi A fo, and assume that prior to achievipgne has to maké, false. In cases like
this, after the algorithm finds a plan for the goal, it can hardly find a planatisatsatisfiep. When
extending any plan fog, the planner will always choose an action that does not invalidate th@alubg
f, over an action that invalidatefs, if such an action is available. This is because the goal dist&ice (
of any search node in whicf is false is strictly greater than the goal distance in which Hethnd f,

are true. As a conseguence, the algorithm will have trouble achigyiagd actually will only achieve

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 83

Instance YocharPS| MIPS-BDD | MIPS-XXL SGPlan HPLAN-P

0 | 0D(r=0.5) | OD(r=0) | OD(r=1)
TPP-01 22 16 16 16 16 16 16 16
TPP-02 36 24 24 24 24 24 24 24
TPP-03 24 29 29 29 29 29 29 29
TPP-04 45 35 35 35| 39 35 35 42
TPP-05 103 89 223 79| 103 79 87 105
TPP-06 133 110 275 101 | 120 118 114 120
TPP-07 124 126 322 100 | 124 135 135 135
openstacks-01 * 12 63 13 6 6 6 6
openstacks-02 * 12 63 16 4 4 4 4
openstacks-03 * ns 88 12 36 30 36 30
openstacks-04 * ns 98 26 47 44 45 49
openstacks-04 * ns 133 36 25 21 25 21
openstacks-06 * ns 133 33 21 18 21 18
openstacks-071 * ns 285 67 87 74 87 74
trucks-01 0 1 0 0 0 0
trucks-02 3 0 0 0 0 0
trucks-03 0 0 0 0 0 0
trucks-04 0 ns 0 3 1 3 4
trucks-05 1 ns ns 0 0 0 0 0
storage-01 6 18 5 3 3 3 3
storage-02 11 5 37 8 5 5 5 5
storage-03 49 6 158 14 6 6 6 6
storage-04 51 9 197 17 9 9 9 9
storage-05 165 ns ns 87 97 130 130 97
storage-06 ns ns ns 124 | 161 195 195 161
storage-07 ns ns ns 160 | 274 281 307 274
pathways-01 2 3 2 2 2 2 2
pathways-02 3 5 3 3 4 4 4
pathways-03 3 4.7 3 3 3.7 3.7 3.7
pathways-04 2 3 2 2 2 2 2
pathways-05 ns 7 10.2 6.5| 85 9 10.2 10.2
pathways-06 ns 8 12.9 10 | 12.9 12.9 12.9 12.9
pathways-07 ns 11 12.5 8| 125 12.5 12.5 12.5

Table 4.3: Plan quality (metric) of three of HRN-P’s heuristics compared to the IPCSimple Pref-
erencegarticipants on the simpler, non-metric problems. “ns” means that the instdratenot solved
by the planner. “*” means the planner did not compete in the domain.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES

84

openstacks-nce openstacks
Instance SGPlag HPLAN-P SGPlan HPLAN-P

0 | op(.5) | 0D(0) | OD(1) 0 | op(.5) | 0D(0) | OD(1)
01 70 11 11 11 11 13 6 6 6 6
02 70 7 11 7 11 16 4 4 4
03 90 38 42 37 41 12 36 30 36 30
04 100 48 49 46 49 26 47 44 45 49
05 140 48 48 48 48 36 25 21 25 21
06 140 35 41 34 41 33 21 18 21 18
07 300 98 98 98 98 67 87 74 87 74
08 620 | 140 152 148 148 123 86 78 86 78
09 620 | 154 155 154 154 121 | 109 123 109 123
10 120 30 25 30 20 20 19 11 10 13
11 120 36 26 36 22 21 19 22 23 12
12 153 80 81 80 73 23 52 45 45 51
13 223 | 190 172 181 174 48 | 171 167 167 167
14 65 47 22 47 24 6 32 23 21 21
15 210 | 125 123 125 126 0 74 67 67 67
16 210 | 133 133 133 133 0 74 63 67 63
17 450 | 224 255 269 254 0| 209 179 179 180
18 930 | 588 558 929 557 0| 557 464 464 493
19 1581 | 1581 1581 | 1581 | 1581 254 | 1581 1581 | 1581 | 1581
20 1348 | 1348 1348 | 1348 | 1348 424 | 1348 1348 | 1348 | 1348

openstacks-nce openstacks

Table 4.4: Metric values obtained by four of H&N -P’s heuristics and SGPlaon theopenstacks and

openstacks-nce(Haslum, 2007) domains.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 85

p when extending a plan fay whenno actionsthat invalidatef, are available. Unfortunately the only
way of getting into such a situation implies exhausting the search space otipddestend a plan fay
without invalidatingg.

The second source for poor performance is the loss of structure imwigiincur by computing our
heuristic in a planning instance in which the action’s deletes (i.e., negateet®ffare ignored. The in-
accurate reachability information provided by this relaxation might significarffidct the performance
of all our heuristics based on the relaxed planning graph R,eB, andD). Consider for example an
instance in which there are no hard goals and there are two prefergneasl p,. Assume further that
p2 is a preference that is rather easy to achieve from any state but thai basviolated in order to
achievep;. Assume that we are in a state in whiphis satisfied bup; is not, and in which we need
to perform at least three actions to achieve bpttand p,. Let those actions ba, b, andc, such that
a makesp, false andp; true, and finally actiom followed by c reestablistp;, as shown in Figure 4.3.
Moreover, assume that acti@ns applicable ins, and that it leads ts,—a state from whictp; and
p2 can be reached by the same sequence of three actions. Becalshdhastic is computed on the
delete relaxatior) will always prefer to expang, instead ofs;. A relaxed solution o, may achieve
both preferences at depth 1, since the prefergnde already satisfied at depth 0. On the other hand,
a relaxed solution os; may achieve both preferences at depth 2, sineg two actions are needed to
reestablishp,. Once the algorithm expands there could be another action applicablsinanalogous
to e, that would steer the search away fregn

It is precisely a situation similar to that described above that makes the heubated on the
relaxed graph (especially andP), perform poorly in thél PP domain. TPP is a transportation problem
in which trucks can move between markets and depots transporting goodsdAcgn be put into the
truck by performing doad followed by astore Stored goods can be unloaded from the truck performing
anunload Once in a market, one has oy an object before it becomes ready to load. In problems
of the TPP domain there is a preference that states that any good must be eventuddlgt masome
truck (p1). On the other hand, there is a preference that states that all truckisl sl unloaded at
the end of the plang}). Once we have considered moving a truck to a market and bought éncerta
good, sayood1, our plan prefix has achievg® but notp;. A reasonable course of action to achieve
both preferences would be lwad good1 on the truck, followed by atore and followed by amunload
However, the state that results from performingpad is never preferred by the planner, since just
like in Figurel 4.3, doad invalidatesp, while makingp; true. Instead, an action that preserveshe
property (e.g., duyof another good) is always preferred. This leads the planner to earalgossible
combinations of sequences thmatya good before consideringl@ad. Even worse, after performing all
possible buys, for a similar reason the search prefers to use otherntdrnoéve to another market to
keep on buying products.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 86

{p1,~p2} {p1,~p2} {p1, P2}

S O
a b c
{=p1, p2}
o {=p1, P2} {p1, P2} {P1,—=p2} {p1, P2}
S (s O O
a b c

Figure 4.3: A situation in which ouD heuristics prefers a node that does not lead to the quick satisfac-
tion of bothp; and p,.

4.7 Related Work

There is a significant amount of work on planning with preferences thratased, in varying degrees,
to the method we have presented here. We organize this work into two gifinspsplanners that are
able to plan with preferences in non-PDDL3 preference languagesitg soft goals; second, work
that focuses on the PDDL3 language. In the rest of the section we réveeliterature in these two
categories.

4.7.1 Other Preference Languages

PPRLAN (Bienvenuet al, 2006) is a plannning system that exploits progression to plan directly with
TEPs using heuristic search. In contrast tolAR-P, which is incremental, RRRN always returns an
optimal plan whose length is bounded by a plan-length parameter (i.ek-@gpimal). Unfortunately,
PPLAN uses an admissible heuristic that is far less informative than the heuristjpsseahere. As
such, it is far less efficient. The heuristic in BN is similar to ourO heuristic, and thus does not
provide an estimate of the cost to achieving unsatisfied preferenceaNRfas developed prior to the
definition of PDDL3 and exploits its owqualitative preference languagePP, to define preferences.
LPP supports rich TEPs, including nested LTL formulae (unlike PDDL3) anceratian specifying a
metric objective function, thePP objective is expressed as a logical formula.LRR's LPP language

is an extension and improvement over Bfelanguage proposed by Son and Pontelli (2004).

The HRLAN-QP planner (Baier and Mcllraith, 2007) was proposed as an ansvegamte of the
shortcomings of PEAN. It is an extension to the HRAN-P system, allowing planning faualitative
TEPs guided by heuristics similar to those that have been proposed in tipieichahe preference
language is based @wiPP, the language used by PAN. HPLAN-QP guides the search actively towards
satisfaction of preferences (unlike B&N), and like HRAN-P, guarantees optimality of the last plan
found given sufficient resources.

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 87

Also related is the work opartial satisfaction planning problem®SPs) (over-subscription plan-
ning) (van den Briel, Nigenda, Do, and Kambhampati, 2004; Smith, 20@&ps can be understood
as a planning problem with no hard goals but rather a collection of soft gaah with an associated
utility; actions also have costs associated with them. Some existing plannerSRsr(Banchez and
Kambhampati, 2005; Do, Benton, van den Briel, and Kambhampati, 200 8lsvéncremental and
use pruning techniques. However in general, they do not offer atignality guarantees. Recently,
Benton, van den Briel, and Kambhampati (2007) developed an increnpésmaler 8BOP-LP, that uses
branch-and-bound pruning for PSP planning, similar to our approasbp-LP is able to offer opti-
mality guarantees given sufficient resources. However, in contra$PtanN -P, it uses very different
techniques for obtaining the heuristics. To compute heuristics it first ietheeoriginal planning prob-
lem and creates an integer programming (IP) model of this new problem.nltctiraputes heuristics
from a linear-programming relaxation of the IP model. Lastly, Feldmann, Bagand Wenzel (2006)
propose a planner for PSPs that iteratively invokestRIC-FF to find better plans.

Bonet and Geffner (2006) have proposed a framework for plarwiitiigaction costs and costs/rewards
associated with fluents. Their cost model can represent PSPs as wellsaisiple preferences subset of
PDDL3. They propose admissible heuristics and an optimal algorithm fonipl@runder this model.
Heuristics are obtained by compiling a relaxed instance of the problem toNFDMhile the algorithm
is a modification ofA*. The approach does not scale very well for large planning instantcesrt
because of its need to employ an admissible heuristic.

Finally, there has been work that casts the preference-based plgmoinigm as an answer set
programming problem (ASP), as a constraint satisfaction problem (@8B)as a satisfiability (SAT)
instance. The paper by Son and Pontelli (2004) proposed one of shéafiguages for preference-
based planning?P, and cast the planning problem as an optimization of an ASP problem. FPReir
language includes TEPs expressed in LTL. Brafman and Cherny&28&%) proposed a CSP approach
to planning with final-state qualitative preferences specified using TCP-/Adtktionally, Giunchiglia
and Maratea (2007) proposed a compilation of preference-basedindaproblems into SAT. None
of these approaches exploits heuristic search and thus are fundamdiftatignt form the approach
proposed here. The latter two approaches guide the search for asdiytimposing a variable/value
ordering that will attempt to produce preferred solutions first. Becawesetivorks are recasting the
problem into a different formalism, they explore a very different seapete than our approach. Note
also that the conversion to ASP, CSP or SAT requires assuming a fixed loouplan length limiting
the approach to at best findikepptimal plans.

4.7.2 IPC-5 competitors

Most related to our work are the approaches taken by the plannersthpeted in IPC-5, both because
they used the PDDL3 language and because many used some form istibesgrarch. Yocharf’s

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 88

(Benton, Kambhampati, and Do, 2006) is a heuristic planner for simplerprefes based on the Sdpa
system (van den Brigdt al., 2004). Our approach is similar to theirs in the sense that both use a relaxed
graph to obtain a heuristic estimat&ochar’® is also an incremental planner, employing heuristics
geared towards classical goals. However, to compute its heuristic feea giate, it explicitly selects

a subset of preferences to achieve from that state and then treatshibét ag a classical goal. This
process can be very costly in the presence of many preferences.

MIPS-XXL (Edelkampet al, 2006) andvirps-BDD (Edelkamp, 2006b) both uselBhi automata
to plan with temporally extended preferences. While the approach to compiliag the TEPs also
constructs an automata (as in our approach), their translation procemsigs grounded preference
formulae. This makes the translation algorithm prone to unmanageable blowuther, the search
techniques used in both of these planners are quite different from d@sxploit. MIPS-XXL itera-
tively invokes a modified MTRIC-FF (Hoffmann, 2003) forcing plans to have decreasing metric values.
MIPS-BDD, on the other hand, performs a cost-optimal breath-first search teaidd employ a heuris-
tic.

Finally, the winner of the preferences tracks at IPC-5, SGRldruet al,, 2007), uses a completely
different approach. It partitions the planning problem into severghsidlems. It then uses a modified
version of FF to solve those subproblems and finally integrates thesekuioiss into a solution for
the entire problem. During the integration process it attempts to minimize the metrtofursGPlag
is not incremental, and seems to suffer from some non-robustness infsnpence as shown by the
results given in Table 4.4 (where its performance on an reformulatedgoitaéent domain changes
quite dramatically).

4.8 Conclusions and Future Research

In this chapter we have presented a new technique for planning withr@nefs that can deal with
simple preferences, temporally extended preferences, and hartdaooiss The core of the technique,
our new set of heuristics and incremental search algorithm, are both bimdoantegration with a
variety of classical and simple-preference planners. The compilationiteehfor converting TEPS to
simple preferences can also be made to work with other planners, alth@ugiethod of embedding the
constructed automata we utilize here might need some modification, dependeatfacilities available
in that planner. Our method of embedding the constructed automata utilizedaN'sPability to deal
with numeric functions and quantification. In particular, TUAR’s ability to handle quantification
allowed us to utilize the parameterized representation of the preferenuesatg by the compilation,
leading to a considerably more compact domain encoding.

We have presented a number of different heuristics for planning wiflenereces. These heuristics

have the feature that some of them account for the value that could levediirom unsatisfied pref-

CHAPTER4. PLANNING WITH TEMPORALLY EXTENDED PREFERENCES 89

erences, while others account for the difficulty of actually achievingetipesferences. Our method for
combining these different types of guidance is quite simple (tie-breakind)yere sophisticated com-
binations of these or related heuristics could be investigated. More digngraquestion of identifying
the domain features for which particular heuristics are most suitable is aagtitey direction for future
work.

We have also presented an incremental best-first search planninghaigoA key feature of this
algorithm is that it can use heuristic bounding functions to prune the sspadie during its incremental
planning episodes. We have proved that under some fairly naturatiomscur algorithm can generate
optimal plans. It is worth noting that these conditions do not require theitigoto utilize admissible
heuristics. Nor do they require imposing a priori restrictions on the plan(iEngth or makespan)
which would allow the algorithm to only achiekeoptimality rather than global optimality.

The algorithm can also employ different heuristics in each incrementalip@episode, something
we exploit during the very first planning episode by ignoring the prefegs and only asking the planner
to search for a plan achieving the goals. The motivation for this is that wé atdeast one working
plan in hand before trying to find a more preferred plan. In our expetsn&owever, the remaining
planning episodes are all executed with one fixed heuristic. More flexdhkdsiles of heuristics could
be investigated in future work.

We have implemented our method by extending the TANPplanning system and have performed
extensive experiments on the IPC-5 problems to evaluate the effectvainas heuristic functions and
search algorithm. While no heuristic dominated all test cases, severdy gearided superior guidance
towards good solutions. In particular, those that use the relaxed grapmimway proved to be the most
effective in almost all domains. Experiments also confirmed the essentialfrpitaning when solving
large problems. HPAN-P scales better than many other approaches to planning with preferandes
we attribute much of this superior performance to the fact that we do nohdraur planning problems.

Although the proposed heuristics perform reasonably well in many of émetmarks we have
tested, we have identified cases in which they perform poorly. In sones,ca@mputing heuristics over
the delete relaxation can provide bad guidance in the presence ofgmedsr The resolution of some
of the issues we have raised above open interesting avenues forrigaesch.

The ideas presented in this chapter have been used to build other playsiggs. As we mentioned
above, Baier and Mcllraith (2007) have extended WiR-P to plan for aqualitativepreference language
LPP. Recently, Sohrabi, Baier, and Mcllraith (2009), have used foemelation technique presented
in this chapter to build a heuristic preference-based Hierarchical Taskddk (HTN) (Erol, Hendler,
and Nau, 1994) planner.

Chapter 5

Golog Domain Control Knowledge in
State-of-the-Art Planners

5.1 Introduction

In previous chapters we have focused our attention on the problemsrofimdawith temporally ex-
tended goals and temporally extended preferences. Our goal hathbesxploitation of state-of-the-art
techniques to achieve effective planning for these compelling non-cpsmning tasks.

Another compelling planning technique is the use of DCK. DCK imposes donp&aif& con-
straints on the definition of a valid plan. As such, it can be used to imposectiesis on the course
of action that achieves the goal. While DCK sometimes reflects a user's desachieve the goal
a particular way, it is most often constructed to aid in plan generation bycirglthe plan search
space. Moreover, if well-crafted, DCK can eliminate those parts of theclsesppace that necessitate
backtracking. In such cases, DCK together with blind search can yiéttiplans significantly faster
than state-of-the-art planners that do not exploit DCK. Indeed mosheta that exploit DCK, such
as TLR.AN (Bacchus and Kabanza, 1998) or TALAN (Kvarnstbm and Doherty, 2000), do little
more than blind depth-first search with cycle checking in a DCK-prunathespace. Since most DCK
reduces the search space but still requires a planner to backtrackl te Valid plan, it should prove
beneficial to exploit better search techniques.

In this chapter we explore ways in which state-of-the-art planning teabei@nd existing state-
of-the-art planners can be used in conjunction with DCK, with particulangconproceduralDCK.
Procedural DCK (as used in HTN (Nau, Cao, Lotem, andibiiAvila, 1999) or Golog (Levesque
et al, 1997)) is action-centric. It is much like a programming language, and tiftess like a plan
skeleton or template. It can (conditionally) constrain the order in which doawiaons should appear

90

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 91

in a plan.

As a simple example of procedural DCK, consider theicks domain of the 5th International
Planning Competition, where the goal is to deliver packages between dedations using a limited-
capacity truck. When a package reaches its destination it must be déelteetlee customer. We can
write simple and natural procedural DCK that significantly improves theiefioy of plan generation

for instance:

Repeat the following until all packages have been delivered: Unload tewvegyfrom the

truck, and, if there is any package in the current location whose destmadithe current
location, deliver it. After that, if any of the local packages have destinatitsesvbere,

load them on the truck while there is space. Drive to the destination of any tdalbled

packages. If there are no packages loaded on the truck, but theraimepackages at
locations other than their destinations, drive to one of these locations.

Although procedural DCK is interesting in its own right as a planning toolgthes other very inter-
esting applications, not strictly considered as“pure” planning applicationghich procedural control
plays a fundamental role. A relevant application is agent programmingriicyar, cognitive robotics
(Levesque and Lakemeyer, 2007). Here the objective is to progranmisagithflexibleprograms. Pro-
grams are flexible in the sense that the agent may adjust, complete, or custsneizecution based
on its current goals, its knowledge and beliefs, and the state of the emérdn Golog is one of the
prominent languages used by this community, and has been used in somme aptaizations such as
the Minerva Museum Tour Robot (Thrun, Bennewitz, Burgard, Crenigellaert, Fox, hnel, Rosen-
berg, Roy, Schulte, and Schulz, 1999), Robocup (Ferrein, FrittLakemeyer, 2005), and recently
also Robocup@Honre By reformulating a problem with procedural Golog DCK into a classical plan-
ning problem we bring planning advances closer to the area of cognitivgics, and thus potentially
improve the performance of a broad range of applications. ClaRenickyé&akemeyer, and Nebel
(2007) have made steps in connecting Golog and state-of-the-art ddnuieas we discuss later in the
chapter, their work is quite different from ours.

WSC is also another motivation for dealing with this problem. As seen in the fiegtter, applica-
tions such as WSC require the plans that are complex structures (with laperditional constructs),
there are many other applications. Notwithstanding, current planningdiagynhas not reached the
point at which complex plans with loops can be generated for a broad pktrming domains (for an
up-to-date report, see e.g. Levesque, 2005). It has therefonedbgeed that a reasonable solution for
problems such as WSC is the generation of plans by computing an execuidnugfan-generated pro-
cedure (or program) (Mcllraitkt al, 2001), which essentially acts as DCK. These programs, however,
contain significant non-determinism, which has to be resolved by the plaResolving these non-

personal communication with Gerhard Lakemeyer.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 92

deterministic segments can be quite challenging. Thus, for those tasksg Wweesiested in leveraging
the power of state-of-the-art techniques.

5.1.1 Contributions

The main contributions of this chapter follow.

1. As we mentioned above, DCK that has been used in planning is eithecestdtes (e.g. LTL), or
based on HTNs. HTNs do not provide programming language constructs.

We propose a language for DCK based on Golog that includes typicgigomoning languages
constructs such as conditionals and iteration as well as nondeterministie dfiaittions in places
where control is not germane. We argue that these action-centric wctsspirovide a natural
language for specifying DCK for planning. We contrast them with DCKcgmations based on
LTL which are state-centric and though still of tremendous value, argymbiside a less natural
way to specify DCK. We specify the syntax for our language as well @3RLPbased semantics
following Fox and Long (2003).

An immediate advantage of our semantics is that it can be used to implement naitigec@ntrol
support in any forward-chaining planner.

2. With a well-defined procedural DCK language in hand, we examine houwsdostate-of-the-
art planning techniques together with DCK. Of course, most state-odsthi@anners are unable
to exploit DCK. As such, we present an algorithm that translates a PDBdg&gified ADL
planning instance and associated procedural DCK into an equivalegtapn-free PDDL2.1
instance whose plans provably adhere to the DCK. Any PDDL2.1-compllanher can take
such a planning instance as input to their planner, generating a plan tieeado the DCK.

3. Since they were not designed for this purpose, existing state-@rthpanners may not exploit
techniques that optimally leverage the DCK embedded in the planning instarsceuch, we
investigate how state-of-the-art planning techniques, rather than psaicae be used in conjunc-
tion with our compiled DCK planning instances. In particular, we propose @sindependent
search heuristics for planning with our newly-generated planning inssarid/e examine three
different approaches to generating heuristics, and evaluate themeerditmains of the 5th Inter-
national Planning Competition. Our results show that procedural DCK inegrthe performance
of state-of-the-art planners, and that our heuristics are sometimes kehitving good perfor-

mance.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 93

5.1.2 Outline

The rest of the chapter is organized as follows. Sectioh 5.2 preserkgrband on PDDL necessary
for the rest of the chapter. Section 5.3 presents our procedurabtartguage. Section 5.4 presents a
procedure to compile Golog control into PDDL. Then, in section 5.5 we stoswdur compiled theory
can be integrated with state-of-the-art planners. Section 5.6 presestpenimental analysis showing
the benefits of our approach. Finally, Section 5.7 summarizes the chagtdisansses related work.

5.2 Background

5.2.1 A Subsetof PDDL 2.1

In PDDL, aplanning instancés a pairl = (D, P), whereD is a domain definition an® is a problem.
To simplify notation, we assume thdtandP are described in an ADL subset of PDDL. The difference
between this ADL subset and PDDL 2.1 is that no concurrent or duratitiens are allowed.

Following convention, domains are tuples of finite g, Ops Objs,, T, 7p), wherePF defines
domain predicates and functior@psdefines operator£bjs, contains domain objectd; is a set of
types, andp C Objs, x T is a type relation associating objects to types. An operator (or action schema)
is also a tupléO(X), t, Prec(X), Eff (X)), whereO(X) is the unique operator name akiek (X, ...,X%y) is a
vector of variables. Furthermores (ty,...,t,) is a vector of types. Each variabteranges over objects
associated with typg. Moreover,PreqX) is a boolean formula with quantifiers (BFQ) that specifies the
operator’s preconditions. BFQs are defined inductively as followsmit®FQs are either of the form
t; =ty or R(ty,...,tn), wheret; (i € {1,...,n}) is a term (i.e. either a variable, a function literal, or an
object), andR is a predicate symbol. If is a BFQ, then so iQxt o, for a variablex, a type symbot,
andQ € {3,V}. BFQs are also formed by applying standard boolean operators oeeBFs. Finally
Eff(X) is a list of conditional effects, each of which can be in one of the followorgk:

vyl'tl' : 'vYn'tn' @(KV) = R(KV)? (5-1)
VY1t Vyn-tn. (X Y) = R(XY), (5.2)
Vyl'tl‘ : ‘vYn'tn~ @D()?ay) = f()?,y) = Obj, (5-3)

whereyp is a BFQ whose only free variables are amaiandy, Ris a predicatef is a function, anab |
is an object After performing a ground operator —-action— O(C) in a certain stats, for all tuples of
objects that may instantiagesuch thaty(C,y) holds ins, effect (5.1) (resp. (5.2)) expresses tRat, V)
becomes true (resp. false), and effect (5.3) expressed (€iaf) takes the valuebj. As usual, states
are represented as finite sets of atoms (ground formulae of theRi@nor of the formf(C) = obj).
Planning problems are tuplélsit, Goal, Objs,, 7p), wherelnit is the initial state(Goal is a sentence

with quantifiers for the goal, an@bjs, and7p are defined analogously as for domains.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 94

Semantics:Fox and Long (2003) have given a formal semantics for PDDL 2.1. iitiqodar, they define
when a sentence tsue in a state and whadtate traces the result of performing a set timed actions

A state trace intuitively corresponds to an execution trace, and the sets dfdirtiens are ultimately
used to refer to plans. In the ADL subset of PDDL2.1, since there acemeurrent or durative actions,
time does not play any role. Hence, state traces reduce to sequentse®asd sets of timed actions
reduce to sequences of actions.

Building on Fox and Long’s semantics, we assume thas defined such tha = ¢ holds when
sentencey is true in states. Moreover, for a planning instande we assume there exists a relation
Succsuch thatSucds, a,s) iff s’ results from performing an executable actmin s. Finally, a se-
guence of actiona; - - - a, is a plan forl if there exists a sequence of staggs - s, such thatsy = Init,
Sucds, a+1,S+1) fori € {0,...,n—1}, ands, = Goal.

5.3 A Language for Procedural Control

In contrast to state-centric languages, that often use LTL-like logicaldtae to specify properties of
the states traversed during plan execution, procedural DCK specifidatiguages are predominantly
action-centric, defining a plan template or skeleton that dictdensto be used at various stages of
the plan.

Procedural control is specified viilmogramsrather than logical expressions. The specification lan-
guage for these programs incorporates desirable elements from imp@ratiramming languages such
as iteration and conditional constructs. However, to make the languagesmitable to planning ap-
plications, it also incorporates nondeterministic constructs. These elemerksyato writing flexible
control since they allow programs to contain missing or open program ségjnvemich are filled in
by a planner at the time of plan generation. Finally, our language also oretes property testing,
achieved through so-calladst actions These actions are not real actions, in the sense that they do
not change the state of the world, rather they can be used to specifgrfiespof the states traversed
while executing the plan. By using test actions, our programs can alsiyspeperties of executions
similarly to state-centric specification languages.

The rest of this section describes the syntax and semantics of the praicB@K specification
language we propose to use. We conclude this section by formally defitiagitymeans to plan under
the control of such programs.

5.3.1 Syntax

The language we propose is based on Golog (Levestaie 1997), a robot programming language de-
veloped by the cognitive robotics community. In contrast to Golog, our lagggupports specification

of types for program variables, but does not support procedures

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 95

Programs are constructed using the implicit language for actions and bdoleaulae defined
by a particular planning instande Additionally, a program may refer to variables drawn from a set
of program variable¥. This setV will contain variables that are used for nondeterministic choices of
arguments. In what follows, we assufalenotes the set of operator names filOps fully instantiated
with objects defined ih or elements oY/.

The set of programs over a planning instahand a set of program variabl®scan be defined
by induction. In what follows, assumgis a boolean formula with quantifiers on the languagé, of
possibly including terms in the set of program variableAtomic programs are as follows.

1. nil: Represents the empty program.

2. o Is a single operator instance, where O.
3. any: A keyword denoting “any action”.

4. ¢?: Atest action

If 01, 02 ando are programs, so are the following:

1. (01;02): A sequence of programs.

2. if gthenoy elses,: A conditional sentence.

3. while¢doo: A while-loop.

4. o*: A nondeterministic iteration.

5. (01|o2): Nondeterministic choice between two programs.

6. m(x-t)o: Nondeterministic choice of variablec V of typet € T.

Before we formally define the semantics of the language, we show some lesahmtt give a sense
of the language’s expressiveness and semantics.

