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Mon. Feb 13th: Announcements & Corrections

Mid-course evaluation now available on Quercus
▶ Anonymous, 5-10 minutes, open until Feb 26th
▶ I really appreciate knowing how things are going, and how to do better

:)

A typo has been fixed in the course handbook, in Guidelines about
Due Dates & Missed Work

▶ The policy is unchanged
▶ It’s obvious from context, but for the sake of clarity: The example date

given is for assignment 2, not assignment 1
⋆ Please don’t try submitting A1 in March ;)

We’ve now got a list which we’ll be populated with papers as they are
claimed for the critical review

▶ See the assignments tab on the course website
▶ Or click here
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Mon. Feb 13th: Announcements & Corrections

Happy Valentine’s Day tomorrow!

Comic from xkcd

Assignment 1 is due this Thursday :(

▶ ... but it’s reading week after that :)
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https://xkcd.com/license.html


This week’s agenda

Power Laws
▶ Definition
▶ Zipf’s law
▶ Dynamics that often give rise to power laws

Rich-get-richer model

Salganik et al. music popularity experiment

Ranking web results
▶ Hubs and Authorities
▶ (Scaled) Page Rank
▶ Proof-sketches of convergence

4 / 69



Roadmap: where we have been and whats next

Chapter 20 started off with a discussion of the small worlds phenomena
and an insightful understanding of how decentralized search can work.

Previously, we were led to the observation that geographical distance (or
social distance) correlates with friendship such that Prob[v is a friend of u]
≈ [ranku(v)]

−1.

Furthermore, there is a sense that long distance friendships are “rare”.
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and an insightful understanding of how decentralized search can work.

Previously, we were led to the observation that geographical distance (or
social distance) correlates with friendship such that Prob[v is a friend of u]
≈ [ranku(v)]

−1.

Furthermore, there is a sense that long distance friendships are “rare”.

We even saw a claim (by Oscar Sandberg) that decentralized search might
implicitly be a partial explanation of network dynamics and structure

We have seen earlier (Chapters 3 and 4) how selection (i.e. homophily in
the sense of ”birds of a feather flock together”) causes friendship links.
Chapter 5 also relates to how links can form or change to achieve
structural balance.

This week we will be building on these ideas.
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Power law distributions

A power law distribution for discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c . (We often just focus on on
the exponent c .)
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A power law distribution for discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c . (We often just focus on on
the exponent c .)

Closely related (and sometimes used interchangeably) is Zipf’s Law, which
relates the frequency, f (i.e. count) of something with it’s rank, r .

r = 1 being the most frequent, r = 2 being the second most frequent,
and so on.

A phenomena satisfies Zipf’s Law when:

f ≈ a

r c

for some constants a and c
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Why care about power laws?

Chapter 18 calls attention to the fact that power law distributions
often occur in network and natural phenomena.

We’ve already seen power laws emerge in the probability of friendship
forming with respect to both distances, and ranks
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Why care about power laws?

Chapter 18 calls attention to the fact that power law distributions
often occur in network and natural phenomena.

We’ve already seen power laws emerge in the probability of friendship
forming with respect to both distances, and ranks

Where else do they appear?
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Zipf’s law in text
In any book, let w be a word within. If we calculate it’s frequency fw
(i.e. number of occurrences in the text) and it’s rank rw (i.e. is the
word the first, second, ... nth most common word in the book) then
we find that fw ∝ 1/rw (or equivalently, log fw ≈ − log rw + C )

[Image By SergioJimenez - Own work, CC BY-SA 4.0, link]
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https://commons.wikimedia.org/w/index.php?curid=45516736


Power law in text

[Image from Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise by Manfred Schroeder]
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Zipf’s law in population centres
Similarly, if we consider cities t and let ft be the population of a city,
and rt be the city’s rank by population, we have ft ≈ a/rt

FIGURE I

Log Size versus Log Rank of the 135 largest U. S. Metropolitan Areas in 1991

Source: Statistical Abstract of the United States [1993].

[Image from Gabaix, 1999]
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Power laws in websites and products

Power laws also arise in the popularity of websites and commercial
products
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Fig. 6: Temporal changes in the in-degree distributions in

TREC.

[Image from Shi et al.]

Empirically, in the web network (i.e. an information network), the
probability that a site will have k in-links is proportional to k−2.
(More precisely, proportional to k−(2+ϵ) for some ϵ > 0.
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Power law distributions

Why are power laws so prevalent?

Power law distributions in social and information networks often arise
from coupled or correlated individual decisions

▶ e.g., the popularity of certain books or cities, occurrences of specific
words in a natural language, etc...

▶ We’ll be considering the frequency of in-links to web sites in more detail

Consequence: Events may be less rare then they appear at first glance

Key takeaway: extreme events (e.g., for a site to have very many
in-links) is not so rare when compared with what would be predicted
by independent decisions.
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How rare is rare when compared with averages over
independent actions?
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How rare is rare when compared with averages over
independent actions?

What if people chose where to live independent of the city? What
would be (the distribution of) the population of cities?

What if we all independently chose to read books not dependent on
current events or what friends (or an online system) recommended?
How rare would it be to have a huge best seller?

What, if each web site chose their out-links independently and
without some underlying dynamics to guide the process?

13 / 69



How rare is rare when compared with averages over
independent actions?

What if people chose where to live independent of the city? What
would be (the distribution of) the population of cities?

What if we all independently chose to read books not dependent on
current events or what friends (or an online system) recommended?
How rare would it be to have a huge best seller?

