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This week’s agenda

Choosing influential adopters
▶ Linear threshold model
▶ Independent cascade model

Local vs. global knowledge

Competitive influence spread

Modelling disease contagion
▶ Basic reproductive number (R0)
▶ SIR model

⋆ SIR as percolation
⋆ Structure vs. R0

⋆ SIS & SIRS models

▶ Modelling transient contacts
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Choosing influential adopters

Suppose we wish to spread a new technology and to do so we have
money to influence some “small” set of initial adopters (e.g. by giving
away the product or even paying people to adopt it).

Even in this simple model of (non-competitive) influence spread, and
even if we have complete knowledge of the social network, it is not at
all clear how to chose an initial set of adopters so as to achieve the
largest spread.

Furthermore the spread process could be much more sophisticated.
▶ For example, adoption by a node might be a more random process (say

adopting with some probability relative to the nodes threshold) and
maybe the influence of neighbors first increases and then decreases
over time. And maybe u can have a negative influence on v in say
signed networks.
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Choosing influential adopters continued

Suppose we have funds/ability to influence k nodes to become initial
adopters.

▶ We can try all possible subsets of the entire n = |V | nodes and for
each such subset simulate the spread process.

▶ But clearly as k gets larger, this “brute force” becomes prohibitive for
large (and not even massive) networks.

It turns out that the problem of the optimum set of initial adopters in
many settings is an NP-hard problem.
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Can we determine a “good” set of initial adopters?

For even simple models of information spread similar to those
discussed last week, it can be computationally difficult (NP-Hard) to
obtain an approximation within a factor nc for any c < 1.

Instead we will identify properties of a spread process that will allow a
good approximation: a good set of initial adopters that will do
“almost as well” as the best set.

Note: What follows is a discussion as to how to choose a set of initial
adopters by a relatively efficient approximation algorithm when making
some assumptions on the spread process. However, we would need much
more efficient methods for massive networks.
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Influence maximization models; monotone
submodular set functions

Some spread models have the following nice properties.

For any initial set of adopters, S , let f (S) be size (or more generally a real
value benefit since some nodes may be more valuable) of the final set of
adopters. Furthermore, let f satisfy:

1 Monotonicity: f (S) ≤ f (T ) if S is a subset of T

2 Submodularity: f (S + v)− f (S) ≥ f (T + v)− f (T ) if S is a subset of T

We also usually assume that f (∅) = 0. Such normalized, monotone,
submodular functions arise in many applications.

The simple threshold examples considered thus far are monotone
processes but are not submodular in general. Are these contrived
worst case network examples?

But some variants of the threshold model and related models do
satisfy these properties. We consider two such stochastic models.
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Linear threshold model

We have an edge weighted (undirected or directed) network where
weight w(u, v) represents the relative influence of node u on node v

(e.g., a quantitative version of weak and strong ties and possibly also
dependent on the “reputation” of node u).

Now each nodes threshold q(v) is chosen randomly in [0, 1] to model
lack of knowledge as to how easy it is to influence a given individual.

A node v adopts A if the sum of all edge weights into v (from nodes
using A) exceeds the randomly chosen q(v).

Goal: find an initial set of k adopters so as to maximize the expected
number (or benefit) of eventual adopters. (This is a stochastic
process so that we are trying to optimize the expected value of the
process.) At time t = 0, only the initial adopters are influenced.

Aside: We often use the language of disease spread and say “infected
nodes” rather than “already influenced nodes”.
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The linear threshold model continued

Each node v chooses a threshold tv randomly from [0, 1].

Each edge (u, v) has assigned weight wuv from [0, 1] such that for
any fixed node v : ∑

u→v

wuv ≤ 1.

In each step t, a node v is infected if the weighted sum of incident
edges coming from infected neighbors exceeds threshold.

v

a ba b

tv = 1/2

1/4 1/3

t = 0
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Independent cascade influence model

We again have an edge weighted network (as in threshold model) but
now the weights p(u, v) ≤ 1 represent the probability that node u will
influence node v given one and only one chance to do so.

That is, if node u adopts A at time t, then with probability p(u, v),
node v will adopt A at time t + 1.

After this, node u will not have another opportunity to influence v .

