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This week’s learning goals

Define Mitochondrial Eve
▶ Define the Wright-Fisher single-parent ancestry model (Ch 21.7)
▶ Prove an estimation of time to convergence (Ch 21.8B)

Define and reason about stability, with respect to bargaining in a
Network Exchange Model

▶ Explain power in the network exchange social experiment, from
structural and non-structural factors (Ch 12.1-12.3)

▶ Define stable outcomes (Ch 12.7), and determine if an outcome is
stable

▶ Define the Ultimatum Game (Ch 12.6), and explain how it compares to
bargaining

▶ Define balanced outcomes (Ch 12.5, 12.8), and determine if an
outcome is balanced
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Genetic inheritance and networks

Chapter 21 turns its attention to the issue of genetic inheritance, viewed
as a random process taking place on a (directed acyclic) network of
organisms (species, parts of a genome, etc).

Motivating example: in 1987, Cann, Stoneking and Wilson published
a very striking and to many a very controversial paper

▶ Asserted that if one traces their maternal lineage back in time,
everyone’s lineage traces back to a single woman

▶ This woman is called Mitochondrial Eve
▶ She lived sometime between 100,000 and 200,000 years ago
▶ Probably living in Africa

We’ll ignores the issue of the location of Mitochondrial Eve and
focuses on the basis (i.e. a model based on various assumptions) for
this bold assertion of a common ancestry

Note: I suggest reading the text as to the caveats about the model (see
Ch 21.7)

3 / 45



Genetic inheritance and networks

Chapter 21 turns its attention to the issue of genetic inheritance, viewed
as a random process taking place on a (directed acyclic) network of
organisms (species, parts of a genome, etc).

Motivating example: in 1987, Cann, Stoneking and Wilson published
a very striking and to many a very controversial paper

▶ Asserted that if one traces their maternal lineage back in time,
everyone’s lineage traces back to a single woman

▶ This woman is called Mitochondrial Eve
▶ She lived sometime between 100,000 and 200,000 years ago
▶ Probably living in Africa

We’ll ignores the issue of the location of Mitochondrial Eve and
focuses on the basis (i.e. a model based on various assumptions) for
this bold assertion of a common ancestry

Note: I suggest reading the text as to the caveats about the model (see
Ch 21.7)

3 / 45



Genetic inheritance and networks

Chapter 21 turns its attention to the issue of genetic inheritance, viewed
as a random process taking place on a (directed acyclic) network of
organisms (species, parts of a genome, etc).

Motivating example: in 1987, Cann, Stoneking and Wilson published
a very striking and to many a very controversial paper

▶ Asserted that if one traces their maternal lineage back in time,
everyone’s lineage traces back to a single woman

▶ This woman is called Mitochondrial Eve
▶ She lived sometime between 100,000 and 200,000 years ago
▶ Probably living in Africa

We’ll ignores the issue of the location of Mitochondrial Eve and
focuses on the basis (i.e. a model based on various assumptions) for
this bold assertion of a common ancestry

Note: I suggest reading the text as to the caveats about the model (see
Ch 21.7)

3 / 45



Genetic inheritance and networks

Chapter 21 turns its attention to the issue of genetic inheritance, viewed
as a random process taking place on a (directed acyclic) network of
organisms (species, parts of a genome, etc).

Motivating example: in 1987, Cann, Stoneking and Wilson published
a very striking and to many a very controversial paper

▶ Asserted that if one traces their maternal lineage back in time,
everyone’s lineage traces back to a single woman

▶ This woman is called Mitochondrial Eve
▶ She lived sometime between 100,000 and 200,000 years ago
▶ Probably living in Africa

We’ll ignores the issue of the location of Mitochondrial Eve and
focuses on the basis (i.e. a model based on various assumptions) for
this bold assertion of a common ancestry

Note: I suggest reading the text as to the caveats about the model (see
Ch 21.7)

3 / 45



Modeling the Mitochondrial Eve assertion

To understand the assertion, we have to make some simplifying
biological and mathematical assumptions (see section 21.8 B)

▶ The biological assumptions are beyond the scope of the course
⋆ We will accept them as they are generally accepted to not

quantitatively change the conclusions

▶ The key biological idea is that “mitochondrial DNA (is to a first
approximation) passed on to children entirely from their mothers”

▶ The mathematical assumptions do not change any of the conclusions
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Mitochondrial Eve continued
Focussing on mitochondrial DNA, and assuming pure inheritance from
the mother, then we can consider a “single parent” ancestry model670 CHAPTER 21. EPIDEMICS

s t u v w x y z

Figure 21.13: A re-drawing of the single-parent network fom Figure 21.12. As we move back
in time, lineages of di�erent present-day individuals coalesce until they have all converged
at the most recent common ancestor.

• Third, it can be used to model purely “social” forms of inheritance, such as master-

apprentice relationships. For example, if you receive a Ph.D. in an academic field, you

generally have a single primary advisor. If you model students as being “descended”

from advisors, than we can trace ancestries through sequences of advisors back into

the past — just as we traced maternal lineages.

Now, if we run this model forward in time through multiple generations, we get a network

such as the one pictured in Figure 21.12. Each individual is connected to one parent in the

previous generation; time runs from top to bottom, with N present-day individuals in the

lowest layer (named s through z in the figure). Notice that from any one of these individuals

at the bottom, we can trace its single-parent lineage backward in time by following edges

upward, always taking the single edge leading up out of each node we encounter.

