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This week’s high-level learning goals
Recall the Milgram Small World Experiment, and be able to explain
both the term six degrees of separation, and their connection to small
world phenomena

Define the Watts-Strogatz model, and the changes required to make
it a small world

Perform decentralized search and centralized search in a given graph

Explain the differences between decentralized and centralized search,
including how the pertain to small worlds

Recall conditions that provably allow for efficient decentralized search
▶ in a grid
▶ under non-uniform population density

Explain why the results of the empiric studies on distributions of
friendship seen are consistent with theory, and why their methodology
is applicable

At a very high level, explain one practical application of friendship
distributions
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The Small World Phenomenon (Chapter 20)

We now move from a study of selection, influence, and balance in
networks, to the issue of focused or targeted search.

▶ Popularized in the famous concept of “six degrees of separation”.

At the start of this course, we briefly discussed the original 1960s
Milgram experiment as it was introduced in Chapter 2 of the text.

Milgram asked 296 randomly chosen people in Omaha to forward a
letter to a target person (a stockbroker) living in a Boston suburb.

Of the 64 chains that succeeded the median length of the letter chain
was 6, the motivation for the play and movie that came to popularize
the phenomena.
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Lengths of the successful letter chains

From Milgram (1967), “The Small World Problem,” Psychology Today [297]
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[Fig 20.4, E&K]20.3. DECENTRALIZED SEARCH 617

Figure 20.4: An image from Milgram’s original article in Psychology Today, showing a “com-
posite” of the successful paths converging on the target person. Each intermediate step is
positioned at the average distance of all chains that completed that number of steps. (Image
from [297].)

on the much more interesting experiment of constructing paths by “tunneling” through the

network, with the letter advancing just one person at a time — a process that could well

have failed to reach the target, even if a short path existed.

So the success of the experiment raises fundamental questions about the power of collec-

tive search: even if we posit that the social network contains short paths, why should it have

been structured so as to make this type of decentralized search so effective? Clearly the net-

work contained some type of “gradient” that helped participants guide messages toward the

target. As with the Watts-Strogatz model, which sought to provide a simple framework for

thinking about short paths in highly clustered networks, this type of search is also something

we can try to model: can we construct a random network in which decentralized routing

succeeds, and if so, what are the qualitative properties that are crucial for success?

A model for decentralized search. To begin with, it is not difficult to model the kind

of decentralized search that was taking place in the Milgram experiment. Starting with the

grid-based model of Watts and Strogatz, we suppose that a starting node s is given a message

that it must forward to a target node t, passing it along edges of the network. Initially s

only knows the location of t on the grid, but, crucially, it does not know the random edges

out of any node other than itself. Each intermediate node along the path has this partial

information as well, and it must choose which of its neighbors to send the message to next.

These choices amount to a collective procedure for finding a path from s to t — just as the

participants in the Milgram experiment collectively constructed paths to the target person.

Image from Milgram (1967)

Milgram’s diagram showing a “composite” of the successful paths
converging on the target person

▶ Each intermediate step is positioned at the average distance of all
chains that completed that number of steps

▶ Anything interesting about the spacing?
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Two remarkable aspects of experiment

1 There are short paths (of friendship) between seemingly very
unrelated people

▶ We’ve seen this phenomena with the Erdos number (amongst
mathematicians or all scientists) and Bacon number (amongst actors)

▶ e.g., Week 1: the Oracle of Bacon uses a centralized search – i.e., BFS
on the graph of the social network to find a shortest path

⋆ Were Milgram’s human participants doing this?

2 The Milgram letter chain succeeded without individuals knowing
anything globally about the network structure

▶ i.e., without any centralized coordination, individuals were reasonably
successful in reaching the target using only geographic and
occupational information

Chapter 20 studies how we can better understand this interesting
phenomena.
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Looking ahead: The punch line of the chapter, text,
course

... we start from an experiment (Milgram’s), build mathematical
models based on this experiment (combining local and long-range
links), make a prediction based on the models (the value of the
exponent controlling the long-rang links), and then validate this
prediction on real data (from LiveJournal and Facebook, after
generalizing the model to use rank-based friendship). This is very
much how one would hope for such an interplay of experiments,
theories, and measurements to play out. But it is also a bit strik-
ing to see the close alignment of theory and measurement in this
particular case, since the predictions come from a highly simplified
model of the underlying social network, yet these predictions are
approximately borne out on data arising from real social networks.

[From E&K Ch.20, p.549]
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Trying to find a path of friendships to someone
Given the full social network, we can use a centralized search (e.g.,
run BFS on the graph). Problems?

We could ask all of our friends to tell all of their friends to tell all of
their friends. . . (i.e. a traditional chain letter) that I am looking for
person X .

Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?

▶ It either costs real money/effort to pass a message (e.g. postal mail)
▶ I would prefer to not let everyone know that I am looking for person X
▶ Possible “social cost” in terms of annoyance to people in the network

receiving multiple requests to pass on a message.

Clearly if everyone cooperates, the broadcast method ensures the
shortest path to the intended target X in the leveled tree/graph of
reachable nodes.
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Reachable nodes without triadic closure
If we assume the social network has a tree structure (therefore, no
triadic closure), then it follows that every simple path is a shortest
path to everyone in the network.

Consider the number of people that you could reach by a path of
length at most t if every person has say at least 5 friends.

20.2. STRUCTURE AND RANDOMNESS 613

you

your friends

friends of your friends

(a) Pure exponential growth produces a small world

you

your friends

friends of your friends

(b) Triadic closure reduces the growth rate

Figure 20.1: Social networks expand to reach many people in only a few steps.

people brings us to more than 100 · 100 · 100 = 1, 000, 000 people who in principle could be

three steps away. In other words, the numbers are growing by powers of 100 with each step,

bringing us to 100 million after four steps, and 10 billion after five steps.

There’s nothing mathematically wrong with this reasoning, but it’s not clear how much

it tells us about real social networks. The difficulty already manifests itself with the second

step, where we conclude that there may be more than 10, 000 people within two steps of you.