Goal for both threshold and cascade models: to find initial set of
adopters to maximize the expected number of eventual adopters.
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The Independent Cascade Process

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors independently with probability puv .
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Look familiar? News spread in Twitter!
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How to select a good set of initial adopters
For an initial set S of adopters, let f (S) be the expected number of
eventual adopters. While in general it is computationally hard to find
an optimal set S of initial adopters, for the stochastic linear threshold
and independent cascade models, f (S) is a normalized, monotone,
submodular function.

This allows for a very simple “greedy” algorithm that (provably)
selects a set S such that f (S) is at least within a factor (1− 1

e
) ∼ .63

of optimality.

The greedy strategy is to iteratively add (to whatever nodes S have
already been selected) one new initial adopter v so as to maximize
the expected marginal gain f (S + v)− f (S).

We need to simulate the stochastic process for sufficiently many trials
to determine the next node to add. (When different nodes have
different utility values, accurate simulation requires that the ratio of
such values is reasonably bounded.)
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An experimental study comparing methods: Kempe,
Kleinberg, Tardos

To test the usefulness of the models being studied, Kempe et al.
compare the greedy by best expected marginal gain algorithm with
three other simple (all adding one initial node at a time) methods
that do not require simulating the process.

Namely, they compare against:
▶ Greedy by highest degree first
▶ Greedy by centrality, i.e. by best average path length
▶ Random choice of adopters

The experimental data set is an undirected multi-graph based on
jointly authored papers by physicists.

Here we have r edges between u and v if they have been co-authors
on r papers.

▶ In the threshold model, weights w(u, v) are chosen proportional to the
multiplicity of edges between u and v .

▶ In the weighted cascade model, probabilities are set proportionally.
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Figure 1: Results for the linear threshold model
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Figure 3: Independent cascade model with probability 1%
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Figure 2: Results for the weighted cascade model
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Figure 4: Independent cascade model with probability 10%

Experimental Results from Kempe, Kleinberg, Tardos (2003): “Maximizing the spread
of influence through a social network,” KDD-03.
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Recap

Choosing influential adopters
▶ Linear threshold model
▶ Independent cascade model
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Aside: The importance of assumptions

Threshold and (especially) cascade processes are motivated by models
for the contagious spread of disease. Should disease spread and
influence spread should be governed by similar processes?

▶ See http://www.economist.com/blogs/babbage/2012/04/
social-contagion
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Comment from Economist article
Epidemiology-based models suggest that the most important factor in
determining whether an idea (in this case, to join Facebook) will
spread to a given individual is how many other people the individual
knows who have already been exposed to it

▶ e.g., the more friends you have signed up to Facebook, the more likely
you are to join

Researchers found that the best predictor of whether someone would
join Facebook was a subtly different factor:

▶ The number of distinct groups that an individual could link up with
through the site

▶ e.g., old school friends, work colleagues, extended family, etc...

The more such groups were present on Facebook, the greater the
probability that an individual would join

▶ Controlling for this effect, users actually became slightly less likely to
join as the number of Facebooked kith and kin rose

Remember! Just because we can abstract two processes (e.g.,
Facebook adoption & disease spread) to a graph, it doesn’t mean
that the same assumptions (and therefore, the same models) hold!
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Some lessons to be learned about influence in a
social network (Chapter 19)

As seen with the models of popularity, in population-level effects, it
can be relatively difficult for a new technology/product/idea to get
past a tipping point

In contrast in social networks, new products/ideas (rumours) can
spread extensively and quickly.

But tightly knit communities (clusters) can stall the spread.

We saw in the early part of the course that weak ties are often bridges
or local bridges between different communities.

Hence such weak ties may convey some degree of awareness to
another community but not likely to change behaviour especially if
that change has risks as in political movements and high stakes
economic decisions.
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Further considerations (collective action)

Section 19.6 almost seems to have been (but was not) written after
events in the Mideast (the Arab Spring starting in late 2010), Hong
Kong (initial protests in 2014 and the more recent demonstrations),
demonstrations taking place in Venezuela (March 4, 2019 and
February 29, 2020), the 2020 BLM protests in the US, Canada, and
around the world

The discussion here begins to combine aspects of social network
interaction (e.g. transmitting information) with direct benefit
population effects (being part of a large demonstration).

In particular, the organization for demonstrations against a regime
can begin with discussions within a community but for someone to
participate, it usually takes some knowledge that there will be a
sufficiently large population wide participation.

On a smaller scale, when challenging a mayor or a CEO, the same
phenomena may be operating.
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Knowledge and common knowledge

Our first example of a tightly knit community blocking a complete
cascade occurred even when everyone knew the common threshold q.