If we imagine the individuals in the bottom row of Figure 21.12 to be present-day women,

then Mitochondrial Eve would be the lowest node in the figure where all the maternal lineages

first fully converge. It’s a bit tricky, visually, to find this node in Figure 21.12, but we can re-

[Fig 21.13, E&K]

The model lets us conclude common mitochondrial DNA ancestry
must have originated with a single female Mitochondrial Eve

The model can also estimate for the time period in which she lived

This does not say that Mitochondrial Eve was the only woman alive at
this time, but that our mitochondrial DNA traces back to one woman

Additionally, our genomic makeup does come from both parents
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The Wright-Fisher single parent ancestry model

The Wright-Fisher model not only applies to mitochondrial lineage,
but also to general asexual reproduction

Additional simplifying assumption for tractability:

▶ assume generations are synchronized
▶ assume a fixed population of N individuals throughout the entire

period of time

Problems? Obviously inconsistent with the fact that world population
is growing

Ultimately does not change the nature of the conclusions or even the
nature of the analysis

▶ In fact, once we accept that populations are growing, it is clear that
certain individuals must be having multiple children which is also part
of the model
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Single parent ancestry model continued
Assume that generations are completely synchronized:

▶ the generation of N individuals at time t give rise to the next
generation of N individuals at time t + 1.

Each individual at time t+1 has its “single parent” chosen uniformly
at random from the previous generation

▶ A significant assumption given geography, ethnicity, etc...
▶ To reconcile this (with respect to the assertion of a single

Mitochondrial Eve), we need to understand the extent to which
individual communities can be isolated

⋆ Ultimately, the timing for when common ancestry would have taken
place is not impacted by this assumption

668 CHAPTER 21. EPIDEMICS

current generation

new generation

each offspring comes from 

a single parent chosen 

uniformly at random

Figure 21.11: In the basic Wright-Fisher model of single-parent ancestry, time moves step-
by-step in generations; there are a fixed number of individuals in each generation; and each
o�spring in a new generation comes from a single parent in the current generation.

independent of the di⌅culty of establishing evidence from genetic data, the existence of

someone like Mitochondrial Eve was not only natural, but in fact — as we will see next —

essentially inevitable. At their core, these models were built from a probabilistic formal-

ism involving networks; indeed, even in a qualitative sense, one can appreciate something

epidemic-like about the way in which copies of di�erent people’s mitochondrial DNA spread

through subsequent generations, inhabiting future o�spring, until one eventually crowds out

all the others. We now describe the basic versions of these models, and how they connect to

questions about ancestry.

A Model of Single-Parent Ancestry We use a fundamental model of ancestry known

in population genetics as the Wright-Fisher model [325]. To remain tractable, the model

involves a number of simplifying assumptions. Consider a population that is constrained

by resources to maintain a fixed size N in each generation. Time moves step-by-step from

one generation to the next; each new generation is formed by having the current set of N

individuals produce N o�spring in total. Each o�spring in this new generation is produced

from a single parent, and this parent is selected independently and uniformly at random

from among those in the current generation. Figure 21.11 depicts this process; as shown

there, we can draw the relationship of one generation to the next as a graph, with a node for

each individual, and an edge connecting each o�spring to their parent chosen uniformly at

random from the previous generation. Notice that because of this rule for selecting parents,

certain individuals in the upper generation can have multiple children (such as the first and

last in Figure 21.11), while others may have none.

Figure: [Fig 21.11, E&K]
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More generations of the model
21.7. GENEALOGY, GENETIC INHERITANCE, AND MITOCHONDRIAL EVE 669

s t u v w x y z

Figure 21.12: We can run the model forward in time through a sequence of generations,
ending with a set of present-day individuals. Each present-day individual can then follow its
single-parent lineage by following edges leading upward through the network.

The structure of this model reflects a few underlying assumptions. To begin with, we’re

assuming a neutral model in which no individual has a selective advantage in reproduction;

everyone has the same chance of producing o�spring. Furthermore, we’re modeling a situa-

tion in which each individual is produced from a single parent, as opposed to two parents in

a sexually reproducing population. This is consistent with several possible interpretations.

• First, and most directly, it can be used to model species that engage in asexual repro-

duction, with each organism arising from a single parent.

• Second, it can be used to model single-parent inheritance even in sexually reproducing

populations, including the inheritance of mitochondrial DNA among women as in our

discussion above. In this interpretation, each node represents a human woman, with

women linked to their mothers in the previous generation. Moreover, as we will discuss

later, there is in fact a much more general way to use this model to think about

inheritance in sexually reproducing populations.

Figure: [Fig 21.12, E&K]
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Ancestry depicted.
670 CHAPTER 21. EPIDEMICS

s t u v w x y z

Figure 21.13: A re-drawing of the single-parent network fom Figure 21.12. As we move back
in time, lineages of di�erent present-day individuals coalesce until they have all converged
at the most recent common ancestor.

• Third, it can be used to model purely “social” forms of inheritance, such as master-

apprentice relationships. For example, if you receive a Ph.D. in an academic field, you

generally have a single primary advisor. If you model students as being “descended”

from advisors, than we can trace ancestries through sequences of advisors back into

the past — just as we traced maternal lineages.

