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Logistics

A1 out, due Monday, Oct 7 on MarkUs 

First letter of last name A-H? First blog post due 
Oct 4 (blog details up on website this week)



Structure of Networks

Last time: 
▪ 1) basic network properties 

▪ 2) network measurements  

▪ 3) Gnp 

▪ 4) (start of) strength of weak ties



Today

1) Strength of weak ties 

2) Community detection 

3) Empirical network phenomena



Networks & Communities

We often think of networks “looking” like this:

What can lead to such a conceptual picture?



Networks: Flow of Information

How does information flow through networks?

What structurally distinct roles do nodes play?

What roles do different links (short vs. long) play?

How people find out about new jobs?

Mark Granovetter, part of his PhD in 1960s

People find the information through personal contacts

But: Contacts were often acquaintances  

rather than close friends

This is surprising: One would expect your friends to help 

you out more than casual acquaintances

Why is it that acquaintances are most helpful?



Granovetter’s Answer

Two perspectives on friendships:

Interpersonal: Friendship between two people vary in 
strength, you can be close or not so close to someone

Structural: Friendships span different parts of the network

The two highlighted edges are 
structurally different: one spans 
two different “communities” and 
the other is inside a community
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Which edge is more likely: 
a–b or a–c?

Structural force: Triadic closure



Triadic closure
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Informally: If two people in a social network have a friend in 
common, then there is an increased likelihood that they will 
become friends themselves at some point in the future.



Triadic Closure
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Granovetter’s Explanation

Granovetter makes a connection between  
social and structural role of an edge
First point: Structure

▪ Structurally embedded edges are also socially strong

▪ Long-range edges spanning different parts of the 
network are socially weak

Second point: Information

▪ Long-range edges allow you to gather information from 
different parts of the network and get a job

▪ Structurally embedded edges are  
heavily redundant in terms of  
information access
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Network Vocabulary: Span and Bridges

Define: Bridge edge
If removed, it disconnects the graph

a
b

Bridge

a
b

Local bridge

Define: Local bridge
Edge of Span > 2  
(any edge that doesn’t close a triangle)

Idea: Local bridges with long span are like real bridges

Define: Span  
 The Span of an edge is the distance of the  
edge endpoints if the edge is deleted.

Span of a bridge edge = ∞



Granovetter’s Explanation

Model: Two types of edges:

Strong (friend), Weak (acquaintance)

Model: Strong Triadic Closure property:

Two strong ties imply a third edge

If node A has strong ties to both nodes B and C, then 
there must be an edge (strong or weak) between B and C

Fact: If strong triadic closure is  
satisfied then local bridges  
are weak ties!

S S

Edge: 

W or S

a
b

S

W
S

S

W

S

S



Local Bridges and Weak ties

A
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Claim: if node A satisfies Strong Triadic Closure and has two strong 
ties, then any local bridge adjacent to A must be a weak tie

Proof: By contradiction:
 Assume A satisfies Strong Triadic 
Closure and has two strong ties
 Let A–B be a local bridge, and assume it is 
a weak tie (to try to derive a contradiction)
 Then B–C must exist because of Strong 
Triadic Closure
 But then A–B is not a local bridge, 
because its span is 2 (without A–B, A–C–B is 
the shortest path)



Conceptual Picture of Networks

Granovetter’s theory leads to the following 
conceptual picture of networks

Strong ties

Weak ties



Granovetter’s Explanation

Weak ties have access to different parts of 
the network! Access to other sources and other 
kinds of information

Strong ties have redundant information



Tie strength in real data

For many years Granovetter’s theory was 
not tested

But, today we have large who-talks-to-whom graphs:

Email, Messenger, Cell phones, Facebook

Onnela et al. 2007: 

Cell-phone network of 20% of country’s population

Edge strength: # phone calls



Neighborhood Overlap

Define: Edge overlap as 
the number of shared 
neighbours divided by the 
union of neighbours:

Oij =
N(i) ∩N(j)

N(i) ∪N(j)
<latexit sha1_base64="mr3HphmXcdJKCtbzyTnvN9Tbbls=">AAACF3icbVDLSsNAFJ34rPUVdelmsAjtJiRV0I1QdOOqVrAPaEKYTCfttJMHMxOhhPyFG3/FjQtF3OrOv3HaRtDWAwPnnnMvd+7xYkaFNM0vbWl5ZXVtvbBR3Nza3tnV9/ZbIko4Jk0csYh3PCQIoyFpSioZ6cScoMBjpO2NriZ++55wQaPwTo5j4gSoH1KfYiSV5OrGjZvSYQYvoO1zhNN6mVagjVEM6+VhJfupk7x29ZJpmFPARWLlpARyNFz90+5FOAlIKDFDQnQtM5ZOirikmJGsaCeCxAiPUJ90FQ1RQISTTu/K4LFSetCPuHqhhFP190SKAiHGgac6AyQHYt6biP953UT6505KwziRJMSzRX7CoIzgJCTYo5xgycaKIMyp+ivEA6TykSrKogrBmj95kbSqhnViVG9PS7XLPI4COARHoAwscAZq4Bo0QBNg8ACewAt41R61Z+1Ne5+1Lmn5zAH4A+3jG9BcnS8=</latexit>

(N(i) = set of neighbours of node i)

Oij = 0 when i–j is a local bridge

Oij = 1 when i and j have all 
neighbours in common



Phones: Edge Overlap vs. Strength

Let’s measure the empirical 
relationship between edge strength 
and overlap in a real network!