¢ while —clear(B) dor(b-block) putOnTablé¢b): while B is not clear choose arly of type block
and put it on the table.

e any*;loaded A, Truck)?: Perform any sequence of actions uAti$ loaded inTruck Plans under
this control are such thdvaded A, Truck) holds in the final state.

e (load(C,P); fly(P,LA)|load(C,T);drive(T,LA)): Either loadC on the pland or on the truck
T, and perform the right action to move the vehicld.fa

5.3.2 Semantics

The problem of planning for an instantender the control of program corresponds to finding a plan
for | that is also an execution ef from the initial state. In the rest of this section we define what
those legal executions are. Intuitively, we define a formal device tdwlbether a sequence of actions
a corresponds to the execution of a program The device we use is a nondeterministic finite state
automaton witre-transitions §-NFA).

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 96

For the sake of readability, we remind the reader thlFAs are like standard nondeterministic
automata except that they can transition without reading any input symbolgtnithe so-called-
transitions. e-transitions are usually defined over a state of the automaton and a speultmls,
denoting the empty symbol.

An e-NFA A, is defined for each program and each planning instante Its alphabet is the set
of operator names, instantiated by objectd.otts states ar@rogram configurationsvhich have the
form [0,5], whereo is a program and is a planning state. Intuitively, as it reads a word of actions, it
keeps track, within its state, |, of the part of the program that remains to be executeds well as
the current planning state after performing the actions it has read alseady

Formally, A, = (Q, A, Tr,do, F), whereQ is the set of program configurations, the alphakés a
set of domain actions, the transition functiolis Q x (AU {e}) — 29, qo = [0, Init], andF is the set

of final states.

Our definition ofTr closely follows the definition ofransandFinal from Golog’s transition seman-
tics (De Giacomo, Lesirance, and Levesque, 2000).

The transition functiofTr is defined as follows for atomic programs.

Tr([a,s],a) = {[nil,s]} iff Sucés,a,s), s.t.ac A4, (5.4)
Tr([any,s],a) = {[nil,s]} iff Sucgs,a,s), s.t.ac A4, (5.5)
Tr([¢?,9],¢) = {[nil,s]} iff sE=¢. (5.6)

Equations 5.4 and 5.5 dictate that actions in programs change the stateragtorthe Succrelation
described in the previous section. Finally, Eq. 5.6 defines transitionsf@arhen¢ is a sentence (i.e.,
a formula with no program variables). It expresses that a transitiondgrbe carried out if the plan

state so far satisfies.

Now we defineTr for non-atomic programs. In the definitions below, assumedtaid U {¢}, and

thato, ando, are subprograms ef, where occurring elements ihmay have been instantiated by any

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 97

object in the planning instande

Tr([(01;02),9],@) = {[(01;02),9]|[01,5] € Tr([o1,5],a)} if o1 #nil, (5.7)
Tr([(n”;(jz),S],E) - {[0273]}7 (5.8)
Tr([if pthenoy elsers, 9, e) = {[al’s] sk (5.9)
02,9 if s}~ ¢,
Tr([(o1]02),8],€) = {[o1,8], [02, 8]} (5.10)
Tr([while ¢docs, 9,) = {{[n"’s]} Tsio. (5.11)
{lo1;while¢pdooy,s|} if s|= ¢,
Tr([UI,S],zS)Z{[(Ul;ai),S],[nil,S]}, (5.12)
Tr([r(xt)o1.8,€) = {0105 (0,1) € DU} (5.13)

whereo |/, denotes the program resulting from replacing any occurrengénof; by o. We now give
some intuitions for the definitions. First, a transition on a sequence conm@spo transitioning on its
first component first (EQ. 5.7), unless the first component is alre&dgrtipty program, in which case we
transition on the second component (Eqg/ 5.8). A transition on a condition@sponds to a transition
in the then or elsepart depending on the truth value of the condition (Eqg. 5.9). A transitionef th
nondeterministic choice leads to the consideration of either of the program5.@®). A transition of a
while-loop corresponds to thel program if the condition is false, and corresponds to the body followed
by the while-loop if the condition is true (Eq. 5/11). On the other hand, aitramsf o; represents two
alternatives: executing, at least once, or stopping the executiomf with the remaining programil
(Eg.'5.12). Finally, a transition of the nondeterministic choice correspondgramsition of its body
when the variable has been replaced by any object of the right typ& (E3).

To end the definition oA, Q corresponds precisely to the program configuratileriss] where
o’ is eithernil or a subprogram af such that program variables may have been replaced by objects in
I, andsis any possible planning state. Moreoveér,s assumed empty for elements of its domain not
explicitly mentioned above. Finally, the set of accepting statEs=s{ [nil, g | sis any state ovel}, i.e.,
those where no program remains in execution. We can now formally defievecantion of a program.

Definition 5.1 (Execution of a program) A sequence of actions a-a, is an execution ob in | if
ap---an is accepted by A.

As usual, we use the symbolo represent a single computation of the automaton. We sagy that
iff there exists ara such thatf € Tr(qg,a). The symbol-* represents the reflexive and transitive closure
of . Finally, qo H* qy iff there are exist state, . .., 0_1 such thatp - g1 - g2 F ... F qe_1 - Ok.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 98

Before defining what we mean by planning in the presence of control, roxe several results
that attempt to justify the correctness of the defined semantics in terms of tidarstantuition. The
first result proves that the definition of the sequence is intuitively cgriec, the execution of ;o2
corresponds to the execution®f followed by o».

Proposition 5.1 Leto; ando, be programs. If
[01;02, 5 F ... F g1 gk = [nil,s],
then for some € [1,K], g = [02,5] and[o1,s F* [nil,S].
Proof: See Section C.1 (p. 173). [

Our second result proves that the semantics for the executionfofthen- elseis intuitively correct

Proposition 5.2 Let¢ be a BFQ and letr; ando, be programs. Then the following holds
[if pthenoy elser,, g H* [nil,]
iff
sk ¢ andfo,s F* [nil,S], or st~ ¢ and[o, s H* [nil,s].

Proof: Straightforward by definition ofr. |

The execution of a nondeterministic choice of programs have the intendedngédao, as shown
by the following result.

Proposition 5.3 Leto; ando, be programs. Then the following holds
[(o1|02),9 F* [nil,S]
iff
[01,5 F* [nil,S] or [o2,5] F* [nil,s].

Proof: Straightforward by definition ofr. |

Now we prove that the execution of the while loop correspond to a repeaesaition of the body
of the loop.

Proposition 5.4 Let¢ be a BFQ andr be a program. If
[while pdoo,s| Fai - g+ ... F g - [nil,s],

then:

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 99

1. forallie [1,K], g is either of the form g= [or; While ¢ doo, 1], or of the form g= [while ¢doo, ri].

2. for all'i € [1,K], if g; is of the form g= [while ¢doo,r;] then i< K iff rj = ¢. State q is of the
form g = [while pdoo, ry]

3. Finally, let n be the number of stategige [1,k]) of the form g= [while doo,ri]. Then,[o", g F*
[nil,s], wherec" represents the sequence that repeatstimes.

Proof: See Section C.2 (p. 174). [

In the Golog language (Levesqes al, 1997), theif -then-else construct is defined by macro
expansion, in terms of test actions and non-deterministic choices. Belowowe that our semantics
for theif -then-elseand for the Golog macro expansion of such a construct are equivalent.

Proposition 5.5 Let¢ be a BFQ and letr; and o, be programs. Then the following holds
if ptheno elseoy, s| - [0, 9
iff
[(6?501)|(—¢?;02),8 F° [0,9].

Proof: Straightforward from the definition dfr. |

Now that we have justified the correctness of the semantics of the contgnidge, we return to
planning. We are now ready to define the notion of planning under puoakcbntrol.

Definition 5.2 (Planning under procedural control) A sequence of actionga - - - a, is aplan for in-
stancd under the control of program if a;ax---a, is a planin | and is an execution ofin I.

5.4 Compiling Control into the Action Theory

This section describes a translation function that, given a programnthe DCK language defined above
together with a PDDL2.1 domain specificatiDnoutputs a new PDDL2.1 domain specificatidn and
problem specificatiof®,. The two resulting specifications can then be combined with any proBlem
defined oveD, creating a new planning instance that embeds the control given bg. that is such
that only action sequences that are executions afe possible. This enables any PDDL2.1-compliant
planner to exploit search control specified by any program.

To account for the state of execution of prograrand to describe legal transitions in that program,
we introduce a few bookkeeping predicates and a few additional actfogste 5.1 graphically illus-

trates the translation of an example program shown as a finite state autométdively, the operators

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 100

testtg)

test()) noop T~ | _
G-y O
testc /9/

while

sequence

Figure 5.1: Automaton fowhile ¢ do(if ¢ thenaelseb); c.

we generate in the compilation define the transitions of this automaton. Theanplitons and effects
condition on and change the automaton’s state.

The translation is defined inductively by a functiGfo, n, E) which takes as input a program an
integern, and a list of program variables with typEs= [e;-t;, ..., &-t], and outputs a tuple_,L’,n’)
with L a list of domain-independent operator definitiobSa list of domain-dependent operator def-
initions, andn’ another integer. IntuitivelyE contains the program variables whose scope includes
(sub-)progran. Moreover,L’ contains restrictions on the applicability of operators defined,iand
L contains additional control operators needed to enforce the seartblatefined ins. Integersn and
n’ abstractly denote the program state before and after executian of

We use two auxiliary functionsnoognz, nz) produces an operator definition that allows a transi-
tion from staten; to np. Similarly Ctes{¢,n1,np, E) defines the same transition, but conditionedson
They are defined &s:

Cnoogng, n2) = (noopny_ny(), [|, state= s, , [State= sy,])

Ctes(¢,m, np, E) = (testm_ny(X), T, PreqX), Eff (X)) with
(et,X) = mentionép,E), et = ety ..., emtm,
PreqX) = (state= sy, A gb[a/xi]r;l/\/\zlbounc{a) — map(e, X)),
Eff(X) = [state= s,,] - [bound e), mape, x)]i" ;.

Functionmentiongg, E) returns a vectogé-t of program variables and types that occupjrand a vector
X of new variables of the same length. Bookkeeping predicates servelkheifg purposes:state
denotes the state of the automatbaunde) expresses that the program variableas been bound to an
object of the domainmap(e, 0) states that this object& Thus, the implicatiothound e) — mape, x;)
forces parametes to take the value to which is bound, but has no effectéf is not bound.

2 \We useA- B to denote the concatenation of ligksandB.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 101

Consider the inner box of Figure 5.1, depicting the compilation of the if stateténtlefined as:

C(if pthenoyelserp, N E) = (L1 Lo+ X, L] - L5, n3)
with (Ly,L},m) =C(o1,n+1,E),
(Lo, L5, np) =C(o2,m +LE), ng=np+1,
X =[Ctes(¢,n,n+1,E), Ctes(—¢,n,n1+1,E),

Cnoogny,n3), Cnoogny, n3) |

and in the example we haye=y,n=2nm =4 np=6,n3="7,01 = a, ando, = h.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 102

The inductive definitions for other programsare:

C(nil,n,E) = ([],[],n)

C(O(M),n.E) = ([], [{O(X), t, Prec(x), Eff'(x))],n + 1) with
(O(x),t,PreqX),Eff(X)) € Ops F=r1,...,Im,
Pred(X) = (state= sh A

/\ boundr;) — map(ri,x;) A /\ X =ri),

i st.rickE i s.t.ri¢E
Eff’(X) = [state= s, = state= s,;1] -

[state= s, = boundri) Amagri,)i st.rcE
C(¢?,n,E) = ([Ctes{¢,n,n+ L E)], [], n+1)
C((01;02),n,E) = (L1 - Ly, L] -L5, np) with

(L1,L3,n1) =C(o1,n,E), (Lo, L5, np) = C(o2,n1, E)
C((o1|02),n,E) = (Ly-Lp-X,L7 - L5, np + 1) with

(L1,L%,ng) =C(o1,n+1,E),

(Lo, L5, np) =C(o2,n + 1L E),

X =[Cnoofdn,n+ 1), Cnoogdn,n; + 1),

Cnoopny,n2+ 1), Cnoognz,nz +1) |
C(while ¢doo,n,E) = (L-X,L',ny + 1) with

(L,L";m) =C(o,n+1,E), X = [Ctes{(¢,n,n+ 1 E),
Ctes{—¢,n,n; +1,E),Cnoofnyg, n)]
C(c*,n,E) = (L-[Cnoogn,nz),Cnoogny, n)],L’,ny)
with (L,L",n;) =C(o,n,E),n=ny +1
C(n(xt,0),n,E) = (L-X,L’,ny + 1) with
(L,L";m) =C(o,n,E - [xt]),
X = [(freen(x),t, state= s,

[state= sn,+1, ~boundx), vy.—map(x,y)])]

The atomic programany is handled by macro expansion to above defined constructs.

As mentioned above, given program the return valugL,L’, nsnq) of C(0,0,[]) is such that
contains new operators for encoding transitions in the automaton, whéi@agains restrictions on the
applicability of the original operators of the domain. Now we are ready tornateghese new operators
and restrictions with the original domain specificati®mo produce the new domain specificatiog.

D, contains a constrained version of the opera@(®) of the original domairD also mentioned in

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 103

L". Let[(O(X),T, Preg(X), Eff;(X))]"_, be the sublist of’ that contains additional conditions for operator
O(X). The operator replacin@(X) in D,, is defined as:

(0%, T, Prea®) A \/;Preq(x), Eff(R)u| | Eff(%)

Additionally, D, contains all operator definitions In Objects inD,, are the same as thoseln plus a
few new ones to represent the program variables and the automatde&ss{® < i < ngng). Finally
D, inherits all predicates iD plusboundx), map(x,y), and functiorstate

The translation, up to this point, is problem-independent; the problem spgicifi®, is defined
as follows. Given any predefined probldProver D, P, is like P except that its initial state contains
conditionstate= sp, and its goal containstate= s, .. Those conditions ensure that the program must
be executed to completion.

As is shown below, planning in the generated instapce (D,,P,) is equivalent to planning for
the original instancé = (D, P) under the control of program, except that plans ol3 contain actions
that were not part of the original domain definitiadegt noop andfree).

Theorem 5.1 (Correctness)Let Filter(«, D) denote the sequence that remains when removing drom
any action not defined in D. W is a plan for instance/ = (D,,P,) then Filter«,D) is a plan for

| = (D,P) under the control of. Conversely, itv is a plan for | under the control of, there exists a
plan ¢’ for |, such thatx = Filter(«/, D).

Proof: See Section C.3 (page 174) . [

Now we turn our attention to analyzing the size of the output planning instetate/e to the original
instance and control program. Assume we define the size of a progrdnma asmber of programming
constructs and actions it contains. Then we obtain the following result.

Theorem 5.2 (Succinctness) et o is a program of size m, and let k be the maximal nesting depth of
7(x-t) statements iwr, then|l,| (the overall size of,l) is O((k+ p)m), where p is the size of the largest
operator in I.

Proof: See Section C.4 (page 183). [

The encoding of programs in PDDL2.1 is, hence, in worst € times bigger than the program
itself. It is also easy to show that the translation is done in time linear in the size pfdlgram, since,

by definition, every occurrence of a program construct is only daditence.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 104

5.5 Exploiting DCK in State-of-the-Art Heuristic Planners

Our objective in translating procedural DCK to PDDL2.1 was to enabigPDDL2.1-compliant state-
of-the-art planner to seamlessly exploit our DCK. In this section, we iigags ways to best leverage
our translated domains using domain-independent heuristic searchnglanne

There are several compelling reasons for wanting to apply domain-indeptheuristic search to
these problems. Procedural DCK can take many forms. Often, it will peoxgblicit actions for some
parts of a sequential plan, but not for others. In such cases, it withcounconstrained fragments (i.e.,
fragments with nondeterministic choices of actions) where the designestexpe planner to figure out
the best choice of actions to realize a sub-task. In the absence of depaiific guidance for these
unconstrained fragments, it is natural to consider using a domain-indepeheuristic to guide the
search.

In many domains it is very hard to write deterministic procedural DCK, i.e. DGK ttstricts the
search space in such a way that solutions can be obtained very efficemthyusing blind search. An
example of such a domain is one where plans involve solving an optimizatiopreblem. In such
cases, procedural DCK will contain open parts (fragments of normdgtistc choice within the DCK),
where the designer expects the planner to figure out the best way ofetorg@ sub-task. However, in
the absence of domain-specific guidance for these open parts, it ialtatapnsider using a domain-
independent heuristic to guide the search.

In other cases, it is the choice of action arguments, rather than the cHo&mtians that must
be optimized. In particular, fragments of DCK may collectively impose globaktaints on action
argument choices that need to be enforced by the planner. As sugblatimeer needs to baware of
the procedural control in order to avoid backtracking. By way of illugira consider a travel planning
domain comprising two tasks “buy air ticket” followed by “book hotel”. EachKOftagment restricts
the actions that can be used, but leaves the choice of arguments to therplaarther suppose that
budget is limited. We would like our planner to realize that actions used to contipéetiest part should
save enough money to complete the second task. The ability to do such ladkazdrebe achieved via
domain-independent heuristic search.

In the rest of the section we propose three ways in which one can leveragtranslated do-
mains using a domain-independent heuristic planner. These three tezhuiiffer predominantly in
the operands they consider in computing heuristics.

5.5.1 Direct Use of Translation &mple)

As the name suggests, a simple way to provide heuristic guidance while iegfprogram awareness
is to use our translated domain directly with a domain-independent heuristivgpldn short, take the

original domain instanckand controlr, and use the resulting instanigewith any heuristic planner.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 105

Unfortunately, when exploiting a relaxed graph to compute heuristics, twessarise. First, since
both themapandboundpredicates are relaxed, whatever value is already assigned to a vawdble
remain assigned to that variable. This can cause a problem with iteratitrelcétor example, assume
programaoy d:9fwhileqbd07r(c-crate) unloadc, T), is intended for a domain where crates can be only
unloaded sequentially from a truck. While expanding the relaxed plamoasas variable is bound to
some value, actionnloadcan only take that value as argument. This leads the heuristic to regard most
instances as unsolvable, returning misleading estimates.

The second issue is one of efficiency. Since flugateis also relaxed, the benefits of the reduced
branching factor induced by the programs is lost. This could slow dowrotiggtation of the heuristic
significantly.

5.5.2 Modified Program Structure (H-ops)

TheH-opsapproach addresses the two issues potentially affecting the computatiesamghleheuris-
tic. It is designed to be used with planners that employ relaxed planninggyfap heuristic compu-
tation. The input to the planner in this case is a pairHOps), wherel, = (D,,P,) is the translated
instance, antHOpsis an additional set of planning operators. The planner uses the agerai, to
generate successor states while searching. However, when competinguttistic for a stateit uses
the operators itHOps

Additionally, functionstateand predicateboundandmaparenot relaxed. This means that when
computing the relaxed graph we actually delete their instances from thedal@mtes. As usuadleletes
are processed befoeglds The expansion of the graph is stopped if the goal or a fixed point ibegac
Finally, a relaxed plan is extracted in the usual way, and its length is repastdte heuristic value. In
the computation of the length, auxiliary actions such as tests and noops aredgn

The un-relaxing obtate boundandmapaddresses the problem of reflecting the reduced branching
factor provided by the control program while computing the heuristics. d¥ew it introduces other
problems. Returning to the_ program defined above, sinstateis now un-relaxed, the relaxed graph
expansion cannot escape from the loop, because under the relarethg semantics, as soon @ss
true, it remains true forever. A similar issue occurs with the nondeterministatidar Furthermore,
we want to avoid state duplication, i.e. havistgteequal to two different values at the same time in the
same relaxed state. This could happen for example while reachiiigcamstruct whose condition is
both true and false at the same time (this can happen bepars#not-p can both be true in a relaxed
state).

This issue is addressed by tHOpsoperators. To avoid staying in the loop forever, the loop will be
exited when actions in it are no longer adding effects. Figure 5.2 progidgaphical representation.
An important detail to note is that the loop is not entered wiésnnot found true in the relaxed state.
(The expressiomot ¢ should be understood as negation as failure.) Moreover, the pseughbffp is

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 106

testfiot ¢)

eSt@)@>J\/¥'J\/\'<jtest(p >D5)

testfp < 5)

Figure 5.2: H-opstranslation ofwhile loops. While computing the heuristics, pseudo-flugnis
increased each time no new effect is added into the relaxed state, and itd®Ds#herwise. The loop
can be exited if the last five (7-2) actions performed didn’t add any fffmete

testesco) @N\»@ exitif
test(not¢) %op(
— N\
m \@/

escapee

Figure 5.3:H-opstranslation forif -then-else Action testes¢¢) is possible if conditiorp is true. If
condition—¢ is also true in the relaxed state, ttestes¢¢) dds a factescapeactivethat will enable
the execution otontinue andescapet andescapee. Actionsescapet andescapee are possible only
when no other actions are possible. This is checked using the pseedofffudescribed in Figure 5.2.
Action exitif is only possible ilescapeactiveis true. Both thenoop and theescapee actions delete the
factescapeactive Nestedf constructs are handled using a parameterized version ekttegeactive
predicate.

an internal variable of the planner that acts as a real fluent fdi@ys A similar approach is adopted
for nodeterministic iterations, whose description we omit here.

Since loops are guaranteed to be exited, the computatibiropfsis guaranteed to finish because at
some relaxed state the final state of the automaton will be reached. At thisiptiietgoal is not true,
no operators will be possible and a fixed point will be produced immediately.

Forif's, if the condition is both true and false at the same time,ttten part is processed first,
followed by theelse part. The objective of this is avoidance of state duplication. However, &vis n
interpretation of thef introduces a new problem. This problem occurs when, while performing the
actions of one of the parts, no action is possible anymore. Intuitively, thikl dappen because the
heuristics has chosen the wrong subprogram to execute actions frdeednf there exists an execu-
tion of the program from statethat executes the “then” part of thik it can happen that, during the
computation of the heuristic fa, the “else” part forces some actions to occur that are not possible.
Under normal circumstances, the non existence of any possible actidmgeoa fixed point. Because
the goal is not reached on such a fixed point, the heuristic regardsd@hagonreachable, which could

be a wrong estimation.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 107

To solve this problenti-opsconsiders new “escape” actions, that are executable only when no more
actions are possible. Escapes can be performed only inside “thenlsel tidies. After executing an
escape, the simulation of the program’s execution jumps to the else part ifdapeesccurs in the
“then” part, or to the end of thi, if the escape occurs in the then part. Figure 5.5.2 shows a graphical
representation of thie-opsgenerated for thd .

5.5.3 A Program-Unaware Approach Basic)

Our program-unaware approadBasiq completely ignores the program when computing heuristics.
Here, the input to the planner is a péis,Ops, wherel, is the translated instance, a@psare the
original domain operators. Th@psoperators are used exclusively to compute the heuristic. Hence,
Basics output is not at all influenced by the control program.

Although Basicis program unaware, it can sometimes provide good estimates, as we see in the
following section. This is especially true when the DCK characterizes a solthiat would be naturally
found by the planner if no control were used. It is also relatively fasbrapute.

5.6 Implementation and Experiments

Our implementatié%takes a PDDL planning instance and a DCK program and generates aDigw P
planning instance. It will also generate appropriate output folB&gic and H-opsheuristics, which
require a different set of operators. Thus, the resulting PDDL instamay contain definitions for
operators that are used only for heuristic computation usingiihection keyword, whose syntax is
analogous to the PDDL keyworghction.

Our planner is a modified version of TLRN, which does a best-first search using an FF-style
heuristic. It is capable of reading the PDDL with extended operators.

We performed our experiments on ttracks storageandroversdomains (30 instances each). We
wrote DCK for these domains. For details on the Golog code used for thasgptes, see Section E.
We ran our three heuristic approachBsigic H-ops andSimplg and cycle-free, depth-first search on
the translated instancél{nd). Additionally, we ran the original instance of the program (DCK-free)
using the domain-independent heuristics provided by the plaonigir(al). Table 5.1 shows various
statistics on the performance of the approaches. Furthermore, Fig. &4 simes for the different
heuristic approaches.

Not surprisingly, our data confirms that DCK helps to improve the perfocmani the planner,
solving more instances across all domains. In some domains (i.e. storagavarg) blind depth-first
cycle-free search is sufficient for solving most of the instances. Memveguality of solutions (plan

3Available atwww. cs . toronto.edu/kr/systems

www.cs.toronto.edu/kr/systems

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 108

original Simple Basic H-ops blind

#n 1 031 041 0.26 19.85
% #s 9 9 15 14 3
E Lmin 1 1 1 1 1
lavg 11 1.03 1.02 1.04 1.04
Cmax 1.2 1.2 1.07 1.2 1.07
#n 1 074 106 106 1.62
© #s 10 19 28 22 30
é Lmin 1 1 1 1 1
lavg 2.13 1.03 1.05 1.21 1.53
Cmax 4.59 1.2 1.3 1.7 2.14
#n 1 1.2 1.13 0.76 1.45
:‘%’7 #s 18 18 20 21 20
% Lmin 1 1 1 1 1

lavg 4.4 1.05 101 107 162
lmax 21.11 1.29 116 148 211

Table 5.1: Comparison between different approaches to planning (wik) .Bf is the average factor
of expanded nodes to the number of nodes expandeatiginal (i.e., #n=0.26 means the approach
expanded 0.26 times the number of nodes expanded by original). #s isrteenaf problems solved
by each approaclta,g denotes the average ratio of the plan length to the shortest plan foung loy an
the approaches (i.elayg=1.50 means that on average, on each instance, plans where 50%tlaryer
the shortest plan found for that instanc&)i, and/max are defined analogously.

length) is poor compared to the heuristic approaches. In trucks, DCKyiseffective in conjunction
with heuristics; blind search can solve very few instances.

We observe tha-opsis the most informative (expands fewer nodes). This fact does nobibay
in time in the experiments shown in the table. Nevertheless, it is easy to consstacices where the
H-opsperforms better thaBasic This happens when the DCK control restricts the space of valid plans
(i.e., prunes out valid plans). We have experimented with various instahttesstorage domain, where
we restrict the plan to use only one hoist. In some of these thsgsoutperformsBasicby orders of
magnitude.

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 109

1000 |

100 1
4 10 1
g
o
Q
o
wn

1 4
0.1 1
0'010 5 10 15 20 25 30
problem
(a) rovers
1000 | 7 E
i x
100
g 10}
g
S
5]
o
n
1 L
0.1
0.010
problem
(b) storage
1000 | - *]
. X
SO,

100 1
2 10} 1
g
) original ——
o
"ot Basic ¢ 1

H-OpS o
0.1+ Simple &
blind

0'010 5 15 20 25

problem
(c) trucks

Figure 5.4: Running times of the three heuristics and the original instan@gijttugic scale; run on an
Intel Xeon, 3.6GHz, 2GB RAM

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 110
5.7 Summary and Related Work

DCK can be used to constrain the set of valid plans and has proveneativafftool in reducing the
time required to generate a plan. Moreover, DCK can be used to spelafyskeletons” which may be
effective for addressing other problems, such as WSC or compooiwase composition.

Nevertheless, many of the planners that exploit it use arguably lesahstiate-centric DCK spec-
ification languages, and their planners use blind search. In this chapterkamined the problem of
exploiting procedural DCK with state-of-the-art planners. Our goda teaspecify rich DCK naturally
in the form of a program template and to exploit state-of-the-art plannidmigeaes to actively plan
towards the achievement of this DCK. To this end we made three contribugiomdsion of a procedu-
ral DCK language syntax and semantics; a polynomial-time algorithm to compile @@k planning
instance into a PDDL2.1 planning instance that could be input to any PDDidibliant planner; and
finally a set of techniques for exploiting domain-independent heuristiclseeth our translated DCK
planning instances. Each contribution is of value in and of itself. The layegoan be used without the
compilation, and the compiled PDDL2.1 instance can be input to any PDDLplant state-of-the-
art planner, not just the domain-independent heuristic search pldraieve propose. Our experiments
show that procedural DCK improves the performance of state-ofsttydaaners, and that our heuristics
are sometimes key to achieving good performance.

Much of the previous work on DCK in planning has exploited state-centdcifipation languages.
In particular, TLRAN (Bacchus and Kabanza, 1998) and TALAR (Kvarnsttm and Doherty, 2000)
employ declarative, state-centric, temporal languages based on LTlet¢dysPCK. Such languages
define necessary properties of states over fragments of a valid plamargt¥e that they could be less
natural than our procedural specification language.

Though not described as DCK specification languages there are a nofrleaguages from the
agent programming and/or model-based programming communities that ard telptecedural con-
trol. Among these are £GLE, a goal language designed to also express intentionality (dal &iaglg
2002). Moreover, Golog is a procedural language proposed aseanadive to planning by the cogni-
tive robotics community. It essentially constrains the possible space of atiancould be performed
by the programmed agent allowing non-determinism. Our DCK language caiewed as a ver-
sion of Golog. Further, languages such as the Reactive Model-Basgthmming Language (RMPL)
(Kim, Williams, and Abramson, 2001) — a procedural language that comhideas from constraint-
based modeling with reactive programming constructs — also share axprpewer and goals with
procedural DCK. Finally, HTN specification languages such as thasg insSHOP (Nawt al,, 1999)
domain-dependent hierarchical task decompositions together with pad&l constraints, not easily
describable in our language. However, Fritz, Baier, and Mcllraith §0@ve recently provided a
compilation of ConGolog (De Giacomet al.,|2000), a successor of Golog, to PDDL. ConGolog can

CHAPTERS5. GoLOG DOMAIN CONTROL KNOWLEDGE IN STATE-OF-THE-ART PLANNERS 111

represent various HTN constructs.

