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This week’s high-level learning goals

Last week (Chapter 4 of the text):

Schelling’s segregation model

triadic, focal, and membership closure

the probability of a closure as a function of the number of common
friends, common interests (foci), or friends in a given focus

This week:

Chapter 5 and structural balance
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This week’s high-level learning goals

By the end of the week you’ll be able to:

Define and identify both strong structural balance & weak structural
balance, judge their appropriateness, and derive their consequences

▶ Identify balanced triangles, explain their stability, and determine their
appropriateness based on context

▶ Define, identify, and create strongly balanced networks
▶ Define and derive strong balance theorem (i.e., Harary’s balance

theorem)
▶ Define, identify, and create weakly balanced networks
▶ Extend Harary’s balance theorem to weakly balanced networks
▶ Define the signed Laplacian matrix, and explain its connection to

structural balance
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Structural balance: positive and negative links

Thus far, we’ve focused on networks where edges reflect a positive
degree of friendship, collaboration, communication, etc...

Chapter 5 explores negative relationships
▶ A natural next step, given that people, countries, and companies are

characterized not just by their friends & allies, but also their enemies
and competitors

From assuming strong & weak edges, we were able to infer properties
of social networks

Can we do something similar with positive vs. negative edges?
▶ Can local properties (e.g., how edges of a triangle are labeled) can have

global implications?
▶ Are there any provable results about network structure?
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Some initial assumptions

We start with a strong assumption:
Assume the network is a complete (undirected) graph. That is, as
individuals we either like or dislike someone. Furthermore, this is not
nuanced in the sense that there is no differentiation as to the extent of
attraction/repulsion).

[Image modified from Star Wars: Episode III - Revenge of the Sith. Directed by George Lucas, Lucasfilm, 2005]
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Some initial assumptions

Later in the chapter, the text considers the issue of networks that are not
complete networks.

Note: For non-complete networks, we can assume the graph is connected
since otherwise we can consider each connected component separately.

Aside: The text also reflects a little on the nature of directed networks
(when discussing the weak balance property) but essentially this chapter is
about undirected networks.
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Types of instability

Thinking of networks as people with likes and dislikes, there are 4 different
possible types of labelled triangles in the graph

any completely labelled triangle can have 0,1,2, or 3 positive edges

due to the symmetry of a triangle that is all the information we have
about any particular triangle

Using a central idea from social psychology, some of the four triangle
labellings are considered relatively stable (called balanced) and the rest are
relatively unstable (not balanced).
Here follows the four types of triangles as depicted in Figure 5.1 of the
text:

7 / 65



Types of instability

Thinking of networks as people with likes and dislikes, there are 4 different
possible types of labelled triangles in the graph

any completely labelled triangle can have 0,1,2, or 3 positive edges

due to the symmetry of a triangle that is all the information we have
about any particular triangle

Using a central idea from social psychology, some of the four triangle
labellings are considered relatively stable (called balanced) and the rest are
relatively unstable (not balanced).
Here follows the four types of triangles as depicted in Figure 5.1 of the
text:

7 / 65



Types of instability

Thinking of networks as people with likes and dislikes, there are 4 different
possible types of labelled triangles in the graph

any completely labelled triangle can have 0,1,2, or 3 positive edges

due to the symmetry of a triangle that is all the information we have
about any particular triangle

Using a central idea from social psychology, some of the four triangle
labellings are considered relatively stable (called balanced) and the rest are
relatively unstable (not balanced).
Here follows the four types of triangles as depicted in Figure 5.1 of the
text:

7 / 65



5.1. STRUCTURAL BALANCE 121

A

B C

+ +

+

(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than
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A natural stable configuration
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they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

In this case, A,B,C are mutual friends and that naturally indicates that
they would likely remain so.
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The second stable configuration
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+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

This may be a slightly less obvious stable situation where A and B are
friends and if anything that friendship is reinforced by a mutual dislike for
C .
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A natural unstable configuration
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two of the three people to “team up” against the third (turning one of the three edge
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Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

A has two friends B and C who unfortunately do not like each other
Look familiar? Latent stress!
Claim: the stress of this situation will encourage A to either make B
and C become friends, or for A to take a sides with either B or C ,
thus moving toward the previous stable configuration
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A somewhat less obvious unstable configuration
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C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

Why is this called unstable?

