
Attribute Diversity Determines the Systematicity Gap in VQA
Ian Berlot-Attwell

University of Toronto
Vector Institute

ianberlot@cs.toronto.edu

A. Michael Carrell
University of Cambridge
ac2411@cam.ac.uk

Kumar Krishna Agrawal
Department of EECS

UC Berkeley
kagrawal@berkeley.edu

Yash Sharma∗

University of Tübingen
yash.sharma@bethgelab.org

Naomi Saphra∗ †

The Kempner Institute at Harvard University
nsaphra@fas.harvard.edu

Abstract
The degree to which neural networks can gener-
alize to new combinations of familiar concepts,
and the conditions under which they are able to
do so, has long been an open question. In this
work, we study the systematicity gap in visual
question answering: the performance differ-
ence between reasoning on previously seen and
unseen combinations of object attributes. To
test, we introduce a novel diagnostic dataset,
CLEVR-HOPE. We find that while increased
quantity of training data does not reduce the
systematicity gap, increased training data diver-
sity of the attributes in the unseen combination
does. In all, our experiments suggest that the
more distinct attribute type combinations are
seen during training, the more systematic we
can expect the resulting model to be.

1 Introduction
Systematicity, the ability to handle novel combina-
tions of known concepts, is a type of compositional
generalization (Hupkes et al., 2020). While system-
aticity is crucial to human intelligence (Fodor and
Pylyshyn, 1988), conventionally trained neural net-
works often struggle to generalize systematically
(Csordás et al., 2021; Csordás et al., 2022a,b).

Inspired by prior work investigating composi-
tionality failures in language models (Press et al.,
2022), we study the systematicity gap in visual
question answering (VQA): the drop in model per-
formance when reasoning about a combination of
properties that was held out from both the text and
vision modalities at train time. As an example, let
us consider MATERIAL and SHAPE as two attribute
types. If a model was trained without exposure to
a particular combination of attribute values, e.g.,
rubber sphere, then we say the model composes
systematically if it has high performance at test
time on data that includes a rubber sphere.
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Our work empirically demonstrates that system-
aticity emerges in a neural VQA model if the model
is trained with diverse contexts for the attribute
values in question (i.e., exposed to many MATE-
RIAL-SHAPE combinations). The intuition for this
hypothesis is simple: given many training exam-
ples of distinct combinations, the model learns how
material and shape interact, and thus systematically
generalizes to an unseen combination of MATE-
RIAL and SHAPE. In contrast, a model trained on
low-diversity data (i.e., only exposed to a few MA-
TERIAL-SHAPE combinations) fails to learn rules
to recombine them.

Using CLEVR-HOPE, a novel dataset for eval-
uating systematicity on a variety of held-out ob-
ject attribute value pairs in a controlled setting, we
measure the systematic compositionality of multi-
modal transformer and neurosymbolic models. We
find that, while systematicity does not improve with
more training data, it does improve with more di-
verse training data. Specifically, attribute types that
include more diverse combinations during training
can be composed systematically.

2 CLEVR-HOPE Diagnostic Dataset
Our dataset is based on CLEVR (Johnson et al.,
2017a), a synthetic experimental setting for testing
basic visual reasoning skills. CLEVR comprises
English questions (such as “What is the color of
the cube on the right side of the yellow sphere?")
and corresponding 3D-rendered images of colored
blocks. Each block has four attribute types (SIZE,
COLOR, MATERIAL, and SHAPE).

We present the CLEVR Held-Out Pair Evalua-
tion (CLEVR-HOPE) dataset for testing the sys-
tematicity of VQA models. CLEVR-HOPE is a
controlled setting to test whether VQA models gen-
eralize to pairs of attribute values that were not
seen during either training or fine-tuning. Within
CLEVR-HOPE, we refer to an unseen pair of
attribute values as a Held-Out Pair (HOP). The
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train

What is the shape of the blue 
metallic object that is the 
same size as the gray block?

cylinder

complex-IID

How many large red rubber 
objects are there?

