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Mon. Feb 12th: Announcements & Corrections

Mid-course evaluation now available on Quercus
▶ Anonymous, 5-10 minutes, open until Feb 23
▶ I really appreciate knowing how things are going, and how to do better

:)

Assignment 1 is due this Thursday :(
▶ ... but it’s reading week after that :)
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This week’s high-level learning goals

Define the power law distribution and Zipf’s law, and explain the
similarities and differences

▶ Recall the dynamics that often give rise to power laws, give examples,
and debate whether they apply to a given scenario

Define the Kumar et al. rich-get-richer model
▶ Explain the connection between the rich-get-richer model and dynamics

that give rise to power laws
▶ Recall the expected distribution, and explain the relevant parameters of

the model

Summarize the Salganik et al. music popularity experiment

Explain the problem of ranking web results
▶ Explain the hubs and authorities algorithm, and execute on examples
▶ Explain the (scaled) Page rank algorithm, and execute on examples
▶ Describe high-level proof-sketches of their convergence
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Roadmap: where we have been and whats next

Chapter 20 started off with a discussion of the small worlds phenomena
and an insightful understanding of how decentralized search can work.

Previously, we were led to the observation that geographical distance (or
social distance) correlates with friendship such that Prob[v is a friend of u]
≈ [ranku(v)]

−1.

Furthermore, there is a sense that long distance friendships are “rare”.

We even saw a claim (by Oscar Sandberg) that decentralized search might
implicitly be a partial explanation of network dynamics and structure

We have seen earlier (Chapters 3 and 4) how selection (i.e. homophily in
the sense of ”birds of a feather flock together”) causes friendship links.
Chapter 5 also relates to how links can form or change to achieve
structural balance.

This week we will be building on these ideas.
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Power law distributions

A power law distribution for discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c . (We often just focus on on
the exponent c .)

Closely related (and sometimes used interchangeably) is Zipf’s Law, which
relates the frequency, f (i.e. count) of something with it’s rank, r .

r = 1 being the most frequent, r = 2 being the second most frequent,
and so on.

A phenomena satisfies Zipf’s Law when:

f ≈ a

r c

for some constants a and c
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Why care about power laws?

Chapter 18 calls attention to the fact that power law distributions
often occur in network and natural phenomena.

We’ve already seen power laws emerge in the probability of friendship
forming with respect to both distances, and ranks

Where else do they appear?
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Zipf’s law in text
In any book, let w be a word within. If we calculate it’s frequency fw
(i.e. number of occurrences in the text) and it’s rank rw (i.e. is the
word the first, second, ... nth most common word in the book) then
we find that fw ∝ 1/rw (or equivalently, log fw ≈ − log rw + C )

[Image By SergioJimenez - Own work, CC BY-SA 4.0, link]
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Power law in text

[Image from Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise by Manfred Schroeder]
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Zipf’s law in population centres
Similarly, if we consider cities t and let ft be the population of a city,
and rt be the city’s rank by population, we have ft ≈ a/rt

(1) ln Rank 5 10.53 2 1.005 ln Size,
(.010)

where the standard deviation is in parentheses, and the R2 is .986.
The slope of the curve is very close to 21. This is an expression of
Zipf ’s law: when we draw log-rank against log-size, we get a
straight line, with a slope, which we shall call z, that is very close3

to 1. In terms of the distribution, this means that the probability
that the size of a city is greater than some S is proportional to 1/S:
P(Size . S) 5 a/Sz, with z . 1. This is the statement of Zipf ’s law.4

3. In fact, the regression above is not quite appropriate. Indeed, Monte-Carlo
simulations show that it understates the true z by .05 on average, and understates
the standard deviation on the estimate, which is around .1. But even given those
minor corrections, the estimates of z all remain around 1. See Dokkins and
Ioannides [1998a] for state-of-the-art measurement of z.

4. There are slight variations on the expression of Zipf ’s law. The most
common one is the ‘‘rank-size rule,’’ which subsection III.4 discusses. Its expression
is less convenient than the above probabilistic representation. Also, Gell-Mann
[1994, p. 95] proposes the modification P(Size . S) 5 a/(S 1 c)z, where c is some
constant. This paper sticks to the traditional representation (with c 5 0) of Zipf ’s
law, for two reasons. First, there is an immense empirical literature that studies
this representation. Second, theory turns out to say that the representation with
the constant c 5 0 is the one we should expect to hold.

FIGURE I
Log Size versus Log Rank of the 135 largest U. S. Metropolitan Areas in 1991
Source: Statistical Abstract of the United States [1993].

QUARTERLY JOURNAL OF ECONOMICS740

Page 740
@xyserv1/disk4/CLS_jrnlkz/GRP_qjec/JOB_qjec114-3/DIV_076a05 tres

[Image from Gabaix, 1999]
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Power laws in websites and products

Power laws also arise in the popularity of websites and commercial
products

for both the indegree and outdegree distributions. However,
as the time periods get shorter, the curves for both in degrees
and out degrees are steeper.
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Fig. 6: Temporal changes in the in-degree distributions in
TREC.
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Fig. 7: Temporal changes in the out-degree distributions in
TREC.

4.2 Connectivity
In section 3.3, we found that both the BlogPulse and TREC
samples have large weakly connected components, but rela-
tively small strongly connected components, with the TREC
sample showing better connectivity than BlogPulse, in spite
of BlogPulse having larger average degree. The dynamics in
the connectivity of blog subgraphs over different time win-
dows is shown in Table 2. As time goes on, both the size of
the largest weakly connected component and the size of the
largest strongly connected component grow larger, and thus

the connectivity is increasing. It can also be observed that
the weakly connected component is formed earlier and grows
more rapidly. In contrast, it takes a much longer period for
the strongly connected component to form; however, after a
certain period of time, the growth of the largest weakly con-
nected component is relatively stable near 100% of the net-
work, while the largest strongly connected component con-
tinues to grow.

4.3 Clustering coefficient and reciprocity
Next we examine the temporal changes in reciprocity and the
clustering coefficient. Our experiments show that the values
of reciprocity of the links from the first 10 days to the first
40 days are 2.88%, 3.85%, 3.84% and 4.12%. We can see
that except for the shortest time period, all the other val-
ues are bigger than in the 3-weeks of BlogPulse (reciprocity
of 3.29%) but smaller than in the entire 11-weeks of TREC
(reciprocity of 4.98%) . This indicates that reciprocity grows
with time, because blogs have a longer opportunity to recip-
rocate. It also demonstrates that reciprocal links are still
extremely sparse.

The clustering coefficients from the first 10 days to the
first 40 days are 0.034, 0.043, 0.046 and 0.052. All of them
are smaller than the clustering coefficient in both BlogPulse
(0.0632) and TREC over the full time period (0.0617). So we
know that although longer time would increase the clustering
coefficient, it may depend more on the density of the sample.