“the enemy of my enemy becomes my friend”, as sometimes seen in
international relations

This particular triangle has some nuances, we’ll revisit it soon
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“the enemy of my enemy becomes my friend”, as sometimes seen in
international relations

This particular triangle has some nuances, we’ll revisit it soon
15 / 65



The strong structural balance property

The underlying behavioural theory is that these unstable triangles cause
stress and hence the claim that such unbalanced triangles are not common.

In order to try to understand if this theory tells us anything about the
global structure of the network, we can make the following strong balance
assumption (much as we made the strong triadic closure assumption).

Strong structural balance property: A complete graph (i.e., the graph is
a clique) is strongly balanced iff every triangle in the network is balanced.

Note: Only a graph with every possible edge can be strongly balanced

If a graph G is missing edges, then at best we can add edges & labels
that make it strongly balanced. In this case, G is completable to a
strongly balanced graph.
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The strong structural balance property

Strong structural balance property: A complete graph (i.e., the graph is
a clique) is strongly balanced iff every triangle in the network is balanced.

Recall that we’ve assumed that the network is a complete graph with every
edge labelled:

Therefore, strong structural balance constrains all n choose 3 triangles

Like strong triadic closure, this is clearly an extreme & unrealistic
assumption

However, like STC we hope this strong assumption will also suggest
useful information about the network
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Demonstration time! Do we have 4 volunteers from
the audience?

18 / 65



Balance as a form of equilibrium

What if we view balanced triangles as desirable to nodes, and
imbalanced triangles as undesirable?

In a balanced triangle, any single change in a relation (i.e. edge label)
will lead to an unbalanced triangle – and vice versa

Therefore networks obeying strong structural balance are stable
▶ In other words, balanced networks is a form equilibrium – no one can

benefit from unilateral change of a single edge

Later in the term, we will discuss stable matchings. (How many have seen
this in CSC304 or elsewhere?) We view stable matchings as an
equilibrium. In stable matchings (as in balanced triangles), it is a pair of
“agents” that we consider in a single change. We discuss stable matchings
later in this course.
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Consequence of the strong structural balance
property: A provable characterization of networks
that satisfy the property

One simple (idealistic) way to construct a network satisfying the property
is to assume that that there are no enemies; everyone is a friend. Is this
the only way?

We can also satisfy the property with two communities such that all
intracommunity edges are friendly, and all cross-community edges are
negative

Imagine we had two communities of active political people (e.g. X =
the “base” for candidate or political party R, and Y and the “base”
for candidate or political party B

In the world of highly politicized politics, it isn’t too far of a stretch
to think that everyone within a community are friends and everyone
dislikes people in the other community
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Consequence of the strong structural balance
property: A provable characterization of networks
that satisfy the property

So far: two possibilities

1 the network is a clique with all positive edges

2 the network is composed of two positive cliques with a complete
bipartite graph of negative edges between the communities

Are there other possible ways to have the strong balance property?
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Harary’s Balance Theorem

Are there other possible ways to have the strong balance property?

Perhaps surprisingly, in a complete network, these two types of networks
(no enemies and two opposing communities) are the only possibilities.

This is a theorem and the proof is not difficult as we will show using the
figure 5.4 in the text.

Proof
We assume that the network satisfies the strong balance property. If there
are no enemies, then we are done. So suppose there is at least one
negative edge and for definiteness lets say that edge is adjacent to node A.
Let X be all the friends of A and Y all of its enemies. So every node is in
either X or Y since every edge is labelled.
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Proof of balance theorem continued

Consider the three possible triangles as in the figure. It is easy to see that
in order to maintain structural balance, B and C must be friends as must
D and E , whereas B and D (also C and E ) must be enemies.5.2. CHARACTERIZING THE STRUCTURE OF BALANCED NETWORKS 125

A

B

C E

D

+

+

-

-

?

?

?

friends of A enemies of A

Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
other nodes not illustrated here.)

(iii) Every node in X is an enemy of every node in Y .

Let’s argue that each of these conditions is in fact true for our choice of X and Y . This will

mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The

rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other

nodes in X (let’s call them B and C) — must they be friends? We know that A is friends

with both B and C, so if B and C were enemies of each other, then A, B, and C would

form a triangle with two + labels — a violation of the balance condition. Since we know

the network is balanced, this can’t happen, so it must be that B and C in fact are friends.