Now, if we run this model forward in time through multiple generations, we get a network

such as the one pictured in Figure 21.12. Each individual is connected to one parent in the

previous generation; time runs from top to bottom, with N present-day individuals in the

lowest layer (named s through z in the figure). Notice that from any one of these individuals

at the bottom, we can trace its single-parent lineage backward in time by following edges

upward, always taking the single edge leading up out of each node we encounter.

If we imagine the individuals in the bottom row of Figure 21.12 to be present-day women,

then Mitochondrial Eve would be the lowest node in the figure where all the maternal lineages
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Figure: [Fig 21.13, E&K]
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The analysis for estimating the time that the model
coalesces on Mitochondrial Eve

Section 21.8B provides a mathematical analysis; there are some simplifying
assumptions made, but they can be defended.

Suppose we have a total population of N and at some point of time t + 1
that we are down to k candidates (lineages) for a common ancestor. We
want to consider the probability that two lineages will collide so that there
be (at most) k − 1 candidates.
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The analysis

Instead of moving time forwards until the current generation shares an
ancestor, we will move time backwards until a common ancestor emerges.
We will start by considering k nodes, and seeing how probable it is that
they do not have the same parent parent.

Case: k = 2. Say the active lineage is individuals {a, b}. Then the
probability that b does not share a’s parent is 1− 1

N .

Case: k > 2. Lets consider the probability that none of the k nodes share
a parent. There will be no collapsing if the second node doesn’t collide
with the first, the third doesn’t collide with the first two, etc, so this
means that the probability of no collapsing is :

(1− 1

N
)(1− 2

N
) · · · (1− k − 1

N
)
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The analysis continued

The previous product

(1− 1

N
)(1− 2

N
) · · · (1− k − 1

N
)

is at most:

1−
(
1 + 2 + · · ·+ k − 1

N

)
+

g(k)

N2

where g(k) depends only on k and not on N.

For any fixed k , the latter term is relatively negligible and we can say that
the probability that none of the k share a parent is 1− k(k−1)

2N .
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The analysis continued

Fact: If we have a binary random variable Yk (i.e., a heads coin flip) that
is true with probability p, then the expected number of independent
samples until Yk is true (denoted E [Xk ]) is exactly 1/p

if the probability is at least p, then the expected time can only be
shorter.

Look familiar?

Remember the geometric distribution, and the decentralized
search tutorial! We’re going to do (basically) the same proof ;)

Therefore, letting Xk denote the time to collapse from k to less than k
lineages, then E [Xk ] is approximated by 2N

k(k−1)

Note: Initially when k is large, the decrease is expected every generation
going back. But when k is a small constant, then the expected number of
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Depiction of the lineages colliding21.8. ADVANCED MATERIAL: ANALYSIS OF BRANCHING AND COALESCENT PROCESSES683

From 6 to 5:
waiting for an event

of prob. 15/N

From 5 to 4: 
waiting for an event

of prob. 10/N

From 4 to 3: 
waiting for an event

of prob. 6/N

From 3 to 2: 
waiting for an event 

of prob. 3/N

From 2 to 1: 
waiting for an event 

of prob. 1/N

Figure 21.21: Assuming that no three lineages ever collide simultaneously, the time to co-
alescence can be computed as the time for a sequence of distinct collision events to occur.

with k distinct lineages and wait until two of them collide. This happens with probability
k(k�1)

2N
in each generation. Once a collision happens, we have k � 1 distinct lineages, and we

wait for two of them to collide with probability (k�1)(k�2)
2N

per generation. Things continue

this way until we are down to two distinct lineages, at which point we wait for them to collide

with probability 2
2N

= 1
N

per generation. The overall process is shown, for our example with

k = 6, in Figure 21.21.

Guided by this view of the process, we can analyze it as follows. Let W be a random

variable equal to the number of generations back until coalescence. We can write

W = Wk + Wk�1 + Wk�2 + · · · + W2,

where Wj is a random variable equal to the number of generations during which there are

Figure: Assuming no three lineages collide simultaneously. [Fig 21.1(a), E&K]
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Finishing the analysis

Let X k = Xk + Xk−1 + · · ·+ X2 be the number of generation to reach a
common ancestor starting from a lineage of k individuals.

Note: To simplify the analysis we are assuming that k lineages will always
collapse into k − 1 lineages. This assumption is wrong, but provides a
good estimate.

Since E[Xj ] =
2N

j(j−1) and 1
j(j−1) =

1
j−1 − 1

j , by linearity of expectations we
have:
E[X k ] =

∑k
j=1

2N
j(j−1)

= 2N

([
1
1 − 1

2

]
+

[
1
2 − 1

3

]
+ · · ·+

[
1

k−1 − 1
k

])
= 2N

(
1− 1

k

)
Note: Further more detailed analysis is consistent with the basic analysis
that was presented in the text.
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Recap

Mitochondrial Eve
▶ Problem setup (Ch 21.7)
▶ Wright-Fisher single-parent ancestry model (Ch 21.7)
▶ Estimation of time to convergence (Ch 21.8B)
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Chapter 12: Bargaining and Power in Networks

We begin a subtle and fascinating topic: how individuals in a network
come to agreement on an outcome!