Data: cell phone network

Legend:
x-axis: edge strength (# calls 
between nodes)
y-axis: overlap (how much edge 
bridges different parts of the 
network)

What do you think it will look like?
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Phones: Edge Overlap vs. Strength

Legend:

True: The data

Permuted strengths: Keep  
the network structure  
but randomly reassign  
edge strengths

Observation:

Highly used links  
have high overlap!

Weak links have small overlap 
(bridges!)

Granovetter was right
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Real Network, Real Tie Strengths

Real edge strengths in mobile call graph

Strong ties are more embedded (have higher overlap), and 
occur mostly in clustered communities



Real Net, Permuted Tie Strengths

Same network, same set of edge strengths but now 
strengths are randomly shuffled
Now high overlap edges are much more likely to span different 
parts of the network (not what we see in real life)



Link Removal by Strength

An important, recurring concept in network analysis is 
network robustness: how quickly does the graph become 
disconnected as you remove links?

The faster the network falls apart, the more prone to failure it is

Test importance of edges by changing the order in which you 
remove them



Link Removal by Strength

In the mobile call graph, we will test the importance of strong/weak 
edges, as well as high/low overlap edges, by employing this strategy

Fraction of removed links
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Test your intuition: 

What will this curve look like?

Must start here

Must end here



Link Removal by Strength

Removing links by strength (#calls) 

▪ Low to high

▪ High to low

Fraction of removed links
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Conceptual picture  
of network structure

Low 
disconnects 
the network 

sooner



Link Removal by Overlap

Removing links based on overlap

▪ Low to high

▪ High to low

Fraction of removed links
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Conceptual picture  
of network structure

Low disconnects 
the network 

much sooner



Network Communities

Granovetter’s strength of weak 
ties theory suggests that 
networks are composed of 
tightly connected sets of 
nodes 

Network communities: 

▪ Sets of nodes with lots of 
connections inside and few to 
outside (the rest of the network)



Social Network Data

Zachary’s Karate club network:

Observe social ties and rivalries in a university karate club

34: president

1: instructor



Social Network Data

Zachary’s Karate club network:

Observe social ties and rivalries in a university karate club

During his observation, conflicts led the group to split

Split could be explained by a minimum cut in the network

34: president

1: instructor



NCAA Football Network

Nodes: Teams
Edges: Games played

Can we identify node groups?
(communities, modules, 

clusters)



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

NCAA Football Network

NCAA conferences

Nodes:  Teams
Edges: Games played



Facebook Ego-network

Nodes: Users
Edges: Friendships

Can we identify social 
communities?



Facebook Ego-network

High school Company

Toronto (Squash)

Toronto (Basketball)

Social communities
Nodes: Users
Edges: Friendships



Micro-Markets in Sponsored Search

Find micro-markets by partitioning the 
“query x advertiser” graph:

advertiser

q
u

e
ry



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Protein-Protein Interactions

Nodes: Proteins
Edges: Interactions

Can we identify 
functional modules?



Protein-Protein Interactions

Functional modules

Nodes: Proteins
Edges: Interactions



Community Structure on Reddit



Community Structure

Many real-world networks exhibit community structure that is 
“obvious” to the naked eye

But what about finding communities from data?

What are the communities now? Do this with 1B edges…



Finding Network Communities

How to automatically find such densely connected 
groups of nodes?

Ideally such automatically detected clusters would 
then correspond to real groups

For example:

Note: We will work with undirected (unweighted) graphs



Graph Partitioning

Two general approaches:
1. Start with every node in the same cluster and break apart 
at “weak links” (“divisive clustering”)  

2. Start with every node in its own “community” and join 
communities that are close together (“agglomerative 
clustering”)



Graph Partitioning

We’ll do the first: start with the whole graph as a community 
and recursively split it up into smaller communities

Where would you make the first cut?

Consider the following graph:



Graph Partitioning

And now?

We’ll do the first: start with the whole graph as a 
community and recursively split it up

Consider the following graph:



Graph Partitioning

We’ll do the first: start with the whole graph as a 
community and recursively split it up

Consider the following graph:



Graph Partitioning

Tightly-knit regions

We’ll do the first: start with the whole graph as a 
community and recursively split it up

Consider the following graph:



Graph Partitioning

This naturally produces nested communities

Nested  

structure!

This is familiar from everyday life:
– Countries, provinces, cities…
– Sports, Arts, Business then teams, art forms, sectors



Graph Partitioning

A number of both agglomerative and divisive clustering 
methods will find this partitioning

–Divisive will delete 7-8 first, etc.
–Agglomerative would add 7-8 last, etc.