Since B and C were the names of any two nodes in X, we have concluded that every two

nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them

D and E) — must they be friends? We know that A is enemies with both D and E, so if D

and E were enemies of each other, then A, D, and E would form a triangle with no + labels

— a violation of the balance condition. Since we know the network is balanced, this can’t

happen, so it must be that D and E in fact are friends. Since D and E were the names of

any two nodes in Y , we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),

consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We

know A is friends with B and enemies with D, so if B and D were friends, then a, B, and
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Wed. Jan 31: Announcements and Corrections

Some rewordings for clarity in A1:
▶ Q2d now reads dispersion of the edge” instead of ”dispersion of an

edge”
▶ Q3a now asks for the ”corresponding graph” GT , such that MinSTC on

G is equivalent to min vertex cover on GT
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Strong structural balance in networks that are not
complete

We will depart from the order of topics in chapter 5, and consider the issue
of networks that are not complete. Is there a meaningful sense in which a
(non-complete) network is or is not structurally balanced?

One possibility is to ask whether or not there is a way to complete the
graph so that it becomes structurally balanced. Of course, if there is
already an unbalanced triangle then there is no way to complete the graph
into one satisfying the strong balance property.

Aside: Of course, this immediately raises the question as to how many
existing edge labels need to be changed so that a complete network is
balanced (or an incomplete network can be made to be balanced)? And
will networks tend to dynamically evolve into balanced networks. But for
now we will assume that all existing labels are permanent.

24 / 65



Strong structural balance in networks that are not
complete

We will depart from the order of topics in chapter 5, and consider the issue
of networks that are not complete. Is there a meaningful sense in which a
(non-complete) network is or is not structurally balanced?

One possibility is to ask whether or not there is a way to complete the
graph so that it becomes structurally balanced. Of course, if there is
already an unbalanced triangle then there is no way to complete the graph
into one satisfying the strong balance property.

Aside: Of course, this immediately raises the question as to how many
existing edge labels need to be changed so that a complete network is
balanced (or an incomplete network can be made to be balanced)? And
will networks tend to dynamically evolve into balanced networks. But for
now we will assume that all existing labels are permanent.

24 / 65



Strong structural balance in networks that are not
complete

We will depart from the order of topics in chapter 5, and consider the issue
of networks that are not complete. Is there a meaningful sense in which a
(non-complete) network is or is not structurally balanced?

One possibility is to ask whether or not there is a way to complete the
graph so that it becomes structurally balanced. Of course, if there is
already an unbalanced triangle then there is no way to complete the graph
into one satisfying the strong balance property.

Aside: Of course, this immediately raises the question as to how many
existing edge labels need to be changed so that a complete network is
balanced (or an incomplete network can be made to be balanced)? And
will networks tend to dynamically evolve into balanced networks. But for
now we will assume that all existing labels are permanent.

24 / 65



How to label missing edges?
When considering the strong triadic property, if all existing triangles
satisfied the strong triadic property, then there was always a trivial way to
assign labels to unlabelled edges by simply making each unlabelled edge a
weak link.

Question: If all existing triangles are balanced, is there always a way to
complete a network so as to form a strongly balanced network?
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How to label missing edges?

It is easy to see that this is not always possible. For example, consider a
network which is a 4 node cycle having 3 positive edges and one negative
edge. Any way to label a “diagonal edge” will lead to an imbalance.

We are then led to the following
Question: Can we determine when there is an efficient algorithm to
complete the network so as to satisfy the strong balance property? And if
there is a completion, how efficiently can one be found?
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Determining when and how to complete a network
to satisfy the strong balance property
Clearly, if the existing edges are all positive links then there is a trivial way
to complete the graph by simply making all missing edges to be positive
edges.

So the interesting case is when there are existing negative edges. In this
case, the characterization of strongly balanced networks tells us that when
the graph is completed, the graph structure must be that of two opposing
communities, with only positive edges within each community and only
negative edges for links between the communities.

The previous example of a 4 node cycle is a clue as to how to proceed.
That example can be stated as follows: if a network contains a 4 node
cycle with one negative edge then it cannot be completed (to be strongly
balanced) . More generally, if a network contains a cycle (of any length)
with one negative edge, it cannot be completed. And even more generally,
if a network contains a cycle having an odd number of negative edges it
cannot be completed. Why?