A uniform threshold is not realistic in any reasonable size social
network.

▶ We might have a sense of the thresholds for our friends but not of all
their friends (and their friends friends, etc.)
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The impact of limited knowledge continued

As a toy example, consider a company with 4 vice presidents who all
wish the Board of Directors would remove the CEO

However, each VP wants to act as part of a larger group

Here threshold k means that the node (being me) will participate if at
least k people (including myself) will do so. So in the case of the 4
vice presidents, when will an “uprising” (i.e., calling for the Board to
remove the CEO)? The reasoning why an uprising in Figure 19.14 (b)
does not occur is perhaps somewhat subtle.

w

u v

2 3

4

(a) An uprising will not occur

w x

u v

3 3

3 3

(b) An uprising will not occur

w x

u v

3 3

3 3

(c) An uprising can occur

[Fig 19.14, E&K]
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Knowledge and common knowledge

The 3 and 4 node examples in Figure 19.14 illustrate the impact of
limited knowledge even when everyone knows the entire network but
only knows their friends and their own absolute (i.e. not fractional in
this example) thresholds.
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Further considerations: competitive influence spread

In many economic, social, and political settings the spread of
influence is a competitive process.

It may be that both technologies (political factions, etc.) A and B are
competing for new adopters in a social network by promotion via an
initial set of adopters (people with vested interests, etc.).

There are many models for how such competition is resolved.

One possibility is to use the stochastic independent cascade model
and then the first technology (political faction, etc.) to have a “path
of adoption” succeeds (breaking ties in some manner).

Equivalently, we can view edges as being open or closed with some
probability, and consider the shortest open paths to a node (if any
exist) from the initial adopters (party faithful, etc.) to the initially
uncommitted.
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The Wave Propagation Process

Two technologies A and B with their sets of initial adopters IA and IB .

Technology spreads according to the Independent Cascade process.

If a node is successfully infected at the same step t by both
▶ a set of nodes VA using technology A
▶ a set of nodes VB using technology B

it will adopt technology A with probability
|VA|

|VA|+ |VB |

z

x

y v

b

x

y

a z

1

1

1

.5

.5

1

Example

Pr [v adopts A | x , z reached v ] = 1
2

Pr [v adopts A | x , y , z reached v ] = 1
3

What is Pr [v adopts A]?
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A concluding comment for chapter 19

The last sentence of the chapter makes the final comment:
Even small extensions such as the one considered here (the bilin-
gual option) can introduce significant new sources of complexity,
and the development of even richer extensions is an open area of
research.

Indeed, as we have already suggested, analytic and empirical studies
of influence spread in social networks is a field of significant research
interest impacting computer science, sociology, economics, and
political science.
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Recap

Choosing influential adopters
▶ Linear threshold model
▶ Independent cascade model

Local vs. global knowledge

Competitive influence spread
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Chapter 21: Epidemics and the spread of disease in
a contact network

The chapter first considers some simple models for how disease can
spread in a contact network that is, the social network (because the
nodes are still people) where the links links represent some form of
contact between two people.

The spread of a disease and the dynamics of an epidemic clearly
depend on the nature of the disease (e.g. how infectious, periods of
incubation, periods of contagion, one-time vs recurring infection).

But the spread process also depends on the contact network within
which the process is unfolding. Of course, our interest here is in the
way in which we model these dynamics and how the network
characteristics impact the process.
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How does social/information spread differ from
disease contagion?

Both disease spread and social contagion are often best viewed as a
stochastic process

▶ However, as mentioned before, disease spread is general determined by
the total amount of exposure, which may or may not be the case for
social contagion (e.g., Facebook spread is better determined by number
of social groups rather than people)

A more intrinsic difference in these studies is that in contact networks
(for disease spread), the links are often considered to be transient (i.e.
only lasting for some period of time) whereas our study of social
spread, small worlds and decentralized search were discussed in the
context of permanent relationships (i.e.a static network).
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Pure branching processes

For simplicity (as we did in Chapter 20 and the study of decentralized
search), we start off with a tree network (i.e. assuming no triadic
closure)

▶ assume that every individual v at time t comes in contact with k new
individuals

▶ if v is infectious at time t, then with probability p, v will independently
pass on the disease to each of these new contacts by time t + 1

That is, if a given (root) individual initially (at time t = 0) is
infectious, then at time 1, there will be k people, each of which will
independently contract the disease with probability p and become
infectious

▶ Any of these (say k ′) newly infected individuals are potentially passing
on the disease to some of the k × k ′ individuals who have indirectly
come in contact with the root by time 2, etc...
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The tree network at time t = 0
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The tree network at time t = 1
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The tree network at time t = 2
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The tree network at time t = 3
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When will a disease die out in a pure branching
process?