As we’ve seen, social networks abound in triangles — sets of three people who mutually

know each other — and in particular, many of your 100 friends will know each other. As a

result, when we think about the nodes you can reach by following edges from your friends,

many of these edges go from one friend to another, not to the rest of world, as illustrated

schematically in Figure 20.1(b). The number 10, 000 came from assuming that each of your

100 friends was linked to 100 new people; and without this, the number of friends you could

reach in two steps could be much smaller.

So the effect of triadic closure in social networks works to limit the number of people

you can reach by following short paths, as shown by the contrast between Figures 20.1(a)

Figure: Pure exponential growth produces a small world [Fig 20.1 (a), E&K]
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Reachable nodes with triadic closure

Given that our friends tend to be mostly contained within a few small
communities, the number of people reachable will be much smaller.
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The Watts-Strogatz model
Is it possible to have extensive triadic closure and still have short
paths?

Consider dense communities of strong ties consistent with triadic
closure (possibly homophily?), and different communities attached by
weak ties

▶ Weak ties provide the kind of branching that yields short paths to
many nodes

Watts-Strogatz model: A stylized model with two types of ties:
▶ Nodes lie in a two dimensional grid
▶ Short-range edges connect all nodes within some small distance r

⋆ Why? Short-range edges capture an idealized sense of homophily
▶ A small number of random longer-distance edges to other nodes in the

network
⋆ Very few random edges are needed to achieve the effect of short paths

Aside: This is actually a variant of the Watts-Strogatz model, but the
core idea is the same
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Very few random edges are needed
A 1/k probability that a person has a random weak tie is sufficient to
establish short paths, for a sufficiently large grid20.2. STRUCTURE AND RANDOMNESS 615

Figure 20.3: The general conclusions of the Watts-Strogatz model still follow even if only a
small fraction of the nodes on the grid each have a single random link.

two nodes are one grid step apart if they are directly adjacent to each other in either the

horizontal or vertical direction.

We now create a network by giving each node two kinds of links: those explainable purely

by homophily, and those that constitute weak ties. Homophily is captured by having each

node form a link to all other nodes that lie within a radius of up to r grid steps away, for

some constant value of r: these are the links you form to people because you are similar to

them. Then, for some other constant value k, each node also forms a link to k other nodes

selected uniformly at random from the grid — these correspond to weak ties, connecting

nodes who lie very far apart on the grid.

Figure 20.2(b) gives a schematic picture of the resulting network — a hybrid structure

consisting of a small amount of randomness (the weak ties) sprinkled onto an underlying

structured pattern (the homophilous links). Watts and Strogatz observe first that the net-

work has many triangles: any two neighboring nodes (or nearby nodes) will have many

common friends, where their neighborhoods of radius r overlap, and this produces many

triangles. But they also find that there are — with high probability — very short paths

connecting every pair of nodes in the network. Roughly, the argument is as follows. Suppose

[Fig 20.3, E&K]

Image subdividing the grid into k by k “towns”, each with
k2 × 1

k = k long distance edges (on average)

Question: Are short paths enough to explain the Miligram experiment?
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triangles. But they also find that there are — with high probability — very short paths
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Image subdividing the grid into k by k “towns”, each with
k2 × 1

k = k long distance edges (on average)

Question: Are short paths enough to explain the Miligram experiment?
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Does this explain the ability to find people in a
decentralized manner?

In the Watts-Strogatz type of model, we can use the random edges
(in addition to the short grid edges) and the geometric location of
nodes to keep trying to reduce the grid distance to a target node

▶ Analogous to the Milgram experiment where individuals seem to use
geographic information to guide the search

▶ However, completely random edges does not reflect real social
networks!

Having uniformly random edges will not work in general as:
▶ Completely random edges (i.e. going to a random node anywhere in

the network) are too random.
▶ A random edge in an n × n grid is likely to have grid distance Θ(n).
▶ Without some central guidance, such random edges will essentially just

have us bounce around the network causing a substantially longer path
to the target than the shortest path.
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A modification of the model

Random edges outside of ones “close community” represent weak
ties, thus it seems like they should reflect some relation to closeness.

As in the Watts-Strogatz model, from every node v we have edges to
all nodes x within some grid distance r from v .

However, the random edges are instead generated as follows:
▶ We independently create an edge from v to w with probability

proportional to d(v ,w)−q

▶ d(v ,w) is the grid distance from v to w
▶ q ≥ 0 is called the clustering exponent

The smaller q ≥ 0 is, the more completely random is the edge
whereas large q ≥ 0 leads to edges which are not sufficiently random
and basically keeps edges within or very close to ones community.

What is the best choice of q ≥ 0?
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So what is a good or the best choice of the
clustering exponent q?

It turns out that in this 2-dimensional grid model decentralized search works best
when q = 2

▶ Provably optimal, in the limit as the network size increases

▶ What about in practice where the network is finite?
620 CHAPTER 20. THE SMALL-WORLD PHENOMENON
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Figure 20.6: Simulation of decentralized search in the grid-based model with clustering
exponent q. Each point is the average of 1000 runs on (a slight variant of) a grid with 400
million nodes. The delivery time is best in the vicinity of exponent q = 2, as expected; but
even with this number of nodes, the delivery time is comparable over the range between 1.5
and 2 [248].

large network size — than with any other exponent. But even without the full details of the

proof, there’s a short calculation that suggests why the number 2 is important. We describe

this now.

In the real world where the Milgram experiment was conducted, we mentally organize

distances into different “scales of resolution”: something can be around the world, across

the country, across the state, across town, or down the block. A reasonable way to think

about these scales of resolution in a network model — from the perspective of a particular

node v — is to consider the groups of all nodes at increasingly large ranges of distance from

v: nodes at distance 2-4, 4-8, 8-16, and so forth. The connection of this organizational

scheme to decentralized search is suggested by Figure 20.4: effective decentralized search

“funnels inward” through these different scales of resolution, as we see from the way the

letter depicted in this figure reduces its distance to the target by approximately a factor of

two with each step.

So now let’s look at how the inverse-square exponent q = 2 interacts with these scales of

resolution. We can work concretely with a single scale by taking a node v in the network,

and a fixed distance d, and considering the group of nodes lying at distances between d and

2d from v, as shown in Figure 20.7.