27 / 65



Determining when and how to complete a network
to satisfy the strong balance property
Clearly, if the existing edges are all positive links then there is a trivial way
to complete the graph by simply making all missing edges to be positive
edges.

So the interesting case is when there are existing negative edges. In this
case, the characterization of strongly balanced networks tells us that when
the graph is completed, the graph structure must be that of two opposing
communities, with only positive edges within each community and only
negative edges for links between the communities.

The previous example of a 4 node cycle is a clue as to how to proceed.
That example can be stated as follows: if a network contains a 4 node
cycle with one negative edge then it cannot be completed (to be strongly
balanced) . More generally, if a network contains a cycle (of any length)
with one negative edge, it cannot be completed. And even more generally,
if a network contains a cycle having an odd number of negative edges it
cannot be completed. Why?

27 / 65



Determining when and how to complete a network
to satisfy the strong balance property
Clearly, if the existing edges are all positive links then there is a trivial way
to complete the graph by simply making all missing edges to be positive
edges.

So the interesting case is when there are existing negative edges. In this
case, the characterization of strongly balanced networks tells us that when
the graph is completed, the graph structure must be that of two opposing
communities, with only positive edges within each community and only
negative edges for links between the communities.

The previous example of a 4 node cycle is a clue as to how to proceed.
That example can be stated as follows: if a network contains a 4 node
cycle with one negative edge then it cannot be completed (to be strongly
balanced) . More generally, if a network contains a cycle (of any length)
with one negative edge, it cannot be completed. And even more generally,
if a network contains a cycle having an odd number of negative edges it
cannot be completed. Why?

27 / 65



Consequence of an odd cycle
136 CHAPTER 5. POSITIVE AND NEGATIVE RELATIONSHIPS

1

25

4 3

-

-

+

-

+

X

X

Y
Y

X

label as

X or Y

Figure 5.10: If a signed graph contains a cycle with an odd number of negative edges, then it
is not balanced. Indeed, if we pick one of the nodes and try to place it in X, then following
the set of friend/enemy relations around the cycle will produce a conflict by the time we get
to the starting node.

negative edges between X and Y , and then we can check that all triangles will be balanced.

So this gives a “filling-in” that satisfies the first definition.

The fact that the two definitions are equivalent suggests a certain “naturalness” to the

definition, since there are fundamentally di↵erent ways to arrive at it. It also lets us use

either definition, depending on which is more convenient in a given situation. As the example

in Figure 5.9 suggests, the second definition is generally more useful to work with — it tends

to be much easier to think about dividing the nodes into two sets than to reason about filling

in edges and checking triangles.

Characterizing Balance for General Networks. Conceptually, however, there is some-

thing not fully satisfying about either definition: the definitions themselves do not provide

much insight into how to easily check that a graph is balanced. There are, after all, lots of

ways to choose signs for the missing edges, or to choose ways of splitting the nodes into sets

X and Y . And if a graph is not balanced, so that there is no way to do these things suc-

cessfully, what could you show someone to convince them of this fact? To take just a small

example to suggest some of the di�culties, it may not be obvious from a quick inspection

of Figure 5.8 that this is not a balanced graph — or that if we change the edge connecting

nodes 2 and 4 to be positive instead of negative, it becomes a balanced graph.

In fact, however, all these problems can be remedied if we explore the consequences of
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The algorithm for determining if a partially labelled
network can be completed to the strongly balanced
Lets call a cycle with an odd number of negative edges an odd cycle. The
desired algorithm will either find an odd cycle (certifying that the network
cannot be completed) or it will return a bipartiton of the nodes satisfying
the Balance Theorem. This then also determines if a complete network is
balanced.

We proceed as follows:

Suppose G = (V ,E ) is the given connected network and let
G+ = (V ,E+) where E+ = {e ∈ E such that e is a positive link.}
We consider the connected components C = C1, . . . ,Cr of G+.

Note that all edges between any Ci ,Cj must be labelled as negative
edges (or else they would have been merged into a larger connected
component in G+).

For every Ci , we must check if there is a negative edge between two
nodes in Ci . If so then there is a cycle in Ci with one negative edge,
and hence Ci (and thus G ) cannot be completed.
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The algorithm for determining if a partially labelled
network can be completed to the strongly balanced

Connected positive component Ci Negative edge produces an odd cycle
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Completing the algorithm

Otherwise, consider the graph G− = {C,E−} whose nodes are the
components of G+ and whose edges are negative edges in G .