▶ Part of a larger subject called cooperative game theory and to some
extent touches on behavioural game theory

▶ We have a course (CSC304) which covers game theory; as opposed to
necessary minimum we’ll be covering

To ensure we’re all on the same page, we’ll informally mention some
basic concepts to keep in mind

▶ We’ve seen these concepts, at least implicitly, in the course material
already :)
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A few more comments on game theory concepts

Individuals (agents) have strategies or actions and employ a (pure or
mixed/randomized) strategy so as to act in self interest, always trying
to maximize benefit or minimize cost

Note: There is a lot of subtlety in benefits and costs
▶ Often cannot be explained simply in monetary terms (or one must

assign monetary values to subjective values)

Agents are acting in self interest implies that their actions are
decentralized

▶ Mechanism design concerns how a central agent can introduce
incentives to influence agents

▶ Aside: An example of a result in Mechanism Design is
Gibbard-Satterthwaite theorem, which states that any voting rule is
either

⋆ Dictatorial
⋆ Only selecting the winner from a set of two candidates
⋆ Susceptible to tactical voting
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Game theory concepts: Equilibrium
Definition (Equilibrium)

A state in which no agent has an incentive to change their strategy
assuming no one else is changing

Appeared in Schelling segregation model in Chapter 4, structural
balance in Chapter 5, and will be important in Chapter 12 and the
study of relative power

▶ we will see them again in stable matchings and traffic equilibria
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Power as a relative relation between people

Power between individuals can come from two distinct sources:

▶ First: The pivotal position of the person in the network.

⋆ In the first week we mentioned the network of Florentine marriages and
how the centrality of the Medici family was said to have conferred
power to the Medicis

⋆ In the second week of the course we discussed the bridging capital and
the bonding capital of a node

▶ Second: The relative reputation, status, official position, exceptional
attributes (intelligence, finances), etc...
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Power: Bridging and bonding capital of nodes
The early chapters of the text provided some insights about the
importance of centrality and bonding capital and bridging capital with
regard to the flow of information and trust.3.5. CLOSURE, STRUCTURAL HOLES, AND SOCIAL CAPITAL 65

B

F

A

E

D

C

Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the di�erent positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that di�erent nodes

play in this structure as well. In social networks, access to edges that span di�erent groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the e�ect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the di�erent experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coe⌅cient. (Recall that the

clustering coe⌅cient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in

Mining Social Network Data

Mining social networks also has long history in social sciences.

E.g. Wayne Zachary’s Ph.D. work (1970-72): observe social
ties and rivalries in a university karate club.

During his observation, conflicts intensified and group split.

Split could be explained by minimum cut in social network.

Jon Kleinberg Challenges in Mining Social Network Data
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Power arising from asymmetries in pairwise relations

In contrast, Chapter 12 considers power in terms of the relationship
between two individuals that results in different division of value
bargaining network

▶ The imbalance in assigned values corresponds to the imbalance in their
relative power

Note: In this context, centrality can sometimes be misleading.

The above is an informal definition of power, but the study of power
in the context of imbalance is a well studied concept with precise
definitions

We will isolate power due to position in a network, and ignore the
status aspects

For motivation we begin with some illustrative network examples, we
will follow this with a social experiment that will provide insight, and
will in turn lead to precise definitions
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Some illustrative examples
Assume $1 is placed on each edge of the network

▶ each node trying to reach an agreement (within a fixed amount of
time) on how to split the dollar

▶ each node can only deal with at most one other adjacent node
⋆ In graph theoretic terms, this pairing of nodes is a matching : a subset

of edges such that no node is adjacent to more than one edge in the
matching

Who will have relative power (i.e., receive more than half a dollar in
the following networks)?

344 CHAPTER 12. BARGAINING AND POWER IN NETWORKS

A B

(a) 2-Node Path

A B C

(b) 3-Node Path

A B C D

(c) 4-Node Path

A B C D E

(d) 5-Node Path

Figure 12.2: Paths of lengths 2, 3, 4, and 5 form instructive examples of di�erent phenomena
in exchange networks.

models a setting in which the nodes are trying to form partnerships: each node wants to be

in a partnership; and subject to this, the node wants to get a reasonable share of the value

implicit in this partnership. Later in this chapter we will see that varying the number of

successful exchanges in which a node can participate has e�ects on which nodes hold power,

often in interesting ways.

There are many variations in the precise way these experiments are implemented. One

particularly interesting dimension is the amount of information provided to the participants

about the exchanges made by other participants. This has ranged in experiments from a

high-information version — in which each person sees not just what is happening on their

edges, but also what is happening on every edge in the network, in real-time — to a low-

information version — in which each person is told only what is happening on the edges

she is directly involved in; for example, she may have no idea how many other potential

partners each of her neighbors has. An interesting finding from this body of work is that

the experimental results do not change much with the amount of information available [389];

this suggests a certain robustness to the results, and also allows us to draw some conclusions

about the kinds of reasoning that participants are engaging in as they take part in these

experiments.

12.3 Results of Network Exchange Experiments

Let’s start by discussing what happens when one runs this type of experiment on some

simple graphs using human test subjects. Since the results are intuitively reasonable and

fairly robust, we’ll then consider — in increasing levels of detail — what sorts of principles

can be inferred about power in these types of exchange situations.