A focus of our work was to exploit state-of-the-art planners and fteytechniques with our proce-
dural DCK. In contrast, well-known DCK-enabled planners such aBLRIN and TALPLAN use DCK
to prune the search space at each step of the plan and then employ blindidtgycle-free search to
try to reach the goal. Unfortunately, pruning is only possible for maintenatyte DCK and there is
no way to plan towards achieving other types of DCK as there is with the hiews&arch techniques
proposed here.

Similarly, Golog interpreters, while exploiting procedural DCK, have trad#ilynremployed blind
search to instantiate nondeterministic fragments of a Golog program. MestheClal3eret al.(2007)
have proposed to integrate an incremental Golog interpreter with a stéte-aft planner. Their mo-
tivation is similar to ours, but there is a subtle difference: they are inter@stambiningagent pro-
grammingand efficient planning. The integration works by allowing a Golog progmamake explicit
calls to a state-of-the-art planner to achieve particular conditions idertiidtte user. The actual plan-
ning, however, is not controlled in any way. Also, since the Golog intéepexecutes the returned plan
immediately without further lookahead, backtracking does not extendloedroundary between Golog
and the planner. As such, each fragment of nondeterminism within agrnagrtreated independently,
so that actions selected locally are not informed by the constraints of laggnénts as they are with the
approach that we propose. Their work, which focuses on the semah#i€d. in the situation calculus,
is hence orthogonal to ours.

Finally, there is related work that compiles DCK into standard planning domBaisr and Mcll-
raith (2006b), Cresswell and Coddington (2004), Edelkamp (20@®a) Rintanen (2000), propose to
compile different versions of LTL-based DCK into PDDL/ADL planning danga The main drawback
of these approaches is that translating full LTL into ADL/PDDL is worsteaagoonential in the size of
the control formula whereas our compilation produces an addition to the arigdDL instance that is
linear in the size of the DCK program. Son, Baral, Nam, and Mcllraith (20@®)er show how HTN,
LTL, and Golog-like DCK can be encoded into planning instances that eaolved using answer set
solvers. Nevertheless, they do not provide translations that can beat@@gvith PDDL-compliant
state-of-the-art planners, nor do they propose any heuristic agm@e#o planning with them.

Chapter 6

Planning with Programs that Sense

6.1 Introduction

In the previous chapter, we developed an algorithm that enables ani-e@bDpliant planner to plan
with Golog procedural control. This is important because many applicateansre planning in such
conditions. However, as we mentioned in the introduction of this document, iy czaes théuilding
blocksfor plans are not simply primitive actions btomplex actionsr programs Moreover, programs
may be able t@enseahe environment.

Our interest in this chapter is to develop an algorithm that will enable existiagptgr-based plan-
ners to plan withprograms rather than or in addition to primitive actions, as the building blocks for
plans. By doing so, we enable recent advances in these planners tetzgkd for planning with pro-
grams. Our approach is distinct from previous work (Mcllraith and E&@2) in that it can handle
programs that sense the environment.

Our approach is to develop a technique for compiling programs into new prratitions that
can be exploited by standard operator-based planning techniqueshiBveathis, we automatically
extract (knowledge) preconditions and (knowledge) effects froognams. We study this problem in
the language of the situation calculus, appealing to Golog to representagrams. The output of
our compilation process is expressed as a situation calculus theory. Tiig oan be translated into a
PDDL specification rather straightforwardly (Pednault, 1989; Clafiexh, 2007).

A primary motivation for this work is to provide a theoretical framework for tise of conditional
(knowledge producing) macro-actions. Planning with some form of mactions (e.g Fikes, Hart, and
Nilsson, 1972; Sacerdoti, 1974; Korf, 1987; Mcllraith and Fadel 2@/ol et al., 1994) can dramat-
ically improve the efficiency of plan generation. As such, our work ersaptactitioners that want to
improve the performance of planning applications by adding or learning lesrmmacro-actions to plan

112

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 113

with these actions without requiring to implement any extensions to their planner.

Our secondary motivation for investigating this topic is to address the praiflantomated compo-
nent software composition and specifically WSC (e.g. Mcllraith and SAR)2Web services are self-
contained, Web-accessible computer programs, such as the airline &okieesat www.aircanada.com,
or the weather service at www.weather.com. These services are indegdms that sense—e.g. by
determining the balance of an account or flight costs by querying a dataksnd act in the world—
e.g. by arranging for the delivery of goods, by debiting accounts,A&tcsuch, the task of WSC can
be conceived as the task of planning with programs, or as a specialic@dnvef a program synthesis
task.

6.1.1 Contributions and Outline

The main contributions or our work follow.

1. Levesque (1996) argued that when planning with sensing, the outabthe planning process
should be a plan which the executing agent knows at the outset will lead nalasifiuation in
which the goal is satisfied. Even in cases where no uncertainty in the outtfoattions, and
no exogenous actions are assumed this remains challenging becausengblate information
about the initial state. To plan effectively with programs, we must consitietlver we have the
knowledge to actually execute the program prior to using it in a plan. To tithtie Section 6.3
we propose an offline execution semantics for Golog programs with setigihgnables us to
determine that we know how to execute a program. We prove the equigadénar semantics to
the original Golog semantics, under certain conditions.

2. The main contribution of this work is the compilation method that transformsaiianatheory
with programs into a new theory where programs are replaced by primitiema¢Section 6.4.1).
This enables us to use traditional operator-based planning techniques wwithlgorograms that
sense in a restricted but compelling set of cases.

3. Because the operators that result from the compilation may sensesvaraperties at the same
time, and, additionally have conditional knowledge effects, it is not obwadusther or not our
compilation can be immediately used by standard operator-based plannesensing. Thus,
we provide an analysis of the applicability of the results presented in theéechiaphose planners
(Section 6.5). We also extend tir&s planning system (Petrick and Bacchus, 2002) to handle
sensing for complex formulae

In Section 6.6 we discuss the practical relevance of this work by illustratgdlential computa-
tional advantages of planning with programs that sense. We also diseusddtance of this work to
WSC.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 114

6.2 Preliminaries

The situation calculus and Golog provide the theoretical foundations fovork. In the two subsec-
tions that follow we briefly review the situation calculus (McCarthy and Ha$889; Reiter, 2001),
including a treatment of sensing actions and knowledge. We also reviewatgition semantics for
Golog, a high-level agent programming language that we employ to reyrése programs we are
composing.

6.2.1 The Situation Calculus

The Situation Calculus, as described by Reiter (2001), is a sorted secdadlanguage for specifying
and reasoning about dynamical systems. In the Situation Calculus, the chardes as the result of
actions A situationis a term denoting the history of actions performed from an initial distinguistied
uation,S. The functiondo(a, s) denotes the situation that results from performing actiamsituation
55. Relationalfluentsare situation-dependent predicates that capture the changing state/\m‘rtd@
Finally, the distinguished predicaB®ssa,) is used to express that it is possible to execute aetion
situations.

To represent knowledge in the Situation Calculus, we essentially followrSate: Levesque’s for-
malism (2003). Thus, we consider an additional predicate syibwlhich has two arguments of the
sort situation, such th#€(s', s) indicates that' is accessibldrom s. K intuitively represents tha is a
“possible world” given that we are is and therefore adapts Moore’s possible-world model of knowl-
edge (1985) to the Situation Calculus. Finally, the relatiois such that ifs C s’ it is possible to reach
situations’ from s by performing a non-empty sequence of actions.

6.2.2 Basic Action Theories

The dynamics of a particular domain is describedbiagic action theorie$BATSs). Before defining
BATs precisely, we need to introduce the notioruafform formulae Intuitively, a uniform formula in
the set of situation term¥ is one that does not contalfossor L, it does not quantify over variables
of the sort situation, it does not mention equality on situations, and wheitewentions a term of sort
situation in the situation argument position of a fluent, then that term¥s in

Definition 6.1 (Uniform Formula) LetY be a set of terms of the sort situation.

¢ Any situation-independent term is uniform\ﬁg

Ydo(Jay,...,an],s) abbreviatesio(an,do(...,do(ay,s)...)).

2In this chapter we do not deal wifanctional fluentsnd thus omit their description.

3Note that since we do not allow functional fluents, the only situation-indiégrerterms of the language may be either
variables not of the sort situation or situation-independent function terms

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 115

e Formulae that are uniform ify"are inductively defined as follows:

1. Any formula that does not mention a term of sort situation is uniforifi in

2. When F is ar(n+ 1)-ary relational fluent, {,...,t, are terms uniform info} whose sorts
are appropriaté for F, ando € Y, then Kty,...,tym, o) is uniform inY.

3. If U; and U, are formulae uniform inY;, so are—-U1, U; AUy, and (3v)Us, provided v is a

variable not of sort situation.

Our definition generalizes Definition 4.4.1 by Reiter (2001), in that it comsiailtiple situation terms

in which a formula can be uniform. We introduce this generalized versioe $ter in this chapter we

will guarantee certain conditions on our compiled theories, that can bessqat compactly in terms of
this definition.

In the remainder of the chapter, whenever a fornrWwlé uniform in a singleton sefts} we simply
say thatw is uniform in s Likewise we say thatV is uniform in s and swheneveV is uniform in
{s,s'}.

Now we are ready to describe how to model a dynamic domain using the Situalioun. Reiter's
basic action theory with a treatment for knowledge has the form

D = ZUDssUDapUDynal Dg, U Kinit,
where,
e X is a set of foundational axioms.
e Dgsis a set of successor state axioms (SSAs), of the Ebim:
F(x.do(a,s) = e (a,Xs), (6.1)

where®g (a,X;s) is a formula uniform ins and whose free variables are amang, ands. The
set of SSAs can be compiled from a seteffiect axiomsDes (Reiter, 2001). An effect axiom
describes the effect of an action on the truth value of certain fluents, e.g.,

a= startCar D engineStarte(tio(a,s)).

The general form of effect axioms is:

1(X.a,8) O [F]F (X, do(a,s)), (6.2)

“We borrow the term “appropriate” from Reiter’s definition. In short, anténat is the argument to a predicate in tHa
position as the appropriate sort iff it has the expected sort such a pogitieong other things, this means that an argument to
a fluent atom cannot be sort situation unless it is the last argument.

SFor notational convenience we use the notat¢xi s) to represent a formul@(xy, . .., X,) of the Situation Calculus, for
somen.

BAll free variables in formulae are regarded as universally quantified.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 116

where[—] indicates that- may or may not appea(X,a,s) is a formula uniform irs and whose
free variables are amonga, ands.

Dsscontains an axiom for thig fluent that we review below.

e Djyp contains action precondition axioms. For each action function syrudlthe language,
there is a precondition axiom of the form:

PosgA(X),s) = Ma(X,s), (6.3)

wherela(X;s) is a formula uniform ins and whose free variables are amotgnds. IMa(X,S)
expresses all the conditions under whicban be performed ia

e Dyna CONtains unique names axioms for actions.
e Dg, describes the initial state of the world.

e Kinit defines the properties of théfluent in the initial situation. The form of the successor state
axiom for K guarantees that these properties are preserved in all successor©ot of the
conditions that we assume firin the rest of the chapter ieflexivity. This condition is enforced
by adding the following axiom téCy;;.

(Vs).Init(s) D K(s,s), (6.4)

wherelnit (s) d:efﬁ(ﬂa,s’)s: do(a,s). Reflexivity ofK implies that everything that is known in

situationsis also true irs.

6.2.3 Representing Knowledge

Our representation of knowledge closely follows the formalism introduce®&dherl and Levesque
(2003). As they do, we use the distinguished flunto capture the knowledge of an agent in the
Situation Calculus. However, as opposed to their treatment, we assume thattessor state axiom
for K has a slightly different form that allows a sensing action to sense multiple foemQlar SSA for
K looks closer in syntax to the one that was proposed earlier by the samesai@bberl and Levesque,
1993), which was also adopted by Reiter (2001). Although we usessigreextensively, we do not
appeal to an extension of Reiter’s regression operators proposgdhayl and Levesque that allows
regressing the knowledge of the agent.

We now proceed to formally define two notions of knowledge for an agadtwe then describe the
structure of the successor state axiomKor

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 117

What Does an Agent Know?

We will extensively use two notions of knowledge. First, we want to estaliishan agenknowsa
formula ¢ in a certain situatiors. Essentially, this means thatshould hold in any situation that is
accessible frons. Our second notion of knowledge correspondg&riowing whether or nca formula
¢ is true. This second notion is weaker, but is useful since it allows to ndaguothetically about the
knowledge of the agent. For example, we expect from our formalizatidriftha agent has a sensor
for ¢, then we can conclude that after performing an action that reads thisrsdresagent will know
whether or not, even if the action has not been actually performed.

The following are the formal definitions that summarize the intuitions giveneabov

Knows(¢,s) 2" (vs).K(5,s) O ¢[s],
KWhether (¢,s) def Knows(¢, s) V Knows(—¢,s),
whereg is asituation-suppressefibrmula (i.e. a Situation Calculus formula whose situation terms are

suppressed), angls| denotes the formula that restores situation argumentdns.

A Successor State Axiom foK

Scherl and Levesque (2003) define a standard SSA fdf theedicate. The axiom fé:
K(s”,do(a,s)) = (35).8" =do(a,s)AK(S,s) APosga,s) ASF(a,s) = SF(a,9), (6.5)

WhereSF(a,s) is a distinguished predicate that defines the formula that is sensed byirsgsaetiona.
Intuitively, if an actiona is performed ins and s’ was K-accessible froms thendo(a,s) is K-
accessible fronto(a, s) only if SF(a,s) andSF(a,s') have the same truth value. For sensing actions,

SF(a,s) is equivalent to a formula(s), which issensedy a. For a non-sensing actiam SF(a,s) is
equivalent toTrue. This means that if one performs a non-sensing aaions, if s wasK-accessible
from sthen so igdo(a,s') fromdo(a,s).

As mentioned above, if an acti@ensg senses whether or not fluepts true, then we would add
SF(sensg, s) = ¢(s) to the domain theory. Th8F notation also allows expressing context-dependent
sensing. For example, by using the axioms:

InRoom (s) O (SF(senseLights) = Light(s)),
InNRoom(s) D (SF(senseLights) = Lighty(s)),

we establish that actienseLighinspects the truth value of different fluents depending on the location
of the robot. Even thougBF provides a good level of flexibility, it cannot be used straightforwardly to

’Scherl and Levesque’s paper actually uS&instead ofSF. SinceSF seems to be standard (e.g. Levesque, 1996) when
dealing with knowledge about Boolean formulae, we stick to it here.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 118

represent actions that sense the truth value of multiple formulae at the samé& tieneeason is that in
those cases, we need to specify multiple equivalencies for a single action.

In the rest of this chapter we adopt a slightly different successor staedor K, that allows
sensing multiple properties and also allows context-dependent sensittige lHnguage of a theory
containsn action function symbolgy, ..., A, our Dggincludes:

K(s’,do(a,s)) = (35).9" = do(a,s) AK(S,s) A Posga,s)A

n 6.6
/\{a:Ai()ﬁ) O SensedCond(Ai(%),s,9)}, (6.9
i=1

where SensedCond(Ai (%), s,s”) stands for a formula that expresses the sensing condition of action
A (X). SensedCond(Ai(X),s,s”) is defined by macro expansion andAjfis a sensing action, it has the
following form:

SensedCond(A/ (%), s,) dZEf/i\aj()?i,S) S ($§(X,8) = 1) (%,9)), (6.7)

j=1

whereq;j is a condition under whicly senses property;. Both «;(X,s) andy;(X,s) are formulae
uniform insand are such that their free variables are among thagarils. On the other hand, # is
nota sensing action, then it has the following form:

SensedCond(Ai(X),s,8) &' True (6.8)

Note that the resulting axiom fd& is very similar in form to that of Reiter (2001). There are two main
differences however. First, it contains the tdPosga, s') in the right hand side. This term also appears
in Scherl and Levesque’s axiom (6.5), and allows the agent to know#wepdition of an action after
performing it. Second, it is explicit about the fact that an actionczanitionallysense possiblsnultiple
formulae. Although Reiter’s axiom (2001, Expression 11.7) does mohge disallow multiple sensing
effects, it is not in a form that allows conditional sensing effects. Finaley,nsist thaix;(X,s) and
(X, s) be uniform formulae; this condition was not imposed explicitly neither by Re2@01) nor by
Scherl and Levesque (2003) but seems necessary for the S&Atdonave a form that resembles that
of the SSAs for other fluents (cf. Expression 6.1).

Example 6.1 Let sensg andsenseLighbe as defined above. Moreover assume adtokMonitor

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 119

senses the value of bothight; andLight,. Then, we definéensedCond in the following way.

def

SensedCond(sensg,s,s) = True> (¢(s) = ¢())

SensedCond(senseLights,) %' [InRoom(s) > (Lighty(s) = Lighty(s))]A
Lighty(s) = Lighty(s))],

(
[INRoom(s) O (
SensedCond(lookMonitor,s,s') %' [True> (Lighty(s) = Lighty (5))]A
(

[True D (Lighty(s) = Lightx())],

6.2.4 Regression

Finally, our compilation procedure will make extensive use of a generalizafidkeiter'sregression
operator (Reiter, 2001). The regression af= p(do([ay,...,an],S)), denoted byR[a], is a formula
equivalent tax but such that the only situation terms occurring in it&eRoughly, to regress a formula,
one iteratively replaces each occurrence of fluent atomic fornfulaelo(a, s)) by the right-hand side
of Expression 6.1 until all atomic subformulae mention only situafign

In this chapter, we need to use a more general version of regressiotwwithain objectives. First,
to produce the physical effects for our new primitive actions, we will nieelde able to regress for-
mulae in order to produce a formula that only mentions a situation semhens is not necessarily
S. Second, we will need to regress formulae that contain situations that #re fature of multiple
different situations (not just one, as in Reiter’s definition) — the reasptthfs is that we will be ob-
taining knowledge effects of programs by regressing formulae thattiefruivalencies of the sort of
those in Expression 6.7. To that end, we propose a generalization of'Refierator,R[W, Y], where
W is a formula of the Situation Calculus andis a set of situation terms. Intuitively, this operator
regresses formulae that mention situation terms that may depend only on théntéfnsdditionally,
the regression “stops” when situation terms mentioned in the formula areMall in

Following Reiter (2001), we start off by definimggressabldormulae in a seY of situation terms.
Our definition extends Reiter’s in the sense that our regressable forarel#gose that refer to situations
in the future of situations ity rather than only in the future &. Other aspects of Reiter’s definition
are not changed.

Definition 6.2 (Regressable formula in a set of situations termsA formula W of the Situation Cal-
culus isregressable in a set of situation terkfigf

1. Each term of the sort situation mentioned by W has the syntactic fofimida ., ay],s) for some

sc Y, and some > 0, whereas,. .., an are terms of the sort action.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 120

2. For each atom of the form Pdgs o) mentioned by Wq has the form 44y, ... ,t,) for some action
function symbol A.

3. W does not quantify over situations.

4. W does not mention the predicate symtipihor does it mention any equality atam= o’ for

termso, o’ of the sort situation.

5. Each atom is either situation-independent, of the form ags, or of the form Rty, ... ,ty,0)
for some fluent symbol F that is not K, some action tatrand some situation tera.

Note that this definition coincides with Reiter’s Definition 4.5.1 (2001) whiea {S}. Reiter's
definition—since it was not designed to deal with Kd¢luent—does not insist on atoms being of the
form in requirement number 5. This however, is necessary since ayudge containk, which has an
SSA whose right-hand side is not regressable because it quantifiesitorations.

Our definition of the regression operator differs from Reiter’s esdgntialy for the case of atomic
formulae. There is an important property that atoms of a regressablelfosatisfy:

Proposition 6.1 Let W be a formula regressableYh Then for any atom U in W, there exists a situation
sy € Y, such that U is regressable iy s

Proof: SinceW is regressable iy, no atom ofW can contain two different situation terms. Indeed,
both the arguments to fluents atom#\itthat are not the situation argument, and the arguments to action
terms in aPossatom ofWW may only be situation-independent terms since we do not deal with functional
fluents. If an atontJ of W contains 0 situation terms, the result follows immediatelyJ I€ontains 1
situation term, then this must be a term in the future of some situatian @Y. It follows that this
atom is regressable 8. |

To defineR [W, Y] we slightly modify Reiter’s definition (2001). Our definition differs from Reie
in two aspects. The first is that we do not regress U taut only until all situation terms are M. The
second is that we do not regress terms that are in the future of a single sitoatiove allow to regress
formulae that refer to situations in the future of multiple situations.

Definition 6.3 (Regression of a formula over a set of situation terms)_etY be a set of situation terms.
Furthermore, let W be a formula regressableMrihat mentions no functional fluents. Then the regres-
sion of W ovel, R[W,Y], is defined as follows.

1. Assume W is an atom then we have the following cases.

(a) W is situation-independent, then
RW,Y]=W.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 121

(b) W is of the form Fty,...,t,,s) for some s Y, then

RIW,Y] =W.
(c) IfW is of the form Pog#\(), o),

RIW,Y] =R[MA(t,0),Y].
(d) IfW is of the form X, do(«a,0)), then
RIW, Y] = R[®: (X a,0),Y].
2. If W is a non-atomic formula, then the operator is defined as follows.
R[-W, Y] = —RW, Y],
RWLAWS, Y] = RWA, YIARMWS,, Y],
RIEVW, Y] = (3v) RW, V],
Proposition 6.2 Let W be both regressable Yiand regressable iiv’. Assume further thaf'is a proper

subset ofY”. Then,
RIW,Y'| = R|W,Y].

Proof: Follows straightforwardly by observing the&d does not depend on any situation term in the
future of any variable iry” \ Y; otherwise, it would not be regressableYin |

As with Reiter’s operator, we prove that by applying our operator wegme the models of the
formula given as argument, and that, furthermore, the resulting formuléiestsuniformity condition.

Theorem 6.1 Let W be a formula regressable ¥i LetD be a basic action theory. TheR[W,Y] is
uniform inY, and furthermore,

DE=ERW,Y =W

Proof: First note that the regression operator is well-defined, in the sense #iatays produces a
situation calculus formula. The proof follows from Reiter’s Theorem 4.8001), and Propositions 6.1
and 6.2. First, observe that both our regression operator and Reitér&de for non-atomic formulae
(modulo the extra parameter). Hence, their behaviour is only differahteaitom level. On the other
hand, by Proposition 6.1, we have that for any atdnn W, U is regressable in only one situation
su € Y. By Proposition 6.2 we have th&U,Y] = RU,{sy}]. Moreover,RU,{sy}] coincides with
Reiter's operator, the only difference being that the root of the regmess notS butsy. The result
now follows almost directly from (1) Reiter’s Theorem 4.5.4 by noticing thatthly difference for this
case is the different root for the regression, and by (2) the factthajical combination of formulae
uniform in a subset of'is uniform inY. |

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 122

6.2.5 Golog’'s Syntax and Semantics

Golog is a high-level agent programming language whose semantics isdratigel situation calculus
(Reiter, 2001). A Golog program is a complex ac%or’n:or this chapter we focus on the Golog de-
terministic tree programs. Golog deterministic tree programs can be formeglyyrapthe following
constructs.

nil —the empty program
a —aprimitive action
¢? —testaction
01,92 —sequencesy is followed byd,)
if ¢ then d; elsed, endif — conditional

For the definition above, we assume taa a primitive action of the forr\(f), whereA is an action
function symbol. Assume also thét andd, are Golog deterministic tree programs. Finally, assume
that¢[g] is a formula of the language that is regressablg in

The Golog deterministic tree programs that we deal with in this chapter imposeshitictions on
general Golog programs. The first and most obvious one is determinisisiréBtriction is necessary
in order to reduce a program into a primitive action. The second two areothe df the primitive
actiona and the form of¢[s]. This enables us to use regression over Golog programs later in this
chapter, ultimately allowing us to extract the effects of Golog programs. iB@gjrconditions to be
regressable still allows the user to define a wide range of formulae, inydartamy boolean combination
of formulae whose atoms are situation-suppressed fluents, includindifmagion. There are some
formulae that are not allowed, but they arguably express less compatlivtlitions, that hardly appear
in real applications. For example, we do not allow the conditicio refer toPossused on an action
term that is not ground. We would not allow, for examgiéa) Posga) as a condition in aif-then-else
statement.

The final restriction is that of disallowing unbounded iteration. This restrictiay seem too strong.
Nevertheless, in practical applications most loops in terminating progranteacaplaced by a bounded
loop (i.e. a loop that is guaranteed to end after a certain number of iteratibhejefore, following
Mcllraith and Fadel (2002), we extend the Golog language wito@nded loofonstruct, defined as
follows.

while, ¢ do s endwhile— ™ Tn=0

if ¢ then {J;while,_1 ¢ do § endwhile} elsenil endif if n>0

The semantics of Golog (Levesgatal, 1997) is defined by the macio(4,s,s’) which expands

into a formula that is true if and only if the execution of progréin situations leads to situatios’. Do

8\We use the symba to denote complex actiong.is a situation-suppressed formula.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 123

is defined as follows.

Do(nil,s,¢) L's=¢ (6.9)
Do(a,s,) &' Posgalg,s) A ¢ = do(als],) (6.10)
Do(¢2,5,5) L'g[gAd =s (6.11)
Do(61;02,5,5) &' (3¢).Do(61,s,5") ADO(d2,5",) (6.12)
Do(if ¢ then d; elsed, endif,s,s) &' o[ADo(61,5,5) V [ADO(52,5,) (6.13)

6.2.6 Do : A Possless Version ofDo

In the rest of the chapter, we will be using regressioorio obtain the preconditions and physical and
knowledge effects of programs. Since the definitiobofincludesPoss when we regress it directly,
we obtain an expression that includes the preconditions of the programisEhfeature that, as we see
later, will enable us to obtain a precondition to the program by regre§singHowever, when using
regression to obtain the effects of the program by regre€dndirectly, we obtain that each effect of
the program is conditioned on the program’s precondition. Such anssipreis redundant and thus
undesirable. To address this issue we uBessless version oDo, Do~ . Its definition follows.

Do (nil,s,s) dfs—¢ (6.14)
Do (a,5,¢) £'¢ = do(alg, s) (6.15)
Do (42,55) L g[gAd =s (6.16)
Do~ (61;02,5,5) &' (3¢).Do~ (61,5,8") ADO™ (5,5, (6.17)
Do (if ¢ then §; elsed, endif,s,s) defgb[s] ADO™(01,5,9) V—p[g ADO™ (2,5,5) (6.18)

Note that the only aspect in whidho~ differs fromDois in the formula for the primitive actioa.
A rather obvious property dDo~ is that set of situations that are executions of a progfamder
Do~ is a superset of those undao. Formally,

Proposition 6.3 Letd be a Golog program and l€P be a theory of action. Then,
D k= (vs,§).Do(4,s,5) D Do (4,s,9)

Proof: Fairly straightforward by induction in the structuredf |

As we mentioned earlier, botho andDo~ expand into a formula of the language. Both of these
formulae can be put into a certain form that will later allow us to use regmess$tus is justified by the

following result.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 124

Lemma 6.1 Letd(Y) be a Golog deterministic tree program whose free variables are among thos

y. Then there exists a set of sequences of primitive action f&ms ., a,}, where each action term in
each sequence is of the fornffA for some action function symbol A of the language, and there exists a
set of formulagy1(Y,9),...,¥n(Y,S) }, where each);(y, s) is regressable in s, such that:

(5(y),s,9) = \n/ (Y,s) AS =do(a,s)

Analogously, there exists a set of sequences of primitive action I{d?ms .,Bn}, where each action
term in each sequence is of the forrff)Afor some action A of the language, and there exists a set of
formulae{u1(Y,9),...,un(Y,S)}, where each;(y,s) is regressable in s, such that:

n

(5(y),s,8) = \/ (¥,s) AS =do(b;,s)

Proof: The) (resp. i) formulae can be constructed by unrolling the definitiorDaf (resp. Do™).
Note that in almost all cases forexcept for the sequence, the right-hand sidéof(resp. Do™)
provides a formula exactly in the form required above. For the sequemceliminate the existential
quantifier by performing substitution ef. |

The intuition behind this result is central to the compilation method proposed inhapear. Intu-
itively this result establishes that there arpossible situations that correspond to the execution of the
program. The situation representeddiy &, s) is conditioned on formula;. Each of thes@ possible
situations correspond to the execution of one of the branches of thetg@am, and each conditiaf
is the condition under which the branch is executable. Note also that sinpeotram is deterministic,
for every modelM of D there is only one executable branch. Formally, this means thatyifs) and
;(y,s) are such that bot1 = 14i(¥,s) and M |= 1;(Y,s) thenb; = b;.

6.3 Semantics for Executable Golog Programs

Again, as Levesque (1996) argued, when planning with sensing, theroe of the planning process
should be a plan which the executing agent knows at the outset will leadrialasifuation in which
the goal is satisfied. When planning with programs, as we are proposiagvwe need to be able to
determine when it is possible to execute a program with sensing actions atdiwiations could be
the result of the program. Unfortunately, Golog’s original semantics doesonsider sensing actions
and furthermore does not consider whether the agent has the abilitydatexegiven program.