Now, what is the probability that v forms a link to some node inside this group? Since

area in the plane grows like the square of the radius, the total number of nodes in this group

is proportional to d2. On the other hand, the probability that v links to any one node in

the group varies depending on exactly how far out it is, but each individual probability

is proportional to d−2. These two terms — the number of nodes in the group, and the

[Fig 20.6, E&K]
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More precise statements of Kleinberg’s results on
navigation in small worlds
The Milgram-like experiment

Consider a grid network and construct (local contact) directed edges
from each node u to all nodes v within grid distance d(u, v) = k > 1.

For each node u we also probabilistically construct m > 0 (long
distance) directed edges where each such edge is chosen with
probability proportional to d(u,w)−q for q ≥ 0.

We think of k and m as constants and consider the impact of the
clustering exponent q as the network size n increases.

We assume that each node knows its location and the location of its
adjacent edges and its distance to the location of a target node t.

The Milgram-like experiment is to produce a path to node t from
node s, where each node on the path is followed by it’s neighbouring
node v that is closest to t (in grid distance).
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Example for m = 1

Note: Numbers are numbered with grid distance (optimal distance)
Although normally not allowed, for legibility k = 1
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Example: Shortest Path

Note: Numbers are numbered with grid distance (optimal distance)
Although normally not allowed, for legibility k = 1
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Example: Decentralized Search

Note: When multiple neighbours have the same grid distance, tie breaking
is random
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Reflection on the Kleinberg-Milgram model

As we said at the start of this topic, the real surprise is that a “short” (but
not shortest) path is (probably w.r.t. to the randomly generated network)
being found by a decentralized search.

It is true that each node will pursue a “greedy strategy” but this is
different than say Dijkstra’s least cost/distance algorithm which entails a
centralized search.
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Navigation in small worlds results

Theorem

(J. Kleinberg 2000)

(a) For 0 ≤ q < 2, the (expected) delivery time T of any “decentralized

algorithm” in the n × n grid-based model is Ω
(
n

2−q
3

)
.

(b) For q = 2, there is a decentralized algorithm with delivery time
O(log n).

(c) For q > 2, the delivery time of any decentralized algorithm in the

grid-based model is Ω
(
n

q−2
q−1

)
.

(The lower bounds in (a) and (c) hold even if each node has an arbitrary
constant number of long-range contacts, rather than just one.)
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Aside: Clustering coefficient

NOTE: It is no accident that the exponent in the Strogatz-Kleinberg
model is called the “clustering exponent”.

Recall (from chapter 2) the definition of the clustering coefficient of a
node which is the ratio:∣∣{(B,C ) ∈ E : (B,A) ∈ E and (C ,A) ∈ E

}∣∣∣∣{{B,C} : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

As the the clustering exponent increases, ones friends are all close and
therefore (in this geometric model), ones friends are mutual friends
which means the clustering coefficient goes to 1

And when the clustering exponent goes to 0, friends are randomly
scattered and unlikely to be mutual friends so that the clustering
coefficient goes to zero
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Intuition as to why q = 2 is best for the grid
It is instructive to see why this choice of q provides links at the
different “scales of resolution” seen in the Milgram experiment.

If D is the maximum distance to be travelled, then we would like links
with distances between d and 2d for all d < logD

▶ You’ll be seeing why in tutorial

Given that we have a 2-dimensional grid, the number of points with
distance say d from a given node v will be ∝ d2.

We are choosing such a node with probability proportional to 1/d2

and hence we expect to have a link to some node whose distance
from v is between d and 2d for all d .

▶ Area of a circle: πr2

▶ π(2d)2 − πd2 = 3πd2 ∝ d2

[Fig 20.7, E&K]
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Figure 20.7: The concentric scales of resolution around a particular node.

probability of linking to any one of them — approximately cancel out, and we conclude: the

probability that a random edge links into some node in this ring is approximately independent

of the value of d.

This, then, suggests a qualitative way of thinking about the network that arises when

q = 2: long-range weak ties are being formed in a way that’s spread roughly uniformly over

all different scales of resolution. This allows people fowarding the message to consistently

find ways of reducing their distance to the target, no matter how near or far they are from it.

In this way, it’s not unlike how the U.S. Postal Service uses the address on an envelope for

delivering a message: a typical postal address exactly specifies scales of resolution, including

the country, state, city, street, and finally the street number. But the point is that the postal

system is centrally designed and maintained at considerable cost to do precisely this job; the

corresponding patterns that guide messages through the inverse-square network are arising

spontaneously from a completely random pattern of links.
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Intuition as to why q = 2 is best for the grid
It is instructive to see why this choice of q provides links at the
different “scales of resolution” seen in the Milgram experiment.

If D is the maximum distance to be travelled, then we would like links
with distances between d and 2d for all d < logD
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Given that we have a 2-dimensional grid, the number of points with
distance say d from a given node v will be ∝ d2.

We are choosing such a node with probability proportional to 1/d2
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Recap

Milgram Small World Experiment

Watts-Strogatz model

Efficient decentralized search
▶ in a grid
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More realistic population (non-uniform density)
In the grid model, the population density is completely uniform which
is not what one would expect in real data.

How can this 1/d2 (inverse-square) distribution be modified to
account for population densities that are very non-uniform?

The idea is to replace distance d(v ,w) from v to w by the rank of w
relative to v .

▶ For a fixed v , define the rank(w) to be the number of nodes closer to
v than w is to v .

▶ In the 2D grid case, when d(v ,w) ∼ d , then rank(w) ∼ d2.20.5. EMPIRICAL ANALYSIS AND GENERALIZED MODELS 623

v

w

rank 7

(a) w is the 7th closest node to v.

distance d

rank ~ d
2

(b) Rank-based friendship with uniform population den-
sity.

Figure 20.9: When the population density is non-uniform, it can be useful to understand
how far w is from v in terms of its rank rather than its physical distance. In (a), we say that
w has rank 7 with respect to v because it is the 7th closest node to v, counting outward in
order of distance. In (b), we see that for the original case in which the nodes have a uniform
population density, a node w at distance d from v will have a rank that is proportional to
d2, since all the nodes inside the circle of radius d will be closer to v than w is.

inverse-square distribution is useful for finding targets when nodes are uniformly spaced in

two dimensions; what’s a reasonable generalization to the case in which they can be spread

very non-uniformly?