Figure 12.2 depicts four basic networks that have been used in experiments. Notice

that these are just paths of lengths 2, 3, 4, and 5. Despite their simplicity, however, each

Does either party have an advantage?
No; a 1

2 − 1
2 split is a reasonable predicted split that is observed in the

experiments.
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A three node path
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12.3 Results of Network Exchange Experiments

Let’s start by discussing what happens when one runs this type of experiment on some

simple graphs using human test subjects. Since the results are intuitively reasonable and

fairly robust, we’ll then consider — in increasing levels of detail — what sorts of principles

can be inferred about power in these types of exchange situations.

Figure 12.2 depicts four basic networks that have been used in experiments. Notice

that these are just paths of lengths 2, 3, 4, and 5. Despite their simplicity, however, each

What matching might occur and who each holds power?

Clearly since we need a matching, either A and C will have to be left out.
Intuitively then, node B holds much more power than A or C . The basic
theory and experiments support this intuition.
What fraction of the $ would you expect B to obtain in negotiating
between A and C?

There is a difference between the basic theory and the social experiments.
In the experiments , B gets a (56)

th fraction of the $. The basic theory
would predict that B gets all almost all of the $. Why the difference?
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the experimental results do not change much with the amount of information available [389];
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What matching might occur and how might the money be split? Would B
get more or less in this four node network than in the previous three node
path?

Here the experiments show that B gets a fraction of between 7
12

th
and 2

3

rd

of the $, less than what we obtained in the three node network. Why?
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Figure 12.3: An exchange network with a weak power advantage for node B.

alternative in D. In other words, B’s threat to exclude A is a costly one to actually execute.

Experiments bear out this notion of weak power: in A-B exchanges, B gets roughly between

7/12 and 2/3 of the money, but not more [281, 373].

The 5-Node Path. Paths of length 5 introduce a further subtlety: node C, which intu-

itively occupies the “central” position in the network, is in fact weak when the 1-exchange

rule is used. This is because C’s only opportunities for exchange are with B and D, and

each of these nodes have very attractive alternatives in A and E respectively. Thus, C can

be excluded from exchange almost as easily as A and E can. Put succinctly, C’s partners

for negotiation all have access to very weak nodes as alternatives, and this makes C weak as

well.

In experiments, one finds that C does slightly better than A and E do, but only slightly.

Thus, the 5-node path shows that simple centrality notions like betweenness can be mislead-

ing measures of power in some kinds of exchange networks.

Note that the weakness of C really does depend on the fact that the 1-exchange rule

is used. Suppose, for example, that we instead allowed A, C, and E to take part in one

exchange each, but allowed B and D to take part in two exchanges each. Then suddenly

each of B and D need C to make full use of their exchange opportunities, and C is now the

node with the ability to exclude some of his exchange partners.

Other Networks. Many other networks have been studied experimentally. In a number

of cases, the outcomes can be understood by combining ideas from the four basic networks

in Figure 12.2.

For example, the graph in Figure 12.1 has been extensively studied by network exchange

theorists. Since B has the ability to exclude both A and C, she tends to achieve highly favor-

able exchanges with them. Given these two alternatives, B and D almost never exchange;

as a result, D doesn’t have a realistic second option besides E, and hence D and E tend to

What matching might occur and how might the money be split? Would B
get more or less in this stem network than in the previous three and four
node paths?

Experiments show that B in the stem graph makes slightly more money
than B in the four node path (but less than in the three node path). Why?
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Figure 12.2: Paths of lengths 2, 3, 4, and 5 form instructive examples of di�erent phenomena
in exchange networks.

models a setting in which the nodes are trying to form partnerships: each node wants to be

in a partnership; and subject to this, the node wants to get a reasonable share of the value

implicit in this partnership. Later in this chapter we will see that varying the number of

successful exchanges in which a node can participate has e�ects on which nodes hold power,

often in interesting ways.

There are many variations in the precise way these experiments are implemented. One

particularly interesting dimension is the amount of information provided to the participants

about the exchanges made by other participants. This has ranged in experiments from a

high-information version — in which each person sees not just what is happening on their

edges, but also what is happening on every edge in the network, in real-time — to a low-

information version — in which each person is told only what is happening on the edges

she is directly involved in; for example, she may have no idea how many other potential

partners each of her neighbors has. An interesting finding from this body of work is that

the experimental results do not change much with the amount of information available [389];

this suggests a certain robustness to the results, and also allows us to draw some conclusions

about the kinds of reasoning that participants are engaging in as they take part in these

experiments.

12.3 Results of Network Exchange Experiments

Let’s start by discussing what happens when one runs this type of experiment on some

simple graphs using human test subjects. Since the results are intuitively reasonable and

fairly robust, we’ll then consider — in increasing levels of detail — what sorts of principles

can be inferred about power in these types of exchange situations.

Figure 12.2 depicts four basic networks that have been used in experiments. Notice

that these are just paths of lengths 2, 3, 4, and 5. Despite their simplicity, however, each

Does C have any power (i.e. fraction of money obtained) compared to
other nodes?

Intuitively B and D have most of the power in the five node path network.
The text states that in experiments, C has slightly more power than A or
E .