Example 6.2 Let D be an action theory, theR = ¢[S] andD [~ —¢[S], and let

AL ¢ then a elseb endif.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 125

Assume furthermore thatandb are always possible. Then, it holds that= (3s) Do(A, &, S), i.e. d is
executable ir§ (in fact,D = Do(A, S,s) =s=do(a,S) Vs=do(b,S)). This fact is counter-intuitive
since ing the agent does not have enough information to determine whethelds, s is not really
executable.

As afirst objectivetowards planning with programs that sense, we define what propertyog Go
program must satisfy to ensure it will be executable. 8rgond objectives to define a semantics that
will enable us to determine the family of situations resulting from executing argnogvith sensing
actions. This semantics provides the foundation for results in subsespaiuns.

To achieve our first objective, we need to ensure that at each stepgram execution, an agent
has all the knowledge necessary to execute that step. In particulaeesldmensure that the program is
epistemically feasibleOnce we define the conditions under which a program is epistemically lieasib
we can either use them as constraints on the planner, or we can ensou thlanner only builds plans
using programs that are known to be epistemically feasible at the outset.

The problem of knowing how to execute a plan was addressed by D&@4)1For Golog programs,
the first approach—due to Lesm@nce, Levesque, Lin, and Scherl (2000)—, defines a pre@eaite xec
to establish when a program can be executed by an agent. A prograbe executed by an agent if
the agent possesses a strategy funciidimat allows it to choose the right execution path. Using such a
predicate, Lesgranceet al. define the two notions dénowing howto execute a program. The second
one—called “smart” know how—expresses that the agent knows howetux a program iff there
exists a strategy under which it can succeed executing the program. &eseet al. (2000) do not
deal however with the problem of how can the agent determine such aggtsate

Sardina, de Giacomo, Leasmnce, and Levesque (2004) define epistemically feasible programs us
ing the online semantics of De Giacomo and Levesgue (1999). Epistemidiligasitsures that at each
point in the execution the agent knows that there is a unique way of makingsitita in the program.
This notion does not require the concept of strategy and is much closéatone want to achieve here.

Nevertheless because Sardataal. (2004) define feasibility in an online rather than an offline set-
ting, we prefer using a simpler, but slightly weaker definition proposed bifrdth and Son (2002),
which defines a self-sufficient properssf, such thassf(d, s) is true iff an agent knows how to execute
programy in situations. We appeal to this property to characterize when a Golog program istexée.

Its definition is given below.

SWe differ from the original definition in two aspects. First, in our case, efinéssfas a macro rather than a predicate.
Second, we differ on the definition of Expression 6.20, since we doeardemplate the so-called desirable actions.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 126

ssf(nil,s) €' True (6.19)
ssf(a,s) £'KWhether (Posga), s), (6.20)
ssf(¢?,9) d—EfKWhether(qﬁ, S) (6.21)
ssf(61; 62,) = ssf(él, s) A (VS).Do(61,8,5) D ssf(d2,5) (6.22)
ssf(if ¢ then 4, elsed, endif,s) gef KWhether (¢, s)A

(6.23)
(¢[s] D ssf(01,9)) A (=o[s] D ssf(d2,9))

Self-sufficiency is weaker than epistemic feasibility because it sometimes ayer&nowledge of
certain properties when there is actually no need to require such knavl8ifferences are apparent,
however, only in very contrived cases. For example, the Golog pmoira then a elsea endif is not
self sufficient in a situatiors in which —-KWhether (¢,s) but it is epistemically feasible, because no
matter what the agent knows there is a unique way of completing the prograerforminga. We do
not view these differences however as an obstacle to our main purpose.

We now focus on our second objective, i.e. to define a semantics for @odggams with sensing
actions. To our knowledge, no such semantics exists. Neverthelessighelated work. De Giacomo
and Levesque (1999) define the semantics of programs with sensingdnliae manner, i.e. it is
determined during the execution of the program. An execution is formallyatbfis a mathematical
object, and the semantics of the program depends on such an objecterfiieties is thus defined in
the metalanguage, and therefore it is not possible to refer to the situatidrvgathld result from the
execution of a program within the language.

To define a semantics for executable programs with sensing, we modifyittieg@%olog semantics
so that it refers to the knowledge of the agent, definifgog macro. This new macro is such that
Dok (4,s,5) expands into a formula that is true if and only if the agent has the sufficrmwlkedge to
perform program in s, and gets to situatios after doing so.

Dok (nil,s,s) Pfs—¢ (6.24)
Dok (a,s,9) §) ¥ Knows(Posga),s) AS = do(a[s], s) (6.25)
Dok (¢?.s,9) def Knows(¢,s) AS =s (6.26)
Dok (61;02,5,¢) 2" (3¢"). Dok (61,5,8") A Dok (82,",¢) (6.27)
Do (if ¢ then 41 elsed, endif, s, s’) = Knows(qb, s) ADok (01,s,5)V

(6.28)
Knows(—¢,s) ADok (d2,s,S)

In contrast toDo, Dok of an if-then-elseexplicitly requires the agent to know the value of the
condition. Returning to Example 6.2, if no® [~ KWhether (¢,S), thenD = —(3s) Dok (A, S, 9)-
However, ifsensg senses, thenD |= (3s) Dok (sensg; A, S, S).

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 127

A natural question to ask is when this semantics is equivalent to the origimangies. We can
prove that both are equivalent for self-sufficient programs (in theesef Mcllraith and Son (2002)).

Lemma 6.2 Let D be a theory of action such that the K fluent is reflexive, and ke a Golog deter-
ministic tree program. Then,

D k= (Vs).ssf(d,s) D {(vs).Do(4,s,5) = Dok (4,s,9)}

Proof: See Section D.1 (p. 184). [

The preceding lemma is fundamental to the rest of our work. In the follovéntans we show how
theory compilation relies strongly on the use of regression obibye predicate. Given our equivalence
we can now regreddo instead ofDok which produces significantly simpler formulae.

An important point is that the equivalence of the semantics is achievedif@usicient programs.
Proving that a program is self-sufficient may be as hard as doing thessign ofDok. Fortunately,
there are syntactic accounts of self-sufficiency (Mcllraith and Sod228ardinaet al,2004), such as
programs in which eacli-then-elseandwhile loop that conditions o is preceded by aensg, or
more generally that knowledge abatiis established prior to these constructs and persists until their
usage.

6.4 Planning with Programs that Sense

We now return to the main objective of this chapter — how to plan with prograrhsehae by enabling
operator-based planners to treat programs as black-box primitive sictioplan in the presence of
sensing is a program that may contain conditionals and loops (Leves2@®). 1As such, we define a
plan as a Golog program.

Definition 6.4 (A plan) Given a theory of actioD, and a goal G we say that Golog prograims a
plan for situation-suppressed formula G in situation s relative to th&aiff

D = (38) Dok (4,s,9) A (VS). Dok (6,5,5) D G[S].

Intuitively, the Golog program is a plan if it terminates and achieves the goal.
In classical planning, a planner constructs pdaby choosing actions from a sét of primitive
actions. Here we assume the planner has an addition@lafgirograms from which to construct plans.

Example 6.3 Consider an agent that uses the following complex action to paint objects:

() OI:efsprayPain(o); look(o);

if —wellPaintedo) then brushPain{o) elsenil endif

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 128

The actionsprayPainfo) paints an objeob with a spray gun, and actidsrushPainto) paints it with a
brush. We assume that actisprayPainto) well-paintso if the spray is not malfunctioning, whereas ac-
tion brushPainto) always well-paint® (this agent prefers spray-painting for cosmetic reasons). Action
look(0) is a sense action that senses whether opri®ivell painted.

Below we show some axioms M5, andDerr that are relevant for our example.

PosgsprayPainto),s) = haveo),

Posglook(0),s) = haveo),

a = sprayPainfo) A -malfuncts) O wellPaintedo,do(a, s)),
a = brushPainfo) D> wellPaintedo,do(a, s))

a = scratcho) D —wellPaintedo,do(a, s))

The SSAs for the fluentwellPaintedis as follows.

wellPaintedx,do(a,s)) =
a = brushPaintx) VV (a = sprayPain{x) A —~malfuncts))Vv

wellPaintedXx, s) A a # scratch(x),

Finally, actionlook(x) informs the agent of whether or nots well painted. We achieve this by defining
the following sensed condition:

SensedCond(look(0),s,s) (j:EfweIIPaintedx, s) = wellPaintedXx,s).

Furthermore, for all remaining primitive actiofsnsedCond is defined ag rue

The SSA forwellPaintedsays thai is well painted if it has just been brush painted, or it has just
been spray painted and the spray is not malfunctioning or if it was well ghimtbe preceding situation
andx has not been scratched. On the other hand, the SSK faitks about a unique sensing action,

look(x), which senses whethgiis well painted.

Suppose we want to use actiério construct a plan using an operator-based planner. Instead of a
program, we would need to consides effects and preconditions (i.e. we would need to represSast
a primitive action). Among the effects we must describe both physicalteffeq., after we perform
5(B), Bis wellPainted and knowledge effects. A rather non-trivial knowledge effect is ifthae know
thato is notwellPainted after we performd(B), we know whether or nanhalfunct

The rest of this section presents a method that, under certain conditiamsfotras a theory of
actionD and a set of programs with sensi@gnto a new theoryComp|D,C], that describes the same
domain asD but that is such that programs @omp[D,C| each appear modeled by a new primitive

action.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 129

6.4.1 Theory Compilation

A program with sensing may produce both effects in the world and in the lkedge of the agent.
Therefore, we want to replace a prograrhy one primitive actiorprimg, with the same preconditions
and the same physical and knowledge effects &8'e now describe how we can generate a new theory
of action that contains this new action. Then we prove that vgmn; is executed, it captures all world
and knowledge-level effects of the original program

Our translation process is restricted to tree programs. This is becaugampscontaining loops
can be problematic since they may have arbitrarily long executions. Howeweany practical cases
loops can be replaced by bounded loops usinguhiée,, construct introduced in Section 6.2.

We start with a theorf) = XU DssU DapU DynalU Ds, U Kinit, describing a setl of primitive actions
and a se€ of tree programs, and we generate a new th€oryip[D,C] that contains new, updated SSA,
precondition and unique name axioms.

We make the following assumptions. First we assume that the set of sucstdsoaxiomsDgg,
has been compiled from s@« of effect axioms. Furthermore, we assume we are given & it
deterministic tree programgy) that contain free variables among thoseyirVectory can be seen as
the parameters for the complex action. Finally, each progi@nis such thaD = (Vs,y).ssf(4(Y),s).

Moreover, we wanprim; to preserve the physical effects@fTo that end, for each fluent, we add
effect axioms forprims such that whenever makesF true/false,prims will also make it true/false.
Finally, because we want to preserve knowledge effects pfim; will emulated with respect to the
K fluent. To write these new axioms we use the regression opeRdtof of Section 6.2 because we
will need that precondition and effect axioms only talk about situagiowe generate the new theory
Comp[D,C] in the following way. First, we seDgg := Deff, Dap := Dap, and D{pa:= Duna- The
definition of the new preconditions and physical and knowledge effectthé new primitive actions
follow.

New Preconditions

Intuitively, sinceprims(y) replaces(y), we wantprims(y) to be executable is precisely whend(y) is
executable irs. Note that programi(y) is executable irs iff there exists a situatiod that corresponds
to the execution of the program & In other wordsprim;(y) is executable irs iff

(3¢) Dok (6(¥),s,9) (6.29)

is entailed byD. Nevertheless, we cannot add the formula in Expression 6.29 directlgrasandition
since this formula is not uniform is. To obtain a formula uniform is we would want to appeal to
regression but unfortunately Expression 6.29 is not regressable!

We appeal now to results proven earlier in this chapter to transform &sipre6.29 into an equiv-
alent formula thats regressable is. First, by Lemma 6.2 and the fact thgly) is self-sufficient, we

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 130

know Expression 6.29 is equivalent to
(3)Do(4(Y),s,9). (6.30)

Finally we can transform Expression 6.30 into an equivalent formula thagigessable i, as shown
by the following remark.

Remark 6.1 Leti)y,,...,1n be the formulae of Lemma 6.1. Expression 6.30 is equivalent to:
n
\ ¢i(¥.9) (6.31)
i=1

Proof: By Lemma 6.1, Expression 6.30 is equivalent®s’) \/_; ¢i(y,s) AS = do(&,s). Then, we
apply quantifier elimination of the existential quantifier, which also implies eliminatingrans of the
forms =do(a,s). [|

Intuitively, the condition of Expression 6.31 summarizes the existence airecbrof the program
that is executable. Sineg (Y, s) is regressable ig, we formulate the precondition farim; as follows:

Posgprim;(y),s) \/zp, VAR (6.32)

where); are the formulae of Lemma 6.1. Thus;im;(y) can be executed iff program could be
executed irs.

Finally note that this precondition axiom is in the form of Expression 6.3, i.e.aipisper precon-
dition axiom because the right-hand side is a formula uniform his fact follows from Theorem 6.1.

New Physical Effects

We now turn our attention to the effectsmimy(y). Intuitively, we want to say here that whenegkis
an execution of the program sand fluent= (X) is true in such as, then we wanf (X) to be an effect
of prim;(y). More preciselyF (X) is true after performingrim;(y) in siff

(3¢).Dok (5(Y),s,8) AF (X S) (6.33)

Note that since the program is deterministic, in each model of the theory, itherdy one situation
that can be referred by in Expression 6.33% As in the previous step, it is not possible to add this
condition directly as an effect axiom since the Expression 6.33 is notromiios. Expression 6.33
is not directly regressable meither. As a consequence, we again appeal to Lemma 6.2, to obtain the
equivalent condition:

(35).Do(4(y),s,8) AF(X S) (6.34)

0This means actually that Expression 6.33 is equivaleriBigh) Dok (§(¥),s,5) A (V8). Dok (8(¥),s,8) D F(X.s). We
prefer to work with Expressidn 6.33 however, because it is simpler.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 131

Here, we could apply Lemma 6.1 in order to obtain a regressable conditibiy loloing so, we would
obtain a formula that encodes the precondition¥gf. The reason for this is th&o makes reference to
Posswhenever a primitive action is executed. Hence, the conditioft &) to be true after performing
prims in s will be the following one:

(3¢).Do~ (5(¥),s.¢) AF(X) (6.35)

Recall that the only difference betweBo~ andDo is that the former does not check the preconditions
of the actions that are being performed. This implies that the set of situat@narthexecutions under
Do~ is a superset of the set of situations that are executions Dwlghis means that Expression 6.34
implies Expressioh 6.35). Since our programs are deterministic, howelgraainique situation can
result from the execution of the program in a particular model of the thHPamderDo~. Thus, given
a model of the theorypo~ andDo could only differ in the executions @fiff § is not executable irs.
Otherwise, both formulae coincide in terms of the situations that are regasdeaecutions. As a result,
by usingDo™ instead ofDo we may define the effects pfim; in cases in whicl is not executable in
s. This is not a problem, since we only will consider performénghen its preconditions are satisfied.
Indeed, our definition of plan (Def. 6.4) ensures that this is the case.

As with the preconditions, the final step is to transform Expression 6.35 irggrassable formula.
We can do this using Lemma 6.1.

Remark 6.2 Letyua,...,un and51, ey b, be respectively the formulae and action sequences of Lemma 6.1.
Then, Expressian 6.35 is equivalent to the following expression redplessas.

n
\/ 1i(¥,5) AF (% do(bi,s)) (6.36)
i=1
Proof: Follows directly by substituting in F(X, ') in the formula of Lemma 6.1 and then eliminating
the existential quantifier. Singg(y, s) is regressable ig, the resulting expression is clearly regressable
ins. |

The new effect axioms foF are generated as follows. For each relational flefx s) in the
language ofD that is not theK fluent, and each complex actiéfy) € C we add the following positive
and negative effect axioms 1:

a=prims(y) AR[\n/ 1i(Y,8) AF (% do(b;,s)),s OF (X, do(a,s)), (6.37)
i=1

a=primg(y) A R[\n/ 1i(¥,8) A=F (X, do(b;, s)),s] D—F (X, do(a,s)), (6.38)
i=1

wherepus, ... un andBl, ...,bpare respectively the formulae and action sequences of Lemma 6.2.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 132

New Sensed Condition

We now turn our attention to the generation of the new sensed conditiontfon @cim;. In order to
capture all the knowledge effects &four new actiorprims; must emulaté’s dynamics with respect to
theK fluent. More precisely, suppose we perfa¥im situations. Assume further that is K accessible
from s, and that performing in s leads to situatiomo([ay,...,an],s). If do([ay,...,an],S) is alsoK-
accessible frondo([ay,...,an],s), then we want to replicate this by makidg(prim;,s’) K-accessible
from do(prim;, s).

It is rather simple to find a condition independentkothat expresses the necessary and sufficient
conditions under which a situatiao([ay, ...,an|,s) is K-accessible frondo([ay, . . .,an],s) given that
s is K-accessible frons. This is given by the following result.

Proposition 6.4 Let D be a theory of action, let be a Golog deterministic tree program, and let
ai,...,an be action terms. Then the following holds:

D |= (v9,s).K(s,s) ADok (d,s,do([ay, . . .,an],s)) D
{K(do([ay,...,an],s),do([ay,...,an],s)) =

/\ SensedCond(a,do([ay, ..., 1],5),do([ay,...,a-1],5))} (6.39)
i1

Proof: The proof is by induction on. First we prove that for all ¥ i <n,
D = (v¢,9).K(¢,5) A Dok (8,5,dof[ay, ... a,S)) D Possa;, dof[ay, ... a_1],§).

Then, the proof is rather straightforward using the successor state &xi& and simplifying away the

terms containindgPoss u

Note that this result suggests that the sensed condition for a new pgti@ncorresponds precisely to

/\ SensedCond(a;,do([ay, ..., &-1],5),do([ay, ..., a-1],5)) (6.40)
i=1

when the situation that results from the execution &fdo([ay, .. .,an],S).

Our last step for the definition of the sensed condition of an action invoblasirg Expression 6.40
with the situations that actually refer to the executions of the progrdfor now we've been using
do([a,...,a-1],S) to show the structure of an execution only). As we have done for theigatlys
effects, we characterize the situations that may result from the execitibagoall situations' that
satisfy the formula:

Do (4,s,9) (6.41)

As in the case of physical effects, by usiDg™ instead ofDo we may define the knowledge effects of
prims in cases in whicld is not executable is; this is not a problem here either because we only allow

the application of possible actions when planning.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 133

Recall that by Lemma 6.1 we obtain explicit situation tehagby,s), ..., do(by, s) that refer to the
execution off. These situations are precisely the ones we use define the sensed nasfgition;.
For eachi(y) € C, our new theory will contain the following definition for the sensed conditibn o

prim; ().

SensedCond(prim,(y),s,s) def

n bi
R\ 1 (¥,8) A |/\ SensedCond(bij,do(bi |1 *,s),do(bi | 1,¢)), {s,§}], (6.42)
i=1 j=1

wherepus, . .. tin andby,...,b, are respectively the formulae and action sequences of Lemma 6.2. Fur-
thermoreb;j denotes thg-th element of sequend?xeandBi |‘2 denotes the subsequenceﬁplfhat contains
all elements between tieth and thek-th element. Finallyjb| denotes the number of action termsin

Intuitively, the right-hand side of Expression 6.42 establishestbtrim;, s') is K-accessible from
do(primg,s) only if s’ is accessible frons and there is one executable branch, characterizeb by
conditioned ory;(y,s), that satisfies the condition in Expression 6.40 that we discussed above. N
that because the program is deterministic, in a particular model of the thelyrge branch actually
corresponds to an execution. Thus the external disjunction capturéscthibat there are only ways
in which the program may be executed; as we have been insisting in this Glibjgdoes notmean
that two different branches may be executed at the same time.

Finally, note that becausgensedCond(a,s,s) expands into a formula that is uniform gnands),
R in Expression 6.42 is applied over a formula that is regressatdaims’. Thus, by Theorem 6.1 it
follows that the sensing condition for our new action is a formula uniforsands’, and hence has the
form that we require in Expression 6.7.

New Unique Names Axioms

For eachi(y),d’'(X) € C such thati(y) # §'(X) addprimg(X) # prim (¥) to D, FOr each actior of
the language of the original theofy and eachi(y) € C, addA(X) # prims(y) to D} na

The New Basic Action Theory

Compile a new set of SSAB;, from D, and replace the successor state axionKfarith the one that
refers to the actions i, which in particular will now refer to the sensed conditions of the actions

prim;(y) for all §(y) € C. The new theory is defined as follows.
Comp|D,C] = ZU DgsU DU Diyna U D, U Kt

We now turn to the analysis of some properties of the resulting theéamnp[D,C].

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 134

Theorem 6.2 If D is consistent and C contains only deterministic tree programs @wenp[D,C] is
consistent.

Proof: The consistency property (Reiter, 2001, pg. 31) follows from the fofthe effect axioms and
fact that the programs we are considering are deterministic. |

Now we establish a complete correspondence at the physical level lbetweeriginal programs

and the compiled primitive actions after performimgm;.

Theorem 6.3 Let D be a theory of action such thi;,;; contains the reflexivity axiom. Let C be a set
of deterministic Golog tree programs. Finally, ketbe a situation-suppressed formula such thid is
regressable in s. Then,

Comp[D,C] |= (Vs,9).Dok (6,s,5) D (¢[s] = ¢[do(prims,s)])

Proof: See Section D.2 (p. 184). [

It is worth noting that the preceding theorem is also valid whéones not contain sensing actions.
Also, there is a complete correspondence at a knowledge level betweeriginal complex actions
and the compiled primitive actions after performimgm;.

Theorem 6.4 LetD be a theory of action such th&t,;; contains the reflexivity axiom. Let C be a set of
deterministic Golog tree programs, age a situation-suppressed formula such #hit is regressable

ins. Then,
Comp|[D,C] = (Vs,51). Dok (0,5,51) D {Knows(¢,s1) = Knows(¢,do(prim;,s)) }. (6.43)
Proof: See the Section D.3 (p. 185). [

Now that we have established the correspondence betives Comp|[D,C] we return to planning.
In order to achieve a go@ in a situations, we now obtain a plan using theo&mp|[D,C]. In order to
be useful, this plan should have a counterpafjrsince the executor cannot execute any of the “new”
actions inComp|[D, C]. The following result establishes a way to obtain such a counterpart.

Theorem 6.5 Let D be a theory of action, C be a set of deterministic Golog tree programsGainel a
formula of the Situation Calculus. ThenAfis a plan for G in theoryComp[D,C| and situation s, then
there exists a plaf\’ for G in theoryD and situation s. Moreoved’ can be constructed froth.

Proof sketch: We construct\’ by replacing every occurrence pifim; in A by 6. Then we prove that/
also achieves the goal, from Theorems 6.3/and 6.4. [

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 135

Example/6.3 (cont.) The result of applying theory compilation to the basic action theory of our ex-
ample follows.

By unrolling of Do andDo~ for §(0), we obtain the following formulae and action sequences that
correspond to Lemma 6.1:

11(0,s) = PosgsprayPainto), s) A
Posglook(o),do(sprayPainto),s)) A

(6.44)
—wellPainted o, do([sprayPainto),l00k(0)],s))A
PosgbrushPainfo),do([sprayPainto),look(0)],s)),
12(0,s) = PosgsprayPainto),s)A
Posglook(o),do(sprayPainto),s))A (6.45)
wellPainted o, do([sprayPainfo),look(0)],s)),
with
a; = [sprayPainfo),look(o), brushPainfo)], (6.46)
a = [sprayPainto),look(0)]. (6.47)
On the other hand, fdbo~ we obtain the following:
u1(0,s) = ~wellPainted o, do([sprayPainto),look(0)],s)) (6.48)
u2(0,8) = wellPainted o, do([sprayPainto),look(0)],s)) (6.49)
with
by = [sprayPainto),l0ok(0), brushPainfo)], (6.50)
b, = [sprayPainto),100k(0)]. (6.51)

New Precondition By simplifying the expression of Expression 6.32, we obtain the following pre
condition axiom forprim;:
Posgprim;(0),s) = haveo,s). (6.52)

New Effect and Successor State Axioms For the fluentvellPainted the negative effect axiom of the
form of Expression 6.38 simplifies to:

a = prims(0) A R[(—wellPaintedo,$) A —wellPaintedo, S;))V
(wellPaintedo, $) A —wellPaintedo, S)), s D

—wellPaintedo,do(a,s)),

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 136

whereS; = do([sprayPainto),look(o), brushPainto)|,s) andS; = do([sprayPain{o),look(0)],s). Itis
easy to verify that:

R|wellPaintedo, S;),s = True,

R|wellPaintedo,), s = —malfuncts) wellPaintedo,s).
Substituting, the negative action reduces to the futile axiom:
a= prims(0) A FalseD —wellPaintedo,do(a, s)). (6.53)

Similarly, the positive effect axiom obtained faellPainted

a = prim;s(0) A R[(—wellPaintedo,) A wellPaintedo, S;)) Vv
(wellPaintedo,) A wellPaintedo, $))] O

—wellPaintedo,do(a,s)),
whereS, andS,, are defined as before, reduces to
a=prims(0) D wellPaintedo,do(a,s)). (6.54)
Considering the new effect axiom fprim;(0), the new SSA fowellPaintedis therefore:
wellPaintedo,do(a,s)) =

a = brushPainto) v a = prims;(0)V

a = sprayPainfo) A —-malfuncts)Vv

wellPaintedo, s) A a # scratcho),

which means that is well painted afteprim;(0) is performed.

New Sensed Condition Now we focus our attention on th€ axiom. The Expressian 6.42 simplifies
to:
SensedCond(prim;(0),s,s) R [111(0,9) A (wellPainted o, S) = wellPaintedo, S))) Vv
12(0,5) A (wellPaintedo, $) = wellPaintedo,S,))), {s,s'}|
where$; is as defined above a8 = do([sprayPainto),look(0)],s'). After performing regression, the
expression simplifies into:

SensedCond(prims(0),s,s) def

(malfuncts) A ~wellPaintedo,s)) = (malfunc{s’) A —wellPaintedo,s))

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 137

Thus, our new primitive action senses the truth value of the (situation-ssggat) formulanalfunctA
—wellPaintedo) in the current situation. Observe that sensing the truth value of this formetpuisa-
lent to sensing the truth value of its negation, which can be writtemae|Paintedo) > —malfunct

Clearly, the process has captured the world-altering effect(of, namely thatwellPaintedo).
Moreover, it is easy to confirm a conditional knowledge effect:

Knows(—wellPaintedo),s) > KWhether (malfunctdo(prims(0),s)).

Note that our theory compilation can only be used for complex actions thabegmoved self-
sufficient for all situations. As noted previously, an alternative was #othis conditions that need to
hold true for a program to be self-sufficient as a precondition for thdyngenerated primitive actions.
Indeed, formulassf(d,s) encodes all that is required to holdsrio be able to know how to execude
and therefore we could have added somethingR&sgprim;(y),s) = R[(3s) Do(d,s,s) Assf(d,s), |
instead of Expressian 6.32. This modification keeps the validity of TheareBnangl 6.4 only if no
actions of the original theory have preconditions that mention knowledus peovided we extend
regression foknows following Scherl and Levesque (2003). The resulting preconditionelvew may
contain complex formulae referring to the knowledge of the agent, whichieve as problematic for
practical applications. On the other hand, Reiter’s version of the SituatabculDs does not allow
actions with knowledge preconditions. The good news is that most Weltegiare self-sufficient by
design.

Finally, the compilation method we have described here is only defined forgmsgthat contain
primitive actions, i.e. it does not allow programs to invoke other programsveMer, the method can
be extended for a broad class of programs that include such callsrdfaheno unbounded recursions
or the programs can be stratified with respect to recursive calls, it iyalpassible to iteratively apply
the compilation method presented until all programs have been reduceditaitévpraction.

6.5 From Theory to Practice

We have shown that under certain circumstances, planning with programiecin theory reduced
to planning with primitive actions. In this section we identify properties necg$eaoperator-based
planners to exploit these results, with particular attention to some of the mouéapepgisting planners.
There are several planning systems that have been proposed in thargénat are able to consider the
knowledge of an agent and (in some cases) sensing actions. TheseiBensory GraphplarsGp
(Weld, Anderson, and Smith, 1998), the MDP-based plasrarBonet and Geffner, 2000), the model-
checking-based plannmm (Bertoli, Cimatti, Roveri, and Traverso, 2001), the logic-programming-

1\iP does not consider sensing actions explicitly, however they can be ‘sedulay representing within the state the last

action executed.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 138

based planner(P) (Son, Tu, and Baral, 2004), the knowledge-level plammes (Petrick and Bacchus,
2002), and Contingent FEEEF) (Hoffmann and Brafman, 2005).

All of these planners are able to represent conditional effects ofiqalyactions, therefore, the
representation of the physical effectspsfm; is straightforward. Unfortunately, the representation of
the knowledge effects girim; is not trivial in some cases. Indeed, without loss of generality, suppose
thatC contains only one progranty). After theory compilation, the SSA for théfluent inComp[D, C]
has the general form:

K(s,do(a,s)) = (35”). =do(a,s") AK(s",s) APosga,s") A p(s)A
A{(v9).a=prims() raj(¥,9) D \Bi (7.9 =5 (V.5")}, (6.55)
i i

wherey(s) describes the knowledge effect for the original action®jand therefore does not mention
the action ternprims. Intuitively, as before;; are the (regressed) properties that are sensed pack
the (regressed) conditions of if-then-else constructs that had to bitriee program to sens#;.