Rank-Based Friendship. One approach that works well is to determine link probabilities

not by physical distance, but by rank. Let’s suppose that as a node v looks out at all other

nodes, it ranks them by proximity: the rank of a node w, denoted rank(w), is equal to the

number of other nodes that are closer to v than w is. For example, in Figure 20.9(a), node

w would have rank seven, since seven others nodes (including v itself) are closer to v than

w is. Now, suppose that for some exponent p, node v creates a random link as follows: it

chooses a node w as the other end with probability proportional to rank(w)−p. We will call

this rank-based friendship with exponent p.

Which choice of exponent p would generalize the inverse-square distribution for uniformly-

spaced nodes? As Figure 20.9(b) shows, if a node w in a uniformly-spaced grid is at distance

d from v, then it lies on the circumference of a disc of radius d, which contains about d2 closer

nodes — so its rank is approximately d2. Thus, linking to w with probability proportional

to d−2 is approximately the same as linking with probability rank(w)−1, so this suggests

that exponent p = 1 is the right generalization of the inverse-square distribution. In fact,

Liben-Nowell et al. were able to prove that for essentially any population density, if random

[Fig 20.9, E&K]
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More realistic geographic data continued

We can then restate the inverse-square distribution by saying that the
probability that v links to w is proportional to 1/rank(w).

Using zip code information, for every pair of nodes (500,000 users on
the blogging site LiveJournal) one can assign ranks.

Liben-Nowell et al did such a study in 2005, and then for different
rank values examined the fraction f of edges that are actually friends.

The theory tells us that this fraction f should be a decreasing
function proportional to 1/rank.

That is, f ∼ rank−1. Taking logarithms, log f ∼ (−1) log rank.
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More realistic (LiveJournal) friendship data624 CHAPTER 20. THE SMALL-WORLD PHENOMENON

(a) Rank-based friendship on LiveJournal (b) Rank-based friendship: East and West coasts

Figure 20.10: The probability of a friendship as a function of geographic rank on the blogging
site LiveJournal. (Image from [277].)

links are constructed using rank-based friendship with exponent 1, the resulting network

allows for efficient decentralized search with high probability. In addition to generalizing the

inverse-square result for the grid, this result has a nice qualitative summary: to construct

a network that is efficiently searchable, create a link to each node with probability that is

inversely proportional to the number of closer nodes.

Now one can go back to LiveJournal and see how well rank-based friendship fits the

distribution of actual social network links: we consider pairs of nodes where one assigns

the other a rank of r, and we ask what fraction f of these pairs are actually friends, as a

function of r. Does this fraction decrease approximately like r−1? Since we’re looking for a

power-law relationship between the rank r and the fraction of edges f , we can proceed as

in Chapter 18: rather than plotting f as a function of r, we can plot log f as a function of

log r, see if we find an approximately straight line, and then estimate the exponent p as the

slope of this line.

Figure 20.10(a) shows this result for the LiveJournal data; we see that much of the body

of the curve is approximately a straight line sandwiched between slopes of −1.15 and −1.2,

and hence close to the optimal exponent of −1. It is also interesting to work separately with

the more structurally homogeneous subsets of the data consisting of West-Coast users and

East-Coast users, and when one does this the exponent becomes very close to the optimal

value of −1. Figure 20.10(b) shows this result: The lower dotted line is what you should

see if the points followed the distribution rank−1, and the upper dotted line is what you

should see if the points followed the distribution rank−1.05. The proximity of the rank-

based exponent on real networks to the optimal value of −1 has also been corroborated by

subsequent research. In particular, as part of a recent large-scale study of several geographic

phenomena in the Facebook social network, Backstrom et al. [33] returned to the question

of rank-based friendship and again found an exponent very close to −1; in their case, the

[Fig 20.10, E&K]

In Figure 20.10 (a), the Lower (upper) line is exponent = −1.15
(resp. -1.12).

In Figure 20.10 (b), the Lower (upper) line is exponent = −1.05
(resp. -1). The red data is East Coast data and the blue data is West
Coast data.
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Liben-Nowell: practice closely matches theory
Liben-Nowell prove that for “essentially” any population density (i.e. no
matter where people are located) if links are randomly constructed so that
the probability of a friendship is proportional to rank−1, then the resulting
network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg’s result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d−2 to rank−1 is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?

The text refers to a 2008 article by Oscar Sandberg who analyzes a
network model where decentralized search takes place which in turn causes
links to “re-wire” so as to fascilitate more efficient decentralized search.

It remains an intriguing question as to the extent this does happen in
social networks and the implicit mechanisms that would cause networks to
evolve this way.
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The punch line (again) of text, course

The plots in Figure 20.10, and their follow-ups, are thus the con-
clusion of a sequence of steps in which we start from an experiment
(Milgram’s), build mathematical models based on this experiment
(combining local and long-range links), make a prediction based
on the models (the value of the exponent controlling the long-
rang links), and then validate this prediction on real data (from
LiveJournal and Facebook, after generalizing the model to use
rank-based friendship). This is very much how one would hope
for such an interplay of experiments, theories, and measurements
to play out. But it is also a bit striking to see the close align-
ment of theory and measurement in this particular case, since the
predictions come from a highly simplified model of the underlying
social network, yet these predictions are approximately borne out
on data arising from real social networks.

And not clear why real friendships are so arranged.
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The Backstrom et al rank-based study
Backstrom et al study US Facebook 2010 geographic user data.

1 Roughly 100 million users
2 About 6% of which enter home address info and of that population

about 60% can be parsed into longitude and latitude information.
3 This gave a set of 3.5 million users and 30.6 million edges

⋆ 2.9 million had at least one friend with a well specified address (these
averaged 10 friends with a known address)

4 Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficiently large and representative for experimental study.