Note that C is the most central node in terms of being on the most
shortest paths. However, this has not translated into substantial
bargaining power.
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Another graph to consider

The previous examples may help us reason about the following example
from the text.12.1. POWER IN SOCIAL NETWORKS 341

A B C

D

E

Figure 12.1: A social network on five people, with node B occupying an intuitively powerful
position.

with strong friendships indicated by the social network links. Intuitively, node B appears

to hold a powerful position in the network, and in particular to be powerful relative to two

of her three neighbors, A and C. What general principle or principles should lead us to

this conclusion? Here are several proposals, which we state informally here but make more

precise in what follows.

(i) Dependence. Recalling that social relations confer value, nodes A and C are completely

dependent on B as a source of such value; B on the other hand, has multiple sources.

(ii) Exclusion. Related to (i), B has the ability to exclude A and C. In particular, suppose

each person were to choose a “best friend” in the group; then B has the unilateral

power to choose one of A and C, excluding the other. (However, B does not have the

analogous power over D.)

(iii) Satiation. A somewhat di�erent basis for B’s power might be implicit in the psy-

chological principle of satiation: having diminishing rewards for increased amounts of

something. Again, viewing social relations as conferring value, B will acquire value

at a greater rate than the other members of the group; having thus become satiated,

B may be interested in maintaining these social relations only if she can receive an

unequal share of their value.

(iv) Betweenness. If we believe that the value generated in social relations flows not just

across single edges but more generally along paths, then we are led to consider notions

such as betweenness. Betweenness was considered extensively in Section 3.6; for our
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The network exchange social experiment
The following network exchange social experiment (and variants) is
repeated a number of rounds so that some form of learning is taking place.
There are many variants and the text presents one particular setting:

Individuals (not knowing each other since we want to focus on the
network aspects and not on the status, etc. of individuals) are placed
at computer terminals and can interact with certain other individuals.

In a complete information setting, one might see the entire network.
The text considers the setting where an individual only knows and
negotiates with their neighbouring nodes

For some known duration on time for a given round, negotiations take
place for sharing say one $ on each edge. (We could allow larger and
different sums for each edge). Once a pair have decided how to share
the $, they leave the game

There is one more important condition on the experiment; namely in
any given round, the outcome has to be a matching. i.e., you’re only
allowed to deal with one other person

▶ This is called the 1-exchange rule
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How much do these experimental findings depend
on the exact setting.
We would, of course, like to have results that are robust and do not differ
that much in the exact “details”.

Results are reasonably robust with regard to how much network
information is available

Results are consistent across different countries and different cultures

Question: What are we not robust to?

The 1-exchange rule is a definite factor impacting the results
▶ In certain networks, substantially different findings result if individuals

can negotiate two or more exchanges in a round
▶ In graph theory terms this is a b-matching; nodes can be adjacent to

up to b edges in the matching

Anonymity is important
▶ How? Higher status individuals tend to inflate their “options”, and

those of lower status tend to underplay their options
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up to b edges in the matching

Anonymity is important
▶ How?

Higher status individuals tend to inflate their “options”, and
those of lower status tend to underplay their options
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Demo time!

I need two volunteers from the audience :)
12.3. RESULTS OF NETWORK EXCHANGE EXPERIMENTS 347

A

B C

Figure 12.4: An exchange network in which negotiations never stabilize.

exchange on roughly equal footing. All these observations are borne out by the experimental

results.

Another interesting example that has been extensively studied is the “stem graph” shown

in Figure 12.3. Here, C and D typically exchange with each other, while B exchanges with

A, obtaining favorable terms. The position of node B in this network is conceptually similar

to the position of B in the 4-node-path: in the stem graph, B has a power advantage in her

dealings with A, but it is a weak power advantage, since to exclude A she has to exchange

with C or D, who each have exchange options in each other. Experiments have shown that

node B in the stem graph makes slightly more money than node B in the 4-node path, and

there is an intuitive, if somewhat subtle, reason for this: B’s threat over A in the 4-node

path is to negotiate with the comparably powerful node C, while B’s threat in the stem

graph is to negotiate with people who are slightly weaker.

An Unstable Network. A common theme in all the networks we have discussed thus far

is that the negotiations among participants tend to wrap up reliably by the time limit, with

fairly consistent outcomes. But there exist pathological networks in which negotiations tend

to drag out until the very end, with unpredictable individual outcomes for the participants.

To see why this might happen, we consider the simplest of these pathological examples,

depicted in Figure 12.4: three nodes each connected to each other. It is not hard to see what

happens when an exchange experiment is run on the triangle. Only one exchange can be

completed among the three nodes; so as time is running out, two of the nodes — say, A and

B — will be wrapping up negotiations, while the third node (C in this case) is completely

left out and stands to get nothing. This means that C will be willing to break into the A-B

negotiations up to the very end, o�ering an exchange to either of these nodes in which they

get almost everything as long as C can get a small amount. If this happens — say that C

breaks up the A-B negotiations by o�ering highly favorable terms to A — then there will be

a di�erent node left out (B in this case), who will in turn be willing to o�er highly favorable

terms to get back in on an exchange.

This process, by itself, would cycle indefinitely — with some node always left out and

Question: For those who aren’t volunteers – What solution will we
converge to? As we go through the game, do you notice anything?
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Do all experiments converge in a consistent manner?
In simple networks, each round tends to come to consistent outcomes
within the specified time limits.

However, there are networks where this is not the case. Consider the
following triangle graph:
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a di�erent node left out (B in this case), who will in turn be willing to o�er highly favorable

terms to get back in on an exchange.