4.4 Densification law
Leskovec et al. [19] described the densification law prevalent
in many networks: the number of edges grows superlinearly
in the number of nodes over time: e(t) ∝ n(t)α. For example,
in the Internet, there are new routers appearing and at the
same time the number of connections per router is increas-
ing, and the densification exponent is α = 1.18. In patent
networks, all the links are added from a patent at the time
it is inserted into the network. The densification exponent is
α = 1.66. But in our network, probably most of the blogs
already existed before the beginning of the crawl (it would
be interesting to repeat the analysis with new blogs appear-
ing). During the crawl, as more and more links are added
into the network, originally isolated blogs start connecting to
each other. The number of edges, shown in Figure 8 is in-
creasing nearly quadratically with the number of nodes (α =
1.928). This relatively large value tells us that the densifica-
tion of a crawled blogosphere with a static set of blogs is a
faster process than some other networks such as the Internet
and patent networks.

5. Blogs in blog hosting sites
Another way of understanding the blogosphere is by analyz-
ing it through different blog hosting sites. Currently, the
four largest blog hosting sites are LiveJournal, BlogSpot,
Xanga and MSN. They are also the largest four in the Blog-
Pulse dataset, as shown in Table 3. In the table, “all links”
either originate from or terminate at a blog at the specific blog
hosting site; “in links” originate outside of the blog hosting
site, but terminate within it; “out links” point from within
the hosting site to an outside blog; “internal links” lie be-
tween blogs within the hosting site. All these links occur only
within entries, and no links of other forms, such as blogrolls,
comments, etc. are included The table also lists in italic
the corresponding numbers of blogs and links after remov-

[Image from Shi et al.]

Empirically, in the web network (i.e. an information network), the
probability that a site will have k in-links is proportional to k−2.
(More precisely, proportional to k−(2+ϵ) for some ϵ > 0.
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Power law distributions

Why are power laws so prevalent?

Power law distributions in social and information networks often arise
from coupled or correlated individual decisions

▶ e.g., the popularity of certain books or cities, occurrences of specific
words in a natural language, etc...

▶ We’ll be considering the frequency of in-links to web sites in more detail

Consequence: Events may be less rare then they appear at first glance

Key takeaway: extreme events (e.g., for a site to have very many
in-links) is not so rare when compared with what would be predicted
by independent decisions.
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How rare is rare when compared with averages over
independent actions?

What if people chose where to live independent of the city? What
would be (the distribution of) the population of cities?

What if we all independently chose to read books not dependent on
current events or what friends (or an online system) recommended?
How rare would it be to have a huge best seller?

What, if each web site chose their out-links independently and
without some underlying dynamics to guide the process?

As is well understood, the Central Limit Theorem tells us that “a
quantity that can be viewed as the sum (or average) of many small
independent random effects will be well-approximated” by a normal
distribution.
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The normal distribution
The normal or Gaussian distribution has the following probability density
function:

f (x) =
1√
2πσ2

e−
1
2(

x−µ
σ )

2

As we know, normal distributions have a bell shaped curve.

Normal&Distribution

• Normal&(or&Gaussian)&
distribution&(bell&curve).
• Ubiquitous&in&Nature.

• Characterized&by&mean&! and&
standard&deviation&σ

!Probability&of&seeing&a&specific&&
sample&average&decreases&
exponentially with&distance&from&
mean&!.
!very&large,&or&very&small&
numbers&are&extremely&unlikely.

7

From:&http://www.answers.com/topic/normal0distribution
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So how rare is rare?
In a normal distribution, the probability of an outlier (i.e. an
exceptional event) decreases exponentially with distance from the
mean

▶ If in-links followed a normal distribution, then the probability that a
given site would have k links would decrease exponentially in k

▶ Very small or large “outliers” would be highly improbable

How improbable? Let’s compare Prob[k in-links] ≈ k−2 (power law) with
Prob[k in-links] ≈ 2−k (exponential decay):

k = 2:
▶ (2)−2 = 1/4
▶ 2−2 = 1/4

k = 30
▶ (30)−2 = 1/900
▶ 2−30 ≈ 1/109

One in a billion vs better than 1 in a 1000!
▶ Note: These are not probabilities (we’re missing the normalizing

constants)
▶ However, they illustrate the difference in the rate of decay
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So where are we going?

As we have mentioned before, one of the most fundamental questions for
social networks concerns how they evolve. What is the interplay between
selection and influence?

This is a difficult question! Perhaps the dynamics of information networks
created by individuals can be better understood than the dynamics of
friendships, political affiliations, opinion formation, etc...

We will see a network dynamic that leads to a power law distribution.
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Recap

Power Laws
▶ Definition
▶ Zipf’s law
▶ Dynamics that often give rise to power laws
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A power law distribution and network dynamics

A power law distribution for a discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c

▶ We often just focus on on the exponent c and say that
Prob[X = k] ∝ k−c

Having observed power law distributions emerge from events in social
and information networks (e.g., website in-links), the big question is
how this happens

▶ We saw that it could not evolve from independent decisions that have
averaged out; therefore it must arise from correlated decisions

Kumar et al [2000] proposed a preferential attachment model that
can explain the power law distribution

▶ Recall, the observed distribution of in-links is:
Prob[a site has k in-links] ∝ k−(2+ϵ) for a small ϵ > 0
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A “rich get richer model” for in-links on the Web
Here is the model proposed in Kumar et al article:

1 Web pages are created sequentially, and named 1, 2, . . .N.
(Of course, N keeps growing but we are looking at the web at some
point in time)

2 When the j th page is created, we choose a page i < j uniformly at
random. Next:

▶ With probability p, page j links to page i
▶ Otherwise, page j links to the page (say k < i) to which i has a link
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Aside

The full model by Kumar et al. is more general: specifically, multiple
links from page j are created in the full model

Our simplified model only creates one link

Despite this, the power law exponent does not change
▶ The key parameter is p – whether or not we’re linking to a page

selected uniformly at random
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The linking model continued

There is an equivalent way to frame the indirect linking that highlights the
“rich get richer” preferential attachment phenomena.