0

minimal-IID

Are any rubber balls 
visible?

yes

minimal-OOD

Are there any rubber 
cylinders?

no

complex-OOD

There is a large shiny thing; 
is it the same color as the 
tiny matte cylinder to the 

right of the brown shiny thing?
yes

rubber cylinder Testrubber cylinder Train In the first sub-dataset, rubber cylinder is unseen at train time

Figure 1: Example image-question pairs for the sub-dataset of CLEVR-HOPE corresponding to rubber
cylinder.The test sets are in gray; rubber cylinder is omitted visually and textually in the train split and
the IID test splits; rubber cylinder only occurs in the OOD splits; occurrences are emphasized in this figure. The
train and complex sets are of comparable visual and textual complexity to CLEVR. The minimal sets consist only of
existence questions, checking whether a single object matches a given pair of attribute values.

dataset is composed of 29 sub-datasets, each for a
different HOP (Appx. Tab. 2) . Each HOP has its
own train set and 4 test sets. For rubber cylinder,
visualized in Fig. 1, these datasets are:
train: 560k image-question pairs in the train-
ing/finetuning set. The data distribution is similar
to CLEVR, but any images or questions involving
rubber cylinder have been removed.
complex-IID test: Test data sampled from the train
distribution (i.e., rubber cylinder is filtered out).
complex-OOD test: Test data sampled from the
CLEVR distribution filtered to always have (i) at
least one object matching rubber cylinder, and
(ii) rubber cylinder in the question.
minimal-IID test: Minimal image-question pairs
that check whether a model can recognize pairs
of attribute values, corresponding to rubber
cylinder’s attribute types, that were seen in the
train set. E.g., as rubber cylinder is a MATE-
RIAL-SHAPE combination, the minimal-IID test set
checks combinations including rubber spheres,
metal cylinders, and metal cubes, but not
combinations of different types (e.g., yellow
cylinders, or small yellow objects).
minimal-OOD test: Minimal image-question pairs
that check recognition of rubber cylinder. Al-
ways returning false would yield 75% accuracy.

Appendix A shows complete details. Note that
CLEVR-HOPE omits validation sets to prevent
hyperparameter tuning for this specific task (Teney
et al., 2020). Instead, hyperparameters should be
chosen using CLEVR.

3 Models & Training
Models: Our analysis focuses on LXMERT (Tan
and Bansal, 2019), a multi-modal transformer-

based (Vaswani et al., 2017) architecture. We study
two LXMERT variants, finetuning each on varying
datasets and measuring the systematicity gap. We
further run a subset of our experiments on a neu-
rosymbolic model, Tensor-NMN (Johnson et al.,
2017b), a neural module network (Andreas et al.,
2016) that decomposes the task into a composition
of subtask-specific modules.

Training: For each HOP, we subsample the
training set to test the impact the amount of training
data has on performance. For 3 random seeds per
HOP, we finetune pretrained LXMERT (LXMERT-
p) and train LXMERT from scratch (LXMERT-s).
We also train Tensor-NMN from scratch, again for
three runs, though only for the first 6 HOPs, com-
binations of {large, cyan, rubber, cylinder}.

For hyperparameter selection, we perform a grid
search on the original CLEVR dataset (Johnson
et al., 2017a). For further details, see Appendix B.

4 Results
4.1 Evidence of Systematic Behaviour

With sufficient training data, over 93% of the tested
model-HOP combinations exceed 75% accuracy
on the minimal-OOD test set, some reaching 100%
(see Appx. Fig. 5). The VQA models have a wide
range of accuracies generalizing to different held
out pairs. On all models tested, this accuracy varies
by around 25% across different HOPs.

Performance on the complex-OOD test set is also
generally increasing with the amount of training
data, and we see that the OOD accuracies across
HOPs are similarly distributed (see Appx. Fig. 7).
In all, we can conclude that the models consis-
tently exhibit at least some degree of systematic be-
haviour. The same trends are observed for Tensor-



NMN (see Appx. Figs. 10 and 12).

4.2 Systematicity Gap

Knowing that our models can exhibit systematic be-
haviour, a natural question to ask is whether there
is any trend in the difference between in- and out-
of-distribution performance: i.e., as the size of the
training set increases (and thus the model’s perfor-
mance generally improves), does its performance
on held-out combinations approach its performance
on the combinations already seen at train time? We
call this performance difference, between the OOD
and IID combinations, the systematicity gap.