This process, by itself, would cycle indefinitely — with some node always left out and

Question: Notice anything?

Any two of the nodes can wind up excluding the other. Hence we would
expect that the final outcome in any round will be determined by the two
nodes who get to settle just before the time deadline.
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A mathematical perspective: The Nash Bargaining
Solution

We would like to model the pure 1-exchange experiments (with
anonymous participants)

First, we would like to understand which outcomes will be stable. Without
having a stable outcome, we cannot hope for participants to converge in
any consistent way.

Conversely, we would expect that over enough rounds, participants would
learn to converge to a stable outcome. Stable outcomes are equilibria and
like most games, there can be many stable outcomes for a network
exchange process.

John Nash (the same Nash who showed that all finite games have mixed
equilibria) introduced a specific stable outcome, the Nash Bargaining
Solution.
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Outcomes

We first define an outcome for the network exchange social experiment
where every edge is worth 1$:

An outcome in a network exchange process on a graph G = (V ,E ) is a
pair (M, v) where M ⊆ E is a matching and the value function
v : V → [0, 1] satisfies:

For every edge e = (x , y) ∈ M, vx + vy = 1.
If a node x ∈ V is not part of the matching M (i.e. does not appear
as a vertex in any edge (x , y) ∈ M), then vx = 0.
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Stable outcomes

In a stable outcome, no agent (i.e. node) x can propose to an adjacent
agent y , an offer that would improve both of their current outcomes.

Stable Outcomes

An outcome (M, v) for a network exchange process is stable if for every
edge e = (x ′, y ′) ∈ E \M, vx ′ + vy ′ ≥ 1.

Since we are assuming that each edge has exactly one $ on each edge,
clearly vx + vy = 1 for each edge (x , y) ∈ M, the matching.

Suppose vx ′ + vy ′ < 1 for an edge (x ′, y ′) /∈ M. Then the matching is
unstable as there is a surplus of s = 1− vx ′ − vy ′ that can be shared
between x ′ and y ′ and there is no reason for them not to share this surplus
and increase both their values.
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Which stable outcome?

Stable solutions are necessary but there can be many stable solutions and
some are more natural (in the sense of corresponding to real behaviour)
than others.
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Mon. Mar 18th: Announcements & Corrections

Assignment 2 is due Thu Mar 21

Draft of critical review due Fri Mar 22 on PeerScholar

You can access PeerScholar via the Quercus Assignment tab
▶ Your individual peer reviews will be submitted via the same

assignment! So make sure you’re in the right group

An oversight from last week: Naming the Nash Bargaining Solution!
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Which stable outcome? Nash Bargaining Solution

Suppose (x , y) ∈ M. What if x and y have other options other than
to be in a given matching?

▶ Suppose that x and y has the “outside options” of ox and oy
respectively

▶ Then ox + oy ≤ 1 or else (x , y) could not be in a stable matching
⋆ Why?

Either x or y would be better off taking their outside option

The Nash bargaining solution would be to keep (x , y) in the matching and
equally divide up any surplus from the outside options:

i.e., if s = 1− ox − oy , then set:

▶ vx = ox +
s
2 =

ox+1−oy
2

▶ vy = oy +
s
2 =

oy+1−ox
2

Hence we get vx + vy = 1, with (x , y) in the matching.
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Why extreme outcomes are not real outcomes

As stated earlier in this chapter, in the three node path example, the
theory thus far would predict that B will obtain the entire $. But we are
told that in experiments, more typically B gets a fraction 5

6 and one other
node gets a fraction 1

6 .

This can be explained once we understand that individuals (i.e., real
people) are not driven solely by monetary payments. The “real value” to
an individual may include some notion of fairness, pride, etc. When we
consider these factors, we can see why in these experiments, extreme
solutions (which sometimes are the only theoretically stable solutions) are
not the actual outcome.

In the following ultimatum game, we can perhaps better understand why
participants tend to think beyond monetary rewards.
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Another network exchange game: the so-called
“Ultimatum Game”
We again are considering how two individuals divide a $. But now we have
the following experiment:

One person (say A) is given one $ and is told to propose a division of
it to person B.

Person B is then given the option of accepting the share offered or
rejecting the offer.

If B accepts, the game is over with the division as given by A

If B refuses then each person gets nothing.

This is a one-shot experiment between people who do not know each
other. What do we expect to happen?

Now in strictly monetary terms, person B should accept any offer (even a
$.01). But this is not what happens in experiments. In experiments, A
tends to offer B about one third of the $. Why?
Aside: The Ultimatum Game is a little like the “I cut-you choose 2-person
cake cutting algorithm” which ensures “fairness”
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Not all stable outcomes are “natural”
As we stated, there can be many stable outcomes for a given network. But
some do not appear as natural as others and, in particular, stable
outcomes can be “extreme solutions” that do not represent what we
believe to be more realistic. Which of the following stable outcomes might
be more expected “in practice”?358 CHAPTER 12. BARGAINING AND POWER IN NETWORKS
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outcomes on the 4-node path: when the matching consists of the two outer edges, then any

way of dividing the value on these edges so that B and C cumulatively get at least 1 will be

stable.

To summarize, while stability is an important concept for reasoning about outcomes of

exchange, it is too weak in networks that exhibit subtle power di�erences. On these networks,

it is not restrictive enough, since it permits too many outcomes that don’t actually occur.