Define R0 (the basic reproductive number) to be the expected
number of new cases of the disease caused by a single (infectious)
individual at any time

▶ What is R0 in this simple branching process? R0 = p · k

When R0 < 1, the disease will eventually die out
▶ Intuitively, each individual is not able to sufficiently replenish the

disease (even if by the randomization of the process the number of new
infections fluctuates for a while)

When R0 > 1, unless the disease gets unlucky (and society gets
lucky), the disease is likely to persist and continue to witness new
infections at every time step and indeed the infection will likely be
wide spread
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R0 > 1: likely that disease spreads widely

Figure: High reproductive number. [Fig 21.1(b), E&K]
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R0 < 1: likely that disease dies out

Figure: Low reproductive number. [Fig 21.1(c), E&K]
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A simple conclusion from a simple model

Given that we are starting with such a simple model, we can’t expect
to draw many conclusions. But one conclusion is as follows. When
the basic reproductive number R0 exceeds 1, there is a huge societal
benefit in trying to reduce k or p so as to lower R0. How?

Isolating infected individuals, social distancing, and shutdowns reduce
the degree of contact k .

Better health care practices including hand-washing and wearing
masks reduce the individual probability p of infecting a new contact.
These measures also includes vaccines, when available.

Aside: The above is a misuse of the term R0, strictly speaking the
basic reproductive number is in the absence of public health measures.
Only the effective reproductive number at time t, Rt , can be reduced
by the measures above, but that’s beyond the scope of the course.
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Networks and the SIR model

We now consider an arbitrary network structure in which individuals can
be in three states during the infectious disease spread process.
The SIR model:

S: The susceptible state where the individual can contract the disease

I: The infectious state when the individual has caught the disease and
now is infectious with some probability of spreading the disease

R:The removed state when the individual is no longer infectious and
is “removed” from further consideration

▶ Clearly there are good (recovered and living) and bad ways to be
removed

▶ Regardless, once someone has had the disease, under the SIR model we
assume that they are immune in the future
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The SIR Process

Initially, some nodes are in the infectious state I , and all others are in
the susceptible state S

▶ Equivalent to considering the I nodes as the initial adopters in the
cascade social spread process

Each node v that enters the infectious state stays infectious for a
fixed number of steps tI

▶ In the independent cascade model for social influence, we assumed
tI = 1

During each of these tI steps, each infectious v has a probability p of
infecting each of its susceptible neighbours

▶ In the independent cascade model for social influence, we allowed a
different probability for each edge (v ,w)
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Many possible extensions to the SIR Process

As in the cascade model we can have a different probability p(v,w) of
infection spread for each edge

The length of the infectious stage, tI , can be stochastic:
▶ drawn from some fixed distribution D
▶ drawn from some distribution D(v) depending on node v as well as the

nature of the disease
▶ More simply a node may instead have a probability q (resp. q(v)) of

recovering in each step while being infectious

The infectious state can be partitioned in sub-stages (e.g. early,
middle, late stages of infection) with different contagion probabilities

The disease itself mutates during an outbreak or epidemic which then
continues to dynamically change the process
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The course of an SIR contagion spread with tI = 1
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Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a
number of steps equal to tI = 1. Starting with nodes y and z initially infected, the epidemic
spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark
borders are in the Infectious (I) state and shaded nodes with thin borders are in the Removed
(R) state.
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An alternative view of an SIR contagion spread

Conceptually we’ve thought of the SIR process being dynamic taking
place over time

There is an alternative view that may help explain who eventually
gets infected

▶ Think of all edges having a state, that is stochastically instantiated
▶ Each instantiation results in some edges being “open” and some

“blocked”
▶ The nodes which are ultimately infected are the nodes reachable by

“open edges” from the initially infected

In the following figure, nodes s,t,u,w will not become infected in the
instantiation depicted by the bold open edges. The other nodes will
become infected at some time.
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Alternative view of the previous specific instantiation

y
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Figure 21.4: An equivalent way to view an SIR epidemic is in terms of percolation, where
we decide in advance which edges will transmit infection (should the opportunity arise) and
which will not.

