Social and Information Networks

Tutorial \#5: Analyzing Decentralized Search

University of Toronto CSC303
Winter/Spring 2023
Ian Berlot-Attwell

Week 6: Feb 13-17

Today's agenda

In lecture we've covered Chapter 20 of the textbook looking at Small Worlds and decentralized search.

Today:

- Questions from Lecture
- NetLogo small worlds demo
- Analysis of Decentralized Search in Small Worlds (Ch 20.7A of E\&K)
- Quercus Quiz

Questions?

NetLogo Small Worlds Demo

Decentralized Search in Small Worlds

- From class we know that efficient decentralized search in the Watts-Strogatz model require selecting the endpoint of weak links with probability $\propto 1 /$ rank, where rank is the number of closer endpoints
- Recall rank $\approx d^{2}$ in 2D, and rank $\approx d$ in 1D
- Consider the 1D model where nodes are arranged in a ring, have a strong link to their immediate neighbours, and have a weak link to some other node

Decentralized Search in Small Worlds

Theorem (Efficient Decentralized Search in 1D)

Consider n nodes arranged in a ring. Each node gets 1 long-distance connection, chosen with probability proportional to $d(v, u)^{-1}$. Then expected decentralized search length is $O\left(\left(\log _{2} n\right)^{2}\right)$

Decentralized Search in Small Worlds

Let the random variable X be the number of steps until we reach our target. Then

$$
X=\sum_{i=0}^{\log _{2} n} x_{i}
$$

Where X_{i} is the time spent with a distance in $\left[2^{i}, 2^{i+1}\right)$. Let these be referred to as "phases" of the decentralized search.

Thus $E[X]=\sum_{i=0}^{\log _{2} n} E\left[X_{i}\right]$

Decentralized Search in Small Worlds

Now, recall that the probability that the weak link for v is w is inversely proportional to $d(v, w)$, therefore it's equal to $\frac{1}{Z d(v, w)}$, for normalizing constant Z.

$$
\begin{aligned}
Z & =\sum_{v \in V, v \neq w} \frac{1}{d(v, w)} \\
& \leq 2 \sum_{d=1}^{\lfloor n / 2\rfloor} \frac{1}{d}=2+2 \sum_{d=2}^{\lfloor n / 2\rfloor} \frac{1}{d} \\
& \leq 2+2 \int_{1}^{\lfloor n / 2\rfloor} \frac{1}{x} d x=2+2 \ln (\lfloor n / 2\rfloor) \\
& \leq 2+2 \log _{2}(n / 2)=2+2 \log _{2}(n)-2 \log _{2}(2)=2 \log _{2}(n)
\end{aligned}
$$

Therefore, the probability of v having a weak link to w is $\frac{1}{Z} d(v, w)^{-1} \geq \frac{1}{2 \log _{2}(n)} d(v, w)^{-1}$

Decentralized Search in Small Worlds

Suppose that we are currently executing a decentralized search, and we are presently at distance d from our target.

Recall that we split the search into "phases", such that the i th phase is when we are at a distance $\left[2^{i}, 2^{i+1}\right)$.

Therefore, the current "phase" will definitely end once we reach the distance of $d / 2$ or less. There are $d+1$ nodes at a distance of $d / 2$ or less of the target. Let $/$ be this set. Note that the node in $/$ furthest from us must be at a distance of $d+d / 2=3 d / 2$.

Decentralized Search in Small Worlds

I is the set of $d+1$ nodes at a distance of $d / 2$ or less of the target. Therefore if we are currently at node u :

$$
\begin{aligned}
P(u \text { has a weak tie to } I) & =\sum_{w \in I} \frac{1}{Z} d(u, w)^{-1}=\sum_{x=d / 2}^{3 d / 2} \frac{1}{Z} x^{-1} \\
& \geq \sum_{x=d / 2}^{3 d / 2} \frac{1}{Z}(3 d / 2)^{-1} \\
& \geq \frac{d}{Z}(3 d / 2)^{-1}=\frac{2}{3 Z} \\
& \geq \frac{1}{3 \log _{2} n}
\end{aligned}
$$

Decentralized Search in Small Worlds

Ignoring the possibility of moving out of the phase through local connections, then each node has a probability of at least $\frac{1}{3 \log _{2} n}$ of exiting the phase.
Therefore the probability of staying in the phase for i steps is at most:

$$
\left(1-\frac{1}{3 \log _{2} n}\right)^{i-1}
$$

Decentralized Search in Small Worlds

Now, note:

$$
\begin{aligned}
E\left[X_{j}\right] & =\sum_{i=1}^{\infty} i P\left(X_{j}=i\right) \\
& =\sum_{i=1}^{\infty} P\left(X_{j} \geq i\right) \\
& \leq \sum_{i=1}^{\infty}\left(1-\frac{1}{3 \log _{2} n}\right)^{i-1} \\
& =\frac{1}{1-\left(1-\frac{1}{3 \log _{2} n}\right)} \\
& =3 \log _{2} n
\end{aligned}
$$

Decentralized Search in Small Worlds

Therefore, given $E\left[X_{j}\right] \leq 3 \log _{2} n$ we can conclude:

$$
E[X]=\sum_{i=0}^{\log _{2} n} E\left[X_{i}\right] \leq\left(1+\log _{2} n\right) \times 3 \log _{2} n \in O\left(\left(\log _{2} n\right)^{2}\right)
$$

Quercus Quiz