For example, if a model has an IID accuracy of
95%, but only 80% for data that requires the model
to systematically compose rubber and cylinder
into the held out pair rubber cylinder, then the
systematicity gap is -15% (i.e., a 15% drop).

Given that the models are somewhat systematic,
and that performance in general improves with
more training data, one might expect that the sys-
tematicity gap would trend to zero. To the con-
trary, we find that, averaging over all HOPs, the
LXMERT systematicity gap plateaus to a drop of
5-6% (see Appx. Fig. 15). On the minimal test sets,
the systematicity gap again plateaus, to a drop of
6-8% (see Appx. Fig. 16). The same trends are ob-
served in Tensor-NMN (see Appx. Figs. 17 and 18),
though the systematicity gap on minimal examples
widens with additional training data.

With that said, the standard deviation of the ob-
served systematicity gap is quite high – in the fol-
lowing section we make the case that the nature of
the training data, specifically the attribute diversity
seen at train time, is responsible.

4.3 Train-time conceptual diversity impacts
systematicity

We define attribute diversity as the number of
possible attribute values corresponding to the un-
seen combination’s attribute types. For example, if
the unseen combination is rubber cylinders, that
corresponds to the MATERIAL and SHAPE attribute
types. Given there are 2 possible MATERIALS and
3 possible SHAPES in the training set, there are
2 × 3 = 6 possible MATERIAL-SHAPE combina-
tions; thus the attribute diversity is 6.

Tab. 1 lists the attribute diversity of the first six
HOPs in CLEVR-HOPE (see Appx. Tab. 2 for all
29 HOPs). Since the CLEVR training distribution
is uniform across object attribute values, for a train

HOP Attribute Types Diversity
Large rubber SIZE + MATERIAL 4

Rubber cylinder MATERIAL + SHAPE 6
Large cylinder SIZE + SHAPE 6
Rubber cyan MATERIAL + COLOR 16
Large cyan SIZE + COLOR 16

Cyan cylinder COLOR + SHAPE 24

Table 1: Diversity of the first six held-out pairs (HOPs).
Diversity is the number of possible attribute values cor-
responding to the HOP’s attribute types.

set of fixed size, as attribute diversity increases, the
number of examples per combination decreases.

Fig. 2a again illustrates the systematicity gap,
but now only averages over HOPs of the same di-
versity (rather than over all HOPs as in Sec. 4.2).
With this, we see that the systematicity gap is strat-
ified by the diversity of the combinations seen at
train time. Specifically, as the diversity of the train-
ing data increases, the systematicity gap narrows.
In fact, the gap is typically near or within a stan-
dard deviation of zero for diversities of 16 or above.
In comparison, diversities of 6 show a a plateauing
systematicity gap stabilizing at 7-14%. As seen
in Fig. 2b, we observe similar results with the sys-
tematicity gap of the minimal test sets.

For Tensor-NMN, we also find stratification by
diversity for complex examples (see Appx. Fig. 19).
The trend on minimal examples is noisier, but con-
verges to the expected ordering (see Appx. Fig. 20).

5 Related work
Systematicity has often been investigated through
synthetic datasets. Lake and Baroni (2018) intro-
duced the SCAN benchmark to evaluate the compo-
sitionality of sequence-to-sequence models, reveal-
ing a lack of systematicity. Followup works (Patel
et al., 2022; Jiang et al., 2022) have shown that the
conceptual diversity of the training set has a signif-
icant effect on systematicity — our work extends
these findings to the multi-modal domain of VQA.

While compositionality in VQA has been stud-
ied, prior work has focused on generalization to
new question structures (Bahdanau et al., 2019;
Vani et al., 2021; Bogin et al., 2021), or question-
answer combinations (Agrawal et al., 2017), rather
than new attribute combinations. One reason for
this gap is that, with natural data, it is hard to con-
trol for the model’s exposure to particular attribute
combinations. By using a controlled synthetic set-
ting, we can guarantee that generalization behavior
is systematic based on the data split.