When tI = 1 we can get away with labelling edges as open or closed

when tI > 1 we need to label edges with when they are open
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Roadblocks to contagion spread

In the context of social influence spread, we saw that tightly knit
communities can be isolated against the adoption of a new technology

Similarly, once we move away from the pure branching process, the
basic reproductive number R0 no longer completely determines the
extent of contagion

Consider the following simple network, and assume p = 2
3

▶ What’s R0? R0 = kp = 4
3 where k = 2 is the out-degree of each node

▶ What’s the long term behaviour? The disease would have to continue
to pass through a narrow channel where there is a probability of
q = ( 13 )

4 that all four edges in some stage of this network will fail to
transmit and hence the disease will be wiped out
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The basic SIS model

The SIR model assumes that once a person has been infected and the
infection has run its course, then the person is no longer susceptible
(and is effectively removed from the network)

But certain diseases and infections (e.g. the flu) can and will reoccur.
The SIS model no longer has a removed state R but rather after the
infection has run its course, the individual returns to the susceptible
state S (and hence the acronym)

Initially, some nodes are in the infectious I state; other nodes are in
the susceptible S state

Each node v that enters the infectious state stays infectious for a
fixed number of steps tI

During each of these tI steps, each infectious v has a probability p of
infecting each of its susceptible neighbours

After tI steps, node v is no longer infectious and returns to the
susceptible state S
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Representing an SIS process as a sequence of SIR
iterations
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Figure: A SIS process (with tI = 1) depicted as a sequence of SIR steps. [Fig
21-6(b), E&K]
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Extensions of the SIS model

The basic SIS model can be extended in many ways. For example:
▶ As in the SIR model, there can be different probabilities p(u,v)

associated with each network edge (u, v)
▶ An individual only returns to the susceptible state S with some

probability q
▶ There can be multiple stages of an infection with each stage having

different contagion properties

An interesting modification is the following SIRS model which
provides insight into why some diseases seem to show a time
oscillating behaviour in terms of the extent of infection in given
populations
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The SIRS model

As in the previous models, initially some nodes are in the infectious I
state; all others are in the susceptible S state

Each node v that enters the infectious state stays infectious for some
tI steps

During each of these tI steps, each infectious v has a probability p of
infecting each of its susceptible neighbours

After tI steps, the infectious node v enters the R (i.e., a period of
immunity) state for some tR steps

After these tR steps, the node returns to the S state
▶ Either or both tI and tR can be random variables
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Disease oscillations

The presence of periods of immunity in the SIRS model induced by
the tR parameter can produce oscillations in localized parts of a
network

It can also cause seemingly coordinated outbreaks of a disease in
different parts of the network

To explain how this can occur, consider a network that has long range
edges in addition to edges within small neighbourhoods.

▶ This is, of course, reminiscent of the network structure that provided
an explanation for the small world phenomena

▶ Indeed, Kuperman and Abrahamson [2001] consider a network model
following the original network model of Watts and Strogatz

More specifically, we have a network with edges connecting (graph
theoretically) nearby nodes augmented with some edges chosen
uniformly at random

▶ Note that here the random edges do not depend on distance, unlike the
model used to explain decentralized search in Chapter 20

48 / 58



The Kuperman and Abrahamson model

Specifically, Kuperman and Abrahamson consder a one dimensional
model contructed as follows:

▶ Nodes are arranged in a ring (i.e. a cycle) with edges between nodes
within some small distance of each other

▶ Then with some probability c , an edge is redirected randomly to a node
chosen uniformly at random

They then study the SIRS contagion model for such a stochastic
network

As we might expect the behaviour of disease occurrence in such a
network will depend on the probability c of redirecting an edge even
when fixing p (the probability of transmitting the disease), ti (the
duration for being infectious, and tR (the period of immunity)

49 / 58



Simulations from Kuperman and Abrahamson

Figure: The plots depict the number ninf (t) (at time t) of infected people in an
SIRS contagion spread. Figure and results are due to Kuperman and
Abrahamson. 50 / 58



Reflections on the Kuperman and Abrahamson
study for a syntactic network, and empirical findings
As always the text cautions us about the significance of models, and in
this case, the simplified network model. Still, it is interesting to observe
how different the results are for different settings of the random redirection
probability c