Since G is connected, G− is connected.

if G− has a cycle with an odd number of negative edges, then by
following positive edges in each Ci we have such a cycle in G . We
then again have a witness that G cannot be completed.

Otherwise we are showing that G− is bipartite and this gives us the
bipartition we need for the balance theorem.

A graph has an odd cycle iff the graph is not bipartite. Breadth first
search can be used to determine whether or not a graph is bipartite
(equivalently has a 2-colouring). Hence this development is efficient.

We now return to the assumption that our networks are undirected
complete graphs.
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Recap

Structural Balance
▶ Balanced triangles
▶ Strongly balanced networks
▶ Strong balance theorem
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Friends-enemies vs trust-distrust

There is always an ambiguity in social networks in how we interpret
links

▶ Is a friend as we might traditionally mean a “good friend”, or is it a
friend as in Facebook friend (i.e., often an acquaintance)

▶ Do the links to mean collaboration or communication rather than
friendship?

Network modelling is a two edged-sword
▶ The power of network modeling is that results can carry over to

different settings
▶ The danger is of misinterpretation when applying results from one type

of setting to apply to another

In chapter 5, we see ambiguity where instead of the friend-enemy
relation, one can interpret an edge label as a trust-distrust relation

▶ To what extent should we expect intuition for friendship to carry over
to trust?

Example time!
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The ambiguity in the trust-distrust relation

One distinction is that trust may be more of a directed edge concept
relative to friendship.
Ignoring the fact that trust might not be at all symmetric, there is an
additional ambiguity in the trust-distrust terminology. Namely, the text
considers two possible interpretations that are meaningful even in the
context of a simple setting as in the online product rating site Epinions.

1 If trust is aligned with agreement on polarized political issues, then
the four cases of balanced and unbalanced triangles still seem to
apply. In particular, if A distrusts B and B distrusts C , it is
reasonable to assume that A trusts C and hence a triangle having
three negative labels is not stable.

2 However, if A distrusts B is aligned with A believing that he/she is
more knowledgeable than B about a certain product, then a triangle
having three negative labels is stable.

This suggests that it is reasonable to study a weaker form of structural
balance.
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1 If trust is aligned with agreement on polarized political issues, then
the four cases of balanced and unbalanced triangles still seem to
apply. In particular, if A distrusts B and B distrusts C , it is
reasonable to assume that A trusts C and hence a triangle having
three negative labels is not stable.
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more knowledgeable than B about a certain product, then a triangle
having three negative labels is stable.

This suggests that it is reasonable to study a weaker form of structural
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A weaker form of structural balance

It is then interesting to consider a weaker form of structural balance where
the only unstable triangles are those having two positive labels.

Definition (Weak Structural Balance)

A complete graph (i.e., the graph is a clique) satisfies the weak structural
balance property if it does not contain any triangles with exactly two
positive edges.

Note: If a graph G is missing edges, and there is a way for labelled
edges to be added such that a weakly balanced graph is created, then
G is completable to a weakly balanced graph
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A weaker form of structural balance

Definition (Weak Structural Balance)

A complete graph satisfies the weak structural balance property if it does
not contain any triangles with exactly two positive edges.

Question: Is there a characterization of which (complete) networks satisfy
the weak structural balance property?

Since every network that satisfies the strong balance property must also
satisfy the weak balance property, the characterization of strongly
balanced networks must be a special case of weakly balanced networks.
Indeed we have the following characterization:

Theorem: A network G = (V ,E ) satisfies the weak structural balance
property iff V = V1 ∪ V2 . . .Vr such that all edges within any Vi are
positive edges and all edges between Vi and Vj (i ̸= j) are negative edges.

36 / 65



A weaker form of structural balance

Definition (Weak Structural Balance)

A complete graph satisfies the weak structural balance property if it does
not contain any triangles with exactly two positive edges.

Question: Is there a characterization of which (complete) networks satisfy
the weak structural balance property?