Studied probability of friendships vs distance and rank and how those
probabilities depend on population densities for where people live

▶ This study provides more evidence as to the approximately inverse
relation between distance/rank and probability of friendship
(≈ rank−.95)

▶ This relation is known as a power law

Question: What can we do with this knowledge?
They utilize this relationship between friends and distance to create
an algorithm that will predict the location of an individual from a
small set of users with known locations. They claim their algorithm
can predict geographic locations better than using IP information!
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Some statistics for geolocated data

Table 1: Demographic Statistics of Geolocated
Users

Located All US Users

% Male 57.51% 44.81%
% Female 42.49% 55.19%
Age, Median 30 30
Age, Mean 33.89 33.44
Account Age (days), Median 413 325
Account Age (days), Mean 558.9 453
Friend Count, Median 105 47
Friend Count, Mean 189.4 129.5

of the number of geolocated addresses divided by US Cen-
sus population (from the 2000 US census) for each 3-digit
ZIP code tabulation area (ZIP3) [21]. This does not cause
great concern because the heatmap corresponds closely to
Figure 4, which shows Facebook penetration by state using
IP-based geolocation. Di↵erences in certain states may be
due to large pools of IP addresses owned by large Internet
service providers.

3.1 Population Density
In order to understand the dynamics between population

and geography, we first examine the distribution of density
in our sample. We divide the United States into a cells of
1/100 of a degree square, or roughly 0.4 square miles in the
continental US. Figure 5 shows the number of grid units in
our data as a function of the density (number of people).
Plotting on a log-log scale, we see that the curve has two re-
gions. In the low density area, the distribution is decreasing
roughly according to a power-law with exponent �1.37. At
some point there is a transition into higher density region
where the exponent decreases to �3.07. This transition oc-
curs at about 50 people per square mile, or 560,000 square
feet per person. Since this includes only Facebook members
who have provided an address, we would expect the actual
density at this transition point to be only about 5600 square
feet per person – about the density of a densely populated
suburban area. In fact, our data illustrates that 96% of peo-
ple live in areas less dense than this, suggesting that the
�1.37 exponent is the one which we should focus on, and
that the distribution takes an abrupt downward turn as we
transition into the density of large apartment complexes.

Figure 1 shows the distribution of the geolocated individ-
uals across the United States. To smooth these figures, a
Gaussian kernel has been applied to each individual, with
width 1 mile. Some artifacts of the geolocation appear in
the ocean, but are overrepresented by this visualization and
account for a negligible fraction of all users. Note that the
vast majority of the country is quite sparsely populated, and
in fact about half of the US population lives in regions with
less than 250 people per square mile (this is the scaled up
value which accounts for the fact that only 1% of the US
population has provided us with geolocatable addresses). It
is important to note, however, that this is somewhat biased
by the di↵erences in Facebook demographics as compared
to the demographics of the US.

It has been observed in other contexts that the interplay
between distance and friendship is in some way connected
to population density. If you live in Manhattan and have
thousands of people living within a single block, you are not
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Figure 5: The density distribution of the US. The
country is divided into 0.01 x 0.01 degree regions
(about 0.4 square miles). We then count number
of Facebook members in each region, and plot the
distribution of counts. There seem to be two dis-
tinct regions of the distribution, a low-density re-
gion where the curve fits a straight line (in log-log
space) with slope �1.37 and a high-density region,
where the fall o↵ is much sharper with slope �3.07.

particularly likely to know any one of them. For example, if
you knew five out of ten thousand people within 1 mile, then
your probability of knowing any one individual would only
be 0.0005. Contrast this with a small town setting where
everyone has a large yard and there are only a thousand
people within a mile. In this case you might still only know
five other people within a mile, but your probability for each
person would be 0.005, an order of magnitude higher.

The first part of this relationship is shown in Figure 6.
Here we divide the population of the United States into three
groups of roughly equal size (about 900K people per group)
according to the population density where they live. This
figure shows the average number of people living x miles
away, as a function of x. Note that this is not the number
living within x miles, but is the number living within the
annulus of width 0.1 miles.

By definition, there are more people living nearby in the
high density case. If the population were uniformly dis-
tributed, we would expect the curves to increase linearly,
since the area of an annulus with inner radius r and width
w is ⇡((r+w)2�r2) = ⇡(2rw+w2), roughly linear in r when
w is small (it is 0.1 here). Of course, the population is not
uniformly distributed, and as a result we see that the curves
increase linearly only for a small distance. Beyond that the
population density falls o↵ and we see that the number of
people falls o↵ as well.

This is caused by two competing forces: as we increase
the radius, the area of the annulus increases, increasing the
population we would expect to find. On the other hand, as
we move further away from urban centers, we are more likely
to find ourselves in the country, where population is sparse.
At some point (about 50 miles) the annulus becomes su�-
ciently large such that it incorporates a wide swath where

[Table 1 from Backstrom et al]

What is noticeable about this data?
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Figure 6: Number of individuals as a function of
distance. Here we show how many people there are
on average who live x miles away. We divide the
US into low, medium and high density areas, and
compute the curves independently for each.

the average population density is quite unrelated to the den-
sity at the center of the annulus, and becomes more closely
related to the average population density in the US. This
causes the three curves to meet and overlap from 50 miles
onward.

3.2 Friendship and Distance
We now turn to an investigation of the probability of

friendship as a function of distance. Naturally, we expect
the probability to go down with distance and this is what
we observe in Figure 7. To generate this curve, we aggre-
gate over all individuals, computing the distance between
all 8.1 ⇤ 1012 pairs of individuals with known addresses. We
then bucket by intervals of 0.1 miles to compute the total
number of pairs and the number of pairs for which an edge
is present, plotting the ratio. It turns out that we can get
a good fit to a curve of the form a(b + x)�c. The exponent
very close to c = �1 suggests that, at medium to long-range
distances, the probability of friendship is roughly inversely
proportional to distance. At shorter scales the curve is flat-
ter, suggesting that there is less sensitivity to short distances
than a power-law with exponent �1 would produce. The �1
exponent has been observed in other datasets as well [15],
suggesting that there is a more general principle at work
here.