Original rule: Select a prior page, i , uniformly at random. With
probability p link to i , otherwise link to the node pointed to by i ’s
outgoing link

Equivalent rule:
▶ With probability p, page j links to a page ℓ < j , chosen uniformly at

random
▶ Else, page j links to the page ℓ < j with probability proportional to ℓ’s

current number of in-links

This is, of course, the idea behind popularity!

e.g., the more people that are reading a current novel, the more likely
that you might want to read it

For various social and economic reasons why some large cities
continue to grow.
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The linking model continued

Equivalent rule:
▶ With probability p, page j links to a page ℓ < j , chosen uniformly at

random
▶ Else, link to the page ℓ < j with probability proportional to ℓ’s current

number of in-links

Note: For q := 1− p, the as p → 0 (and q → 1), pages are more likely to
copy the same previous pages and the more likely that the process is
creating some popular pages

Hedge: As the text states clearly, the goal of this model is not to capture
all the reasons why people create links on the Web (or links in other
networks) but rather to explain why it is reasonable to expect power laws
to arise from such popularity phenomena.
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An informal analysis for the simplified preferential
attachment model proposed for Web in-links

A precise analysis of even the simple one link per page preferential
attachment model is technical.
There is a heuristic argument that shows how the power law exponent is
determined by the probability p (of the j th page linking uniformly at
random)

While we often discretize continuous processes, it is often advantageous to
model a sequence of discrete events as a continuous process

Specifically, we’ll consider a continuous deterministic variable xℓ(t), that
approximates the discrete random variable Xℓ(t), the number of in-links to
a page ℓ at time t ≥ 0.
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The deterministic continuous model
Let Xℓ(t) is the number of in-links to a page ℓ at time t ≥ 0

▶ Xℓ(t) is a discrete random variable

We will create a continuous deterministic variable xℓ(t), that
approximates Xℓ(t)
Assuming that page ℓ is added at time ℓ, then Xℓ(ℓ) = xℓ(ℓ) = 0.

▶ the soonest a link to ℓ can be added is at ℓ+ 1

In the discrete model, for t ≥ ℓ, the probability that the number of
links to a page ℓ increases at time t + 1 is:

p
1

t
+ q

Xℓ(t)

t

For t ≥ ℓ, and the corresponding continuous model obeys the
differential equation:

dxℓ
dt

= p
1

t
+ q

xℓ(t)

t

From some basic calculus (see Ch 18.7) this leads to a power law
distribution proportional to k−c with c = 1 + 1/q
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The deterministic continuous model

[Fig 18-2 in E&K]

As p → 0, the exponent c = 1 + 1/q limits to the observed exponent
c = 2 + ϵ for the observed in-link power law distribution

As p → 1, the exponent limits to ∞ making a large number of
in-links very unlikely.
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Wed. Feb 14th: Announcements & Corrections

A0 marks are out

A1 due tomorrow

Please do fill out the mid-course evaluation :)

Critical review groups & paper choices due by Fri Mar 1 (email me)

Midterm will be Fri Mar 8 (make up test on Fri Mar 15)
▶ Covers up to the end of this week’s slides (we might finish covering

PageRank next lecture)

Reading week next week
▶ Try and get some rest! I’ve tried to avoid making things due right after

reading week :)
▶ No regularly scheduled office hours in reading week; but I’m available

by appointment – email me :)

Happy Valentines day!
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Aside: Open Questions
It’s worth noting that although the preferential attachment model
suggests that popularity phenomena lead to power laws, it still cannot
explain all the examples we saw

c = 1+1/q ∈ [2,∞), yet in text and cities the observed exponent is 1

[Figure from Piantadosi (2014)]

Piantadosi (2014)’s prompt was “An alien space ship crashes in the
Nevada desert. Eight creatures emerge, a Wug, a Plit, a Blicket, a
Flark, a Warit, a Jupe, a Ralex, and a Timon. In at least 2000 words,
describe what happens next”; observed is c = 0.31

24 / 66



Aside: Open Questions
It’s worth noting that although the preferential attachment model
suggests that popularity phenomena lead to power laws, it still cannot
explain all the examples we saw

c = 1+1/q ∈ [2,∞), yet in text and cities the observed exponent is 1

[Figure from Piantadosi (2014)]

Piantadosi (2014)’s prompt was “An alien space ship crashes in the
Nevada desert. Eight creatures emerge, a Wug, a Plit, a Blicket, a
Flark, a Warit, a Jupe, a Ralex, and a Timon. In at least 2000 words,
describe what happens next”; observed is c = 0.31

24 / 66



Sensitivity to unpredictable initial stages in network
dynamics

It is never clear why say some “pop” singers become so popular while
other (perhaps of equal talent) never “make it”

▶ Clearly, the initial stages of a dynamic process are critical and that is
why advertising, promotions, etc. are so important

How can we better understand the impact of the randomness in the
initial stages of a dynamic process?

▶ if we could replay history many times, we would expect the resulting
distribution to be the same

▶ But would the same books, the same movies, the same pop stars, the
same web pages, etc continue to be the most popular?

Intuition suggests there is considerable “luck” in exactly who or what
becomes popular; yet we also believe that “quality” is also important

How can we rewind history”, to try and find out?
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An experiment to “rewind history”

Although we can’t rewind history, Salganik et al perform an interesting
experiment (in fact, two experiments at different times with different
participants) to observe the impact of the initial random stages in a
dynamic process. (the article is available on the course website).
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The Salganik et al experiment
Here is their experiment:

They created 9 copies of a music streaming site with 48 “obscure”
(as determined by some experts) songs of varying “quality”

Approximately 7200 young participants were recruited to listen to the
music, knowing only the name of the band and the song.

In each of the copies, participants sequentially listened to some music
selections, rated the music and then were given the opportunity to
download copies of songs they liked.

In 8 copies of the site (each with 10% of the participants), they were
also given the number of times each song had been previously
downloaded.

In the 9th version, this previous history of downloads was not provided
to the remaining 20% of the participants. The average of the ratings
(from 1 = “I hated it” to 5 = “I loved it”) in this “no influence”
version determined the “true” song “quality”.

The experiment was then repeated, with the 8 site copies displaying
songs sorted by downloads instead of randomly
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The findings in the Salganik experiment

The experiment was designed to measure the extent that social influence
leads to different outcomes in the “success” (i.e. the number of
downloads) of a particular song

Simply stated, the results show that:

Increasing the strength of social influence (by sorting songs by
downloads) increased both the inequality (i.e. degrees of popularity)
and unpredictability (i.e., relation to quality) of success

However, quality was also a factor: the best rated songs rarely did
poorly and the the worst songs rarely did well.

As I said, this is an interesting study and one where the authors carefully
try to eliminate sources of bias. The article is worth reading.

As the text points out in section 18.6, how recommendation systems are
designed can impact how people make choices, leading to increased “rich
get richer” phenomena, or alternatively exposing people to less popular
items.
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Visualizing the long tail of a power law distribution
Once we accept a power law nature of popularity, it is instructive to
consider the consequences for a given industry

▶ Consider that the nature of the sales curve that would be dictated by a
power law distribution

The shape of the long tail in a power distribution raises the question as to
how many sales can be obtained from less popular (e.g. niche items).18.5. THE LONG TAIL 553

j

k

number of books

sales 

volume

The j-th most popular 

book has sold k 

copies.

Figure 18.4: The distribution of popularity: how many copies of the jth most popular item
have been sold?

considering; but while we won’t go through the derivation here, it’s possible to show that if

the original function was a power-law, then this new one is too. We show a schematic plot

of this new function in Figure 18.3; if we’re talking about the popularity of some item like

books, then a point (k, j) on this curve means, by definition, “There are j books that have

sold at least k copies.”