Since every network that satisfies the strong balance property must also
satisfy the weak balance property, the characterization of strongly
balanced networks must be a special case of weakly balanced networks.
Indeed we have the following characterization:

Theorem: A network G = (V ,E ) satisfies the weak structural balance
property iff V = V1 ∪ V2 . . .Vr such that all edges within any Vi are
positive edges and all edges between Vi and Vj (i ̸= j) are negative edges.

36 / 65



A weaker form of structural balance

Definition (Weak Structural Balance)

A complete graph satisfies the weak structural balance property if it does
not contain any triangles with exactly two positive edges.

Question: Is there a characterization of which (complete) networks satisfy
the weak structural balance property?

Since every network that satisfies the strong balance property must also
satisfy the weak balance property, the characterization of strongly
balanced networks must be a special case of weakly balanced networks.
Indeed we have the following characterization:

Theorem: A network G = (V ,E ) satisfies the weak structural balance
property iff V = V1 ∪ V2 . . .Vr such that all edges within any Vi are
positive edges and all edges between Vi and Vj (i ̸= j) are negative edges.

36 / 65



A weaker form of structural balance

Definition (Weak Structural Balance)

A complete graph satisfies the weak structural balance property if it does
not contain any triangles with exactly two positive edges.

Question: Is there a characterization of which (complete) networks satisfy
the weak structural balance property?

Since every network that satisfies the strong balance property must also
satisfy the weak balance property, the characterization of strongly
balanced networks must be a special case of weakly balanced networks.
Indeed we have the following characterization:

Theorem: A network G = (V ,E ) satisfies the weak structural balance
property iff V = V1 ∪ V2 . . .Vr such that all edges within any Vi are
positive edges and all edges between Vi and Vj (i ̸= j) are negative edges.

36 / 65



Proof of the characterization of weak structural
balance

Clearly if the network G = (V ,E ) has the network structure specified in
the Theorem, then the network satisfies the weak balance property. The
converse (that the weak balance property implies the network structure) is
a reasonably simple inductive argument (say with respect to the number of
nodes).

Consider any node A and let X be all the friends of A.
The following two claims are easy to verify:

Any B,C ∈ X are friends

If B ∈ X and D /∈ X , then B and D are enemies.

Upon removing the nodes in X , the induced network G ′ of the remaining
nodes still must satisfy the weak structure balance property and hence by
the induction hypothesis must have the stated network structure.
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Example: Partitioning a weakly balanced graph
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The evolution of European alliances preceding WWI5.3. APPLICATIONS OF STRUCTURAL BALANCE 127

GB
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Ru
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(a) Three Emperors’ League 1872–
81
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It

(b) Triple Alliance 1882
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(c) German-Russian Lapse 1890
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(d) French-Russian Alliance 1891–
94
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It

(e) Entente Cordiale 1904

GB

Fr

Ru

AH

Ge

It

(f) British Russian Alliance 1907

Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respec-
tively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note
how the network slides into a balanced labeling — and into World War I. This figure and
example are from Antal, Krapivsky, and Redner [20].

was China’s enemy, China was India’s foe, and India had traditionally bad relations with

Pakistan. Since the U.S. was at that time improving its relations with China, it supported

the enemies of China’s enemies. Further reverberations of this strange political constellation

became inevitable: North Vietnam made friendly gestures toward India, Pakistan severed

diplomatic relations with those countries of the Eastern Bloc which recognized Bangladesh,

and China vetoed the acceptance of Bangladesh into the U.N.”

Antal, Krapivsky, and Redner use the shifting alliances preceding World War I as another

example of structural balance in international relations — see Figure 5.5. This also reinforces

the fact that structural balance is not necessarily a good thing: since its global outcome is

often two implacably opposed alliances, the search for balance in a system can sometimes

be seen as a slide into a hard-to-resolve opposition between two sides.
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Efficiently finding balanced subgraphs

Real social networks are unlikely to be strongly balanced

What if we want to find the largest (completable) balanced
subnetwork?

Question: Why might we want to do this?
▶ Identify opposing blocs in geopolitics
▶ Identify polarized communities on social media
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Efficiently finding balanced subgraphs

Definition (Maximum Baanced Subgraph (MBS))

Given a signed graph G = (V ,E ,w), MBS is the problem of finding the
maximum balanced subgraph. i.e. finding the largest V ′ ⊆ V such that
G ′ = (V ′, {(v1, v2) ∈ E |v1, v2 ∈ V ′},w) is strongly balanced (or
completable to such).