From the syntax oK, we determine the following requirements for achieving planning with pro-
grams that sense in practical planners.

1. The planner must be able to represemmditional sensing actions. These are theformulae
appearing in (6.55).

2. The planner must be able to represent girah; senses the truth value of, in general, arbitrary
formulae. This is becaus®; in (6.55) could be any first-order formula.

Most of the planners do not satisfy these requirements directly. Howeverost cases one can
modify the planning domain, and still plan with our compiled actions. Below we stmwthis can be
done.

6.5.1 Belief-State-Based Planners

All the planners we investigated, excegs, are in this category. They represent explicitly or implicitly
all the states in which the agent could be during the execution of the plan t{smaecalledbelief
state3. They are propositional and cannot represent functions

Among the planners investigatesiz pis the only one that cannot be adapted to achieve requirement
1. The reason is that sensing actionsisP cannot have preconditions or conditional effects. Others
(w(P), mBP) can be adapted to simulate conditional sensing actions by spljtting; into several
actions with different preconditions.

Regarding requirement 3GrPandMBP can handle arbitrary (propositional) observation formulae.
However, all the remaining planners are only able to sense propositens:#(P), PKs, andCFF). In

2GpTcan indeed represent functions, but with limited, integer range.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 139

GPT, or in any other propositional planner able to handle actions that havehbgsiical and knowledge
effects, this limitation can be overcome by adding two extra fluents for paofy action. For each

formula 5j, add the the fluents;; and Gj; to the compiled theory. Fluerf;(y,s) is such that its

truth value is equivalent to that of formul#; (y,s). The SSA forF; can be obtained by the following
expression (Lin and Reiter, 1994):

Fij(y,do(a,s)) = R[S (Y,do(a,s)),s]. (6.56)

Furthermore, we adB;(y,S) iff 5ij(Y, o), for all possible constant vectoyf the appropriate size.

To define the knowledge effectsjofim;, we require a little additional effort. For many planners, the
semantics for actions that modify the world and sense at the same time is thaigsheygebservation)
is doneafter the world-level effects have been applied to the world. In contrast, ibuati®n Calculus
formulation of prim; implicitly assumes that the sensing is done before the effects are applied in the
world. We need therefore, to maodify our theory in order to simulate a see$iegt on the immediate
past. To that end, we define the flu&j(y,do(a,s)) is such that its truth value is equivalent to that of
Gij (¥,9) (i.e., it “remembers” the truth value thgf had in the previous situation). The SSA 18y; is
simply Gjj (Y,do(a,s)) = Fj (¥, s).

To modelprim; in these planners we can obtain themwrld-leveleffects by looking into the SSA
of every fluent (Pednault, 1989). On the other hand kth@wledge-levetffect is simply thaprim;(y)
senses the truth value of flue@t; (y,do(a,s)), for all i, conditioned on whethex;(y,s) is true. The
correctness of this approach is justified by the following result.

Proposition 6.5 Let Comp[D,C] be a theory of action that contains axiq®55) and fluents § and
Gij. ThenComp[D,C] entails that(6.55)is equivalent to

K(s,do(a,s)) = (3s").s =do(a,s") AK(5",s) Ap(s,S") APosga, ')A
A\ {a=prim;(y) Aaj(y,5) > A\ Gij(y,do(a,s)) = Gij(¥,do(a,s")) }.
j i

Proof: Follows from the correctness of regression. |
The immediate consequence of this result is that

Comp[D,C] = aj(y,s) O /\ KWhether (Gj; (y),do(prim;,s)),
i
which intuitively expresses thatim;(y) is observing the truth value @;j (y).

As we mentioned, the previous construction works with plannersdike where actions can have
both world effectsand observations However, this still doesn’t solve the problem completely for the
planners liker(P) and CFF, since (currently) they do not support actions with both world-level and
knowledge-level effects. Nonetheless, this can be addressed by gptitim; into two actions, say

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 140

Phys andObs;. Action Phys would have all the world-level effects gfim; and actionObs; would

be a sensing action that obser¥gs In this case, we also need to add special preconditions for action
Phys;, since we would need it to be performed always and omignediately after Ols Such an
axiomatization is described by Baier and Mcllraith (2005).

6.5.2 ExtendingpPks

Currently, ks (Petrick and Bacchus, 2002) is one of the very few planners in the literttiat does
not represent belief states explicL%@l.Moreover, it can represent domains using first-order logic and
functions. Nevertheless, it does not allow the representation of kngevlaldout arbitrary formulae. In
particular it cannot represent disjunctive knowledge.

PKsS, does not directly support requirement 2 either. Moreover, its ré@gatgorithm is not able to
obtain reasonable results when adding the fluBftandG;;, due to its incompleteness.

PKS deals with knowledge of an agent using four databases. Among them, slatghatores
formulae whose truth values are known by the agent. In practice, this niteatni§ an action senses
property p, thenp is added tK,, after performing it. While constructing a conditional plan, g
database is used to determine the properties on which it is possible to condfféserd branches of
the plan.pks’s inference algorithmlA , when invoked witte can return valud (resp.F) if € is known
to be true (resp. false) by the agent. On the other hand, it retdriresp. U) if the truth value of: is
known (resp. unknown) by the agent.

Nevertheless, sinck,, can only store first-order conjunctions of literals, this means that in some
cases, information regarding sensing actions of the type generated bymslation procedure would
be lost. E.g., if-f andg are known to the planner and an action that seriseg /A h is performedpks
is not able to infer that it knows the truth valuelofFor cases like this, this limitation can be overcome
by the extension we propose below.

We propose to allovK,, to contain first-order CNF formulae. In fact, assume fatan contain a
formulal 1(X) AT2(X) A ... ATk(X), wherel; is a first order clause, and free variabiéare implicitly
universally guantified. We now modifykS's inference algorithnhA by replacing rule 7 of the algorithm
of Bacchus and Petrick (1998) by the following rule. We assume the guoeés called with argument

.

7. If there existsp(X) = M1 (X) A ... AT(X) € Ky and a ground instance 6f ¢(X/a) is such that (1)
aare constants appearinghkn, (2) There exists anny, € I such thaivy(X/a) = ¢, (3) For every
[j (j #1) there exists & < I'j such thatlA (3(x/a)) =T, and (4) For everyy, € I'; (¢ # m),
IA (ay(X/d)) = F. Then,return(W) .

13Probably the planner by Pistore, Marconi, Bertoli, and Traverso (28ake only other exception.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 141

N CFF PKS CFFtseek PKS+seek

1 0.01 5.19 0.0 0.01
2 0.1 nomem 0.01 0.01
3 5.01 nomem 0.01 0.08
4 nomem nomem 0.02 0.7
5 nomem nomem 0.03 5.80

Table 6.1: Instances of the briefcase domain with sensing solved $gndcFFr. “nomem” means the
planner ran out of memory.

Theorem 6.6 The modified inference algorithm of PKS is sound.

Proof sketch: The proof is based on the following facts (1) The modification only affetiswthe algo-
rithm returns &V (2) The new rule’s conclusions are based on the following valid formki&bether (A
3,s) AKnows(«,s) D KWhether (3,s), KWhether (« VV 3,s) A Knows(—(3,s) D KWhether (a,s), and
Knows(a,s) V Knows(3,s) D Knows(a V 3,5). [

To actually use actioprim; to plan with PKs, we need to divide it into two primitive actions,
a world-altering action, safhys, and a sensing action, s&bs;. Action Obs has the effect of
addinggjj—in CNF—to theK,, database. On the other harithys contains all the world effects of
prims. Again, through preconditions, we need to ensure that aétiys is performed only and always
immediately aftelObs;. This transformation is essentially the same that was proposed for betief-sta
based planners that cannot handle actions with both physical and klymdéfects, and can be proved
correct(Baier and Mcllraith, 2005).

This extension t®kKs inference algorithm is not yet implemented but is part of our future wbrk.

the experiments that follow, we did not need to use this extension since $eddeinmulae were simple
enough.

6.6 Practical Relevance

There were at least two underlying motivations to the work presented inlibger that speak to its
practical relevance.

6.6.1 Web Service Composition

Web services are self-contained programs that are published on theTielairline ticket service at
www.aircanada.com, or the weather service at www.weather.com are 2sofiyWeb services. Web
services are compellingly modeled as programs comprising actions thataffege in the world (e.qg.,
booking you a flight, etc.) as well as actions that sense (e.qg., telling you $lofetdules, the weather

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 142

in a particular city, etc.). Interestingly, since Web services are self-cmttathey are generally self-
sufficient in the formal sense of this term, as described in this chapteudks they fall into the class
of programs that can be modeled as planning operators. This is just wiestded for WSC.

WSC is the task of composing existing Web services to realize some user\ahjédinning your
trip to the KR2006 conference over the Web is a great example of a WSOMSK is often conceived
as a planning or restricted program synthesis task (Mcllraith and S@2)2Viewed as a planning
task, one must plan with programs that sense to achieve WSC. While thebedrasignificant work
on WSC, few have addressed the issue of distinguishing between wenlthg and sensing actions,
fewer still have addressed the problem of how to represent and gktiedly with programs rather
than primitive (one step) services. This work presents an important catinttowards addressing the
WSC task.

6.6.2 Experiments

Beyond WSC, the second more general motivation for this work was torstade how to plan with
macro-actions or programs, using operator-based planners. Thatages of using operator-based
planners are many, including availability of planners and the ability to usehé&asistic search tech-
niques. In general, the search space of plans of lekgtlexponential irk. When using macro-actions
usually we can find shorter plans (composed by such macro-actiongfditee the planner will effec-
tively explore an exponentially smaller search space. When planning wilingeactions, plans are
normally contingent, i.e. they have branches to handle different situafitvessearch space, therefore,
is much bigger and any reduction in the length of the plan may exponentiallge¢de time needed for
planning.

To illustrate the computational advantages of planning with programs thag,seresperformed
experiments with a version of theiefcasedomain (Pednault, 1988), enhanced with sensing actions. In
this domain, there arl€ rooms. The agent carries a briefcase for transporting objects. Imoanyr,
the agent can perform an actitook(o) to determine whetheaw is inr. In the initial state, the agent is
in roomLR. There areN objects in rooms other thdrR. The agent does not know the exact location of
any of the objects. The goal is to beli® with all the objects.

We performed experiments wittksandcrrfor K =4 andN =1,...,5. Each planner was required
to find a plan with and without the use of macro-actsaeko) (Figure 6.1).seeko) was compiled into
a primitive action by our technique. We compared the running time of the plaruseng a 2 GHz
linux machine with 512MB of main memoryPks was run in iterative deepening mode. Table 6.1
shows running times for both planners with and withoutgbekaction. These experiments illustrate
the applicability of our approach in a domain that is challenging for stateesthplanners when only

simple primitive actions are considered.

CHAPTER 6. PLANNING WITH PROGRAMS THAT SENSE 143

seeko) =go(Ry);look(o);if at(o,R;) then grasp(0); go(LR)

elsego(Ry); look(o);if at(o,Rz) then grasp0); go(LR)

):9
elsego(Rs);look(0);if at(o,Rs) then grasp0); go(LR)
elsego(R4);look(0);if at(o,R4) then grasp0); go(LR)

endIf endIf endIf endIf

Figure 6.1: Prograrseekis a tree program that makes the agent move through all the rooms looking for
0 and then bringing it t&.R

6.7 Summary and discussion

In this chapter we addressed the problem of enabling operator-blsetkes to plan wittprograms

A particular challenge of this work was to ensure that the proposed methdaavior programs that
include sensing, though all the contributions are applicable to programsutvbnsing. We studied the
problem in the situation calculus, using Golog to represent our programdidihis to facilitate formal
analysis of properties of our work. Nevertheless, because of theuwa#fstood relationship between
ADL and the situation calculus (Pednault, 1989), the results apply veadhrto the class of planning
operators represented in the popular plan domain description langudgje (RIeDermott, 1998).

Our contributions include a compilation algorithm for transforming programsoperators that
are guaranteed to preserve program behaviour for the class afusigtient deterministic Golog tree
programs. Intuitively, these are programs whose execution is guadantbe finite and whose outcome
is determinate upon execution. We then showed how to plan with these neataparsing existing
operator-based planners that sense. In the case)fve proposed a maodification to the code to enable
its use in the general case. For those interested in Golog, a side effibis ofork was to define an
offline transition semantics for executable Golog programs.

There were two underlying motivations to this work that speak to its practtaance. The first
was to address the problem of WSC. The class of programs that we capsetate as operators cor-
responds to most, if not all, Web services. As such, this work providempartant contribution to
addressing WSC as a planning task. Our second motivation was the usgims to represent macro-
actions and how to use them effectively in operator-based planneesn Aaur compilation algorithm
provides a means of representing macro-actions as planning ope@ioesxperimental results, though
in no way rigorous, illustrate the effectiveness of our technique.

Chapter 7

Conclusions, Related Work, and Future
Work

7.1 Conclusions

In this thesis, we have investigated how recent advances in classicalngaran be leveraged to ef-
fectively solve some non-classical planning tasks. The planning taskewesfocused on may include
rich temporally extended goals and preferences. As well, they may neesl\pheose building blocks
are programs rather than primitive actions, or they may be required toroondosome pre-specified
procedural skeleton. Planning problems containing those characteajgtiear in a wide variety of com-
pelling applications, including component software composition, web secacgosition, and agent
programming.

To solve these non-classical planning tasks we employ a common appred@mmulation Our
reformulation algorithms will take a non-classical planning task problem, aneérgte a new task.
This new task is more amenable to be solved by current state-of-the-Hanigees. In some cases,
the reformulation results in @assicalplanning task. In other cases, we generate another non-classical
planning task that necessitates adaptation of existing planning techniques.

Our approach has a number of advantages. The foremost is that foofithe problems we deal
with we produce a standard output, which can be directly input to a widetyarfeplanners. An-
other advantage is that the approach is composable. Thus, for examplee Wants to plan with
temporally extended preferences using Golog DCK, we could firstmeflate the problem using the
techniques in Chapter 5—obtaining an instance with no procedural corara-then apply the tech-
nigues in Chapter 4 to obtain a “regular” planning instance with only simplemefes. On the other

hand, our reformulation approach can give insights to researchapsiragl classical techniques for the

144

CHAPTER 7. CONCLUSIONS RELATED WORK, AND FUTURE WORK 145

non-classical problems we deal with. An example of this can be seen ineZapvhere we design the
H-opsheuristic that specifically addresses particular problems of the FF heimiskie reformulated
instances.

For each of the non-classical planning tasks that we examined, we dhbatewve can obtain im-
provement, often very significant, over existing approaches in terms effihiency of plan generation.
We conclude, therefore, that the reformulation techniques we presamg@dwerful tools, that usually
enable the application of state-of-the-art classical techniques foclassical planning tasks, allowing
us to solve them more effectively.

The rest of this chapter contains a recapitulation of the problems we hdxesadd and our contri-

butions. Finally, we sketch potential future work.

7.1.1 Problems and Contributions

We have examined four significant types of non-classical planning taskis thesis. Our contribution
and analysis is both theoretical and experimental. In what follows we sunersoine of the most
significant contributions.

Planning with Temporally Extended Goals In these problems, goals express conditions that hold
throughout the execution of the plan and are therefore more expgrdahsin properties that only refer
to the final state. We proposed a method for planning with temporally exteraids gsing heuristic
search, one of the current most effective approaches in clastacelipg. To this end, we reformulate
planning task with TEGs into an equivalesiassicalplanning task. With this translation in hand, we
exploit heuristic search to determine a plan. Our translation is based onrthgumion of a parame-
terized nondeterministic finite automaton that provably accepts the models dEeThese automata
have the advantage that can be represented in a compact way in a pldomiaig. In our experiments,
we showed that our approach consistently outperforms existing teclsrigyglanning with TEGs that
were only based in formula progression combined with blind search.

Planning with Temporally Extended Preferences Here the task is to find a plan that optimizes a
quality function that is dependent on those preferences. Our techimi¢plees reformulating a plan-
ning problem with TEPs into an equivalent planning problem containing amigle preferences. Since
the resulting task is not classical, we provide a collection of new heuristica apecialized search algo-
rithm that can guide the planner towards preferred plans. We proveritiat some fairly general condi-
tions our method is able to find a most preferred plan—i.e., an optimal plan. Véarhplemented our
approach in a planning system we called HPlan-P, and used it to competebih timeernational Plan-

ning Competition, where it achievetistinguished performanda the Qualitative Preferencesack.

CHAPTER 7. CONCLUSIONS RELATED WORK, AND FUTURE WORK 146

Planning and Reasoning with Procedural DCK We have shown that Golog is amenable to repre-
senting DCK in planning by defining a PDDL semantics for Golog programs.

Additionally, we show that any planner that can input planning tasks in P3Rible to plan with
our Golog DCK. We do this by giving an algorithm that reformulates any PRInning task and a
control program, into an equivalent, program-free PDDL task whosesee only those that “behave”
according to the control program.

Finally, we show that the resulting planning task is amenable to use with doma&pendent heuris-
tic planners. In particular, we propose three approaches. Ourimgres on familiar planning bench-
marks show that the combination of DCK and heuristics produce betterpenfice than using DCK
with blind search and than using heuristics alone.

Planning and Reasoning with Programs that Sense In this problem, the building blocks for plans
are programs instead of or in addition to primitive actions. We propose ave fine correctness of a
compilation method that transforms our action theory with programs into a newytiwbere programs
are replaced by primitive actions. This enables us to use state-of-ttuparator-based planning tech-
nigues to plan with programs that sense for a restricted but compelling ¢lpssgnams. Finally, we
discuss the applicability of these results to existing operator-based pdahaesupport sensing and il-
lustrate the computational advantage of planning with programs that ser@eesiperiment. This work
has broad applicability to planning with programs or macro-actions with or wittensing. In our ex-
periments, we have shown that planning with the compiled instances caninestders of magnitude
of improved performance.

7.2 Other Related Work

Each of the technical chapters of the thesis describes work that is cletalgd to the topic that is
exposed therein. However, there are several pieces of work thatdiso applied reformulation to
planning. We group them in two sets and we describe some of them below.

In the first set, we consider work that reformulates classical plannirignioss into classical in-
stances in a different representation language. Gazen and Knoll®gK)(provide an algorithm to
transform ADL planning instances into STRIPS planning instances. Thissatlo use techniques de-
veloped for STRIPS for the more expressive, but still classical, ADm&dism. Their translation is
worst-case exponential. Edelkamp and Helmert (1999) proposed aittaigto convert STRIPS clas-
sical tasks into the SAS+ representatio@éBstbom and Nebel, 1995). The algorithm was extended and
improved by Helmert (2009). Viewing planning problems in the SAS+ may beuseful as this repre-
sentation is compact and makes the structure of the problem more appadeetd |the structure under-
lying the SAS+ representation has been exploited by successful erhants to heuristic-search-based

CHAPTER 7. CONCLUSIONS RELATED WORK, AND FUTURE WORK 147

planners. An example is the causal graph heuristic (Helmert, 2006a),Vetptandmark extraction
(Richteret al,, 2008), and analysis of planning complexity (&nez and Jonsson, 2007).

In the second set we include work that is more related to our work, antidsaddressed the prob-
lem of reformulating non-classical planning instances into classical omdigiistic planning. Palacios
and Geffner| (2006) reformulate conformant planning problems intoickgslanning problems. As
with our reformulations, this allows them to exploit classical planning techyadogl thus greatly im-
prove over previous approaches. The techniques we present indhis #eem to be compatible with
their translation. We conjecture that many conformant instances with TE{E$lmereduced to classical
planning by composing our techniques and Palacios and Geffner')2a130 Yoon, Fern, and Givan
(2007) and Yooret al. (2008) reformulate probabilistic planning problems into deterministic problems.
In doing so, like us, they greatly benefit from deterministic planning teclgyolégain, it is fairly con-
ceivable to think that our techniques could be used along with theirs in edsre there are TEGS or
TEPs.

The focus of the aforementioned related work is to reformulate the entibégpndnto one described
in significantly different language. In most of our work however (QGbep3| 4, and 5) we reformulate
the planning objective, leaving most of the structure of the problem ungalich particular, we do
not alter the transition model as we input a deterministic instance and outptérandgestic one. This
means that our techniques can also be extended, with little effort, to othsitisarmodels (e.g., non-
deterministic settings). In those cases our input and output instances benth-deterministic.

7.3 Future Work

The work presented in this thesis suggest many avenues for future hlvavkat follows we list a subset
of these directions.

Improved Heuristics for TEGs We have shown that off-the-shelf heuristic approaches can be very
effective for planning with TEGs. However, as we illustrated in Sectionthére are cases in which
relaxed plan heuristics are pretty uninformative. In particular, while phgwith TEGs that are safety
goals (e.g., of the fornilg), relaxed plan heuristics are not informative at all. This happens becau
the predicate that represents the acceptanca¢of true at any legal state, and thus true in always in
any successor of such as state in the delete relaxation. A potential asferasearch is to investigate
how recent technigues that more closely approximate the planning problgmBaier, 2007; Benton
et al, 2007; Coles, Fox, Long, and Smith, 2008) may also be successfubduging better heuristics
for TEGs.

Another avenue is the investigation of how other heuristics, such as tisaloguaph heuristic
(Helmert, 2006a), can be exploited to provide better guidance for TEGs.

CHAPTER 7. CONCLUSIONS RELATED WORK, AND FUTURE WORK 148

Landmarks as TEGs An effective technique to enhance the performance of classical parstre
use oflandmarks(Hoffmann, Porteous, and Sebastia, 2004; Richteal., 2008). Landmarks essen-
tially specify a sequence of sub-goals that need to be achieved beé&mieimg the goals defined in the
planning task. As such, they can be specified as TEGs. Howevesnttechniques for planning with
landmarks, do not recognize these as being TEGs. For example, the LfAdhaer (Richteet al,
2008) uses a pseudo-heuristic that is computed from its landmarks. Euidgéeuristic seems quite
ad hog and seems to have some problems as it may not recognize certain dead/emgpothesize that
viewing landmarks as TEGs and exploiting techniques such as ours mageewmore fundamental

view to planning in the presence of landmarks.

New Heuristics for Planning with Preferences The branch-and-bound algorithm that we have de-
fined for planning with preferences finds a sequence of plans ofdsicrg quality. After a plan is found,
the only piece of information we use in the next planning round is the metric dasthelan found. We
use this metric to prune by bounding. However, it is there is more informatiamthaould use after
finding a plan. In particular, after finding a plan, we know that there areaim preferences that can,
for sure be achieved from certain states. This suggests that there should hed praducing new
heuristics (or modify existing ones) in order to account not only forisgaiinformation but forcertain
information.

TEGs and TEPs under Other Types of DCK We mentioned in the previous section that TEGs and
TEPs could be integrated with Golog DCK by composing our reformulationisthges. However, other
types of DCK, like for example HTNs (Eret al,, | 1994), could also benefit from the techniques we have
proposed. Sohrakt al: (2009) have very recently made a contribution to this problem by extending
the HTN formalism to support PDDL3 preferences, and proposingstmsrbased on our reformulated
instances.

More General Golog DCK Control in State-of-the-Art Planners In Chapter 5 we considered a
subset of Golog for the specification of procedural control. Ourefuti@es not consider procedures—
which are standard in Golog—, and does not consider concurrentyehs standard in the ConGolog
language (De Giacomet al., 2000). Fritzet al. (2008) have shown that, under certain conditions, it
is possible to translate ConGolog DCK intro PDDL. It remains an open quesibovever, whether or
not this translation can be exploited well by state-of-the-art plannerstigirérom our experience with
Golog, we conjecture that this might not be the case, and thus new modifgeationrH-opsapproach
might provide better guidance in the presence of concurrency andguroes.

Glossary of Acronyms and Abbreviations

Notation Description

ADL Action Description Language 12
BA Buchi automata a7
BFQ Boolean Formula with Quantifiers 93
DCK Domain Control Knowledge 9,90
EPNF Extended Prenex Normal Form 26

f-FOLTL Finite First-Order Linear Temporal Logic

&R

FSM Finite state machine

Golog alGOl in LOGic. A high-level action-centric language for programmaggnts 5,121
(Levesqueet al.,1997)

HTN Hierarchical task network 89, 92,110
IPC International Planning Competition. Seetp: //ipc.icaps-conference.org/. 2

LTL Linear Temporal Logic |20, 22, 23
PDDL Planning Domain Definition Language (McDermott, 1998) - [13/93
PDDL3 Version of PDDL that supports preferences and hard caontgra 57

PNFA Parameterized NFA 29,35
PSLNFA Parameterized State-Labeled NFA 29,29

149

http://ipc.icaps-conference.org/.

Glossary of Acronyms and Abbreviations 150

Notation Description

SSA Successor state axiom 115
TEG Temporally extended goal. 5,/7,20
TEP Temporally extended preference. 5,52

WSC Web service composition. 2,113

Bibliography

Bacchus, F. and Ady, M. (1999). Precondition Control. URL
http://www.cs.toronto.edu/~fbacchus/Papers/BApre.pdf. Unpublished manuscript.

Bacchus, F. and Kabanza, F. (1998). Planning for Temporally Egte@dals.Annals of Mathematics
and Acrtificial Intelligence 22(1-2), 5-27.

Bacchus, F. and Kabanza, F. (2000). Using temporal logics to expessch control knowledge for
planning.Artificial Intelligence, 116(1-2), 123-191.

Bacchus, F. and Petrick, R. (1998). Modeling an agent’s incompletelkdge during planning and
execution. InProceedings of the 6th International Conference on Knowledge Rapsdson and
Reasoning (KR)p. 432-443. Morgan Kaufmann Publishers, San Francisco, CA.

Backstbm, C. and Nebel, B. (1995). Complexity Results for SAS+ Plannibgmputational Intelli-
gence, 11(4), 625—-655.

Baier, J. and Mcllraith, S. (2005). Planning with Programs that Sems&thlWorkshop on Nonmono-
tonic Reasoning, Action and Change (NRAS}). 7-14. Edinburgh, Scotland.

Baier, J. A. (2007). Improving Relaxed-Plan-Based Heuristic&irst ICAPS Workshop on Heuristics
for Domain-independent Planning: Progress, ldeas, Limitations, Chg#e Providence, RI.

Baier, J. A., Bacchus, F., and Mcllraith, S. A. (2009). A Heuristic Seapproach to Planning with
Temporally Extended Preferencéstificial Intelligence, 1735-6), 593—-618.

Baier, J. A., Fritz, C., and Mcllraith, S. A. (2007). Exploiting Proced@amain Control Knowledge
in State-of-the-Art Planners. IRroceedings of the 17th International Conference on Automated
Planning and Scheduling (ICAPS)p. 26—33. Providence, Rhode Island, USA.

Baier, J. A. and Mcllraith, S. A. (2006a). On Planning with Programs 8watse. IrProceedings of
the 10th International Conference on Knowledge Representation arebRieg (KR) pp. 492-502.
Lake District, UK.

151

http://www.cs.toronto.edu/~fbacchus/Papers/BApre.pdf

BIBLIOGRAPHY 152

Baier, J. A. and Mcllraith, S. A. (2006b). Planning with First-Order Tenaly Extended Goals Using
Heuristic Search. liProceedings of the 21st National Conference on Artificial IntelligenceA(}\
pp. 788-795. Boston, MA.

Baier, J. A. and Mcllraith, S. A. (2006c). Planning with Temporally Exeshé&oals Using Heuristic
Search. IrProceedings of the 16th International Conference on Automated Plannoh&eheduling
(ICAPS) pp. 342-345.

Baier, J. A. and Mcllraith, S. A. (2007). On Domain-Independentri$tias for Planning with Qualita-
tive Preferences. Iith Workshop on Nonmonotonic Reasoning, Action and Change (NRAC)

Baier, J. A. and Mcllraith, S. A. (2008). Planning with Preferencadificial Intelligence Magazing
29(4), 25-36.

Baral, C., Kreinovich, V., and Trejo, R. (2000). Computational complexiglanning and approximate
planning in the presence of incompletene&dificial Intelligence, 1221-2), 241-267.

Benton, J., Kambhampati, S., and Do, M. B. (2006). YochanPS: PDDL3I8irrpferences and Partial
Satisfaction Planning. IBth International Planning Competition Booklet (IPC-2006p. 54-57.
Lake District, England.

Benton, J., van den Briel, M., and Kambhampati, S. (2007). A Hybrid LiReagramming and Relaxed
Plan Heuristic for Partial Satisfaction ProblemsPimceedings of the 17th International Conference
on Automated Planning and Scheduling (ICARS). 34-41. Providence, RI.

Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001). Planning indéberministic Domains
under Partial Observability via Symbolic Model Checking.Pimceedings of the 17th International
Joint Conference on Atrtificial Intelligence (IJCAPp. 473—-478. Seattle, WA, USA.

Bienvenu, M., Fritz, C., and Mcllraith, S. (2006). Planning with Qualitatieenporal Preferences. In
Proceedings of the 10th International Conference on Knowledge Reqieion and Reasoning (KR)
pp. 134-144. Lake District, England.