The closest prior work is the CLEVR-CoGenT
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Figure 2: Systematicity gap (difference between OOD and IID model accuracy), averaged by held-out pair (HOP)
diversity over 29 HOPs, each with 3 runs.

dataset: Johnson et al. (2017a) created a train-test
CLEVR split where at train time cubes and cylin-
ders are restricted to limited color palettes, that are
reversed at test time. They observed that model
performance declined on held-out attribute com-
binations. But, unlike CLEVR-HOPE, CLEVR-
CoGenT does not change the question distribution
at train time — held-out combinations can leak
by appearing in text at train time. Furthermore,
CLEVR-CoGenT has only a single train set with
held-out COLOR-SHAPE combinations — whereas
CLEVR-HOPE expands the set of held-out combi-
nations to 29 train sets, covering all possible pairs
of attribute types. CLEVR-HOPE also indepen-
dently assesses each HOP, including in a minimal
setting. In combination, these improvements allow
us to study the impact of train-time diversity.

Beyond CLEVR-CoGenT, our results align with
concurrent work on the effects of training diversity
in VQA: Rahimi et al. (2023) modify CLEVR to
study the related question of productivity. Specif-
ically, generalization to questions with more rea-
soning steps, and generalization to new question
combinations (e.g., answering counting questions
about shape, when all train-time counting ques-
tions are about color or size). They conclude that
increasing the diversity of question combinations

increases productivity. Unlike our work, they do
not use a transformer architecture, instead studying
MAC (Hudson and Manning, 2018), FiLM (Perez
et al., 2018), and Vector-NMN (Bahdanau et al.,
2019). Additionally, as they study a fundamen-
tally different question, their dataset only alters the
question distribution — their image distribution is
unchanged between train and test time.

Given that both systematicity and productivity
fall under the larger umbrella of compositional gen-
eralization (Hupkes et al., 2020), and given the
wide variety of architectures collectively studied
between both our and existing work, the combined
weight of the evidence suggests a close relationship
between train-time diversity and compositional
generalization as a broad phenomenon.

6 Conclusions

Using CLEVR-HOPE, we demonstrate that
LXMERT and Tensor-NMN exhibit some degree
of systematic generalization to held-out object at-
tribute pairs. Furthermore, we illustrate that the
systematicity gap (the difference between in- and
out-of-distribution performance) does not improve
with more data, but does with more attribute di-
verse data— i.e., the number of attribute pairs of
the same type seen at train time.
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Figure 3: Systematicity gap on the complex splits (top corner) and minimal splits (bottom corner) for all models
trained on 560k training examples. The systematicity gap is averaged according to the attribute types of the HOPs,
all 29 HOPs for LXMERT, HOPs 0-5 for Tensor-NMN — attributes are sorted by increasing diversity on the axes
(e.g., SHAPE has 2 possible values, COLOR has 8 possible values). As expected, we see a worse systematicity gap
(i.e. lighter colors) in the top left (low-diversity combinations), and better systematicity gap (i.e., darker colors) in
the bottom right (high-diversity combinations).

Limitations

First and foremost, while the synthetic nature of
CLEVR-HOPE allows for a more controlled study
of models, it raises the question whether the ob-
served results will hold in more complex and di-
verse real-world settings. Furthermore, as we did
not modify the CLEVR attribute values, HOP di-
versity is intrinsically tied to attribute type. e.g.,
the most diverse pairs are always SHAPE-COLOR

combinations, and the least diverse pairs are always
MATERIAL-SIZE combinations. Thus, it is possible
that we are actually measuring the effects of at-
tribute type on generalization, rather than diversity.

However, in visualizing the systematicity gap by
attribute-types in the pair on both LXMERT and
Tensor-NMN (see Fig. 3), we can see that while
the systematicity gap tends to be larger for material
than size (with these attribute types both having
two possible values, i.e. the same diversity), it still
holds that the systematicity gaps are still sorted by
the diversity of the attribute pairs. In addition, with
respect to raw accuracy, we find that LXMERT
tends to struggle when SHAPE-MATERIAL pairs
(diversity 6) are held out — more so than with the
lower diversity MATERIAL-SIZE pairs (diversity
4) (see Appx. Fig. 9). Yet despite this, the sys-
tematicity gaps remain sorted as expected — i.e.,
worse on the lower diversity MATERIAL-SIZE pairs
(see Fig. 3). Finally, our results are supported by
prior work in other domains (Patel et al., 2022);
despite the number of examples per combination
decreasing with increasing diversity, the system-

aticity gap still tends to improve.
The second major limitation arises from the

choice of models. LXMERT uses a pretrained
F-RCNN (Ren et al., 2015) for object detection,
which we do not alter. As the F-RCNN is pre-
trained, it may already possess implicit knowledge
of the attributes (e.g., shape), and may contribute
systematic structure to LXMERT. Any such vi-
sual knowledge or biases are therefore given to
both LXMERT-p and LXMERT-s. In contrast,
note that the language component of LXMERT-s is
randomly initialized — whereas (Tan and Bansal,
2019) initialized their language transformer with
BERT (Devlin et al., 2019) when pretraining from
scratch.