Problem is NP-Hard, so we have to approximate

We’re going to do this, by studying the properties of the signed
Laplacian matrix
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Signed Laplacian Matrix of a Signed Graph
For our signed graph G = (V ,E ,w) with n nodes, the signed
Laplacian is:

L(G ) := D − A

D is the degree matrix:

Dij =

{
|{a : (vi , a) ∈ E}|, i = j

0, else

D =

2 1
1
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Signed Laplacian Matrix of a Signed Graph
For our signed graph G = (V ,E ,w) with n nodes, the signed
Laplacian is:

L(G ) := D − A

A is the signed adjacency matrix:

Aij =


1, (vi , vj) ∈ E & w((vi , vj)) = 1
−1, (vi , vj) ∈ E & w((vi , vj)) = −1
0, else

A =

 0 1 −1
1 0 0
−1 0 0
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Signed Laplacian Matrix of a Signed Graph

For our signed graph G = (V ,E ,w) with n nodes, the signed
Laplacian is:

L(G ) := D − A

D is the degree matrix:

Dij =

{
|{a : (vi , a) ∈ E}|, i = j

0, else

A is the signed adjacency matrix:

Aij =


1, (vi , vj) ∈ E & w((vi , vj)) = 1
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0, else
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Signed Laplacian Matrix of a Signed Graph
Consider the following graph G :

D =

2 1
1

 A =

 0 1 −1
1 0 0
−1 0 0

 L(G ) = D−A =

 2 −1 1
−1 1 0
1 0 1
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Aside: The (unsigned) Laplacian Matrix

Aside: The Laplacian matrix of general edge weighted undirected
graphs is L = D − A where D and A are the weighted degree and
adjacency matrices respectively. This is a similar but fundamentally
different definition than the Signed Laplacian
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Properties of the Signed Laplacian

L = D − A, therefore L is a real symmetric matrix

By Spectral Theorem we therefore have an orthonormal eigenbasis
b1,b2, . . .bn ∈ R|V | with corresponding eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn.

▶ Lbi = λibi
▶ ⟨bi ,bi ⟩ = 1
▶ ⟨bi ,bj⟩ = 0 for i ̸= j

▶ ∀x ∈ R|V | : ∃wi ∈ R : x =
∑|V |

i=1 wibi

It can also be shown that the signed Laplacian is also positive
semi-definite

▶ ∀x : xTLx ≥ 0
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Properties of the Signed Laplacian

From positive semi-definiteness, we know that λ1 ≥ 0 (Exercise: Prove
this!). But why do we care about the eigenvalues of the signed Laplacian?

Theorem

For a signed graph G , let λ1 be the smallest eigenvalue of the
corresponding signed Laplacian, L(G ). Then G is (completably) strongly
balanced iff λ1 = 0.

Furthermore, it can be shown that signed graphs that are “close” to
being balanced have “small” values of λ1
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Finding large balanced subgraphs

We can show that for the Signed Laplacian L(G ) with smallest
eigenvalue λ1, then λ1 = 0 iff G is strongly balanced

There is a result indicating that graphs which are “close” to being
balanced have “small’ values of λ1

Question: Assuming that we can compute λ1 easily, how could we
use this to find a large balanced subgraph?

Greedy approach: Repeatedly remove the nodes that cause the
greatest decrease in λ1 until the graph becomes strongly balanced

This is the approach used by Ordozgoiti et al. (see
https://arxiv.org/abs/2002.00775)
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Finding large balanced subgraphs

Let λ1(M) denote the smallest eigenvalue of the matrix M

As calculating λ1 is too expensive to be done |V | times per removed
node. Ordozgoiti et al. instead calculate λ1(L(G )), and approximate
λ1 when choosing which node to remove from G

Aside: Through a simple (but a bit long) derivation, the authors show
that:

λ1(L
(i)) ≤

λ1(L) + (b1)2i (d(i)− 2λ1(L(G )))−∑
j∈N (i)(b1)

2
j

1− (b1)2i

In the above: L(i) is the signed Laplacian after the removal of the
node vi , b1 is the first eigenvector of L(G ), N (i) are the neighbours
of the node vi , and d(i) is the degree of the node vi .