Blum, A. and Furst, M. L. (1997). Fast Planning Through Planning Grapalysis. Artificial Intelli-
gence, 90(1-2), 281-300.

Bonet, B. and Geffner, H. (2000). Planning with Incomplete Informat®hlauristic Search in Belief
Space. InProceedings of the 5th International Conference on Atrtificial IntelligeRzmning and
Systems (AIPSpp. 52-61.

Bonet, B. and Geffner, H. (2001). Planning as heuristic seakdificial Intelligence, 1291-2), 5-33.

BIBLIOGRAPHY 153

Bonet, B. and Geffner, H. (2006). Heuristics for Planning with PenadiiesRewards using Compiled
Knowledge. InProceedings of the 10th International Conference on Knowledge Bemtation and
Reasoning (KR)p. 452—-462.

Brafman, R. and Chernyavsky, Y. (2005). Planning with Goal Pegiegs and Constraints. Rro-
ceedings of the 15th International Conference on Automated Plannin@emeduling (ICAPSpp.
182-191. Monterey, CA.

Bylander, T. (1994). The Computational Complexity of Propositional ¥ERPlanning. Artificial
Intelligence, 69(1-2), 165-204.

Cerrito, S., Mayer, M. C., and Praud, S. (1999). First Order Linesndoral Logic over Finite Time
Structures. IrProceedings of 6th International Conference on Logic ProgrammirdyAutomated
Reasoning (LPARLNCS volume 1705, pp. 62—76. Thilisi, Georgia.

ClaRen, J., Eyerich, P., Lakemeyer, G., and Nebel, B. (2007). Tewardntegration of Golog and
Planning. InProceedings of the 20th International Joint Conference on Artificialligence (IJCAI)
pp. 1846-1851.

Coles, A., Fox, M., Long, D., and Smith, A. (2008). A Hybrid Relaxed PiagrGraph-LP Heuristic
for Numeric Planning Domains. IRroceedings of the 18th International Conference on Automated
Planning and Sched. (ICAPS)p. 52-59.

Coles, A. I. and Smith, A. J. (2007). Marvin: A Heuristic Search Planvi#t Online Macro-Action
Learning.Journal of Artificial Intelligence ResearcB8, 119-156.

Cresswell, S. and Coddington, A. M. (2004). Compilation of LTL Goalnkalas into PDDL. In
Proceedings of the 16th European Conference on Artificial IntelligeB€@A(), (edited by R. L.
de Mantaras and L. Saitta), pp. 985-986. I0OS Press, Valencia, Spain.

dal Lago, U., Pistore, M., and Traverso, P. (2002). Planning with guage for Extended Goals. In
Proceedings of the 18th National Conference on Artificial Intelligenced(\pp. 447-454. Edmon-
ton, Alberta, Canada.

Daniele, M., Giunchiglia, F., and Vardi, M. Y. (1999). Improved Automatan&ation for Linear
Temporal Logic. IrProceedings of the 11th International Conference on Computer Aid@its&on
(CAV), LNCS volume 1633, pp. 249-260. Springer, Trento, Italy.

Davis, E. (1994). Knowledge Preconditions for Pladsurnal of Logic and Computatiod(5), 721—
766.

BIBLIOGRAPHY 154

De Giacomo, G., Leggrance, Y., and Levesque, H. (2000). ConGolog, A ConcurresgrBmming
Language Based on the Situation Calcul@sificial Intelligence, 121(1-2), 109-169.

De Giacomo, G. and Levesque, H. (1999). An Incremental Interpfetddigh-Level Programs with
Sensing. IrLogical foundation for cognitive agents: contributions in honor of Ray Refesfited by
H. Levesque and F. Pirri), pp. 86—102. Springer Verlag, Berlin.

Delgrande, J. P., Schaub, T., and Tompits, H. (2007). A General Mrarkéor Expressing Preferences
in Causal Reasoning and Plannirdgurnal of Logic and Computatiod7, 871-907.

Dimopolus, Y., Gerevini, A., Haslum, P., and Saetti, A. (2006). The Benckramains of
the Detrministic Part of IPC-5. Ibth International Planning Competition Booklet (IPC-2006)
http://zeus.ing.unibs.it/ipc-5/.

Do, M. B., Benton, J., van den Briel, M., and Kambhampati, S. (2007). Rignmith Goal Utility
Dependencies. IRroceedings of the 20th International Joint Conference on Atrtificiallligence
(IJCAI), pp. 1872-1878. Hyderabad, India.

Edelkamp, S. (2006a). On the Compilation of Plan Constraints and PreéstelmProceedings of the
16th International Conference on Automated Planning and Scheduli®gR8} To appear.

Edelkamp, S. (2006b). Optimal Symbolic PDDL3 Planning with MIPS-BDD. 51t International
Planning Competition Booklet (IPC-20Q@)p. 31-33. Lake District, England.

Edelkamp, S. and Helmert, M. (1999). Exhibiting Knowledge in PlanningBro®to Minimize State
Encoding Length. IiProceedings of the 5th European Conference on Planning (EgR)135-147.

Edelkamp, S. and Hoffmann, J. (2004). PDDL2.2: The Language éoCtassical Part of the 4th Inter-
national Planning Competition. Technical Report 195, Computer SciengarDeent, University of
Freiburg.

Edelkamp, S., Jabbar, S., and Naizih, M. (2006). Large-Scale Optim2LB[PIlanning with MIPS-
XXL. In 5th International Planning Competition Booklet (IPC-2006p. 28-30. Lake District,
England.

Erol, K., Hendler, J., and Nau, D. (1994). HTN Planning: Complexity axpré&ssivity. InProceedings
of the 12th National Conference on Atrtificial Intelligence (AAABlume 2, pp. 1123-1128.

Etessami, K. and Holzmann, G. J. (2000). OptimizingcBi Automata. InProceedings of the 11th
International Conference on Concurrency Theory (CONCURJCS volume 1877, pp. 153-167.
Springer, University Park, PA.

http://zeus.ing.unibs.it/ipc-5/

BIBLIOGRAPHY 155

Feldmann, R., Brewka, G., and Wenzel, S. (2006). Planning with PrioriGaads. InProceedings of
the 10th International Conference on Knowledge Representation arebRieg (KR) pp. 503-514.
Lake District, England.

Ferrein, A., Fritz, C., and Lakemeyer, G. (2005). Using Golog for Deditien and Team Coordination
in Robotic SoccerKinstliche Intelligenz19(1), 24-31.

Fikes, R. and Nilsson, N. J. (1971). STRIPS: A New Approach to thaliéation of Theorem Proving
to Problem SolvingArtificial Intelligence, 2(3/4), 189-208.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning anduixecgeneralized robot plans.
Artificial Intelligence, 3, 251-288.

Fox, M. and Long, D. (2003). PDDL2.1: An Extension to PDDL for Begsing Temporal Planning
Domains.Journal of Artificial Intelligence ResearcB0, 61-124.

Fritz, C. (2003). Constructingighi Automata from Linear Temporal Logic Using Simulation Relations
for Alternating Bichi Automata. IrProceedings of the 8th International Conference on Implementa-
tion and Application of Automata (CIAA)NCS volume 2759, pp. 35-48. Springer, Santa Barbara,
CA.

Fritz, C., Baier, J. A., and Mcllraith, S. A. (2008). ConGolog, Sin Tra@smpiling ConGolog into
Basic Action Theories for Planning and Beyond Piroceedings of the 11th International Conference
on Knowledge Representation and Reasoning (IKR)600-610. Sydney, Australia.

Gastin, P. and Oddoux, D. (2001). Fast LTL tadhi Automata Translation. IRroceedings of the 13th
International Conference on Computer Aided Verification (CAV,(ddited by G. Berry, H. Comon,
and A. Finkel) LNCS volume 2102, pp. 53-65. Springer, Paris, France.

Gazen, B. C. and Knoblock, C. A. (1997). Combining the Expressivity@POP with the Efficiency
of Graphplan. IFECP97 pp. 221-233. Toulouse, France.

Gerevini, A., Dimopoulos, Y., Haslum, P., and Saetti, A. (2006). 5th Intemaki®lanning Competition.
http://zeus.ing.unibs.it/ipc-5/.

Gerevini, A., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. (2009)teieinistic planning
in the fifth international planning competition: PDDL3 and experimental evaluatioche planners.
Artificial Intelligence 1735-6), 619-668.

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning Through S&iahlocal Search and Temporal
Action Graphs in LPGJournal of Artificial Intelligence ResearcB0, 239—290.

http://zeus.ing.unibs.it/ipc-5/

BIBLIOGRAPHY 156

Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. (1995). Simple on-theditomatic verification of
linear temporal logic. IfProceedings of the 15th International Symposium on Protocol Speiufica
Testing and Verification (PSTW)p. 3—18. Warsaw, Poland.

Giménez, O. and Jonsson, A. (2007). On the Hardness of PlannindeRmhvith Simple Causal
Graphs. InProceedings of the 17th International Conference on Automated Plannoh&@eheduling
(ICAPS) pp. 152-159.

Giunchiglia, E. and Maratea, M. (2007). Planning as Satisfiability with Peates. InProceed-
ings of the 22nd AAAI Conference on Artificial Intelligence (AABH. 987—992. Vancouver, British
Columbia.

Gupta, N. and Nau, D. S. (1992). On the Complexity of Blocks-World RiaprArtificial Intelligence
, 56(2-3), 223-254.

Haslum, P. (2007). Openstacks SP-NCE domain. URL
http://users.rsise.anu.edu.au/~patrik/ipc5.html.

Helmert, M. (2003). Complexity results for standard benchmark domainsmmipig. Artificial Intelli-
gence, 1432), 219-262.

Helmert, M. (2006a). The Fast Downward Planning Systéournal of Artificial Intelligence Research
26, 191-246.

Helmert, M. (2006b). New Complexity Results for Classical Planning Bendksnan Proceedings of
the 16th International Conference on Automated Planning and Schedi@AdS) pp. 52—62.

Helmert, M. (2009). Concise finite-domain representations for PDDL |ptgrtasks.Artificial Intelli-
gence, 1735-6), 503-535.

Hendler, J. (1999). Is there an intelligent agent in your futuridature Web MattersMarch. URL

http://www.nature.com/nature/webmatters/agents/agents.html.

Hoffmann, J. (2003). The Metric-FF Planning System: Translating ‘figigoDelete Lists” to Numeric
State VariablesJournal of Artificial Intelligence ResearcB0, 291-341.

Hoffmann, J. and Brafman, R. (2005). Contingent Planning via Heufigiigvard Search with Im-
plicit Belief States. IrProceedings of the 15th International Conference on Automated Plamnicig
Scheduling (ICAPSpp. 71-80. Morgan Kaufmann, Monterey, CA, USA.

Hoffmann, J. and Edelkamp, S. (2005). The Deterministic Part of IP@rOverview. Journal of
Artificial Intelligence Researgt24, 519-579.

http://users.rsise.anu.edu.au/~patrik/ipc5.html
http://www.nature.com/nature/webmatters/agents/agents.html

BIBLIOGRAPHY 157

Hoffmann, J. and Nebel, B. (2001). The FF Planning System: Fast Riaar&ion Through Heuristic
Search.Journal of Artificial Intelligence Research4, 253—-302.

Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered LaksimdlanningJournal of Artificial
Intelligence Resear¢l22, 215-278.

Hsu, C.-W., Wah, B., Huang, R., and Chen, Y. (2007). Constraint Paititjofor Solving Planning
Problems with Trajectory Constraints and Goal PreferenceRrdoeedings of the 20th International
Joint Conference on Atrtificial Intelligence (IJCApPp. 1924-1929. Hyderabad, India.

Hui, B., Liaskos, S., and Mylopoulos, J. (2003). Requirements Analgsi€tistomizable Software
Goals-Skills-Preferences Framework. Rroceedings of the 11th IEEE International Conference on
Requirements Engineering (Rpp. 117-126.

Jonsson, P. andd&kstom, C. (1998). Tractable Plan Existence Does Not Imply Tractable PlaarGen
ation. Annals of Mathematics and Artificial Intelligenc2(3-4), 281-296.

Kabanza, F. and Thbaux, S. (2005). Search Control in Planning for Temporally Exte@izals. In
Proceedings of the 15th International Conference on Automated Plammiddgcheduling (ICAPS)
pp. 130-139.

Kim, P., Williams, B. C., and Abramson, M. (2001). Executing Reactive, Ntbdsed Programs
through Graph-based Temporal PlanningPhoceedings of the 17th International Joint Conference
on Artificial Intelligence (IJCAI)pp. 487-493.

Korf, R. E. (1987). Planning as Search: A Quantitative Approdgtificial Intelligence, 33(1), 65—88.

Kvarnstdm, J. and Doherty, P. (2000). TALplanner: A temporal logic baseddnt chaining planner.
Annals of Mathematics Artificial Intelligen¢c&0(1-4), 119-169.

Lesgerance, Y., Levesque, H., Lin, F., and Scherl, R. (2000). Ability andw{ng How in the Situation
Calculus.Studia Logica66(1), 165-186.

Levesque, H. (1996). What is Planning in the Presence of Sensifg®dredings of the 13th National
Conference on Atrtificial Intelligence (AAAPp. 1139-1146. Portland, Oregon.

Levesque, H. and Lakemeyer, G. (200€pgnitive robotics Handbook of Knowledge Representation.
Elsevier.

Levesque, H., Reiter, R., Les@nce, Y., Lin, F., and Scherl, R. B. (1997). GOLOG: A Logic Pragra
ming Language for Dynamic Domaindournal of Logic Programming31(1-3), 59-83.

BIBLIOGRAPHY 158

Levesque, H. J. (2005). Planning with LoopsPimceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAIl)pp. 509-515. Edinburgh, Scotland.

Lin, F. and Reiter, R. (1994). State Constraints Revisitéournal of Logic and Computatiom(5),
655—678.

McCarthy, J. and Hayes, P. J. (1969). Some Philosophical Problemgliie Standpoint of Artificial In-
telligence. InMachine Intelligence Aedited by B. Meltzer and D. Michie), pp. 463-502. Edinburgh
University Press.

McDermott, D. V. (1996). A Heuristic Estimator for Means-Ends AnalysislanRing. InProceedings
of the 3rd International Conference on Atrtificial Intelligence Planning &ydtems (AIPSpp. 142—
149.

McDermott, D. V. (1998). PDDL — The Planning Domain Definition Languadechnical Report
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and ©bntr

Mcllraith, S. and Son, T. C. (2002). Adapting Golog for Composition ah8etic Web Services. In
Proceedings of the 8th International Conference on Knowledge Ragrasn and Reasoning (KR)
pp. 482—-493. Toulouse, France.

Mcllraith, S. A. and Fadel, R. (2002). Planning with complex actions9timInternational Workshop
on Non-Monotonic Reasoning (NMR)p. 356-364. Toulouse, France.

Mcllraith, S. A., Son, T. C., and Zeng, H. (2001). Semantic Web ServiltesSE Intelligent Systems
16(2), 46-53.

Moore, R. C. (1985). A formal Theory of Knowledge and Action. Hormal Theories of the Com-
monsense Wor]dedited by J. B. Hobbs and R. C. Moore), chapter 9, pp. 319-3bgx/4Publishing
Corp., Norwood, New Jersey.

Nau, D. S., Cao, Y., Lotem, A., and Moz-Avila, H. (1999). SHOP: Simple Hierarchical Ordered
Planner. InProceedings of the 16th International Joint Conference on Artificialligence (IJCAI)
pp. 968-975.

Nebel, B. (2000). On the Compilability and Expressive Power of PropasitiBlanning Formalisms.
Journal of Artificial Intelligence Research?2, 271-315.

Palacios, H. and Geffner, H. (2006). Compiling Uncertainty Away: Sg\u@onformant Planning
Problems using a Classical Planner (SometimespAAl.

Pednault, E. (1988). Synthesizing plans that contain actions with corgpetadent effectsComputa-
tional Intelligence, 4(4), 356—-372.

BIBLIOGRAPHY 159

Pednault, E. P. D. (1989). ADL: Exploring the Middle Ground BetweeRE and the Situation
Calculus. InProceedings of the 1st International Conference of Knowledge Beptation and Rea-
soning (KR) pp. 324-332. Toronto, Canada.

Petrick, R. P. A. and Bacchus, F. (2002). A Knowledge-Based édqugr to Planning with Incomplete
Information and Sensing. Iroceedings of the 6th International Conference on Atrtificial Intelligence
Planning and Systems (AIR®)p. 212—-222. Toulouse, France.

Pistore, M., Marconi, A., Bertoli, P., and Traverso, P. (2005). Autom@ieahposition of Web Services
by Planning at the Knowledge Level. Rroceedings of the 19th International Joint Conference on
Artificial Intelligence (1JCAI) pp. 1252-1259.

Pnueli, A. (1977). The temporal logic of programs. Rroceedings of the 18th IEEE Symposium on
Foundations of Computer Science (FOQO%). 46-57.

Reiter, R. (1991).The Frame Problem in the Situation Calculus: A Simple Solution (sometimes) and
a completeness result for goal regressi@p. 359-380. Atrtificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy. AcademigsP&an Diego, CA.

Reiter, R. (2001)Knowledge in Action: Logical Foundations for Specifying and Implementiyrgan-
ical SystemsMIT Press, Cambridge, MA.

Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks Revisite®rdneedings of the 23rd
AAAI Conference on Atrtificial Intelligence (AAApPp. 975-982. Chicago, IL.

Rintanen, J. (2000). Incorporation of Temporal Logic Control into R)erators. IProceedings of
the 14th European Conference on Artificial Intelligence (ECAdilited by W. Horn), pp. 526-530.
IOS Press, Berlin, Germany.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spéctfcial Intelligence, 5, 115-135.

Sanchez, R. and Kambhampati, S. (2005). Planning Graph HeuristiSglerting Objectives in Over-
Subscription Planning Problems. Bioceedings of the 15th International Conference on Automated
Planning and Scheduling (ICAPS)p. 192-201. Monterey, CA.

Sardina, S., de Giacomo, G., Léspnce, VY., and Levesque, H. (2004). On the Semantics of Deliberation
in IndiGolog — From Theory to Implementatiodnnals of Mathematics and Atrtificial Intelligence
41(2-4), 259-299.

Savitch, W. J. (1970). Relationships Between Nondeterministic and Detetimifape Complexities.
Journal of Computer and System Sciendé®), 177-192.

BIBLIOGRAPHY 160

Scherl, R. and Levesque, H. (2003). Knowledge, Action, and the&Rroblem Artificial Intelligence
, 144(1-2), 1-39.

Scherl, R. B. and Levesque, H. J. (1993). The Frame Problem ao@IKdge-Producing Actions. In
Proceedings of the 11th National Conference on Atrtificial Intelligenced(\4p. 689-695.

Smith, D. E. (2004). Choosing Objectives in Over-Subscription Plannimdrroceedings of the 14th
International Conference on Automated Planning and Scheduling (IGA®S393-401. Whistler,
Canada.

Sohrabi, S., Baier, J., and Mcllraith, S. A. (2009). HTN Planning witHdPemces. IrProceedings of
the 21st International Joint Conference on Atrtificial Intelligence (IJCRlasadena, California. To
appear.

Sohrabi, S., Prokoshyna, N., and Mcllraith, S. A. (2006). Web Ser@amposition Via Generic Pro-
cedures and Customizing User PreferencesPrbteedings of the 5th International Semantic Web
Conference (ISWCpp. 597-611. Athens, Georgia.

Son, T. C., Baral, C., Nam, T. H., and Mcllraith, S. A. (2006). Domain-®&efent Knowledge in
Answer Set PlanningACM Transactions on Computational Logi{4), 613-657.

Son, T. C. and Pontelli, E. (2004). Planning with Preferences using Rsggramming. IiProceedings
of the 7th International Conference on Logic Programming and NontoomoReasoning (LPNMR)
(edited by V. Lifschitz and I. Niemela), number 2923 in LNCS, pp. 247-3g0inger.

Son, T. C. and Pontelli, E. (2006). Planning with preferences using fmggramming. Theory and
Practice of Logic Programmingd(5), 559-607.

Son, T. C., Tu, P. H., and Baral, C. (2004). Planning with Sensing Actindsrecomplete Information
Using Logic Programming. lProceedings of the 9th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMEcture Notes in Computer Sciengelume 2923, pp.
261-274. Springer, Fort Lauderdale, FL, USA.

Srivastava, B. and Koehler, J. (2003). Web Service Compositionre@usolutions and Open Problems.
In In: ICAPS 2003 Workshop on Planning for Web Servipgs 28—-35.

Thiébaux, S., Hoffmann, J., and Nebel, B. (2005). In defense of PD&@ines. Artificial Intelligence,
16§1-2), 38-69.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., BEbxHahnel, D., Rosenberg,
C. R., Roy, N., Schulte, J., and Schulz, D. (1999). MINERVA: A Sec@aheration Museum Tour-
Guide Robot. INCRA pp. 1999-2005.

BIBLIOGRAPHY 161

van den Briel, M., Nigenda, R. S., Do, M. B., and Kambhampati, S. (200#¢ctve Approaches for
Partial Satisfaction (Over-Subscription) Planning. Pimceedings of the 19th National Conference
on Artificial Intelligence (AAAL)pp. 562-569.

Vardi, M. Y. and Wolper, P. (1994). Reasoning about Infinite Computatibrformation and Compu-
tation, 1151), 1-37.

Waldinger, R. (1977). Achieving Several Goals Simultaneousli¥achine Intelligence op. 94—-136.
Ellis Horwood, Edinburgh, Scotland.

Weld, D. S., Anderson, C. R., and Smith, D. E. (1998). Extending Giaptp Handle Uncertainty &
Sensing Actions. IfProceedings of the 15th National Conference on Artificial Intelligence®dMA
pp. 897-904.

Yoon, S. W., Fern, A., and Givan, R. (2007). FF-Replan: A BaselmePfobabilistic Planning. In
Proceedings of the 17th International Conference on Automated Plammddcheduling (ICAPS)
pp. 352—-359.

Yoon, S. W., Fern, A., Givan, R., and Kambhampati, S. (2008). Probib#Eanning via Determiniza-
tion in Hindsight. InProceedings of the 23rd AAAI Conference on Artificial Intelligence (AAA

Zhu, L. and Givan, R. (2005). Simultaneous Heuristic Search for Qotijte Subgoals. IProceed-
ings of the 20th National Conference on Atrtificial Intelligence (AAAP. 1235-1241. Pittsburgh,
Pennsylvania, USA.

Appendix A

Proofs for Chapter 3

A.1 Proof for Proposition3.1

Now we prove identities independently.

1. We prove thaty Ux = x VY AO(¥ U x).
From Def! 3.3,(0i,v) = ¢ U x iff there exists g € {i,...,n} such thato;,v) = x and for every
ke{i,...,j—1}, (ox,v) E .
In the right-hand side of the expression, we can substitwte(i,...,n} by “j=ior je {i+
1,...,n}", which converts the expression into the disjunction of the following statements

(1) there exists @ =i such thatoj,v) |= x,

(2) there exists g € {i+1,...,n} such that(cj,v) = x and for everyk € {i+1,...,j— 1},
(ok,v) =1 and(oj,v) = 1.

(1) is simply equivalent tdoi,) |= x. On the other hand, (2) reduces(tq,v) =¥ AO() U x).
This can be verified straightforwardly in two relevant cases: whem or wheni > n.

2. We prove that:Oy = final V O—¢. Indeed by Def. 3/3(gi,v) = —Oyiiff i > nor (oi;1,v) F ¢.
Without loss of generality we assume n. By Def./3.3 the statement is true iffi,) = final or
(oi+1,v) E ¢, from where the result follows immediately.

3. We provey U(3x) p = (3x) (v Uyp). From Def. 3.3, the formula is true iff there existsj &
{i,...,n} such that there existsaac D such thafo;,v[x — a]) = ¢ and for evenk e {i,...,j —
1}, (ok,v) = 1. Because does not appear free ihwe can rewrite the expression in the equiva-
lent form: there exists a € D such that there existsjac {i,...,n} such thafoj,v[x — a]) = ¢

162

APPENDIXA. PROOFS FORCHAPTER|3 163

and for evenk € {i,...,] — 1}, (ok,v[X — &) = ¢. The result follows straightforwardly from
here.

4. Y R(VX) ¢ = (VX) (1 Ry) can be proved by rewriting the in terms of anU, then applying the
previous identity, and then going back to an expression contaRiing

5. We proveyRx = x A (final V¢ VO(¥)Rx))..

YRx =~("¢U-x) (by definition ofR)
=~ (x VY AO(=ypU~x)) (by identity 1)
= (XA (P V-O(~yU~x)))
= (x A (¢ Vfinal v O(= (= U=-x)))) (by identity 2)
= (x A (0 Vfinal VO(4s R))) (by definition ofR)

A.2 Proof for Theorem|3.1

Before starting with the proof, we formally define some concepts and @hboms that we use in the
proofs.

Definition A.1 (Old—(q)) We define Old(q) as the set containing all the literals in O{d) or formulae
of the form(Qx) ¢, wherey is a first-order (atemporal) formula.

If X is a set of temporal formulae, we denote/RX the conjunction the elementsi A X reduces
to Trueif X is empty.
We define the abbreviatigi(q) in the following way:
get | OANext(@) if Nexi(q) # 0
Bla) =
True otherwise.

We are now going to prove some intermediate results that will allow us to provegimeresult rather
straightforwardly. In most of the intermediate lemmas, we assume that weuciratrautomaton for a
guantifier-free formula, which may contain free variables. Intuitively, ¢hiantifier-free formula is the
actual parameter received by the translation algorithm. This, howewes,rdi mean that the result of
Theorem 3.1 holds for formulae with free variables. It is just convertiedb it this way to facilitate
the proof.

Lemma A.1 (Analogous to Lemma 4.2 by Gertltet al. (1995)) If nodes g and @ are split from a
node q (in lines 32-35), then the following property holds.

APPENDIXA. PROOFS FORCHAPTER/3 164

(/\old~(a)A /\Newq) A 3(q)) =
(A\Old~(an) A /\ New(ar) A B(aw)) v
(A\Old~(a2) A /\New(az) A B(dz))

Similarly, when node q is updated to become a new nogie tines 20-31), the following holds

(/\Old™ (g)A /\Newa) A 5(q)) =
(A\Old™(d) A A\Newd) A B(d))
Proof: Follows directly from the properties of f-FOLTL. |

Following the proof by Gertlet al. (1995), we define an ancestor relation between n&jesich
that(p, q) € Riff Father(q) = Namép). LetR* be the transitive closure &. A node isrootedif it has
no ancestors; i.eFather(q) = Nameq).

Lemma A.2 (Analogous to Lemma 4.3 by Gerthet al. (1995)) Let p be a rooted node, and Q=
{agi|(p,qi) € R*}. LetX be the set of formulas that are in Ngwy, when it is created. Let Nebd;)
be the values of the field Next foraj the end of the construction. Then, the following holds:

Ar=V (As~ (@) As(a@).

Gi€Qp
Proof: By induction in the construction using Lemma A.1. |

Lemma A.3 Let graph G be generated by the algorithm for formuta Let R= {ry,...,rn} be the
successors of node p. Moreover let=)\ Next(p). Then the graph that results by invoking the al-
gorithm with, G, is isomorphic with the graph that results from removing every state fronth@t
is unreachable by the nodes in R. Furthermore, the isomorphism is satkf thmaps q to ¢ then

A(a) = A(d).

Proof: Since nodes iR are direct successors pf we know that there exists a common ancestan
G of all nodes inR such that, at the beginning of its constructiblew(r’) is equal toNext(p).

Likewise, when invoking the algorithm with, the starting node, say, will contain itsNewfield
equal toy). We start mapping nodé to r”. Each time we split a node into two nodes, we loolGat
and map the two successors accordingly. We repeat this processivelyur

The resulting mapping is effectively an isomorphism, since gaphs constructed using the same
procedure as the subgraph@f rooted inr’. |

For the following lemmasyp is an f-FOLTL formula whose quantifiers do not scope over temporal

formulae, and’ is any variable assignment for all free variablesin

APPENDIXA. PROOFS FORCHAPTER|3 165

Lemma A.4 If there is an accepting rup = do0z - - - gy for o in A, - v, and Nextdo) = ¢, then there is
an accepting run fory in Ay, - v.

Proof: Sinceq; is successor do, the proof results directly from Lemma A.3. |

Lemma A5 If p= o0z ---0n iS an accepting run for = sps;--- Sy in A, - v, then(oo,v) = A~ (o).

Proof: Sincep is a run,(so,v) = AA~ (o) \ {final,—final}. Also, sinceA™(qgp) contains no temporal
formulae,(oo,v) = AA™(qo) \ {final, =final}. Now we have two cases.

e n=0. Sinceqp is final, we know-final ¢ A~ (qp) (by definition of final state). Now, whether or
notfinal € A~ (qo), (oo,v) = AA™(Qo).

e n> 0. Sinceqp has a successor, théinal ¢ A~ (qo) (see condition in line 6 in the algorithm).
Now, whether or not-final € A~ (), (00,v) E AA™ (o).

Lemma A.6 If there is an accepting run far in A, - v, then(o,v) = ¢.