However, this does not tell the full story, as it aggregates
people together from very di↵erent settings. When we break
it down by population density in Figure 8, a somewhat dif-
ferent account emerges; for short distances the probability
is higher in lower density areas as you are more likely to be
friends with a person a few miles away if you live in a less
dense area. Interestingly, as the distance increases, the three
curves converge. At about 50 miles, we see that the proba-
bility of knowing someone is no longer dependent on density.
In fact, as we go further away, the order inverts, with peo-
ple in high density areas being more likely to be friends with
people at greater distances. This supports the intuition that
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Figure 7: Probability of friendship as a function of
distance. By computing the number of pairs of indi-
viduals at varying distances, along with the number
of friends at those distances, we are able to compute
the probability of two people at distance d knowing
each other. We see here that it is a reasonably good
fit to a power-law with exponent near �1.

people living in metropolitan areas are more cosmopolitan;
their ties to distant places are more likely, probably arising
from increased movement between cities and greater capac-
ity to travel.

An alternative to observing friendship probability as a
function of distance is to look instead as a function of rank.
As described in Liben-Nowell et al., we define rank as the
number of people who live closer than a user. For user u,
we rank users by distance from u. For user v, the number
of people living in the area between u and v is defined by
ranku(v) := |{w : d(u, w) < d(u, v)}|. The hope here is that
despite the di↵erences in population density, the probabil-
ity of being friends with someone at a given rank should be
independent of where you live.

Figure 9 shows friendship probability as a function of rank.
Here we do see a nice smooth curve, again with an exponent
of close to �1 (as previously observed). Even though using
rank should mitigate the e↵ect of density on our probability
calculation, it does not control for the behaviors of users in
di↵erent areas. Figure 10 shows the probability of friendship
as a function of rank, this time broken down by our three
density groups. Though the curves do overlap somewhat
more when we calculate things this way (all with exponent
about �1), we still see similar e↵ects. The probability is
higher at low ranks for people in less dense areas, and higher
at high ranks for people in more dense areas (cosmopolitan
e↵ect). This reinforces the notion that people who live in
urban areas tend to have more dispersed friends.

4. PREDICTING LOCATION
A practical application of the observations made thus far is

that they allow us to predict the locations of people who have
not provided this information. If we can accurately predict
an individual’s location, we can improve services for them

[Figure 7 from Backstrom et al]

Interestingly, w.r.t. distance we still get a power law relation!
▶ The exponent is -1 instead of -2, but this is not surprising given the

non-uniform population
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Probability of friendship wrt. distance relative to
population density
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Figure 8: Looking at the people living in low,
medium and high density regions separately, we see
that if you live in a high density region (a city), you
are less likely to know a nearby individual, since
there are so many of them. However, you are more
likely to have contact with someone far away.

in a number of ways. The most obvious application is that
we can provide them with better local content. Providing a
more local, personalized experience is likely to make a site
more useful for users. We can also use a person’s location to
help prevent security breaches – if an individual accesses the
site from a location far from home (where the individual’s
current location is approximated via IP geolocation), and
they have never been there before, we might ask them an
additional security question to ensure that their account has
not been compromised. Thus, our goal here is, given the
locations of a user’s contacts, to compute that user’s home
location.

In the simplest case, all of one’s friends would live in a
small region, and then the prediction task would be very
simple, with any reasonable algorithm returning a good ap-
proximation. Things get more complicated and di�cult as
one’s friends become more spread out. The distributions
from the previous sections tell us that one will typically not
have too many friends at great distances, but that there will
be too many for naive algorithms to work well.

For instance, a first attempt would be to take the mean
location of one’s friends. However, this will give laughably
bad results for people living on either coast. An individual
with 10 friends in San Francisco and one friend in New York
will be placed an eleventh of the way from San Francisco to
New York, somewhere in Nevada. Other simple statistics,
like median (whatever that would mean in two dimensions)
do better, but still fail, especially for people living on the
coasts.

To achieve better performance, we must develop a more
sophisticated model using the observations from the pro-
ceeding sections. Figure 7 shows the probability of an edge
being present as a function of distance, which suggests a
maximum likelihood approach. We consider an individual u
with k friends. Using the distribution from Figure 7, we can
computed the likelihood of a given location lu = (lat, long).
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Figure 9: The rank of a person v relative to u is the
number of individuals w such that d(u, w) < d(u, v).
Here we show the probability of friendship as a func-
tion of rank.

For each friend v of u whose location lv is known, we can
compute the probability of the edge being present given the
distance between u and v, p(|lu � lv|) = 0.0019(|lu � lv| +
0.196)�1.05, as empirically determined.

Multiplying these probabilities together for all such v, we
obtain a likelihood for all the edges. To complete the cal-
culation, we must also multiply the probabilities of all the
other edges not being present: 1 � p(|lu � lv|) for all v such
that v /2 E. Because all of the probabilities are very small for
any particular edge, this term serves mostly as a tiebreaker
and typically plays a small role. Thus, we can write down
the likelihood of a particular location lu as

Y

(u,v)2E

p(|lu � lv|)
Y

(u,v)/2E

1 � p(|lu � lv|)

This model gives us a way to evaluate any point lu. From
a practical point of view, however, the algorithm as stated
is very expensive. In a naive implementation, to find the
best location for one individual, we would have to compute
the probability terms for every other user, at an expense
of O(N) per location evaluated. Finding the best location
would require an additional search, making this impractical
in a large graph.

With two optimizations, however, we can develop an ef-
ficient algorithm which computes the (near) optimal loca-
tions for all individuals in O(M log N) assuming that the
maximum degree in the graph is O(log N) (where M is the
number of edges and N is the number of users).

The first important observation is that, for any location,
the second part of the product, containing 1 � p(·), is very
nearly independent of u. Thus, we can precompute a con-
stant �l =

Q
v2V 1 � p(|lu � lv|) for each location l. We can

then rewrite the above formula as:

�lu =
Y

(u,v)2E

p(|lu � lv|)
1 � p(|lu � lv|)

The other important optimization comes from the form

[Figure 8 from Backstrom et al]
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in a number of ways. The most obvious application is that
we can provide them with better local content. Providing a
more local, personalized experience is likely to make a site
more useful for users. We can also use a person’s location to
help prevent security breaches – if an individual accesses the
site from a location far from home (where the individual’s
current location is approximated via IP geolocation), and
they have never been there before, we might ask them an
additional security question to ensure that their account has
not been compromised. Thus, our goal here is, given the
locations of a user’s contacts, to compute that user’s home
location.