So far, this is still the conceptual view from the previous section: as we follow the x-axis

of the curve to the right, we’re essentially asking, “As you look at larger and larger sales

volumes, how few books do you find?” To capture the discussions of the Long Tail more

directly, we want to be asking the following question as we follow the x-axis to the right:

“As you look at less and less popular items, what sales volumes do you see?”

If we think about it, this simply involves switching the two axes. That is, suppose that

we plot exactly the same curve, but we interchange the roles of the x- and y-axes, as shown

in Figure 18.4. Interpreting this new curve literally from its definition, a point (j, k) on the

curve says, “The jth most popular book has sold k copies.” This is exactly what we want:

we order the books by “sales rank,” and then we look at the popularity of books as we move

out to larger and larger sales ranks — into the niche products.1 And the characteristic shape

of this curve, tailing o� slowly downward to the right, is the visual basis for the term “Long

Tail.”

One can now easily discuss trends in sales volume, and their consequences, in terms of

the curve in Figure 18.4. Essentially, the area under the curve from some point j outward is

1Our notion of “sales rank” simply reflects the sorted, decreasing order of all items by sales volume. When
the term “sales rank” is used by on-line retailers such as Amazon, it tends to be a more complex measure
that incorporates other factors as well.

Figure: [Fig 18-4 in E&K] text; how many copies of the j th most popular items
have been sold.
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Recap

Power Laws
▶ Definition
▶ Zipf’s law
▶ Dynamics that often give rise to power laws

Rich-get-richer model

Salganik et al. music popularity experiment
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Search and ranking on the Web

Our next topic is to understand how the popularity of a web page is
determined and how that impacts its rank in the responses to a query.

But first, how do search engines find and rank responses to a query?

The specific algorithms used by search engines such as Bing and Google is
a trade secret. To some extent this has to be kept secret as there is always
a “war” between a search engine and companies that create web sites to
enhance the ranking of a site.

However, we do have a basic idea as to how these search engines rank
sites given a query. In fact, at the most elementary level, the main idea is
an old one.

Aside: In the 1960s and 70s, there was a basic argument as to whether
online search and ranking was a more or less normal algorithmic search
and optimization problem or one that required “intelligence” (i.e. the
ability to understand natural language). Who won this argument?
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Search and ranking of Web documents; the role of
link popularity

The most basic approach is to treat a document as a bag of words and
then use “normalized” word counts (and pairs,triplets of words) to identify
and rank documents relating to the query. This became enhanced by more
sophisticated contextual aspects of word occurrences, etc and today
machine learning algorithms are also used in classifying a search query.

But early in the development of popular search engines, a popularity
aspect was added where the ranking of a document also depended on the
link structure and the popularity of a Web page in the Web network (or at
least in that part that seems relevant to the query).

Two algorithms were independently proposed for determining the
popularity of a Web page, namely Hubs and Authorities developed at IBM,
and Page Rank, developed and integrated into Google’s search engine.
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Link analysis and page popularity

Neither Hubs and Authorities nor Page Rank use link in-degree as the
popularity measure but link analysis is (or at least was) used to determine
page popularity. Currently, it seems clear that popularity also depends on
recent behaviour of users to related queries.

We will not try to infer more precisely how say Google (or any search
engine) precisely determines the ranking of a document in response to a
query. In particular, we do not know how much page ranking depends on
content vs link analysis. But we do know that this ranking is essential in
determining how often a page will be downloaded. The quality of the
ranking algorithm leads to user activity and thus the resulting advertising.

We will begin with the Hubs and Authorities ranking algorithm and then
the Page Rank algorithm.
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Hubs and Authorities

A simple way to utilize links to rank web pages would be to think of
each link from A to B as an endorsement or vote by A for B.

Question: Assuming it’s tractable, then what’s wrong with just
counting the number of in-links?

If we use the number (or weight) of endorsements to determine rank,
then one would have to adjust such scores coming from say the same
domain name.

Even after adjusting for such “vote fixing”, there are problems
▶ if Wayne Gretzky has a web site with a link suggesting where to buy

hockey equipment, that should be more meaningful than my
recommendation about hockey equipment

Spoiler alert: I don’t play or watch hockey
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Reinforcement of Hubs and Authorities.

This then becomes the motivation (and seemingly circular reasoning)
behind hubs and authorities:

▶ The best “authorities” on a subject (places to buy equipment) are
being endorsed by the best “hubs” (people who know where to buy
equipment)

▶ Similarly, the best hubs are those sites that recommend the best
authorities

▶ Conceptually the link structure induces a bipartite graph, however the
same web page can be both a hub and an authority

Comment: The word “authority” is not generally an accurate way to
describe high ranking documents. These might better be referred to
(barring other information) as the most relied upon sites. This is also
different from “the most popular” sites which might better be
measured in terms of the number of clicks being received. Hubs then
are the most reliable endorsers.
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Hubs & Authorities procedure

The hubs and authorities procedure is as follows:
▶ Initialize each node’ hub value to some positive number (perhaps

depending on usage or content)

▶ For sufficiently large k , repeat the following k times
1 Apply authority update rule to each page, p (i.e., set the authority

value to the sum of the hub values of the nodes endorsing the page p)
2 Apply hub update rule to each page, p (i.e., set the hub value to the

sum of the authority values of the nodes endorsed by the page p)
3 Normalize so that sum of A weights is 1 and sum of H weights is 1.
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The result of applying the authority update rule with all hub values
initially 1: for each page p, auth(p) is the sum of hub values (initially
just the number) of hubs pointing to p.

400 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH
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Figure 14.1: Counting in-links to pages for the query “newspapers.”

A List-Finding Technique. It’s possible to make deeper use of the network structure

than just counting in-links, and this brings us to the second part of the argument that links

are essential. Consider, as a typical example, the one-word query “newspapers.” Unlike

the query “Cornell,” there is not necessarily a single, intuitively “best” answer here; there

are a number of prominent newspapers on the Web, and an ideal answer would consist of a

list of the most prominent among them. With the query “Cornell,” we discussed collecting

a sample of pages relevant to the query and then let them vote using their links. What

happens if we try this for the query “newspapers”?

What you will typically observe, if you try this experiment, is that you get high scores for a

mix of prominent newspapers (i.e. the results you’d want) along with pages that are going to

receive a lot of in-links no matter what the query is — pages like Yahoo!, Facebook, Amazon,

and others. In other words, to make up a very simple hyperlink structure for purposes of

[Fig 14.1, E&K]

Figure: Counting in-links to pages for the query “newspapers.”
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Then to recalibrate hub values, we use the hub update rule: for each
page p, hub(p) is the sum of values of all authorities that p points to.