Proof: By induction in the length of.

e Base caseo(= 5). Then, there is an initial statgin A, - v which is also final. By Lemma Al5,
(o,v) = AA™(q). Sinceqis final, we have thalNextq) = (). From Lemma A.2, we conclude
immediately thato,v) = ¢.

e Induction. Suppos® = ¢oQs ... 0k iS an accepting run fos in A, -v. Then, by Lemma A5,
(00,v) =" (o). Moreover, from Lemma A4, there is an accepting rundoin A, - v, where
¥ = Next(cp).
By inductive hypothesisio1,v) = Next(qo). Therefore, by f-FOLTL equivalence, we have that
(o,v) =A™ (go) AONext(qo). Then, by Lemma A.2, we conclude immediately that) = ¢.

|
Lemma A.7 If (o,v) = ¢, then there is an accepting run forin A, - v.
Proof: By induction in the length of.
e Base case|f| = 1). By Lemma A.2, we have that
(o,v) = \B™ (@) AB(a), (A1)

for some initial state.

We can conclude the following.

APPENDIXA. PROOFS FORCHAPTER|3 166

1. Next(q) = . This is because ijir| = 1, then(o,v) [= O¢ for everyg.
2. The condition above and (A.1) imply,v) = AA™ ().

3. Moreover, sincéo, v) = —final, we know—final ¢ A= (q).

From 1. and 3. we conclude thais final. From 2., we conclude thé&d,) = AA~(q). Hence
o has an accepting run iy, - v.

e Induction. By Lemma A.2, we conclude that= A A~ (q) A 3(q) for some initial statey. We
have two cases.

— Next(g) = (). In this caserg = AA™(q). As before, this means thay = AA~(q), and
thereforeq can be the initial state of a run.
Furthermore, sincgr| > 0, o |~ final. Hence, there must be a transition frorto a statey,
which by the algorithm construction is such tiat(q') =), is final, and has a transition to
itself. This means that has an accepting run iy, in fact such run ig)(q/)".

— Nextq) # 0. Again, we havey = A A~ (q). Since, as before;, [~ final, we have a transition
from qto ¢. Stateq’ was initially invoked withNew(q') = Nextq'), so, by Lemma A.3 and
the induction hypothesis, we have that any rundeifrom ¢ has an accepting run iy,
with ¢» = ANext(d'). Since any path ii\, has an isomorphic path ity,, theno has a run

inA,.

We are now ready to prove the main result.
Proof (for Theorem 3.1) : Let ¢ by such that) = Q1x1Q2X2 - QnXne and such that no quantifiers ¢n
scope over temporal formulae. Now, by Lemmas A.7/and A.5 we observi tha an assignment of

the free variables ip.

A, - v accepty iff (o,v) = ¢ (A.2)

Now, let$3 be such that = v iff (o,v) = ¢, for all v € 3. Note that by definitior\;, acceptsr iff
A, -v acceptsr, for all v € 3. By semantics of f-FOLTL and A.2, this last assertion can only hold true
iff o = 1. This concludes the proof. |

A.3 Proof for Proposition 3.4

LetP={p1,p2,...,pPn}, andletoc =51, %, ...,5n be an arbitrary sequence of all subset® ofFormally,
eachs, contains an element i"2and no pair of states,s;j € o are equal ifi # j. Moreover, for each

APPENDIXA. PROOFS FORCHAPTER|3 167

states, we denote by- the state ino such thats- = P\ 5. Finally, letA= (Q,Z(S,D),d,¢,¢,Qo, F)
be the PNFA forp d:ef<>p1/\<>p2/\.../\<>pn.

Note that becausa accepts the models gf, processingsis- leads the automaton to an accepting
state, for any.
Claim: Let pj = goqqr andpj = cod/d; be (accepting) runs ok on, respectivelyss- ands;s;-, and
s # sj, theng # . Proof: Let us assume the contrary, i.e., that there exist two different states in
o, s ands;j, such that there are (accepting) rymns= go0qs andp; = goqd; in A for ss- ands;s;-,
respectively.

Becauses # sj, we divide the rest of the proof into two cases:

Case 1 §- C sj-) In this caseqoqq; is an accepting run fajs-. This implies a contradiction because
if Ais a PNFA fory, thens;s- is not be accepted becauge)s- does not include all propositions
in P.

Case 2 6+ C s+) In this casefoqqs is an accepting run fogs;-. This implies a contradiction, analo-
gous to the previous case.

Notice that the claim immediately implies that there are at lestates inA, since 2 different
states are visited when acceptigg-, for eachs € o. [|

Appendix B

Proofs for Chapter 4

B.1 Proof for Proposition 4.1

In this section we prove Proposition 4.1. First, we prove three intermedmi#g¢hat will be used by
the final proof.

The first intermediate result says that if an NNF formuélaver P is true in a states (denoted as
s }fgqﬁ), theng will also be true in a relaxed staté *,F ~) if every proposition that is true inis also
true in such a relaxed state. This is proven in the following lemma.

Lemma B.1 Let P be a set of propositions,be an NNF formula, and,&",F~ C P be states. Then if
sk, and(F*,F~) is such that:

1. (FHF))?gp, for every pc s, and

2. (FT,F7))?gﬁp, for every pc <%,

then(F*,F~) 4.

rg
Proof: The proof that follows is by induction on the structuregof

Base casesi(= p or ¢ = —p) They both follow directly from the conditions of this Lemma.
Induction We have the following cases

o if p=1 A&, thens)r:gz/) ands }r:gf. By inductive hypothesis, alg&",F) \fgqﬁ and(F*,F™) }r:gg.
It follows from Definition 4.1 tha{F*,F) }?gqb.

e if ¢ =1V, then the proof is analogous to the previous case.
e if ¢ =Vx., then for everyo € Objswe have thas);gw(x/o). By inductive hypothesis, for every

0 € Objsthen(F*,F ™));gq/;(x/o), hence by Definition 4.1, we have th@",F) %ggb.

168

APPENDIXB. PROOFS FORCHAPTER4 169

e if » = dx.1), the proof is analogous to the previous case.

The final intermediate result is actually a version of Proposition 4.1 butrfgule facts.

Lemma B.2 Let s be a planning state, R (Fy",Fy) (F;",F) -+ (F 1, Fr 1) (Fa,Fr) be the relaxed
planning graph constructed from s up to a fixed point. Moreover,Jétesthe state that results after
performing a legal sequence of actions a a, in s, then there exists somedm such thatF",F.) =

f, for every fe s, and such thatF",F."));gﬁf for every fe <.

Proof: SinceRhas been constructed to a fixed polﬁi,;l =F andF,_; =F,,andm> 0. Moreover,
assume that the set of states generated by performing the action sequene&s s;--- s, (i.e., state

§ is generated after performing the sequence of actigns g overs). The following proof for the
lemma is by induction on the length of the action sequence,

Base Case (& 0) We prove that in this case we can consikler 0. In this case the sequence of actions
performed orsis empty. By definition of the construction 8 F,” = F;" =sandF, =F_ =<". Let

f be an arbitrary fact.

1. f € s Then, by Definition 4.1(F.",F.") = f, for k = 0 concluding the proof for this case.

rg

2. f € <. Then, again by Definition 4.1, we obtaiR,",F.") |$gﬁf, fork=0.

Induction Let us assume that the theorem is truerfer 1. We now prove that it is also true far We
divide this proof into four cases. Again, assufis an arbitrary fact.

1. f e syandf € s,_1. This case is trivial, since by inductive hypothesis we have(fatF,") =f

for somek < m.
2. f ¢ spandf ¢ s,—1. Again, by induction hypothesig, ", F.") \;gﬁf for somek < m.

3. fes,andf € s,_1. Then,a, must have added fadtwhen performed irs,_1. We now prove
that actiona,, is executable at some levél< m— 1 of the relaxed graph, and that it will add fact
f to the relaxed graph at level+ 1 < m.

Let us assume that the precondition of actiris ¢p and that the condition of the conditional
effect that addd is .. Then since both formulae are satisfiedini, we have that

Sn-1 P A e (B.1)
Moreover, by inductive hypothesis, we have that there exiktsian such that

(Fd.Fe) =P, for everyp € sh_1 (B.2)

(Fe.Fe) =R, foreverype &, (B.3)

APPENDIXB. PROOFS FORCHAPTER4 170

At this point, we can safely assume also tkiat m, because ik’ were equal tan, then (B.2) and
(B.3) also hold fok’ = m— 1, because the graph has been constructed to a fixed point.
Now, we combine equations (B.2), (B.3), and (B.1) with Lemma B.1 to concILaiéFﬂj, F) E

rggpp/\ ©c. Action a; is therefore executable at leviélof the relaxed graph, and the conditipg,
which enables the conditional effect that addis also true at level’. Therefore,f is added to
the relaxed graph at levkl= k' +1 < m, concluding the proof for this case.

4. f € syandf € s,_1. Proof is analogous to previous case.

Now we are ready to prove our result.
Proof (Proposition'4.1) : By Lemma B.2, we know that there exist& & m such that for eaclp € s,,
(R FRO) =P, and for eactp € &° then(F.",F.) k- ~p. Becauses, k¢ it follows from Lemma B.1
that(F",F) ¢ [

B.2 Proof for Theorem/4.2

Before we start our proof we prove a lemma which establishes that, ureleptiditions of Theorem
4.2, if two nodes with exactly the same state have diffeBi2, or O metric value, then their lengths

must also differ analogously.

Lemma B.3 Let Ny and N be two search nodes that correspond to the same planning state s. Fur-
thermore, let the metric M of the instance be NDVPL and depen@etal-time). If R(N1) < R(Ny),
and:

1. Riseither O or B, or
2. MisATT and R is D.
thenlength(N;) < length(Ny).

Proof: We divide the proof in two cases.

Case 1:Ris eitherO or B. ThenR(N1) = M(N;), whereN; is a hypothetical node with the sarmength
asN; but in which possibly more preferences are satisfied. AnalogoR@ls) = M(N3) for a nodeN,
with the samé.ength asN,. Therefore,

M(N;) < M(N3). (B.4)

Because the planning state associatelditandN, are identical, we know that, andN; are such that
they satisfy exactly the same preferences, i.dl, i the set of preferences of the planning instance,

APPENDIXB. PROOFS FORCHAPTER4 171

for all pe I we have thats-violated(p,Nj) = is-violated(p,Nj). Now, using the contra-positive
of implication (2) in the NDVPL definition (Def. 4/3) and Equation B.4, we haw lkength(N;) <
length(Nj). This implies thalength(N;) < length(N;), and concludes the proof for this case.
Case 2:Ris D andM is ATT. BecauseéM is ATT, then by Equation 4.1D(N;) = M(N;) + Ry, where

Ry is an expression that does not dependtstal-time), i.e. itonly depends ofN;’s state. Likewise,
D(N2) = M(N2) + Rz, whereR; only depends on the state Nf. Since both the states corresponding
to N; andN, are equal, we have th& = R,. Hence, becausdg(N;) < D(N;) we have thaM(N;) <
M(N,), which by the contra-positive of implication (2) in the NDVPL definition (DeB)implies that
length(N;) < length(Np). This concludes this case, finishing the proof. [

Now we are ready to prove our result. First, note that the search istegsfeom scratch after the
first plan is found. This also means that the closed list is reinitialized. Senotelthat if two nodebl;
andN, have the same state associated to them then botB the theP functions evaluated on these
nodes return the same value. Therefore, FEBHEURISTIC(N;) < USERHEURISTIC(N,), then this
means that the tie breaker functions used,Raig such thaR(N;) < R(N;) whereRis eitherO, B or
D.

The sketch of the proof is as follows. We assume that a mbdeat leads to an optimal plan is
discarded by the algorithm. Then we prove that if this happens then eitheptimeal was found or
there is a node in the frontier that can be extended to another optimal plan.

Assume there exists an optimal plpp= a;a; - - - a, that traverses the sequence of stass: - - .

Let N; be a node formed by applyingp on 5. Because the metric is NDVPL, we assume that this
plan contains no cycles (otherwise, had the plan contained any cyclesmoying them we could not
make it worse). Suppose further that at some point in the search, treermdeN that is generated by
applyinga;a; - - - a; in the initial state (withj < n) and that is discarded by the algorithm in line 8. This
means that there exists another closed nodeNsayat is associated the same statdNagnd that is
such that

USERHEURISTIC(Nc) < USERHEURISTIC(N). (B.5)

Both nodes are associated the same sigthence theis-violated counters are identical for each
preference. This means thég is constructed frongy by a sequence of actiobsh, - - - b. This sequence
of actions gets to the same stajehence the sequen@e = b1b---byaj;1---a, is also a plan.

Let N, be a node that would be constructed by applypmgin s5. Now we prove thaf\, also
corresponds to an optimal plan. We have two cases.
Case 1:The metric depends ditotal-time). Because the Inequality B.5 implies tH(Nc) < R(N),
whereR is eitherO, D or B, by Lemma B.3, we have thaength(Nc) < length(N), and therefore
k < j. We clearly have thatength(N,) < length(Nj), furthermore because all precondition counters
are identical, it follows from the NDVPL condition th&t(N;) < M(N;). Given thatN; represents an

APPENDIXB. PROOFS FORCHAPTER 4 172

optimal plan, we conclude thM(Nz) = M(N;), and thereford, also represents an optimal plan.
Case 2: The metric does not depend ¢total-time). Therefore, because nodlk reaches the same
state ad\; does andvl only depends on properties encoded in the sM{@;) = M(Nz) and hencé\,
also represents an optimal plan. This concludes case 2.

Now, we know that sincélc, a predecessor &, was expanded by the algorithm, one of the fol-
lowing things happen:

1. A successor dflc is in frontier. In this case, the condition of Def. 4.5 follows immediately.
2. Ny is in the closed list. This implies that the condition of Def. 4.5 is also satisfied.

3. A successor oflc has been discarded by the algorithm. In this case, such a succesdeadso
to an optimal plan. This means that we could apply the same argument in thisf@reoich a
node, leading to eventually satisfy the condition of Def. 4.5 since the algohitawisited finitely
many nodes.

Appendix C

Proofs for Chapter 5

We here provide the proofs of the two theorems, that is, we prove theatoess (sound and com-
pleteness) of our translations, and we prove the succinctness of thng®DDL planning instance.

C.1 Proof for Proposition5.1
We first need to prove the following Lemma.
Lemma C.1 Letog ando’ be programs. Then if
[00;0" 0| F [o1;0" 1] F ... [on; 0, s
then[oo, S| F* [ok,], for all k € [0,n).

Proof: By induction inn.

Base casen(= 0). The property is trivially true.

Induction. Let the property hold fon = p we prove it forn = p+ 1. We know thatjop;o’,sp] -
[0p+1;0’,Sp+1]. By definition of Tr we have thafo 1, Sp+1) € Tr([op, Sp), @), for somea. By definition
of I, the previous statement impli@sy, sp| - [0p+1, Sp+1], which concludes the proof. [

Proof (Proposition|5.1) : We assume that the following holds:
Go = [o1;02,9 F a2 b ... F o1 F 0k = [nil,s] (C.1)
It is easy to see the following facts.

1. By definition of Tr if o is a program that is natil, the only possible transitions ovér; oy, r]
produce a configuratiofy’; o2, r'].

173

APPENDIXC. PROOFS FORCHAPTERS 174

2. Since the last configuration in the sequence of Expression @il 8] then, necessarily, at some
intermediate configuration is of the forgg = [nil; o2, "], for somep € [0,k — 1].

From (1) and (2) we conclude that for gl [1, p], q; = [0}; 02,Sj], for somes; ando;.

Now, we apply Lemma C.1 and conclude frgm; o2, | F-P [nil; o2, sp] that[o1, § P [nil, sp]. More-
over, by definition ofTr, we have thafnil; o2, Sp] - [02,Sp], and thusgp1[o2,Sp]. This concludes the
proof.

[|

C.2 Proof for Proposition 5.4
We divide the proof for each of three the cases.

1. The argument for this is similar to the one we use in the proof for Propo&itionA transition
on the while loop statéwhile ¢doo, 5|, will produce eithernil,g|, or [o;while pdoo,s. In the
latter case, since we know that the while terminates (i.e., eventually transitipik $d), we can
argue—by definition oTr—that this can only happen(if; while ¢ doo, | F* [nil; while ¢ do o, s"],
such that all states traversed in between such a computation are of therfowhile ¢ doo,).
Furthermore/nil; while ¢doo,s’] - [while ¢ doo, s’]. From statdwhile ¢doo,s’] we can apply
the same reasoning, and finally conclude thatjadire of the required form.

2. From 1. above itis straightforward to verify tlogt= [while ¢ doo, ri], for somery, since[o’; while ¢ doo, ri]
cannot transition tdnil,s] in one step. Furthermore, legf = [while ¢doo,ri], and leti < k.
By definition of Tr, this can only happen if§j;1 is not [nil,s]. In turn, by definition ofTr,
Qi1 # [nil,STiff rj E ¢.

3. The proof for this follows straightforwardly from the form of the staileghe sequence and
Lemma C.1.

C.3 Correctness (Theorem 5.1)

We divide our proof into two parts: a soundness and a completeneds résuoughout the proof,
we denote by, , v the planning instance that results by first invokid@r,n,[]) and then following
the remaining steps of the compilation, if such a calCteeturns(L,L’,n’) for someL and some.’.
Moreover,l, 'S initial state requirestate= s, in the initial state, and the goal requirssite= sy .
Note thatl;, as it is defined in the compilation section, corresponds ¢oy., -

We start by proving three intermediate results.

APPENDIXC. PROOFS FORCHAPTERS 175

Lemma C.2 Leto be a program, let | be a planning instance with initial state Init, and let4 be the
instance generated by the compilation with the usual operator lists L andklsumer; is a subprogram
of o, such that Qo1, n1, E1) was invoked during the top-level compilation, returnihg, L},). Finally,
let« = agay - --ap be a plan for |, v. Let &---a; be a prefix okx such that Sudénit,ao- - - aj,s) and
S [= state= s, for some k such that;r< k < nj, then g is an instance of an operator imlL.

Proof: Assume thag; is an instance of an operatorlin L’ but not inL; - L. Since all operators that
where generated b§ while compiling a subprogram af’ are also inL; - L}, there must be another
subprogram ofr, says”, that is not a subprogram of such that the compilation ef” generated an
operator not irL - L that is possible whestate= s,. The recursive definition of th€ operator does
not admit this. If¢’ ando” are two non-overlapping subprograms, the new preconditions thattestr
thestatevariable are defined in such a way that they can never overlap forthe &zlue ofstate B

Lemma C.3 Leto be a program with no program variables. Let | be a planning instance witfain
state Init, and let} v be the instance generated by the compilation. Asszym&a subprogram of,
such that Go1,ny, []) was invoked during the top-level compilation, returnihg, L’,n}). Furthermore,
let o = apay - - -ap be a plan for |, , v such that, when executed in Init, generates the sequence of states
S0 -SpSp- Moreover, assume there exist two integers i and j, sichi < j < p and such that
S = state=s,,, sj |= state= Sn, and for all r such that ik r < |, s |= state= s, withm <u<nj.
Finally, let I be the instance that results from compilimgby calling Qo1,ny, []) on instance

/
0/7n17n1

I’, where [is an instance with the operators from |, and such that its initial state is just {ikatswith
no occurrence of the state fluent, and is such that its goal is empty.

, .
Theno' = aa41---a; is a plan for [rﬁnl,n’l'

Proof: By Lemma C.2, actions ig;a;1-- - a; are instances of operatorslip Moreover, since the

ng,n

as while executing’ onl’

L ,
initial state ofl ol

o’,ng,ng

the planning states traversed are identical those states traversed wiuitenpey the subsequencé of

is s, the sequence’ is also executable dy, |
sH1,1

ain l,n . Finally, after performingy’, we reach a state whestate= Sn,.» and hence/' is a plan for
I’ |

a’,m,ng”

We are now ready to prove the soundness part of the theorem.

C.3.1 Soundness Part

The statement we are now proving follows.
= (Soundness):

Given a plana for instance } = (D,,P,), show that Filtefo,D) is a plan for 1= (D,P)

under the control of.
We prove this in several steps.

APPENDIXC. PROOFS FORCHAPTERS 176

Lemma C.4 Leto be a program, I= (D, P) a planning instance, and a plan for planning instance
l, = (Dg,P,). Then Filtef«, D) is a plan for I.

Proof: Note that the preconditions of actionsly are strictly more restrictive than their counterparts in
D, as the original preconditions are conjoined with additional ones. Thusnever an actioaof D, is
executable in a statandais a domain action as opposed to any of the newly introduces bookkeeping
actions, then the corresponding acta@iin D is executable iis as well. Further, note that the additional
effects ofain D, compared t& in D only affect the new bookkeeping predicates and functions (bound,
map, and state). Therefore, since the initial and goal stalte differ from their counterparts ih only

in terms of these bookkeeping predicates and functibiier («, D) achieves the goal d? and thus
Filter(«,D) is a plan forl = (D, P). [

To prove that the action sequerfgi#ter («, D) is also a plan under the control f we have to show
that the automatoA,,| accepts it. We do this by induction over the structure of the programthe

following two lemmata.

Lemma C.5 Leto be a program without the (x-t) construct, I= (D,P) a planning instance, and a
plan for planning instance,l, v = (Do, P,). Then Filtefc, D) is an execution of in I.

Proof: Throughout this proof we will refer to the compilation resGlto,n,E) = (L,L’,n’) used to
construct, v. Since there are no(x-t) constructs, we can assume that Ehargument oC is always
empty and can ignore amoundandmappreconditions and effects upon these predicates for now. The
program does not contain any program variables.

The proof proceeds by induction over the structure af follows:

o = nil: By definition of C, bothL andL’ are empty, and therefore no operators are includda,in
Thus the plan is empty. The empty sequence is acceptéd pyecausenil, s is a final state.

o =a,ac A: By definition of the translation, the only operator i, is actiona. Thus, the only
potentially possible action in any state whetate= s, is a. Since the goal, by construction,
requiresstate= s,,1, thena = a, anda must be possible in the initial state. From Eq.|5.4 we
know thata is accepted by, .

o = ¢?. By definition of the translation, the only operator i, is testn_n;, which is potentially
possible in any state whestate= s,. Since the goal, by construction, requirdate= s, 1,
«a =testn_n;, and since this is a plan, we know that its preconditions are satisfied in the initial
state, hencénit = ¢ and thusA, | acceptS e = Filter(«, D) by Eq./5.6.

1We denote the empty sequence of actions.by

APPENDIXC. PROOFS FORCHAPTERS 177

These are the base cases. Now for the induction steps:
o = (01;02): Assume tha€(o1,n,E) andC(o2,n1, E) where invoked while compiling, for somen;.

By construction ofl, any plana = aga; - - - a, for I, can be partitioned into two parts, andas
such thatx = a2, and such thastate= s,, in the states’ that results after performing; over

lo-
Let us defind’ = I, then, by Lemma C.33 is a plan forl;, . . Moreover, let us defing’ as a

planning instance whose initial statesidut with no information about the state. By Lemma|C.3,

azisaplanfory ..

By induction hypothesis we know that the automa#yy, accepts any plan fal, for I’.

o1,N,M
AnalogouslyA,, ;» accepts any plan fdf, , .
It now follows from the definition ofTr (Eq. 5.7) and a similar argument as in the proof for

Lemma C.3 thatvia, is also accepted b, .

o = (01]o2): From the definition o€ we know that any plan fdy, j, n,.1 must start with eithemoop.n_(n+
1) or noopn_(n;+1). After that, by induction hypothesis and Lemma C.3, the only possible ac-
tion sequences are those that are plans far.1n, or I, n,+1,n,- These sequences are accepted
by their respective automa#g, | andA,, . By its definition, the language acceptedAy, is the
union of the two languages of these automata, and the additiooalactions are filtered out.

o = if gthenoyelsery: From the definition ofC for this case we know that any plan fby, ,, must
start with eithetestn_n’ ortestn_n”, with " =n+1 andn” = n; + 1, depending on whether
holds in the initial state. After that, by induction hypothesis and Lemma C.3, theposisible
action sequences are those that are plank,far, orl,, » n,. These sequences are accepted by
their respective automats,, | andA,, |, by induction hypothesis. By its definition, the language
accepted by, | is the one accepted by the formepiholds in the initial state, and otherwise the
language of the latter. Theoopandtestactions are filtered out.

o =while¢dos’: From the definition ofC for this case we know that any plan fty, v, with n’ =
n; + 1, must start with eithaiestn_n”, with n” = n+1, if ¢ holds in the initial state, destn_n’,
otherwise. In the former case, by Lemma C.3, the only action sequendblpasil start with
a plan forl, v n, Which, by induction hypothesis, is accepted by the automatep, followed
by noop.n;_n which, inductively, implies that it is followed by a plan fés, . By definition
of A, in the case where = ¢, it accepts sequences which begin with sequences accepted by
I, v ny, fOllowed by any other sequence accepted\by. Otherwise, if¢ does not hold initially,
testn_n’, which is possible wheg doesn’t hold, leads to a final state lgf, v and the filtered
plan is empty. Analogousli,, accepts the empty languagesiioesn’t hold. Thusi, | accepts
any plan forl; .

APPENDIXC. PROOFS FORCHAPTERS 178

o = ¢"*: From the definition o€ for this case and Lemma C.2 we know that any plan §@fn,, must
either consist ohoopn,ny), which after filtering results in the empty plan which is trivially
accepted by, |, or a plan for, 5, followed bynoog(ny, n) and, recursively, any other plan for
l..n- In the latter case, by induction hypothesis, any such plan is accepteé sgdnence of
automatorA,, | andA,,|, which precisely meets the definition Af ;.

Now for the case with program variables.

Lemma C.6 Leto be a program, possibly with(x-t) constructs, = (D,P) a planning instance, and
« a plan for planning instance;|= (D,, P,). Then Filtef«, D) is an execution of in .

Proof: The proof proceeds by induction over the number Oft) constructs irv.

If o is program variable freer(x-t) does not occur), then, trivially by Lemma C.5 the proposition
holds.

Assumes = 7r(x-t)o’, and lete’ = apay - - - @, such that’ - free,, (x) is a plan forl,,. First, we prove
that there exists an € Objssuch thabpa; - - - an is a plan forl ;1 /.

Let us assume that the state trajectory generated when perfoagang - a, in Init is spS; - - - Sh.
Observe the actions in the plan cannot deteégy(x) or deleteboundx,0). Furthermore, iboundx, 0)
is true in a certain state, no action will addundx,0’) for any o different fromo. Hence, there exists
aj (0<j<n)suchthat

e S [~ mapXx) ands = boundx,0), for anyo € Objsand anyi < j.
e 5 |=boundx) ands = mapXx,v) for alli s.t. j <i <nand somes € Objs

We claim thatapa; - - - an is a plan forl,y . The proof for the claim is split in two parts: (a) we
prove that the sequenega; - - - a, is legally executable im,.,y, then (b) we prove that it reaches the
goal.

For proving (a), note that the only difference betwé&gandl,/ |, , are the preconditions of some of
its operators. For each occurrencebolindx) — mapx,x;) (for somex;) in an operator if,, there is
an occurrence ofi = vin I,/ Itis easy to see that the preconditions of the fjrstl actions of the
sequencegod; - - - @j2, are satisfied im,x . Indeed, note that becauseundXx) is not added by these
actions inl,, by the definition ofC, it means that the subformula of the precondition of the operator of
|- that evaluated to true at that point is identical to that of the respectivatmpen |, . Now let's
focus on actiora;_;. This actionadds boungx) andmap(x,v). By the construction of this means that
the precondition evaluatdzbund’x) — map(x,x;) to be true in the state wesg_1 was performed (this

happens becausmundX) is false). Because after performiag_1, map(x,v) is added, it means that

APPENDIXC. PROOFS FORCHAPTERS 179

the parametex; of the operator took value while satisfying all additional preconditions. On the other
hand, inl, |y, the condition to be checked by the respective operator is ingteas, which we know
can be made true while satisfying additional preconditions of the operataube;_; was executable
in l,. For the remaining part of the sequenagj. 1 - - - a, the proof is analogous. When performed in
I, some of these actions will evaludteundx) — map(x,x;) to true, with the side effect of making
the parametex; equal tov. On the other hand, ik 4y, the same effect is achieved but by the explicit
X = vin the precondition. Hence, the preconditior jn, , will also be satisfied.

The proof for (b) is straightforward. Since the goal does not mentigrbaonkkeeping predicates,
the sequenca’ produces the same stateljn, , asa’ - freey, (x) in I,

The proof now follows from Lemma C.5. |

C.3.2 Completeness Part

The statement we are now proving follows.
< (Completeness):

Given a plana for | under the control ofr, show that there exists a plad for I, such that
« = Filter(«/, D).
The proof again proceeds by induction over the structure of the progrand again we first show

the case for programs withow(x-t) constructs, i.e. without program variables.

Lemma C.7 Leto be a program without the (x-t) construct, I= (D,P) a planning instance, and a
plan for | under the control of, then there exists a plaw for |, v such thatw = Filter(a/, D).

Proof: We will again refer to the compilation res@{(o,n,E) = (L,L’,n’) used to construdt, , v, and
occasionally also to variables occurring in the particular compilation cassdsred in the induction
proof. Again, since there are ngx-t) constructs, we can assume that Ehargument ofC is always
empty and can ignore ampoundandmappreconditions and effects upon these predicates for now. The
program does not contain any program variables.