In the simplest case, all of one’s friends would live in a
small region, and then the prediction task would be very
simple, with any reasonable algorithm returning a good ap-
proximation. Things get more complicated and di�cult as
one’s friends become more spread out. The distributions
from the previous sections tell us that one will typically not
have too many friends at great distances, but that there will
be too many for naive algorithms to work well.

For instance, a first attempt would be to take the mean
location of one’s friends. However, this will give laughably
bad results for people living on either coast. An individual
with 10 friends in San Francisco and one friend in New York
will be placed an eleventh of the way from San Francisco to
New York, somewhere in Nevada. Other simple statistics,
like median (whatever that would mean in two dimensions)
do better, but still fail, especially for people living on the
coasts.

To achieve better performance, we must develop a more
sophisticated model using the observations from the pro-
ceeding sections. Figure 7 shows the probability of an edge
being present as a function of distance, which suggests a
maximum likelihood approach. We consider an individual u
with k friends. Using the distribution from Figure 7, we can
computed the likelihood of a given location lu = (lat, long).
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For each friend v of u whose location lv is known, we can
compute the probability of the edge being present given the
distance between u and v, p(|lu � lv|) = 0.0019(|lu � lv| +
0.196)�1.05, as empirically determined.

Multiplying these probabilities together for all such v, we
obtain a likelihood for all the edges. To complete the cal-
culation, we must also multiply the probabilities of all the
other edges not being present: 1 � p(|lu � lv|) for all v such
that v /2 E. Because all of the probabilities are very small for
any particular edge, this term serves mostly as a tiebreaker
and typically plays a small role. Thus, we can write down
the likelihood of a particular location lu as

Y

(u,v)2E

p(|lu � lv|)
Y

(u,v)/2E

1 � p(|lu � lv|)

This model gives us a way to evaluate any point lu. From
a practical point of view, however, the algorithm as stated
is very expensive. In a naive implementation, to find the
best location for one individual, we would have to compute
the probability terms for every other user, at an expense
of O(N) per location evaluated. Finding the best location
would require an additional search, making this impractical
in a large graph.

With two optimizations, however, we can develop an ef-
ficient algorithm which computes the (near) optimal loca-
tions for all individuals in O(M log N) assuming that the
maximum degree in the graph is O(log N) (where M is the
number of edges and N is the number of users).

The first important observation is that, for any location,
the second part of the product, containing 1 � p(·), is very
nearly independent of u. Thus, we can precompute a con-
stant �l =

Q
v2V 1 � p(|lu � lv|) for each location l. We can

then rewrite the above formula as:

�lu =
Y

(u,v)2E

p(|lu � lv|)
1 � p(|lu � lv|)

The other important optimization comes from the form

[Figure 9 from Backstrom et al]

With respect to rank, the exponent very close to the optimal -1
predicted by Liben-Nowell
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Predicting locations
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Figure 10: Similar to probabilty versus distance,
here we see that people in higher density regions
are less likely to know the low rank people living
near them, but more likely to know the higher rank
people living further away.

of the function p(·). This function is very sharply peaked
at p(0), and as a result the most likely location is typically
colocated with one of u’s friends.

In fact, if we ignore the � term, we can prove that u would
be colocated with a friend v if people lived in one dimension
instead of two.

For a contradiction, imagine that lu 6= lv for any friend
of u. Then, the probability function in one dimension for
a location x is P (x) =

Q
(u,v)2E(|x � xv| + b)�c, for some

positive constants b and c, where v is located at xv. This
function will have minima and maxima at the same locations
if we log-transform it to get the more manageable equationP

(u,v)2E �c log(|x�xv|+ b). We can split this up in to two
terms, those where x > xv and those where x < xv, yielding

X

(u,v)2E|xv<x

log(x � xv + b) +
X

(u,v)2E|xv>x

log(xv � x + b)

When we take the second derivative and collect terms,
we end up with

P
(u,v)2E c(x � xv + b)�2, which is always

positive. Thus, there are can be no interior maxima, and
the likelihood function is thus maximized at some xv, where
the derivative is undefined.

While this is not the case in two dimensions, and cases
can be constructed where the maxima is not colocated with
a friend, the one-dimensional analysis suggests that in many
cases the maxima will be colocated with a friend. When we
perform an exhaustive search of the two dimensional space,
we find that in practice, the likelihood is almost always max-
imized at the location of a friend. It takes a contrived ex-
ample to force the maxima somewhere other than a location
very near some friend.

This allows us to greatly prune the geographic search
space. Thus, to compute the most likely locations for a large
group of users, our algorithm performs two steps. First, it
precomputes � for all locations (where all locations is a fine
mesh of locations in the US). This is an expensive operation,
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Figure 11: Location Prediction Performance. This
figure compares external predictions from an IP
geolocation service, the same service constrained
to users who have recently updated their address,
a baseline of randomly choosing the location of a
friend, along with three predictions: our algorithm
with all links, for users with 16+ friends, and finally
for users with 16+ friends constraining to only those
with whom they have communicated recently.

but can be easily parallelized and must only be run once.
Next, to make a prediction for an individual u, we evaluate
the likelihood of all the locations of the friends of u, pick-
ing the best one. Thus, if u has k friends, the algorithm
takes O(k2) to compute p(·) for all k friends from k loca-
tions. Since k is typically small, on the order of dozens, this
is fast, and can also be easily parallelized. As a final note,
it is important to do all the calculations adding logarithms
instead of multiplying probabilities to avoid underflow.

4.1 Performance Methodology
To compute the performance of our algorithms, we take

the provided address of the 2.9 millions users for whom we
can obtain precise location as the ground truth. Naturally,
some of these addresses are incorrect or out of date, but
we believe that the vast majority of them are accurate. To
quantify this, we find that 57.2% of users have IP addresses
that geolocate to within 25 miles of their provided address.
We compare this to those users who have updated their lo-
cation within the last 90 days. If a significant fraction of
the users had moved since last updating their addresses, we
would expect IP geolocation to do significantly better on the
users who had updated their address in the last 90 days, as
the new addresses would be much more likely to be accurate.
However, we find that the fraction correctly placed within
25 miles only increases to 58.5%.