14.2. LINK ANALYSIS USING HUBS AND AUTHORITIES 401
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Figure 14.2: Finding good lists for the query “newspapers”: each page’s value as a list is
written as a number inside it.

this example, we’d see something like Figure 14.1: the unlabeled circles represent our sample

of pages relevant to the query “newspapers,” and among the four pages receiving the most

votes from them, two are newspapers (New York Times and USA Today) and two are not

(Yahoo! and Amazon). This example is designed to be small enough to try by hand; in

a real setting, of course there would be many plausible newspaper pages and many more

off-topic pages.

But votes are only a very simple kind of measure that we can get from the link structure

— there is much more to be discovered if we look more closely. To try getting more, we

ask a different question. In addition to the newspapers themselves, there is another kind of

useful answer to our query: pages that compile lists of resources relevant to the topic. Such

pages exist for most broad enough queries: for “newspapers,” they would correspond to lists

[Fig 14.2, E&K]

Figure: Finding good lists for the query “newspapers”: each page’s value as a list
is written as a number inside it.
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Applying the authority update rule again we get figure 14.3.
402 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH
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Figure 14.3: Re-weighting votes for the query “newspapers”: each of the labeled page’s new
score is equal to the sum of the values of all lists that point to it.

of links to on-line newspapers; for “Cornell,” one can find many alumni who maintain pages

with links to the University, its hockey team, its Medical School, its Art Museum, and so

forth. If we could find good list pages for newspapers, we would have another approach to

the problem of finding the newspapers themselves.

In fact, the example in Figure 14.1 suggests a useful technique for finding good lists. We

notice that among the pages casting votes, a few of them in fact voted for many of the pages

that received a lot of votes. It would be natural, therefore, to suspect that these pages have

some sense where the good answers are, and to score them highly as lists. Concretely, we

could say that a page’s value as a list is equal to the sum of the votes received by all pages

that it voted for. Figure 14.2 shows the result of applying this rule to the pages casting votes

in our example.

[Fig 14.3, E&K]

Figure: Re-weighting votes for the query “newspapers”: each of the labeled
page’s new score is equal to the sum of the values of all lists that point to it.
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Since we only care about the relative values of these numbers, both
authority and hub scores can be normalized to sum to 1 (to allow
convergence and avoid dealing with large numbers).
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Figure 14.4: Re-weighting votes after normalizing for the query “newspapers.”

Hub Update Rule: For each page p, update hub(p) to be the sum of the authority

scores of all pages that it points to.

Notice how a single application of the Authority Update Rule (starting from a setting in

which all scores are initially 1) is simply the original casting of votes by in-links. A single

application of the Authority Update Rule followed by a single application the Hub Update

Rule produces the results of the original list-finding technique. In general, the Principle of

Repeated Improvement says that to obtain better estimates, we should simply apply these

rules in alternating fashion, as follows.

• We start with all hub scores and all authority scores equal to 1.

• We choose a number of steps k.

[Fig 14.4, E&K]

Figure: Re-weighting votes after normalizing for the query “newspapers”.
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Keep repeating a good idea
Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

That is, the hubs and authorities procedure is as follows:
▶ Initialize all hub values to some positive vector (perhaps depending on

usage or content)
▶ For sufficiently large k , perform the following k times

1 Apply authority update rule to each page
2 Apply hub update rule to each page
3 Normalize so that sum of A weights and sum of H weights are both 1.

Using linear algebra, it can be shown (in Section 14.6) that these A
and H normalized values will converge to a limit as k → ∞ (which
can be approximated by some sufficiently large k)! The limiting value
is an equilibrium.

Hubs and Authorities can be extended to work for weighted edges
(e,g. weighting links in anchor text, or near a section heading, etc.)

41 / 66



Keep repeating a good idea
Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

That is, the hubs and authorities procedure is as follows:
▶ Initialize all hub values to some positive vector (perhaps depending on

usage or content)
▶ For sufficiently large k , perform the following k times

1 Apply authority update rule to each page
2 Apply hub update rule to each page
3 Normalize so that sum of A weights and sum of H weights are both 1.

Using linear algebra, it can be shown (in Section 14.6) that these A
and H normalized values will converge to a limit as k → ∞ (which
can be approximated by some sufficiently large k)! The limiting value
is an equilibrium.

Hubs and Authorities can be extended to work for weighted edges
(e,g. weighting links in anchor text, or near a section heading, etc.)

41 / 66



Keep repeating a good idea
Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

That is, the hubs and authorities procedure is as follows:
▶ Initialize all hub values to some positive vector (perhaps depending on

usage or content)
▶ For sufficiently large k , perform the following k times

1 Apply authority update rule to each page
2 Apply hub update rule to each page
3 Normalize so that sum of A weights and sum of H weights are both 1.

Using linear algebra, it can be shown (in Section 14.6) that these A
and H normalized values will converge to a limit as k → ∞ (which
can be approximated by some sufficiently large k)! The limiting value
is an equilibrium.

Hubs and Authorities can be extended to work for weighted edges
(e,g. weighting links in anchor text, or near a section heading, etc.)

41 / 66



14.2. LINK ANALYSIS USING HUBS AND AUTHORITIES 405

Wall St. 

Journal

New York 

Times

USA Today

Yahoo!

Amazon

Facebook

.321

.181

.015

.088

.003

.003

.123

limit .199...

limit .304...

limit .205...

limit .043...

limit .042...

.249

SJ Merc 

News

.018

limit .199...

limit .008...

Figure 14.5: Limiting hub and authority values for the query “newspapers.”

• We then perform a sequence of k hub-authority updates. Each update works as follows:

– First apply the Authority Update Rule to the current set of scores.

– Then apply the Hub Update Rule to the resulting set of scores.

• At the end, the hub and authority scores may involve numbers that are very large. But

we only care about their relative sizes, so we can normalize to make them smaller: we

divide down each authority score by the sum of all authority scores, and divide down

each hub score by the sum of all hub scores. (For example, Figure 14.4 shows the result

of normalizing the authority scores that we determined in Figure 14.3.)

What happens if we do this for larger and larger values of k? It turns out that the

normalized values actually converge to limits as k goes to infinity: in other words, the

[Fig 14.5, E&K]

Figure: Limiting hub and authority values for the query “newspapers”.
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Page Rank

The motivation behind page rank is a somewhat different view of how
authority is conferred.

▶ Endorsement of authority is conveyed by other authorities
▶ That is, no hub concept
▶ This is how peer review works in the academic and scholarly world.

Authorities themselves convey authority on those they link to. This
naturally leads to a formulation in terms of two equivalent views of
page rank:

1 Authorities directly conveying authority (without hubs)
2 Authority values resulting from long term behaviour of a random walk

on a graph
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How does Page rank spread authority?
Suppose at any point of time we have relevant authority scores

▶ A page spreads its authority equally amongst all of its out links
▶ If a page has no outlinks then all authority stays there

This redistributes the authority scores. (We are not creating or losing
any authority, only moving it)

We can initially start with every relevant page having authority 1/n
where there are n pages. Then we repeat this process k times for
some sufficiently large k
With the exception of some “degenerate cases” (e.g. the process is
periodic) it can be proven (again using linear algebra) that this
process has a limiting behaviour as k → ∞
The resulting limit values will form an equilibrium
If the network is strongly connected then there is a unique equilibrium.