Finally, due to time and resource limitations we
were unable to evaluate Tensor-NMN on HOP-6
through 28.
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A CLEVR-HOPE: Additional details

The full list of held-out pairs (HOPs) can be found
in Table 2. The HOPs were selected by choos-
ing two attribute values from each of large cyan
rubber cylinder, small brown rubber sphere,
small red metal cylinder, large gray metal
cube, and small purple rubber sphere.

Note that there are only 4 possible MATERIAL-
SIZE combinations, as there are only 2 SIZES and 2
MATERIALS. We include all 4 of these, as well as
5 HOPs for every other pair of attribute types.

Before selecting the 5 4-tuples from which we
created the HOPs in CLEVR-HOPE, we first cre-
ated a small set of minimal test questions for test-
ing how well a given model comprehends a given
attribute in isolation — CLEVR-PRELIM. For ex-
ample, for the color cyan we had two types of tests.
First, tests similar to the minimal-OOD test tests
(i.e., a single object and rephrasings of “Are any
cyan objects visible?”). Second, counting tests —
all questions were rephrases of “What number of
cyan objects are there?”, and images had varying
numbers of cyan objects. Specifically, we fixed the
position of 5 objects, and created 6 images, each
with a different number of objects matching the
attribute — i.e., 0, 1, 2, 3, 4, or 5 cyan objects.

Note that, unlike CLEVR-HOPE which studies
pairs of attributes values, CLEVR-PRELIM evalu-
ates only attribute values in isolation.

Using CLEVR-PRELIM, we performed a zero-
shot evaluation of Tan and Bansal (2019)’s VQA2.0
(Goyal et al., 2017) fine-tuned LXMERT check-
point. From this preliminary study we found that
zero-shot model performance was generally poor
(e.g., over all attribute values of all types, the high-
est count performance was 49.1%). Given our inter-
est in studying the impact of the amount of training
data, we created our first 4-tuple by individually
selecting each attribute value; specifically choos-
ing the attribute value that zero-shot LXMERT had
the lowest performance on — this created the 4-
tuple Large cyan rubber cylinder. The remain-
ing four tuples were selected uniformly at random.
Ultimately, as we did not see any significant dif-
ference between a small sample of 6 HOPs (those
created from attribute pairs in large cyan rubber
cylinder) and a larger sample of 23 HOPs (those
created from random 4-tuples), we present results
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aggregated over all 29 HOPs.
Note that as two 4-tuples were rubber spheres

and small spheres, we added the HOPs rubber
cube and small cube so that we would maintain
five MATERIAL-SHAPE and five SIZE-SHAPE pairs.

HOP Attribute Types Diversity
Large rubber SIZE + MATERIAL 4
Small rubber SIZE + MATERIAL 4
Large metal SIZE + MATERIAL 4
Small metal SIZE + MATERIAL 4

Rubber cylinder MATERIAL + SHAPE 6
Metal cylinder MATERIAL + SHAPE 6
Rubber cube MATERIAL + SHAPE 6
Metal cube MATERIAL + SHAPE 6

Rubber sphere MATERIAL + SHAPE 6
Large cylinder SIZE + SHAPE 6
Small cylinder SIZE + SHAPE 6

Small cube SIZE + SHAPE 6
Large cube SIZE + SHAPE 6

Small sphere SIZE + SHAPE 6
Rubber cyan MATERIAL + COLOR 16
Rubber brown MATERIAL + COLOR 16
Rubber purple MATERIAL + COLOR 16

Metal red MATERIAL + COLOR 16
Metal gray MATERIAL + COLOR 16
Large cyan SIZE + COLOR 16
Small brown SIZE + COLOR 16
Small purple SIZE + COLOR 16
Small red SIZE + COLOR 16
Large gray SIZE + COLOR 16

Cyan cylinder COLOR + SHAPE 24
Brown sphere COLOR + SHAPE 24
Red cylinder COLOR + SHAPE 24
Gray cube COLOR + SHAPE 24

Purple sphere COLOR + SHAPE 24

Table 2: Train set diversity of each held-out pair (i.e.,
HOP) of object attribute values. Diversity is the number
of possible pairs of attribute values, corresponding to
the HOPs attribute types.