In the small worlds phenomena, the theoretical model and results seem to
match well with real world data. Here we do not have theoretical results
but rather simulations on synthetically constructed networks. (The text
indicates that this is a good research topic)

However, there is some real world findings for which the SIRS model
provides some insight (into observed oscillations in disease outbreaks)

Grassly, Fraser and Garnett [2005] compared the differences in the
occurrence of two STIs, namely syphilis and gonorrhea. Namely
syphilis exhibits oscillations on an 8-11 year cycle whereas gonorrhea
does not exhibit any substantial periodic behavior
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How to explain the differences in the spread of two
different STIs?

This difference in oscillating behaviour is, at first thought, surprising since
the method of contagion spread is the same and the underlying network
for social relations is also the same. What is a plausible explanation?

Syphilis has limited periods of temporary immunity after infection
whereas gonorrhea does not

▶ The oscillation periods for syphilis seem to correlate well with the
timing of immunity (i.e., the tR parameter)

The extent to which the outbreaks of syphilis are synchronized in the
U.S. increased over the second half of the 20th century

▶ This can be explained by increasing levels (i.e. the redirection
parameter c) of cross-country contacts
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The transient nature of contacts

In our introduction of contact networks and models for disease spread, we
noted that there is a dynamic aspect to such models. This manifested
itself in the duration for being contagious. However, the underlying
network itself was static. This is not a bad assumption for infections that
spread quickly at a faster pace than the creation and ending of contacts.

In other disease scenarios, the spread of an infection may be very
dependent on the transient behaviour of contacts. This can be especially
true of diseases that are sexually transmitted.

We can extend the contact network models to reflect very transient
contacts, by specifying (on the edges) the time period when individuals are
in contact with each other and can transmit the disease.
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The transient nature of contacts continued: exact
timing maters

It should not be surprising that the exact timing matters, the order of
contact determines how the disease can travel through a node.

And as the text points out, this transient behaviour of contacts can apply
to settings outside of disease spread such as information spread.
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The transient nature of contacts continued: exact
timing maters

The following example illustrates the impact of order while keeping the
duration tI of infection fixed

We fix tI = 5

Each edge e = (k , ℓ) is labelled by an interval [se , fe ] indicating that
individuals k and ℓ were in contact starting at time se and ending at
time fe

In these examples, the number ne of time steps of contact has been
set to ne = 5 for all edges. It is an unfortunate coincidence that
ne = tI = 5, as this is not mandated by the model

The assumption is that if individual k becomes infectious at some time
t ∈ [se , fe ], then ℓ can possibly be infected at some time step t ′ with
t + 1 ≤ t ′ ≤ min{fe + 1, t + tI + 1}
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The impact of timing
The only change in the networks is that the period of contact
between v and w has been switched with the period of contact
between w and y

Assume node u is initially infected (at some time t ∈ [1, 5]). Let’s
ignoring the probability of becoming infecting and just looking at
what is possible:

▶ In the network on the left, it is the possible that the disease could pass
to all nodes except node x

▶ In the network on the right, only node v can become infected

v

u x

w

y

[1,5]

[7,11]

[2,6]

[12,16]

v

u x

w

y

[1,5]

[12,16]

[2,6]

[7,11]

We can see that the timing on the edges of w allows for infection to move
in only one direction between v and y through w
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The impact of concurrency
It should not be surprising that the more contacts occur
simultaneously, the more extensive will be the spread of a disease

Again assume tI = 5
Here we have the same underlying network as in Figure 12.8 and . But
now the times for concurrent contact have been significantly altered

▶ In the figure on the left, there are no concurrent times of contact
between any two individuals

⋆ In this case, no individual can spread the disease to everyone else

▶ In the figure on the right, any single individual can possibly spread the
disease to everyone in the network

v

u x

w

y

[1,5]

[12,16]

[2,6]

[7,11]

v

u x

w

y

[1,5]

[3,7]

[2,6]

[1,5]
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Recap

Choosing influential adopters
▶ Linear threshold model
▶ Independent cascade model

Local vs. global knowledge

Competitive influence spread

Modelling disease contagion
▶ Basic reproductive number (R0)
▶ SIR model

⋆ SIR as percolation
⋆ Structure vs. R0

⋆ SIS & SIRS models

▶ Modelling transient contacts
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