Remark

In many cases this won’t reflect the desired authority. Namely, if the
network has any sinks which it will surely have, then all of the authority
will pass to such sinks.
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Page rank equilibrium for a network
408 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH
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Figure 14.7: Equilibrium PageRank values for the network of eight Web pages from Fig-
ure 14.6.

Notice that the total PageRank in the network will remain constant as we apply these

steps: since each page takes its PageRank, divides it up, and passes it along links, PageRank

is never created nor destroyed, just moved around from one node to another. As a result,

we don’t need to do any normalizing of the numbers to prevent them from growing, the way

we had to with hub and authority scores.

As an example, let’s consider how this computation works on the collection of 8 Web

pages in Figure 14.6. All pages start out with a PageRank of 1/8, and their PageRank

values after the first two updates are given by the following table:

Step A B C D E F G H
1 1/2 1/16 1/16 1/16 1/16 1/16 1/16 1/8
2 3/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16

For example, A gets a PageRank of 1/2 after the first update because it gets all of F ’s,

G’s, and H’s PageRank, and half each of D’s and E’s. On the other hand, B and C each

get half of A’s PageRank, so they only get 1/16 each in the first step. But once A acquires

a lot of PageRank, B and C benefit in the next step. This is in keeping with the principle of

repeated improvement: after the first update causes us to estimate that A is an important

page, we weigh its endorsement more highly in the next update.

[Fig 14.7, E&K]

Figure: Equilibrium PageRank values for the network of eight Web page.

45 / 66



Where has all the authority gone when we redirect
(F ,A) and (G ,A) edges?

410 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH
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Figure 14.8: The same collection of eight pages, but F and G have changed their links to
point to each other instead of to A. Without a smoothing effect, all the PageRank would go
to F and G.

And it becomes a problem in almost any real network to which PageRank is applied: as

long as there are small sets of nodes that can be reached from the rest of the graph, but

have no paths back, then PageRank will build up there.1 Fortunately, there is a simple and

natural way to modify the definition of PageRank to get around this problem, and it follows

from the “fluid” intuition for PageRank. Specifically, if we think about the (admittedly

simplistic) question of why all the water on earth doesn’t inexorably run downhill and reside

exclusively at the lowest points, it’s because there’s a counter-balancing process at work:

water also evaporates and gets rained back down at higher elevations.

We can use this idea here. We pick a scaling factor s that should be strictly between 0

and 1. We then replace the Basic PageRank Update Rule with the following:

Scaled PageRank Update Rule: First apply the Basic PageRank Update Rule.

Then scale down all PageRank values by a factor of s. This means that the total

PageRank in the network has shrunk from 1 to s. We divide the residual 1 − s

units of PageRank equally over all nodes, giving (1 − s)/n to each.

1If we think back to the bow-tie structure of the Web from Chapter 13, there is a way to describe the
problem in those terms as well: there are many “slow leaks” out of the giant SCC, and so in the limit, all
nodes in the giant SCC will get PageRank values of 0; instead, all the PageRank will end up in the set OUT
of downstream nodes.

[Fig 14.8, E&K]

The same collection of eight pages, but F and G have changed their links
to point to each other instead of to A.

Without “scaling”, all the
PageRank would go to F and G . NetLogo demo time!
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to point to each other instead of to A. Without “scaling”, all the
PageRank would go to F and G . NetLogo demo time!
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How does PageRank spread authority?

Even if the network converges to a unique equilibrium, the equilibrium
may be undesirable

Definition (Sink)

A (typically small) strict subset of the nodes with no outgoing edges that
are reachable from all nodes in the network

Remark

In many cases PageRank won’t reflect the desired authority. Namely, if the
network has any sinks which it will surely have, then all of the authority
will pass to such sinks.
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Scaled page rank

The way around this sink hole of authority is to have a scaled version
of page rank where

▶ only a fraction s of the authority of a page is distributed according to
PageRank

▶ the remaining (1− s) fraction is distributed equally amongst all pages
(including this page!)

Unscaled Page Rank:
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Scaled page rank
The way around this sink hole of authority is to have a scaled version
of page rank where

▶ only a fraction s of the authority of a page is distributed according to
PageRank

▶ the remaining (1− s) fraction is distributed equally amongst all pages
(including this page!)

For any value of s < 1 (which effectively makes the graph strongly
connected), we get convergence to a unique set of scores for each
page and that is its page rank (for that particular value of s). It is
reported that Google used 0.8 ≤ s ≤ 0.9

(See the footnote on page 410 of E&K as to why in the previous
example, nodes F and G will still get most of the authority but that
for realistically large networks, the process works well.
Hint: “bow-tie” structure)

NetLogo demo!
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Mon. Feb 26th: Announcements & Corrections

Welcome back from reading week! I hope you got some rest :)

Consider being a volunteer notetaker! It’s a chance to help a fellow
student, it may help study, and you get recognition for doing so – see
the Quercus announcement for details :)

Critical review project groups & paper choices are due this Friday!

Assignment 1 is being graded, and we hope to get the marks out
before the midterm next week
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Mon. Feb 26th: Announcements & Corrections

Mid-term eval is in: A big thank you to the 4 respondents, and for
the rest hopefully no news is good news :)

▶ In case you were busy but still feedback, the anonymous feedback
survey is always open!

▶ One suggestion: ”Making the practice quizzes worth a small
percentage of grade.”

⋆ We used to have things organized that way, ultimately it was changed
for pedagogical & equity reasons (The quizzes are meant to be
formative feedback so making mistakes should be encouraged instead
of punished, and quizzes with a completion grade risk grading students
on their spare time instead of understanding)

▶ Zoom access is helpful, having slides early is good, & enthusiasm is
appreciated!
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Some additional remarks

The limiting scores for both the authority and hubs approach and the
page rank approach are equilibrium points for an appropriate algebraic
process

That is, if we actually were in the limiting state, we would be in the
equilibrium state. In practice, we can stop the process when the
change in each iteration is sufficiently small

We can weight the network edges (say according to some concept of
link importance) and apply the same authority and hubs or page rank
approach distributing authority in proportion to these weights

51 / 66



Some additional remarks

The limiting scores for both the authority and hubs approach and the
page rank approach are equilibrium points for an appropriate algebraic
process

That is, if we actually were in the limiting state, we would be in the
equilibrium state. In practice, we can stop the process when the
change in each iteration is sufficiently small

We can weight the network edges (say according to some concept of
link importance) and apply the same authority and hubs or page rank
approach distributing authority in proportion to these weights

51 / 66



Advanced material (section 14.6): Handwaving
argument why these processes converge
Both the page rank and hubs and authorities processes can be understood
as a linear transformation

Consider a web network of n pages
▶ We can represent the hub, authority or page rank values at any time k

of the process by an n-dimensional (column) vector, denoted
(respectively) by h(k), a(k), r(k).