By assumption we know tha, | accepts the plan.. The induction over the structure ofis as
follows:

o =nil: A, only accepts the empty language, since there are no transitions defineelrfibpitogram,
but|nil, g is an accepting state for any stateverl. Thusa = ¢. Since both initial an goal state of
lo.n v ONly requirestate= s, on top of the original initial and goal statelofandn’ =n, o/ =e =«
is also a plan fot, , v anda = Filter (o, D).

oc=a,ac A: Inthis casex = a. Since in the compilatiok is empty, the preconditions of the operator
corresponding ta in I, v are the same as those f@in |, except thastate= s, has to hold.

This condition already true in the initial state f, . Also, a goal state of, , v is reached

APPENDIXC. PROOFS FORCHAPTERS 180

after executingin I, v, since the new operator, by definition@hasstate= s, 1 as an effect,
which, by construction, is the only additional requirement in the goal statg,gf compared to
|. Thusa is a plan forl, v, and trivially o = Filter (o, D).

o = ¢?. Again, the plan has to be the empty sequence, since this is the only one ddnefptg. Also,
by definition of A, , the initial statelnit of | satisfiesp. Let o’ =testn.n’. This is a plan for
l..nv, DECaUSE by its construction in the definitiorGoéstits precondition istate= s, A ¢. This
is satisfied since the initial state pf, v is like that ofl plus the assertion thatate= s,. Since¢
cannot mention the new special flustiateits truth value does not differ between the initial state
of I, o and that ofl itself. Furthertestn_n’ setsstate= sy as its only effectl is empty), thus
satisfying the goal of, , \v. Finally, « = ¢ = Filter (testn_n’, D).

These are the base cases. Now for the induction steps:
o = (01;02): We start this case by stating an intermediate result.

Claim: If o is accpeted by, thena can be decomposed into two pasits anday, such that
a = agap, and such thapil; 02,5 € Tr([o1; 02,Init],a1), for somes and such thapnil,s’] €
Tr([o2,S],a2). Intuitively, this means that the automaton’s sfai& o»,s| is part of an accepting
path of states fow. Proof: Straightforward (but lengthy) by induction on the structure of

Let us assume that = aja, for a; andas as defined above. Furthermore let us defihas

an instance just liké except that its goal is to get to stafe(as defined above). Moreover, we
definel 2 to be just likel but such that its initial state 8. Observe now that; andas are clearly
accepted byA,, ;2 andA,, 2. Indeed, this follows straightforwardly from the claim and the fact
that the transition function fok,,, ;» andA,, |- are subsets of the transition function fy;, .

By induction hypothesis, there are pla#s o, for Iclrl’nl’n,1 andlgznzm,2 for any two integers, ny,
such thatv; = Filter(«},D) anday = Filter(a5, D). Choosingn, = n] as defined by the compi-
lation of o1 with parameten = ns, we get that the initial state m{fz’nz’n,z is a goal state dfjmm,1

and thuse/ = o] - o is a plan forl, v. Since the concatenation does not introduce any new

actions we getv = Filter(o/, D).

o = (01]02): By definition, A, accepts the union of the sets of plansdgrandoy, i.e. a is accepted
by eitherA,, | orA,, .
Assume it is a plan under the control of (i.e., it is accepted by, ;). By induction hy-
pothesis there is a plan; for 'al,nl,n’l for any integern, such thato = Filter(a,D). Then
o/ =noopn_(n+1) - o} -noopn;_(n+1) is a plan for, n n,+1, Wheren, is defined in the compi-
lation, and since thaoopactions are filtered agaim = Filter(o/,D). The case when is a plan
under the control ob is analogous with the plan’ = noopn_(n+1) - a4 - noopny_(nx+1),
Ny, ny are defined by the compilation.

APPENDIXC. PROOFS FORCHAPTERS 181

o =if pthenojelses,: Depending on whether or niit = ¢, « is a plan under the control af; or
oo, i.e. itis either accepted b, | or A, |. Assumdnit |= ¢. Then,a, is accepted by, |, and
by induction hypothesis, there is a plaf for I%nl,n/l for any integem; s.t. a = Filter(a}, D).
Theno' =testn_(n+1)-aj -noopn;_nz is a plan forl, v and by definition ofFilter we have
a = Filter(o/, D). Analogously whernit |~ ¢, o/ =testn_(ni+1) - o5 - noopny_ng is a plan for

lon @and agairy = Filter (o, D).

o = whilegpdoos’: The induction step for this case is itself by induction. We refer to this inducson a

“inner induction”, and to the other as “outer induction”. The inner inductfan the length of
the action sequence

As our inner base case, assume fnit = ¢, thena = ¢ (Ja| = 0). Thentestn.r' is a plan for
l..n,v fOr any integen, because by construction the precondition for this test actien isstate=
sy, and its effect asserttate= sy. Alsoe = Filter(testn_n’, D). This concludes the proof for the

inner base case.

Now, as our inner induction hypothesis, we assume the theorem holdsfegaences of actions
whose length is strictly less thiat Moreover, assumgy| = k. In this case, we have thhtit = ¢,
and thena = o, - & is a plan forl, , v, Wherea, is a sequence accepted By |, anda” is

accepted by, |/, wherel’ is like | except that the initial state is the state reached after executing

a, in Init. Then, by outer induction hypothesis there is a pign for I(,/,n&né for any integer
ns, s.t. a, = Filter(a/,,D), and by inner induction hypothesis there is a pie for Ié,nz,n’z
for any integem, s.t. o’ = Filter(o’”,D). Choosingn, = n andnz = n+ 1 we get thaty’ =

testn_(n+1)- o/, -noopni_n- o’ is a plan forl, ,, v, wheren, is defined by the compilation for

o. Finally, againo = Filter(o/, D).

o = ¢”*: We again require an inner induction on the lengtlvofAssume that = ¢, thennoopn_n’ is

a plan forl, , v and trivially a = Filter(noopn_n’, D). This concludes the proof for the base case

of the inner induction. Assume now for the inner induction case that theahehbolds for all
sequences of length less thiarwhere|a| = k. In this caseq = a1 - a2 Wherea; is accepted by

A, anday is accepted by, ;- wherel’ is like | except that the initial state is the state reached

after executingy, in Init. Then, by outer induction hypothesis there is a plarfor |57 g, fOT
any integems s.t. 1 = Filter(a4, D), and by inner induction hypothesis there is a pignfor
I(’an’n,2 for any integem; s.t. ap = Filter(a5, D). Choosing botmz = n andn, = n we get that

o' = af-noopn;_Nn-aj is a plan forl, ,, v, wheren; is defined by the compilation. Again, by the
two induction hypotheses and the fact thabpn; _nis filtered out,w = Filter(a/, D).

Now for the case with program variables.

APPENDIXC. PROOFS FORCHAPTERS 182

Lemma C.8 Leto be a program over a planning instance=l (D, P) (possibly containingr(x-t) con-
structs), anda a plan for | under the control o, then there exists a plaa’ for |,y such that
a = Filter(«/, D).

Proof: The proof proceeds by induction over the number Oét) constructs occurring in. The base
case, where this number is zero, is given by Lemma C.7.

Otherwise, assume = 7(x-t,o’) for some arbitrary other prograai overl. By the definition of
A, cvis accepted by some automamg]x/oJ where inc all occurrences of are replaced by some (but
in all occurrences the same)such that(o,t) € 1o U 7p. We show that (i’ = - freen;(x) is a plan
for 1, n v for any integemn, whereny is defined in the compilation ef usingn as the integer parameter.
We further need to show that (ii) in a stafereached after performing’ in any states that satisfies
—boundx) A —(3y).map(x,y), we again ges' = —boundXx) A =(3y).mapx,y). Obviously, the initial
statelnit has this property for all program variables occurring-in

(i) By assumptiorn is accepted by\o\x/o,l for someo, i.e. after replacing all occurrencesin o
with o, and is a plan fot. By induction hypothesis and Lemma C.7 there exists a plafor IU‘X/M”,
for any integem such thato = Filter(a,D). We show that this is also a plan fby,y after minor
modifications to the occurring test actions, and which in particular do nattriesa different result
when applying-ilter. Compiles as defined usinG(o,n,[]) = (L,L’,n"). For any test action occurring
in oj whose corresponding operator definitiorLimasx as a formal parameter, adchs an additional
argument at the position whereappears in the operator definition, creating a new sequeficéVe
show that this sequence is a planffpp v: Leta; be the first action inv, whose corresponding operator
definition inL hasx as a formal parameter. The corresponding actual parameteftgen, since in the
initial states of I, v we have thas = —boundx) A —(3y).magp(x,y), s satisfies the preconditions of
a;, because the only preconditions on top of those definéqxi)g’n,n, areboundx) — mapx,0). The
action will further have as an effebbundx) map(x,0). Hence, all following actionsy in o5, whose
corresponding operator Inhasx as a formal parameter, will also be possible and have the same effects
as inla|x/o7n7n/ (by construction obr|/,), because also they haweas actual parameter, and sineg
cannot mention any actiofiree_nj(x), for anyi, we have for all states’ visited later on during the
execution ofa, thats” = boundx) A mag(x,0) which entails the preconditions @ in I, . Since
further only the truth value dfoundandmapare changed compared to the effectg,in_ ., the goal,
which by construction doesn’t mention either of these predicates, is tathlee end. Hencey, is a
plan forl, nv. Also a = Filter (a5 - free.ny(x), mD).

(i) Clearly, since for anyn;, freen;(x) has—boundx) A (Vy).-map(x,y) as an effect, any stat
reached after executing, - free.n;(x) in any other state satisfies this. [

Theorem 5.1 then follows directly from Lemmata C.6 and C.&fer0 andnsi, as defined by the
compilationC(o,0,[]) = (L,L’, Nfinar)-

APPENDIXC. PROOFS FORCHAPTERS 183

C.4 Succinctness (Theorem 5.2)

Proof: Theorem 5.2

The compilation of each programming construct, as define@€ bintroduces a constant number of
new operators intd, or extends the definition of one of the operatord afith a constant number

of additional preconditions and effects. In all cases, the size of thepnegonditions and effects is
bounded by a constant factor in the number of elemenE &from the definition o€ for = it follows

that the maximal length dE occurring during the compilation ef is exactly the number of nested
constructsk. Hence, if the program has simethen there are no more tharprogramming constructs.
Since also each construct is considered exactly oneg tiyere can be no more tharoperators if,,,

each of size&(k+ p), wherep is the size of the largest operator in the original instance. Hence, overall
I, has sizeD(k- n). [

Appendix D

Proofs for Chapter 6

D.1 Proof for Lemmal/6.2

Before proving this lemma, we prove an intermediate result.

Lemma D.1 LetD be a theory of action containing the reflexivity axiom for K. Then,
D = (Vs). KWhether (¢,s) D {(¢[s] D Knows(¢,s)) A (—¢[s] D Knows(—¢,s))}

Proof: Let M |=D. Now, assume\ |= ¢[g]. If M = KWhether(¢,s), then M = Knows(¢,s) or
M = Knows(—¢,s). However, M = Knows(—¢,s) since otherwise, by reflexivity we would have
M = —¢]s| which would be a contradiction. Hence it is the case thtii= Knows(¢,s).

On the other hand, if we assume = —¢[s| we conclude by analogy tha¥! = Knows(—¢,s).
This implies that any model @ satisfies the formula of the lemma, and concludes the proof. B

Proof (Lemmal6.2) : For the ¢&) direction, observe that iM is a model ofD andD contains the re-
flexivity axiom, M = Knows(¢, s) implies M = ¢[g), for anys. The rest of the proof is straightforward
since in all cases of programs, the formulafmy clearly implies that foDo.

For the &) direction, the proof proceeds by induction in the structuré &e use the definition of
ssf, plus Lemma D.1 to show in all cases the formula that corresponbs implies the formula that

corresponds t®ok. [|

D.2 Proof for Theorem/6.3

We first prove the following Lemma.

184

APPENDIXD. PROOFS FORCHAPTER|6 185

Lemma D.2 LetD be a theory of action such th#;,;; contains the reflexivity axiom. Let C be a set of
Golog deterministic tree programs. Then, for all fluents F in the languade tfat are not K, and for
everys € C such thatD = ssf(d, s), theoryComp[D,C]| entails

Dok (d,s,8) O (F(x,s) = F(X,do(prim;,s)))

Proof: Let D’ = Comp|D,C]|. Becaus@|g| is regressable iaall its atoms can be reduced in to formulae
that only refer to either situation-independent predicates or fluenigated. Then, it suffices to prove
that

1. D' = Dok (4,s,8) AF(X,s) D F(X do(prims,s))), and
2. D' = Dok (4,s,5) AF (X do(prims,s)) D F(X,S).

Proof for 1: SupposeM is a model ofD’ such thatM = (Dok (4,5, S) AF (X, S)), for some situation
denoted byS. From Proposition 6/3 and Lemma 6.2, we have thét= Do~ (4,5,S) AF(X,S), and
that M = pi(s) AF(X,S), for somey; of Lemma 6.1 . Since regression is correct avidalso satisfies
axiom (6.37), it follows immediately thavt = F (X,do(prim;,s)).

Proof for 2: AssumeM is a model forD’ such thatM |= (Dok (4,s,5) A F (X, do(prims,s))), for any
situationss, . By the successor state axiom 6f and correctness of regression, we conclude that
M = F (X, do(prim;, s)) iff

M (Do (6,55) AF (X, S))Vv
F(X,8) A (v2) (D07 (4,5,52) O F(X %)),

for some situatior;. Sinced is deterministic and given tha¥t = Dok (4,s,S), by Proposition 6.3 and
Lemma 6.2, we have tha! = S; =S The assertion above reduces\tol=F(X;s) VF(X,s) AF(X,S),
from which we conclude thatt = F (X S). []

Proof (Theorem[6.3) : The proof of the theorem is now straightforward by using Lemma D.2. B

D.3 Proof for Theorem 6.4
First we need the following result.

Lemma D.3 LetD be a theory of action such thit,; contains the reflexivity axiom. Furthermore, let
0 be a Golog deterministic tree program.

D EK(d,s9)AK(do([ay, . ..,an],s),do([ay, .. .,an],s)) D
{Dok (d,s,d0([a, . . .,an],s)) D Do(é,s,do([ay, . ..,an],s))}

APPENDIXD. PROOFS FORCHAPTER|6 186

Proof: We proceed by induction in the structure of We first observe that from the successor state
axiom forK

n
D A\K(do([ay,...,a],s),do([ay,...,a],s))
i=0
Now let M be a model ofD. Observe that for any situation-suppressed formifa
M = Knows(¢,do([ay, . . .,a],s))

for somei < nthenM = ¢[do([ay,...,a],s)]. The rest of the proof is straightforward. [
Let D' = Comp[D,C]. It suffices to prove the theorem for any arbitrary situation-supprefisent
symbolF different fromK. By expanding the definition dfnows, it suffices to prove
D' = (VX s,51). Dok (6,s,51) D
{(3") (K(s",s) A\F(X)[S']) =
(38") (K(s",do(primg, s)) AF (X)[s"]) },

Proof: (=) We prove that

D' = (VX s,51). Dok (4,8,51) D
{(3") (K(s",s1) AF(X)[s"]) ©
(38") (K(s",do(primg, s)) AF (X)[s"])},

SupposeM = D’ and that for some situation denoted 8Y
M Dok (4,s,51) AK(S,51) AF(X)[S],

Notice thatM = sC s, and sinceM = K(S’,s;1), there exists situation denoted 8/ such that
M = S” C S’ and such that

M EDok(4,5,9) AK(S",5) AK(S',51) AF(X)[S]. (D.1)

Now observe that = Do~ (4,s,s1) (from Lem.[6.2 and Prop. 6.3). By Lemma 6.1, there is a formula
ui such that

M |: :ui(s) NS = do([alv' . 'aan}vs)
Now, we use Proposition 6.4 to conclude that:

M = pi(s) A /\ SensedCond(ai, do([ay, .., -1],5),dof[ay, ..., & 1],)
i1

Since M satisfies the SSA fdf, and [(D.1), we obtain that:

M |: K(do(prim(;,S’”),do(prim(;,s)), (D2)

APPENDIXD. PROOFS FORCHAPTER|6 187

Finally, from Lemma D.3 we know that
M = Do(prim;, S”,do([ay, . . .,an],S")),
and thus we can use part of the Proof for Thearem 6.3 to argue that also
M E F(X,do(prim;,S")). (D.3)

(=) follows from Eqgs. D.2 and D.3.

(<) Suppose that for some situati&h,
M = Dok (d,s,51) AK(S’,do(prim;,s)) AF(X)[S]
From the successor state axiomkgffor someS”,
M E Dok (4,s,51) AK(do(primg, S”),do(prim;, s)) AK(S”,s) AF(X)[do(prims, S™)].

SinceM satisfies the SSA fdf, we have that

M = pi (S)/\/\SensedCond(Ai,dO([Al,...,Ai_l],s),do([Al,...,Ai_l],s))
i=1

For somey; of Lemma 6.1, and some sequence of actiéns. ., An.
In addition, since the program is deterministic, we concludeshatdo([Ay,...,Ai_1],S). Now, by
using Proposition 6/4 and the fact thet = K(S”,s) we obtain:

M EK(do([Ay, ..., A1],S"),do([Aq,...,A_1],9)) (D.4)

Now, the proof follows with an argument similar to that of Theorem 6.3. Sinte- F (X)[do(prim;, S”)],
then

M Do~ (5,8",81) AF(%,S)

However, since the program is deterministic, by Lemma we have $hat:do([A, ...,Ai_1],S"), and
thus,
M EFXdo([Ay,...,A_1],S")) (D.5)

(<) follows from Eqgs| D.4 and D.5. [

Appendix E

Golog DCK for Experiments in Chapter 5

This section shows the Golog code utilized for generating the experimestdisren Section 5.6. The
code is written in Prolog syntax. Note that quantifiers andptheonstruct receivéypedvariables (the
type follows the variable in the declaration). Finalfynal _pred(C) is a new fact, added to the initial
state at pre-processing time whenepeed(C) is part of the goal.

E.1 Golog Control for The Trucks Domain

proc(trucks_control04,
star(

pi(current_location,location,

L

% get the current location
?(at (truckl,current_location)),

% unload everything

while(exists(area,truckarea,
exists(pack,package,
in(pack,truckl,area))),
pi(area,truckarea,
pi(pack,package,
[
?(in(pack,truckl,area)),
unload(pack,truckl,area,current_location)

D
),
% deliver any thing you want
while(exists(pack, package,

exists(loc, location,
and(at(pack,loc),

188

APPENDIXE. GoLOoG DCK FOREXPERIMENTS INCHAPTERS 189

final_location(pack, loc)))),

pi(pack,package,
pi(loc,location,
pi(tl,time,
pi(t2,time,
deliver(pack,loc,t1,t2)))))

% while there’s a package here whose destination is
% elsewhere and there’s space in the truck,
% load the truck with such a package

while(and(exists(area,truckarea, free_(area,truckl)),
exists(pack, package,
and(at (pack,current_location),
exists(loc, location,
and (not (loc=current_location),
final_location(pack, loc)))))),

pi(pack,package,
pi(loc, location,
[
?(and(not (loc=current_location),
and (
at (pack,current_location),
final_location(pack, loc)))),
pi(area,truckarea,
load(pack,truckl,area,current_location))

),

% if there is a package in the truck
if (exists(pack,package,
exists(area,truckarea,
in(pack,truckl,area))),

% then drive to its destination
pi(pack,package,
pi(area,truckarea,
L
?(in(pack,truckl,area)),
pi(newloc,location,

L
?(final_location(pack,newloc)),
pi(tl,time,

pi(t2,time,
drive(truckl,current_location,newloc,t1,t2)))

D

APPENDIXE. GoLOoG DCK FOREXPERIMENTS INCHAPTERS 190

),
% else are there any packages not at its final destination?

if (exists(locl,location,
exists(pack,package,
exists(loc2,location,
and (at (pack,loc2),
and (final_location(pack,locl),
not (locl=loc2)))))),

% then drive where the truck is needed

pi(locl,location,
pi(pack,package,
pi(loc2,location,
[
7 (and (at(pack,loc2),
and(final_location(pack,locl),
not (loc1=loc2)))),
pi(tl,time,
pi(t2,time,
drive(truckl,current_location,loc2,t1,t2)))

),

% else stay here

D

E.2 Golog Control for The Storage Domain

proc(storage_control03,
star (
pi(cr,crate,
pi(cs,storearea,
pi(d,depot,
[
% bind cr with a crate that should be (and is not at) depot d
?(and(finally_in(cr,d) ,not(in(cr,d)))),
% bind cs with a store area inside some container
?(exists(cont,container,
and(on(cr,cs),in(cs,cont)))),

% move to (assume you are in a depot storage area)

APPENDIXE. GoLOoG DCK FOREXPERIMENTS INCHAPTERS 191

if (not(exists(tr,transitarea,at (hoist0,tr))),

[

while(not(exists(cloc,storearea,

and (at (hoist0,cloc),
connected(cloc,loadarea)))),
pi(al,storearea,
pi(a2,storearea,
move (hoist0,al,a2)))),
% go out to the load area (if necessary)
pi(al,storearea,go_out (hoist0,al,loadarea))

1,
(o,

pi(a,area,
pi(p,place,
lift(hoistO,cr,cs,a,p))), % lift the crate

pi(entry_point,storearea,
L
?(and (connected(loadarea,entry_point),in(entry_point,d))),
if (and(clear (entry_point),
exists(free_store,storearea,
and (connected(entry_point,free_store),
clear(free_store)))),
[
go_in(hoist0,loadarea,entry_point),
star(pi(al,storearea,
pi(a2,storearea,
move (hoist0,al,a2))))
1,
% get into depot d
[]
)
D,

pi(sa,storearea,
pi(a,area,
drop(hoist0O,cr,sa,a,d)))
]
DI

E.3 Golog Control for The Rovers Domain

proc(rovers_controlOl,
[
while(exists(w,waypoint,and(finally_communicated_soil_data(w),
not (communicated_soil_data(w)))),

pi(soil_waypoint,waypoint,
pi(r,rover,

APPENDIXE. GoLOoG DCK FOREXPERIMENTS INCHAPTERS

[

7(and(finally_communicated_soil_data(soil_waypoint),
not (communicated_soil_data(soil_waypoint)))),

?(equipped_for_soil_analysis(r)),

% navigate until we get to the waypoint were the soil is
while(not(at(r,soil_waypoint)),
pi(wl,waypoint,
pi(w2,waypoint,
navigate(r,wl,w2)))),
pi(s,store, % take a soil sample
[sample_soil(r,s,soil_waypoint),

star(pi(wl,waypoint, ’% navigate for a while
pi(w2,waypoint,
navigate(r,wl,w2)))),

pi(wl,waypoint, % communicate the data
pi(w2,waypoint,
pi(1,lander,
communicate_soil_data(r,l,soil_waypoint,wl,w2)))),
drop(r,s) % drop the contents of the store

while(exists(w,waypoint,and(finally_communicated_rock_data(w),
not (communicated_rock_data(w)))),

pi(rock_waypoint,waypoint,
pi(r,rover,
[
?(and(finally_communicated_rock_data(rock_waypoint),
not (communicated_rock_data(rock_waypoint)))),
7(equipped_for_rock_analysis(r)),

% navigate until we get to the waypoint were the rock is
while(not(at(r,rock_waypoint)),
pi(wl,waypoint,
pi(w2,waypoint,
navigate(r,wl,w2)))),
pi(s,store, % take a rock sample
[sample_rock(r,s,rock_waypoint),

star(pi(wl,waypoint, % navigate for a while
pi(w2,waypoint,
navigate(r,wl,w2)))),

192

APPENDIXE. GoLOoG DCK FOREXPERIMENTS INCHAPTERS 193

pi(wl,waypoint, % communicate the data
pi(w2,waypoint,
pi(1,lander,
communicate_rock_data(r,l,rock_waypoint,wl,w2)))),
drop(r,s) % drop the contents of the store

while(exists(resolution,mode,
exists(obj,objective,
and(finally_communicated_image_data(obj,resolution),
not (communicated_image_data(obj,resolution))))),
pi(target_objective,objective,
pi(target_resolution,mode,
pi(r,rover,
pi(cam,camera,
[% bind target_object and target_resolution
?(and(finally_communicated_image_data(target_objective,
target_resolution),
not (communicated_image_data(target_objective,
target_resolution)))),

?(and (equipped_for_imaging(r),
and (on_board(cam,r),
supports(cam,target_resolution)))),

% move rover to the calibration target

while(not(exists(o,objective,
exists(w,waypoint,
and(at(r,w),
and(visible_from(o,w),
calibration_target(cam,0)))))),
pi(wl,waypoint,
pi(w2,waypoint,
navigate(r,wl,w2)))),

pi(obj,objective,
pi(w,waypoint,
calibrate(r,cam,obj,w))),

% move rover to a location where the objective is visible
while(not(exists(w,waypoint,
and(at(r,w),
visible_from(target_objective,w)))),
pi(wl,waypoint,
pi(w2,waypoint,
navigate(r,wl,w2)))),

APPENDIXE. GoLOoG DCK FOREXPERIMENTS INCHAPTERS 194

pi(wp,waypoint, % take the image
take_image(r,wp,target_objective,cam,target_resolution)),

star (pi(wl,waypoint, % navigate for a while
pi(w2,waypoint,
navigate(r,wl,w2)))),

pi(1,lander, % communicate image data
pi(wl,waypoint,
pi(w2,waypoint,
communicate_image_data(r,l,target_objective,
target_resolution,wl,w2))))

	Introduction
	Recent Advances in Classical Planning
	Classical Planning Is Not Enough: An Example
	The Problems We Address
	Approach
	Outline and Contributions

	Planning: Languages and Algorithms
	Classical Planning
	STRIPS
	ADL for Classical Planning
	PDDL
	Some Complexity Results

	Planning as Heuristic Search
	FF

	Heuristic Planning for Temporally Extended Goals
	Introduction
	Contributions of this Chapter

	Preliminaries
	f-FOLTL: Finite LTL with FO Quantifiers
	Planning Instances
	Causal Rules for Arbitrary Formulae

	From f-FOLTL to Parameterized NFA
	Parameterized Finite-State Automata
	The algorithm

	Compiling PNFAs into a Planning Instance
	Translating PNFA to Causal Rules
	Translation to Derived Predicates (axioms)
	Avoiding Blowups: Multiple Goals and Formula Splitting
	Search Space Pruning by Progression

	Implementation and Experiments
	Axioms versus Causal Rules
	Comparison to State of the Art

	Discussion
	Why a Reformulation Approach?
	Why Not LTL and Büchi Automata?

	Summary and Related Work

	Planning with Temporally Extended Preferences
	Introduction
	Contributions of this Chapter
	Outline

	Background
	Relaxed Plans for Function-Free ADL Domains
	Preference-based Planning
	Brief Description of PDDL3

	Preprocessing PDDL3
	Temporally Extended Preferences and Constraints
	Precondition Preferences
	Simple Preferences
	Metric Function

	Planning with Preferences via Heuristic Search
	Heuristics Functions for Planning with Preferences
	The Planning Algorithm
	Properties of the Algorithm

	Implementation and Evaluation
	The Effect of Iterative Pruning
	Performance of Heuristics
	Comparison to Other Approaches

	Discussion
	Related Work
	Other Preference Languages
	IPC-5 competitors

	Conclusions and Future Research

	Golog Domain Control Knowledge in State-of-the-Art Planners
	Introduction
	Contributions
	Outline

	Background
	A Subset of PDDL 2.1

	A Language for Procedural Control
	Syntax
	Semantics

	Compiling Control into the Action Theory
	Exploiting DCK in State-of-the-Art Heuristic Planners
	Direct Use of Translation (Simple)
	Modified Program Structure (H-ops)
	A Program-Unaware Approach (Basic)

	Implementation and Experiments
	Summary and Related Work

	Planning with Programs that Sense
	Introduction
	Contributions and Outline

	Preliminaries
	The Situation Calculus
	Basic Action Theories
	Representing Knowledge
	Regression
	Golog's Syntax and Semantics
	Do-: A Poss-less Version of Do

	Semantics for Executable Golog Programs
	Planning with Programs that Sense
	Theory Compilation

	From Theory to Practice
	Belief-State-Based Planners
	Extending pks

	Practical Relevance
	Web Service Composition
	Experiments

	Summary and discussion

	Conclusions, Related Work, and Future Work
	Conclusions
	Problems and Contributions

	Other Related Work
	Future Work

	Glossary of Acronyms and Abbreviations
	Bibliography
	Proofs for Chapter 3
	Proof for Proposition 3.1
	Proof for Theorem 3.1
	Proof for Proposition 3.4

	Proofs for Chapter 4
	Proof for Proposition 4.1
	Proof for Theorem 4.2

	Proofs for Chapter 5
	Proof for Proposition 5.1
	Proof for Proposition 5.4
	Correctness (Theorem 5.1)
	Soundness Part
	Completeness Part

	Succinctness (Theorem 5.2)

	Proofs for Chapter 6
	Proof for Lemma 6.2
	Proof for Theorem 6.3
	Proof for Theorem 6.4

	Golog DCK for Experiments in Chapter 5
	Golog Control for The Trucks Domain
	Golog Control for The Storage Domain
	Golog Control for The Rovers Domain