Nested  

structure!



Graph Partitioning

Back to divisive clustering: Why is 7-8 a good candidate for 
the first cut?

Recall that a weak tie is defined as an edge that separates 
weakly-connected regions

It is a bridge



Graph Partitioning

Divisive clustering algorithm: Recursively remove bridges?

3-7, 6-7, 8-9, 8-12 are also bridges!

Right idea, but not strong enough: There are other 
bridges too (which ones?)



Graph Partitioning

Also, sometimes there are no bridges (or even no local 
bridges) but “natural” communities still exist



Graph Partitioning

Recall definition of a bridge: an edge that, if you remove it, 
disconnects its endpoints

Thus it is an edge that carries a shortest path 
(obviously the shortest, since it’s also the only path)

Need a more nuanced definition to distinguish bridges and 
“bridge-like” edges from highly embedded edges



Graph Partitioning

Definition: the betweenness of an edge is how many 
(fractional) shortest paths travel through it

–For every pair of nodes A,B say there is one unit of “flow” 
along the edges from A to B
–Flow between A to B divides evenly among all shortest paths 
from A to B
–If k shortest paths, 1/k flow on each path



Graph Partitioning

A

One unit of flow from A to B
Betweenness(A–B) = 1

B



Graph Partitioning

A

C

B

D

One unit of flow from A to B
Two shortest paths from A to B, split evenly among them

So edges  a–c, c–b, a–d, d–b get 1/2 flow each from the (A,B) pair

…and repeat for one unit of flow between every other pair of nodes: 
(A,C), (A,D), (B,C), (B,D), (C,D)



Girvan-Newman algorithm

Divisive hierarchical clustering based on the notion of edge 
betweenness (Number of shortest paths passing through an edge)

Girvan-Newman Algorithm (on undirected unweighted 
networks):
Repeat until no edges are left:

–(Re)calculate betweenness of every edge

–Remove edges with highest betweenness (if ties, remove all 
edges tied for highest)

–Connected components are communities

Gives a hierarchical decomposition of the network



Girvan-Newman: Example

Consider edge 7-8:
–Each node A on left and node B on right has shortest path passing 
through 7-8
–No flow passing between nodes on same side passes through 7-8
–Betweenness(7-8) = 7x7 = 49



Girvan-Newman: Example

By symmetry, we know 
betweenness for all other 
nodes as well in this graph

Other edges:
3-7 carries full flow from 1,2,3 to 4-14: 3x11=33
1-3 carries all flow from 1 to everyone else except 2: 
1x12 = 12
1-2 only carries flow from 1 to 2: 1x1 = 1



Girvan-Newman: Example

Girvan-Newman method: Remove edge of highest 
betweenness (or multiple if there is a tie)

By symmetry, we know 
betweenness for all other 
nodes as well in this graph



Girvan-Newman: Example

Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Need to re-compute 
betweenness at every step



Girvan-Newman: Example

Step 1: Step 2:

Step 3: Step 4:

25 units that used to be on 5-7  

get shifted to 5-6 and 6-7

Need to re-compute 
betweenness at every step



Zachary Karate Club

Actual

Girvan-Newman



Dendrogram
Graphical depiction of the hierarchical clustering splits done 
at every step

Visualizing Hierarchical Clusters

“First AB/CDEF, then C/DEF, then D/EF, then A/B, then E/F”



Zachary Karate Club

Dendrogram
Graphical depiction of the hierarchical clustering splits done at every step



Girvan-Newman: Results

Communities in physics collaborations 



We need to resolve a question

How to compute betweenness?
Counting all pairs of shortest paths for every 
edge is computationally challenging!

11/11/2014



How to Compute Betweenness?

0 

1 

2 

3 

4

Recall BFS goes layer-by-layer

Want to compute 
betweenness of paths 

starting at node A
BFS starting from A:



How to Compute Betweenness?

Work  

downwards

Count the number of shortest paths from A 
to all other nodes in the graph:



How to Compute Betweenness?
How much flow goes from A to other nodes?

1 flow for (A,K). 

Split evenly

1+0.5 paths to J 

Split 1:2

1+1 paths to H 

Split evenly

 

Work 
upwards

Compute betweenness by working up the tree: If 
there are multiple paths count them fractionally



Girvan-Newman

–Repeat for each node in the graph, add up the edge 
scores that edges receive in these computations
–For each edge (u,v), must divide by 2 because we counted 
it once for u and once for v
–Works on moderately-sized graphs
–To scale to big data, still expensive, and requires 
approximations or related more efficient methods 



Granovetter’s Explanation

Granovetter makes a connection between  
social and structural role of an edge
First point: Structure

▪ Structurally embedded edges are also socially strong

▪ Long-range edges spanning different parts of the 
network are socially weak

Second point: Information

▪ Long-range edges allow you to gather information from 
different parts of the network and get a job

▪ Structurally embedded edges are  
heavily redundant in terms of  
information access
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