For each HOP in CLEVR-HOPE, the approxi-
mate size of the corresponding splits is outlined
below:

• train set: 62k images, and 560k image-
question pairs

• complex-IID test set: 13k images, 120k
image-question pairs

• complex-OOD test set: 15k images, 15k
image-question pairs

• minimal-IID test set: 2576-3200 images,
8640-11970 image-question pairs (depending
on HOP)

• minimal-OOD test set: 448-3840 images,
448-3840 image-question pairs (depending on
HOP)

To reduce the resources required to generate the
dataset, images are reused throughout the dataset.
Specifically, the images are reused across the train
sets for the HOPs, and reused from the original
CLEVR training set.

Similarly, each of the test sets reuse images
across HOPs. Note that while the complex-IID
test and complex-OOD test sets do not reuse
eachother’s images, the minimal-IID test and
minimal-OOD test sets do for images that do not
involve the HOP under consideration.

To ensure that CLEVR can be fairly used for
hyperparameter tuning, and to prevent any data
leakage, no CLEVR validation or test images are
reused in CLEVR-HOPE.

A.1 CLEVR-HOPE: minimal-OOD test set
and minimal-IID test set

All images in the minimal-OOD test and minimal-
IID test sets contain only a single object. All ques-
tions ask whether there are any objects matching
the attribute value pair. E.g., for the HOP rubber
cyan, some question variants include “Are there
any cyan matte things?” and “Are any cyan matte
things visible?”.

These splits are designed to test the model in
a systematic manner: each image matching the
HOP has 3 corresponding images that do not match
the HOP. These 4 images share identical question
phrasing. The non-matching images maintain the
object position, lighting, and the attribute values
that are irrelevant to the HOP, but change the first
attribute value in the HOP, the second attribute
value in the HOP, or both attribute values in the
HOP, respectively. See Fig. 4 for an example.

Note that the question template is taken directly
from the original CLEVR dataset generation code.
The main change is the aforementioned systematic
design, and that the images used contain only a
single object, whereas the original CLEVR requires
at least 3 objects in any scene.

The minimal-IID test split is created in the same
way, but testing all other attribute-value pairs of
the same type as the HOP. Note that the distractor
attribute values in the negative examples were se-
lected uniformly at random. Since this may create
the held-out pair (and indeed, must do so for one
of the four size-material images), after the initial
creation of the minimal-IID test split, we filter it to
remove any image-question pairs where the object
in the image matches the HOP.



Are there any matte 
cylinders?

Are there any matte 
cylinders?

Are there any matte 
cylinders?

Are there any matte 
cylinders?

yes no nono

Figure 4: Four example image-question pairs for the minimal-OOD test split of the sub-dataset of CLEVR-HOPE
corresponding to the first held-out attribute pair — i.e., rubber cylinder. Note how the first image matches
rubber cylinder (MATERIAL=rubber, and SHAPE=cylinder), and the next three image have one attribute value
(MATERIAL=metal), the other attribute value (SHAPE=cube), or both (MATERIAL=metal, and SHAPE=cube)
attribute values not matching rubber cylinder. This pattern repeats throughout the dataset, with the choice of
distractor values, object position, lightning, question-phrasing and the value of the attribute-types not in HOP, all
chosen randomly, but fixed within each set of 4 images.

Hyperparameter LXMERT-p LXMERT-s
Learning Rate 5e-5 1e-5

Gradient Updates 218,750 481,000
Batch size 32 32

Table 3: Key hyperparameter values used for LXMERT

B Training details

All subsets of the train sets (i.e., of size 25k, 200k,
and 560k) are created by taking the first however
many indices. This corresponds to a random subset
of images for 25k, which is consecutively randomly
expanded. This is so because the image-question
pairs are unsorted, apart from all questions for any
given image having contiguous indices. Note that
we fix the number of gradient updates across sub-
set sizes, i.e., smaller subsets are trained for more
epochs so that the total number of gradient updates
is the same.