Is there a way to strengthen the notion of stability so as to focus on the outcomes that are

most typical in real life? There is, and this will be the focus of the next section.
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Balanced outcomes

It turns out that the 1
3 ,

2
3 split between A and B and also between C and

D is what happens more in experiments and can be considered “more
natural” in the following way.

The equal 1
2 split amongst all parties does not reflect the relative much

better bargaining position of B and C . In contrast, the 1
4 ,

3
4 split between

A and B and also between C and D, seems to be giving B and C too
much power given what we have been saying about how humans behave
when taking say fairness, pride, etc into account.

Can we give a mathematical explanation for why the 1
3 ,

2
3 split should be a

likely outcome?

It turns out that the 1
3 ,

2
3 split is the Nash Bargaining solution which we

argued seemed like a fair way to divide up surpluses.

41 / 45



Balanced outcomes

It turns out that the 1
3 ,

2
3 split between A and B and also between C and

D is what happens more in experiments and can be considered “more
natural” in the following way.

The equal 1
2 split amongst all parties does not reflect the relative much

better bargaining position of B and C . In contrast, the 1
4 ,

3
4 split between

A and B and also between C and D, seems to be giving B and C too
much power given what we have been saying about how humans behave
when taking say fairness, pride, etc into account.

Can we give a mathematical explanation for why the 1
3 ,

2
3 split should be a

likely outcome?

It turns out that the 1
3 ,

2
3 split is the Nash Bargaining solution which we

argued seemed like a fair way to divide up surpluses.

41 / 45



Balanced outcomes

It turns out that the 1
3 ,

2
3 split between A and B and also between C and

D is what happens more in experiments and can be considered “more
natural” in the following way.

The equal 1
2 split amongst all parties does not reflect the relative much

better bargaining position of B and C . In contrast, the 1
4 ,

3
4 split between

A and B and also between C and D, seems to be giving B and C too
much power given what we have been saying about how humans behave
when taking say fairness, pride, etc into account.

Can we give a mathematical explanation for why the 1
3 ,

2
3 split should be a

likely outcome?

It turns out that the 1
3 ,

2
3 split is the Nash Bargaining solution which we

argued seemed like a fair way to divide up surpluses.

41 / 45



Balanced outcomes

It turns out that the 1
3 ,

2
3 split between A and B and also between C and

D is what happens more in experiments and can be considered “more
natural” in the following way.

The equal 1
2 split amongst all parties does not reflect the relative much

better bargaining position of B and C . In contrast, the 1
4 ,

3
4 split between

A and B and also between C and D, seems to be giving B and C too
much power given what we have been saying about how humans behave
when taking say fairness, pride, etc into account.

Can we give a mathematical explanation for why the 1
3 ,

2
3 split should be a

likely outcome?

It turns out that the 1
3 ,

2
3 split is the Nash Bargaining solution which we

argued seemed like a fair way to divide up surpluses.

41 / 45



What is a balanced outcome?

Balanced outcomes

An outcome (M, v) is balanced if for every edge in the matching M, the
split of money {vx} is the Nash bargaining solution for each node x , given
the (best) outside options for each node.

Fact: For every exchange network with a stable outcome, there exists a
balanced outcome.
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Balanced and unbalanced outcomes for the four
node path358 CHAPTER 12. BARGAINING AND POWER IN NETWORKS
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outcomes on the 4-node path: when the matching consists of the two outer edges, then any

way of dividing the value on these edges so that B and C cumulatively get at least 1 will be

stable.

To summarize, while stability is an important concept for reasoning about outcomes of

exchange, it is too weak in networks that exhibit subtle power di�erences. On these networks,

it is not restrictive enough, since it permits too many outcomes that don’t actually occur.

Is there a way to strengthen the notion of stability so as to focus on the outcomes that are

most typical in real life? There is, and this will be the focus of the next section.
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Checking that the balanced outcome is the Nash
Bargaining solution
Let’s check that the balanced outcome is indeed the Nash Bargaining
solution.
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Why is the best outside option for B (and similarly for C ) equal to 1
3?

B has the option of offering 2
3 (or maybe 2

3 + ϵ for some small ϵ > 0) to
entice C to leave its current match with D. Therefore, B can receive at
most 1

3 − ϵ. Of course, A has no outside option so we we can calculate
that surplus for the matched edge (A,B) is s = 1− oA − oB = 2

3 and
hence the Nash bargaining solution would be:

vA = oA + s
2 = 0 + 1

3 = 1
3

vB = oB + s
2 = 1

3 + 1
3 = 2

3
which is consistent with the balanced outcome.

Similarly, C and D follow the Nash Bargaining solution.
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Recap

With practice & review, you’ll be able to:

Define Mitochondrial Eve
▶ Define the Wright-Fisher single-parent ancestry model (Ch 21.7)
▶ Prove an estimation of time to convergence (Ch 21.8B)

Define and reason about stability, with respect to bargaining in a
Network Exchange Model

▶ Explain power in the network exchange social experiment, from
structural and non-structural factors (Ch 12.1-12.3)

▶ Define stable outcomes (Ch 12.7), and determine if an outcome is
stable

▶ Define the Ultimatum Game (Ch 12.6), and explain how it compares to
bargaining

▶ Define balanced outcomes (Ch 12.5, 12.8), and determine if an
outcome is balanced
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