The derivation is straightforwards but a bit long, the details can be
found in the paper
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Finding large balanced subgraphs

The author’s algorithm uses this bound to greedily remove nodes until
a balanced subgraph is found

After a balanced subgraph is found, we check if the removed nodes
can be re-introduced
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Finding large balanced subgraphs

Algorithm 1 TIMBAL Algorithm

Input: signed graph G
R ← ∅
while G is not balanced do
Compute L(G ), λ1(L(G )), and corresponding b1

k ← argmini
λ1(L)+(b1)2i (d(i)−2λ1(L(G)))−

∑
j∈N (i)(b1)

2
j

1−(b1)2i
G ← largest connected component in G \ {vk}
R ← R ∪ {vk}

end while
for v ∈ R do

if G ∪ {v} is balanced then
G ← G ∪ {v}

end if
end for
return G
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Finding large balanced subgraphs

[Table from Ordozgoiti]

Under various optimizations, the algorithm is able to process the
Epinions dataset (containing 1 millions nodes and 12 million edges) in
1.5 hours
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Finding large balanced subgraphs

[Figure from Ordozgoiti]

Identified subgraph in the Congress dataset

Edges represent (un)favourable mentions
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Finding large balanced subgraphs

[Figure from Ordozgoiti]

Identified subgraph in the Bitcoin OTC dataset

Edges represent declared trust/distrust
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Recap

With practice & review, you’ll be able to:

Define and identify both strong structural balance & weak structural
balance, judge their appropriateness, and derive their consequences

▶ Identify balanced triangles, explain their stability, and determine their
appropriateness based on context

▶ Define, identify, and create strongly balanced networks
▶ Define and derive strong balance theorem (i.e., Harary’s balance

theorem)
▶ Define, identify, and create weakly balanced networks
▶ Extend Harary’s balance theorem to weakly balanced networks
▶ Define the signed Laplacian matrix, and explain its connection to

structural balance
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Mon. Feb 5: Announcements and Corrections

A1 is due next Thursday (Feb 15th)
▶ If you haven’t gotten started on Q1, please do as it will require some

thought

This week’s in-person office hours are today instead of Wednesday

This week’s tutorial will be giving you time to work on the practice
questions, and also taking up the solutions

▶ Anything that isn’t covered in tutorial, feel free to ask on Piazza or
Office Hours
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Critical Review

Rubric & two examples are on
the course website

Groups of 3-4

You will be critically reviewing a
paper

The paper must be recent
(i.e. published on or after
January 1st 2021)

The paper must be either
published in a
journal/conference, or have
been accepted to be
published in a
journal/conference

Why no arXiv preprints?
Comic from xkcd
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Critical Review
Email me your group & choice of paper by Fri Mar 1 (use the email
on Quercus/syllabus/course website)

▶ No two groups can do the same paper
▶ If I don’t approve your paper, then you risk getting a zero
▶ I’ll confirm receipt once I see it, and I’ll try to write back to approve or

reject your choice within 3 days
▶ You can send a sorted list of papers; I’ll tell you the first on the list

which I approve

The final report which is marked is due via MarkUs by Thu Apr 4
A draft is due Fri Mar 22

▶ submission on Quercus Assignments tab via peerScholar
Peer feedback is due Fri Mar 29

▶ Peer feedback is also on the Quercus Assignments tab via peerScholar
▶ You must join your team’s PeerScholar group, even if you’re not the

one submitting the draft!
▶ Every student will individually write peer feedback for a random draft
▶ The peer feedback will be marked by our TAs

We’ll now review the rubric
You have an upper limit of 5 pages; apart from that restriction, make
it long or short as you feel is appropriate
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Critical Review Project: Advice!

Advice for finding papers for the critical review
▶ Use Google Scholar to search for something that interests you!
▶ Choose your favourite paper from class, and take a look at:

⋆ Other works by the same author(s) and lab(s)
⋆ Other works published in the same conference/journal
⋆ Other works that cite the paper
⋆ Connected papers: https://www.connectedpapers.com/

Advice for finding partners for the critical review
▶ Piazza “Search for Teammates!” post
▶ Informal Discord
▶ If we’re approaching the deadline and you’ve tried both without any

luck, then email me
▶ Remember that you can start looking at cool papers before you have a

group! :)
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Critical Review Project

We’ve a list which will be populated with papers as they are claimed
for the critical review

▶ See the critical review section of the assignments tab on the course
website
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