Boldface v =< v1, . . . , vn >T represents a vector whose components
are the vj

▶ e.g., r
(k)
j represents the page rank of the j th web page after k steps of

the page rank process

r(1) =< 0.7, 0.3 >T
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Consider a web network of n pages
▶ We can represent the hub, authority or page rank values at any time k

of the process by an n-dimensional (column) vector, denoted
(respectively) by h(k), a(k), r(k).
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(k)
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Advanced material (section 14.6): Handwaving
argument why these processes converge

Let v be any of the hub, authority or page rank vectors

PageRank & Hubs and Authorities can both be viewed as a linear
transformation v(k+1) = Mv(k)

M is an appropriate n × n matrix, whose entries are non negative real
numbers

▶ Why n × n?

We have n webpages, each has a value before & after the
update

Furthermore, there are conditions that will guarantee the convergence
of the process

▶ i.e., when there exists v(∗) = limk→∞ v(k) and when this limit vector
v(∗) is unique and independent of the starting vector v(0)
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Advanced material continued: page rank
convergence

Figure 14.3 of the text illustrates a simple directed graph and the
matrix N that defines the unscaled page rank update process. That
is, r(k+1) = NT r(k) where NT is the transpose of matrix N.

14.6. ADVANCED MATERIAL: SPECTRAL ANALYSIS, RANDOM WALKS, AND WEB SEARCH425

node 1
0 1/2 0 1/2

0 0 1/2 1/2

1 0 0 0

0 0 1 0

node 4node 3

node 2

Figure 14.13: The flow of PageRank under the Basic PageRank Update Rule can be repre-
sented using a matrix N derived from the adjacency matrix M : the entry Nij specifies the
portion of i’s PageRank that should be passed to j in one update step.

doesn’t link to j, and otherwise Nij is the reciprocal of the number of nodes that i points

to. In other words, when i links to j, then Nij = 1/◆i, where ◆i is the number of links out of

i. (If i has no outgoing links, then we define Nii = 1, in keeping with the rule that a node

with no outgoing links passes all its PageRank to itself.) In this way, N is similar in spirit

to the adjacency matrix M , but with a di�erent definition when i links to j.

Now, let’s represent the PageRanks of all nodes using a vector r, where the coordinate

ri is the PageRank of node i. Using this notation, we can write the Basic PageRank Update

Rule as

ri ⌃ N1ir1 + N2ir2 + · · · + Nnirn. (14.5)

This corresponds to multiplication by the transpose of the matrix, just as we saw for the

Authority Update Rule; thus, Equation (14.5) can be written as

r ⌃ NT r. (14.6)

The Scaled PageRank Update Rule can be represented in essentially the same way, but

with a di�erent matrix Ñ to represent the di�erent flow of PageRank, as indicated in Fig-

ure 14.14. Recall that in the scaled version of the update rule, the updated PageRank is

scaled down by a factor of s, and the residual 1� s units are divided equally over all nodes.

Thus, we can simply define Ñij to be sNij + (1 � s)/n, and then the scaled update rule can

be written as

ri ⌃ Ñ1ir1 + Ñ2ir2 + · · · + Ñnirn. (14.7)

[Fig 14.13, E&K]

Figure: A toy web graph and the associated matrix N describing the
unscaled update process.

N is a weighted adjacency matrix
▶ Weights are the proportion of authority that’s transferred along the

edge
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Advanced material continued: page rank
convergence

Note: Nij is the proportion of node i ’s rank, that should go to node j
in the next update

▶ Therefore, NT
ij is the proportion of j ’s rank that i should receive

Let’s focus on node 3

We can see that rk+1
3 = ark1 + brk2 + rk3

N =

∗ ∗ a
∗ ∗ b
∗ ∗ 1



NT =

∗ ∗ ∗
∗ ∗ ∗
a b 1
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Page rank analysis for the scaled update
Similarly Figure 14.4 illustrates the same graph and the matrix Ñ that
defines the scaled page rank update process with scaling factor s = .8.

426 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH

node 1
.05 .45 .05 .45

.05 .05 .45 .45

.85 .05 .05 .05

.05 .05 .85 .05

node 4node 3

node 2

Figure 14.14: The flow of PageRank under the Scaled PageRank Update Rule can also be
represented using a matrix derived from the adjacency matrix M (shown here with scaling
factor s = 0.8). We denote this matrix by Ñ ; the entry Ñij specifies the portion of i’s
PageRank that should be passed to j in one update step.

or equivalently

r ⌃ ÑT r. (14.8)

Repeated Improvement Using the Scaled PageRank Update Rule. As we apply

the scaled update rule repeatedly, starting from an initial PageRank vector r⌅0⇧, we produce

a sequence of vectors r⌅1⇧, r⌅2⇧, . . . where each is obtained from the previous via multiplication

by ÑT . Thus, unwinding this process, we see that

r⌅k⇧ = (ÑT )kr⌅0⇧.

Moreover, since PageRank is conserved as it is updated — that is, the sum of the PageRanks

at all nodes remains constant through the application of the scaled update rule — we don’t

have to worry about normalizing these vectors as we proceed.

So by analogy with the limiting values of the hub-authority computation (but with the

added fact that normalization isn’t needed), one expects that if the Scaled PageRank Update

Rule converges to a limiting vector r⌅⇥⇧, this limit should satisfy ÑT r⌅⇥⇧ = r⌅⇥⇧ — that is, we

should expect r⌅⇥⇧ to be an eigenvector of ÑT with corresponding eigenvalue 1. Such an r⌅⇥⇧

has the property that it will not change under further refinements by the Scaled PageRank

Update Rule.

In fact, all this turns out to be true: repeated application of the Scaled PageRank Update

Rule converges to precisely such an r⌅⇥⇧. To prove this, however, we can’t use the same

[Fig 14.14, E&K]

Figure: The same toy web graph and the associated matrix Ñ describing the
scaled update process with s = 0.8.

ÑT = sNT + (1− s)1(1
T )
n

It follows that r(k) = (ÑT )kr(0)

If the process is converging then it would be converging to some r∗

satisfying r∗ = ÑT r∗
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defines the scaled page rank update process with scaling factor s = .8.

426 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH

node 1
.05 .45 .05 .45

.05 .05 .45 .45

.85 .05 .05 .05

.05 .05 .85 .05

node 4node 3

node 2

Figure 14.14: The flow of PageRank under the Scaled PageRank Update Rule can also be
represented using a matrix derived from the adjacency matrix M (shown here with scaling
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Now comes the necessary linear algebra

Matrices are more than a convenient representation of the process; linear
algebra review time!