For LXMERT, the maximum sequence length is
increased to 49 so that CLEVR-HOPE questions
are not truncated.

For LXMERT-p, we follow Tan and Bansal
(2019)’s procedure for finetuning their pretrained
LXMERT checkpoint on a VQA dataset. As part
of their procedure, the pretrained F-RCNN (Ren
et al., 2015) object detector is not altered in any
way.

LXMERT-p hyperparameters were modified
from the hyperparameters used by Tan and Bansal
(2019) for finetuning LXMERT for VQA. Specifi-
cally, Tan and Bansal (2019) finetuned LXMERT
for the VQA tasks of VQAv2 (Goyal et al., 2017),
NLVR2 (Suhr et al., 2019), and GQA (Hudson and

Manning, 2019) with a batch size of 32, 4 epochs,
and a learning rate of either 1e-5 or 5e-5. We ulti-
mately used a learning rate of 5e-5, and increased
the epochs to 10 as we found it yielded better per-
formance.

For LXMERT-s we randomly initialize all
LXMERT weights (this excludes the pretrained F-
RCNN object detector), and apply the LXMERT
finetuning procedure (albeit with different hyper-
paramters) to train this randomly initialized model.

LXMERT-s hyperparameter tuning was per-
formed via grid search over learning rate (1e-4,
5e-5, 1e-5) and training steps (218750, 481000,
700000). Note that we ultimately used 481k
gradient update steps, as its validation accuracy
(95.47%) was extremely close to 700k (96.99%),
with nearly half the training time.

The LXMERT hyperparameters used are sum-
marized in Tab. 3.

Tensor-NMN is trained from scratch following
the process used by Bahdanau et al. (2019). Tensor-
NMN is trained in a 3 stage process — initially the
program generator and execution engine are trained
in a supervised manner, following which they are
trained together using REINFORCE. The default
hyperparameters for CLEVR from Bahdanau et al.
(2019) are used.

C LXMERT Detailed Results

LXMERT performance on minimal-OOD test can
be found in Fig. 5. Performance on minimal-IID
test can be found in Fig. 6. All plots mark 75%
— this baseline performance is achieved on the
minimal-OOD test split by always predicting false
(i.e., the most common class). Always predicting



false on minimal-IID test yield a baseline perfor-
mance between 66% and 75%, depending on the
HOP.

LXMERT performance on complex-OOD test
can be found in Fig. 7. Performance on complex-
IID test can be found in Fig. 8.

For LXMERT trained on the largest train sets
(560k), we plot the complex and minimal model
accuracies, averaged by the attribute types of the
HOPs, in Fig. 9.

D Tensor-NMN Detailed Results

As Tensor-NMN was only evaluated on the first 6
HOPs, we include the subset of LXMERT models
trained on the same HOPs for comparison.

Model performance on minimal-OOD test can be
found in Fig. 10. Performance on minimal-IID test
can be found in Fig. 11. All plots mark 75% — this
baseline performance is achieved on the minimal-
OOD test split by always predicting false (i.e., the
most common class). Always predicting false on
minimal-IID test yield a baseline performance be-
tween 66% and 75%, depending on the HOP.

Model performance on complex-OOD test can
be found in Fig. 12. Performance on complex-IID
test can be found in Fig. 13.

For Tensor-NMN trained on the largest train sets
(560k), we plot the complex and minimal model
accuracies, averaged by the attribute types of the
HOPs. The results are visualized in Fig. 14. Again,
we include the corresponding subset of LXMERT
models for comparison.

E Systematicity Gap

As outlined in Section 4.2, we find that, on all
models, averaged over HOPs, the gap between per-
formance on complex questions involving IID vs.
OOD attribute combinations does not trend to zero.
Instead, it plateaus (see Figures 15 and 17). In com-
parison, the performance gap on minimal questions
plateaus or decreases gently (see Figures 16 and
18).