4.2 Leave-One-Out Evaluation
Figure 11 shows the performance of the maximum likeli-

hood algorithm. To evaluate the algorithm, we predict the
location of all 2.9 million users whose location is known,
and who have at least one friend whose location is also
known. For each user, we make our prediction based on the

[Figure 11 from Backstrom et al]
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From geographic distance to social distance
What if there is no (reliable) distance information in a social network?

It is, of course, natural that we tend to have more common interests
with people who live closer to us (e.g. based on ethnicity, economic
status, etc), but clearly there are other notions of social distance that
should be considered.

Early in the course we considered social foci (clubs, shared interests,
language, etc.) we tend to share a number of focal interests with the
same person.

But, of course, belonging to a small group of people in a course, is
different than attending the same University, and speaking Mandarin
is different than being interested in Esperanto.

So the suggestion is made that we define social distance s(v ,w)
between individuals v ,w to be the minimum size of a common focus.
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Smallest size shared focus as a distance measure

Kleinberg (2001) gives theoretical results indicating that when
friendships follow a distribution proportional to 1/s(v ,w) then the
resulting social network will support efficient decentralized search.

This is somewhat verified in a study (by Adamic and Adar) of ‘who
talks to whom’ friendship data (based on frequency of email
exchanges) amongst a small group of HP employees.

The focal groups are defined by the organizational hierarchy of the
company.

The Adamic and Adar 2005 study shows that the distribution for this
friendship relationship is proportional to the inverse of s(v ,w)3/4 so
that it doesn’t match as closely with the previous geographical rank
based results but still observes a power law relation governing how
social ties decrease with “distance”.
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Probability of email exchanges vs social distance
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Figure 5: Probability of two individuals corresponding by email as a function of the size of the
smallest organizational unit they both belong to. The optimum relationship derived in [7]is
p ⇠ g�1, g being the group size. The observed relationship is p ⇠ g�3/4.

a di↵erence found to be statistically significant. The interpretation by Travers and
Milgram was the following: “Chains which converge on the target principally by using
geographic information reach his hometown or the surrounding areas readily, but once
there often circulate before entering the target’s circle of acquaintances. There is no
available information to narrow the field of potential contacts which an individual
might have within the town.”

2.1 Summary of search results

Figure 8 shows a histogram of chain lengths summarizing the results of searches using
each of the three strategies. It shows that both searches using information about
the target outperform a search relying solely on the connectivity of one’s contacts.
It also shows the advantage, consistent with Milgram’s original experiment, of using
the target’s professional position as opposed to their geographic location to pass a
message through one’s email contacts.

The simulated experiments on the e-mail network verify the models proposed in
[13] and [6] to explain why individuals are able to successfully complete chains in small
world experiments using only local information. When individuals belong to groups
based on a hierarchy and are more likely to interact with individuals within the same
small group, then one can safely adopt a greedy strategy - pass the message onto the
individual most like the target, and they will be more likely to know the target or
someone closer to them.

[Figure 5 from Adamic and Adar]
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Aside: Probability of email exchanges vs distance in
the organizational hierarchy

194 L. Adamic, E. Adar / Social Networks 27 (2005) 187–203

Fig. 4. Probability of linking as a function of the separation in the organizational hierarchy. The exponential
parameter α = 0.94, is in the searchable range of the Watts model (Watts et al., 2002).

Fig. 5. Probability of two individuals corresponding by email as a function of the size of the smallest organizational
unit they both belong to. The optimum relationship derived in (Kleinberg, 2001) is p ∼ g−1, g being the group
size. The observed relationship is p ∼ g−3/4.

[Figure 4 from Adamic and Adar]
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Final observations in chapter
The text suggests viewing the Milgram experiment as an example of
decentralized problem solving (in this case solving a shortest path
problem).

The text asks what other problem solving tasks might be amenable to
such decentralized problem solving and how to analyze what can be
done especially in large online networks.

Finally the text briefly suggests the role of social status in determining
the effectiveness of reaching a given target.

▶ An email forwarding Milgram type 2003 study by Dodds et al shows
that completion rates to all targets were low but were highest for “high
status” targets and particularly small for “low status” targets.

In section 12.6, the text speculates on structural reasons for the
impact of status, however, we are far from having a comprehensive
understanding of such phenomena.

44 / 46



Final observations in chapter
The text suggests viewing the Milgram experiment as an example of
decentralized problem solving (in this case solving a shortest path
problem).

The text asks what other problem solving tasks might be amenable to
such decentralized problem solving and how to analyze what can be
done especially in large online networks.

Finally the text briefly suggests the role of social status in determining
the effectiveness of reaching a given target.

▶ An email forwarding Milgram type 2003 study by Dodds et al shows
that completion rates to all targets were low but were highest for “high
status” targets and particularly small for “low status” targets.

In section 12.6, the text speculates on structural reasons for the
impact of status, however, we are far from having a comprehensive
understanding of such phenomena.

44 / 46



Redux: The punch line of the chapter, text, course

The plots in Figure 20.10, and their follow-ups, are thus the con-
clusion of a sequence of steps in which we start from an experiment
(Milgram’s), build mathematical models based on this experiment
(combining local and long-range links), make a prediction based
on the models (the value of the exponent controlling the long-
rang links), and then validate this prediction on real data (from
LiveJournal and Facebook, after generalizing the model to use
rank-based friendship). This is very much how one would hope for
such an interplay of experiments, theories, and measurements to
play out. But it is also a bit striking to see the close alignment of
theory and measurement in this particular case, since the predict
predictions come from a highly simplified model of the underlying
social network, yet these predictions are approximately borne out
on data arising from real social networks.

[From E&K Ch.20, p.549]
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Recap
With practice & review, you’ll be able to:

Recall the Milgram Small World Experiment, and be able to explain
both the term six degrees of separation, and their connection to small
world phenomena

Define the Watts-Strogatz model, and the changes required to make
it a small world

Perform decentralized search and centralized search in a given graph

Explain the differences between decentralized and centralized search,
including how the pertain to small worlds
Recall conditions that provably allow for efficient decentralized search

▶ in a grid
▶ under non-uniform population density

Explain why the results of the empiric studies on distributions of
friendship seen are consistent with theory, and why their methodology
is applicable

At a very high level, explain one practical application of friendship
distributions
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