Let Mn×n be a full rank matrix. Recall that the matrix-vector
multiplication Mv can rotate and expand/shrink the vector v

▶ Simpler to visualize the meaning of such a linear transformation in
2-space or 3-space

A vector v is an eigenvector of M with associated eigenvalue λ if
Mv = λv

▶ Note that v is also an eigenvector of Mk with eigenvalue λk

Question: What does this tell us about the equilibrium of the process
(i.e., v s.t. Mv = v)?

When λ = 1, the eigenvector is an equilibrium of the process!
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More linear algebra
For some matrices there is a set of n eigenvectors with (not
necessarily distinct) associated eigenvalues λ1, . . . , λn; these
eigenvectors span the n-dimensional Euclidean space so that any
vector can be expressed as a linear combination of the eigenvectors

Perron’s Theorem states that for any matrix which has all positive
entries there is:

▶ A unique positive eigenvector y that corresponds to the largest positive
eigenvalue, λ1

▶ Furthermore λ1 > |λi | for i > 1.

Since λ1 > |λi | for i > 1, and since every vector is a linear
combination of the eigenvectors, it follows that as k → ∞, the
transformation Mk is being dominated by the largest eigenvalue
acting on its associated eigenvector

▶ Time for a demo!

For the scaled matrix ÑT , all entries are positive and the largest
eigenvalue is 1

▶ Therefore as k → ∞, (ÑT )kv will converge to the eigenvector y
associated with the largest eigenvalue 1

60 / 66
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Aside: Random Walk

Remember that we said that PageRank was equivalent to a random
walk on the graph?

▶ We can view this as a Markov chain
▶ i.e., a type of probabilistic finite state machine that’s represented as a

graph, where each timestep we follow an edge based on the
corresponding probabilities

Similarly, scaled page rank can be viewed as the same Markov chain
but with added low probability edges between every pair of nodes
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Aside: Random Walk

14.6. ADVANCED MATERIAL: SPECTRAL ANALYSIS, RANDOM WALKS, AND WEB SEARCH425

node 1
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node 2

Figure 14.13: The flow of PageRank under the Basic PageRank Update Rule can be repre-
sented using a matrix N derived from the adjacency matrix M : the entry Nij specifies the
portion of i’s PageRank that should be passed to j in one update step.

doesn’t link to j, and otherwise Nij is the reciprocal of the number of nodes that i points

to. In other words, when i links to j, then Nij = 1/◆i, where ◆i is the number of links out of

i. (If i has no outgoing links, then we define Nii = 1, in keeping with the rule that a node

with no outgoing links passes all its PageRank to itself.) In this way, N is similar in spirit

to the adjacency matrix M , but with a di�erent definition when i links to j.

Now, let’s represent the PageRanks of all nodes using a vector r, where the coordinate

ri is the PageRank of node i. Using this notation, we can write the Basic PageRank Update

Rule as

ri ⌃ N1ir1 + N2ir2 + · · · + Nnirn. (14.5)

This corresponds to multiplication by the transpose of the matrix, just as we saw for the

Authority Update Rule; thus, Equation (14.5) can be written as

r ⌃ NT r. (14.6)

The Scaled PageRank Update Rule can be represented in essentially the same way, but

with a di�erent matrix Ñ to represent the di�erent flow of PageRank, as indicated in Fig-

ure 14.14. Recall that in the scaled version of the update rule, the updated PageRank is

scaled down by a factor of s, and the residual 1� s units are divided equally over all nodes.

Thus, we can simply define Ñij to be sNij + (1 � s)/n, and then the scaled update rule can

be written as

ri ⌃ Ñ1ir1 + Ñ2ir2 + · · · + Ñnirn. (14.7)

[Fig 14.13, E&K]

Specifically, the transition matrices of these Markov chains are N and
Ñ respectively (Nij is the probability of transitioning from state i to
state j)

If the chain is irreducible (we can reach state j from all states i and
vice versa), and aperiodic (there is no state i such that if you leave i ,
you can only return on timesteps that are multiples of some p > 1)
then there is a unique stationary distribution π that the chain
converges to
This is the distribution that we found!
When π exists, then all initial probability distributions over the nodes
converges to π
NetLogo time!
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you can only return on timesteps that are multiples of some p > 1)
then there is a unique stationary distribution π that the chain
converges to
This is the distribution that we found!

When π exists, then all initial probability distributions over the nodes
converges to π
NetLogo time!
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Figure 14.13: The flow of PageRank under the Basic PageRank Update Rule can be repre-
sented using a matrix N derived from the adjacency matrix M : the entry Nij specifies the
portion of i’s PageRank that should be passed to j in one update step.
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Thus, we can simply define Ñij to be sNij + (1 � s)/n, and then the scaled update rule can

be written as
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Similar analysis for hubs and authorities

If M is the adjacency matrix of the web graph, then the
(unnormalized) process can be described by h = Ma and a = MTh.

Exercise: Convince yourself this is true!

Then
1 a(1) = MTh(0)

2 h(1) = Ma(1) = MMTh(0)

It follows that
1 a(k) = (MTM)k−1MTh(0)

2 h(k) = (MMT )kh(0)
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Hubs and authorities analysis continued

The matrices (MMT ) and (MTM) are symmetric and have
non-negative entries

Any n × n symmetric matrix S with non negative entries has an
orthonormal set of n eigenvectors all of whose associated eigenvalues
are real

▶ By normalizing the scores, we assume that the largest eigenvalue
λ1 = 1

If the largest eigenvalue is unique (which is what would happen in a
real web graph), then the same analysis for page rank applies
(assuming that the starting hub scores are all positive).
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Returning to the issue of influence

In some sense or another we are often talking about social influence in this
course. Even in web ranking (Ch 14), we can view hubs as influencing
which Web pages will be ranked highly.

In chapter 18, we observed two sequential processes where previous
individual decisions had a significant impact:
1) The evolution of links on the Web, and
2) The evolution of opinions in evaluating music.

The music evaluation experiment is closer to reality in the sense that it
explicitly integrates a measure of quality (a simplification of selection?)
into the decision making process.
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Recap

With practice & review, you’ll be able to:

Define the power law distribution and Zipf’s law, and explain the
similarities and differences

▶ Recall the dynamics that often give rise to power laws, give examples,
and debate whether they apply to a given scenario

Define the Kumar et al. rich-get-richer model
▶ Explain the connection between the rich-get-richer model and dynamics

that give rise to power laws
▶ Recall the expected distribution, and explain the relevant parameters of

the model

Summarize the Salganik et al. music popularity experiment

Explain the problem of ranking web results
▶ Explain the hubs and authorities algorithm, and execute on examples
▶ Explain the (scaled) Page rank algorithm, and execute on examples
▶ Describe high-level proof-sketches of their convergence
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