E.1 Detailed Tensor-NMN Systematicity Gap

Averaging the systematicity gap in Tensor-NMN by
diversity, we again find stratification by diversity
for complex examples (see Fig. 19). The trend on
minimal examples is noisier, but ultimately con-
verges to the expected ordering (see Fig. 20). Note
that, as is to be expected, when limited to the first
six HOPs the LXMERT trend is also noisier. It

is therefore reasonable to expect the Tensor-NMN
trend would be cleaner with additional HOPs.
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Figure 5: Box plot of minimal-OOD test set perfor-
mance on all 29 HOPs. The average performance for
each HOP is produced by averaging over 3 trials. The
variation captured by this boxplot is from the difference
in average performance between HOPs, rather than from
the variation within the 3 trials.
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Figure 6: Box plot of minimal-IID test set performance
on all 29 HOPs. The average performance for each HOP
is produced by averaging over 3 trials. The variation
captured by this boxplot is from the difference in aver-
age performance between HOPs, rather than from the
variation within the 3 trials.
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Figure 7: Box plot of complex-OOD test set perfor-
mance on all 29 HOPs. The average performance for
each HOP is produced by averaging over 3 trials. The
variation captured by this boxplot is from the difference
in average performance between HOPs, rather than from
the variation within the 3 trials.
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Figure 8: Box plot of complex-IID test set performance
on all 29 HOPs. The average performance for each HOP
is produced by averaging over 3 trials. The variation
captured by this boxplot is from the difference in aver-
age performance between HOPs, rather than from the
variation within the 3 trials.
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Figure 9: Model accuracies for HOP-0 through 28. Note that the LXMERT models often struggle on both IID and
OOD questions when MATERIAL-SHAPE combinations are held out at train time.
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Figure 10: Average minimal-OOD test set Tensor-
NMN performance for the first 6 HOPs over 3 trials.
For comparison, we also plot the average LXMERT
model performances (i.e., Fig. 5), but restricted to only
the first 6 HOPs. An area corresponding to 1 standard
deviation is shaded.
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Figure 11: Average minimal-IID test set Tensor-NMN
performance for the first 6 HOPs over 3 trials. For
comparison, we also plot the average LXMERT model
performances (i.e., Fig. 6), but restricted to only the first
6 HOPs. An area corresponding to 1 standard deviation
is shaded.
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Figure 12: Average complex-OOD test set Tensor-
NMN performance for the first 6 HOPs over 3 trials.
For comparison, we also plot the average LXMERT
model performances (i.e., Fig. 7), but restricted to only
the first 6 HOPs. An area corresponding to 1 standard
deviation is shaded.
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Figure 13: Average complex-IID test set Tensor-NMN
performance for the first 6 HOPs over 3 trials. For
comparison, we also plot the average LXMERT model
performances (i.e., Fig. 8), but restricted to only the first
6 HOPs. An area corresponding to 1 standard deviation
is shaded.
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Figure 14: Model accuracies for only the first 6 HOPs. Note that while the LXMERT models struggle with
MATERIAL-SHAPE combinations on OOD questions, Tensor-NMN does not.
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Figure 15: Average systematicity gap on complex exam-
ples (i.e., complex-OOD test accuracy minus complex-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on each of the 29 HOPs. Note that the sys-
tematicity gap plateaus, suggesting that the performance
drop when generalizing to unseen combinations does
not improve with additional training data.
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Figure 16: Average systematicity gap on minimal exam-
ples (i.e., minimal-OOD test accuracy minus minimal-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on each of the 29 HOPs.
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Figure 17: Average systematicity gap on complex exam-
ples (i.e., complex-OOD test accuracy minus complex-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on only the first 6 HOPs. Note that the sys-
tematicity gap plateaus, suggesting that the performance
drop when generalizing to unseen combinations does
not improve with additional training data.
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Figure 18: Average systematicity gap on minimal exam-
ples (i.e., minimal-OOD test accuracy minus minimal-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on only the first 6 HOPs.
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Figure 19: Systematicity gap (i.e. difference between
OOD and IID model performance) for complex exam-
ples, averaged by HOP diversity over for the first 6
held-out attribute pairs only, each with 3 runs.
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Figure 20: Systematicity gap (i.e. difference between
OOD and IID model performance) for minimal exam-
ples, averaged by HOP diversity over for the first 6
held-out attribute pairs only, each with 3 runs.
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