What, if each web site chose their out-links independently and
without some underlying dynamics to guide the process?

As is well understood, the Central Limit Theorem tells us that “a
quantity that can be viewed as the sum (or average) of many small
independent random effects will be well-approximated” by a normal

distribution.
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The normal distribution
The normal or Gaussian distribution has the following probability density
function:

f (x) =
1√
2πσ2

e−
1
2(

x−µ

σ
)
2

As we know, normal distributions have a bell shaped curve.

&&

m&

ly.
From:&http://www.answers.com/topic/normal0distribution

14 / 69



So how rare is rare?

In a normal distribution, the probability of an outlier (i.e. an
exceptional event) decreases exponentially with distance from the
mean

▶ if say in-links followed a normal distribution, then the probability that a
given site would have k links would decrease exponentially in k

▶ Very small or large “outliers” would be highly improbable
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So how rare is rare?

In a normal distribution, the probability of an outlier (i.e. an
exceptional event) decreases exponentially with distance from the
mean

▶ if say in-links followed a normal distribution, then the probability that a
given site would have k links would decrease exponentially in k

▶ Very small or large “outliers” would be highly improbable

How improbable? Let’s compare Prob[k in-links] ≈ k−2 in comparison to
Prob[k in-links] ≈ 2−k , with k = 30:

2−30 ≈ 1/109

(30)−2 = 1/900

One in a billion vs better than 1 in a 1000!
▶ Do note that the above is not a probability as we’ve omitted the

normalizing constants
▶ However, the example illustrates the difference in the rate of decay
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So where are we going?

As we have mentioned before, one of the most fundamental questions for
social networks concerns how they evolve. What is the interplay between
selection and influence?
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So where are we going?

As we have mentioned before, one of the most fundamental questions for
social networks concerns how they evolve. What is the interplay between
selection and influence?

This is a difficult question! Perhaps the dynamics of information networks
created by individuals can be better understood than the dynamics of
friendships, political affiliations, opinion formation, etc...

We will see a network dynamic that leads to a power law distribution.
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Recap

Power Laws
▶ Definition
▶ Zipf’s law
▶ Dynamics that often give rise to power laws

17 / 69



A power law distribution and network dynamics

A power law distribution for a discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c
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A power law distribution and network dynamics

A power law distribution for a discrete random variable X satisfies
Prob[X = k] ≈ a

kc for some constants a and c
▶ We often just focus on on the exponent c and say that

Prob[X = k] ∝ k−c

Having observed power law distributions emerge from events in social
and information networks (e.g., website in-links), the big question is
how this happens

▶ We saw that it could not evolve from independent decisions that have
averaged out; therefore it must arise from correlated decisions

Kumar et al [2000] proposed a preferential attachment model that
can explain the power law distribution

▶ Recall, the observed distribution of in-links is:
Prob[a site has k in-links] ∝ k−(2+ϵ) for a small ϵ > 0
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A “rich get richer model” for in-links on the Web
Here is the model proposed in Kumar et al article:

1 Web pages are created sequentially, and named 1, 2, . . .N.
(Of course, N keeps growing but we are looking at the web at some
point in time)
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Aside

The full model by Kumar et al. is more general: specifically, multiple
links from page j are created in the full model

Our simplified model only creates one link
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Aside

The full model by Kumar et al. is more general: specifically, multiple
links from page j are created in the full model

Our simplified model only creates one link

Despite this, the power law exponent does not change
▶ The key parameter is p – whether or not we’re linking to a page

selected uniformly at random
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The linking model continued

There is an equivalent way to frame the indirect linking that highlights the
“rich get richer” preferential attachment phenomena.
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“rich get richer” preferential attachment phenomena.

Original rule: Select a prior page, i , uniformly at random. With
probability p link to i , otherwise link to the node pointed to by i ’s
outgoing link

Equivalent rule:
▶ With probability p, page j links to a page ℓ < j , chosen uniformly at

random
▶ Else, page j links to the page ℓ < j with probability proportional to ℓ’s

current number of in-links

This is, of course, the idea behind popularity!

e.g., the more people that are reading a current novel, the more likely
that you might want to read it

For various social and economic reasons why some large cities
continue to grow.
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The linking model continued

Equivalent rule:
▶ With probability p, page j links to a page ℓ < j , chosen uniformly at

random
▶ Else, link to the page ℓ < j with probability proportional to ℓ’s current

number of in-links

Note: For q := 1− p, the as p → 0 (and q → 1), pages are more likely to
copy the same previous pages and the more likely that the process is
creating some popular pages
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The linking model continued

Equivalent rule:
▶ With probability p, page j links to a page ℓ < j , chosen uniformly at

random
▶ Else, link to the page ℓ < j with probability proportional to ℓ’s current

number of in-links

Note: For q := 1− p, the as p → 0 (and q → 1), pages are more likely to
copy the same previous pages and the more likely that the process is
creating some popular pages

Hedge: As the text states clearly, the goal of this model is not to capture
all the reasons why people create links on the Web (or links in other
networks) but rather to explain why it is reasonable to expect power laws
to arise from such popularity phenomena.
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An informal analysis for the simplified preferential
attachment model proposed for Web in-links

A precise analysis of even the simple one link per page preferential
attachment model is technical.
There is a heuristic argument that shows how the power law exponent is
determined by the probability p (of the j th page linking uniformly at
random)

23 / 69



An informal analysis for the simplified preferential
attachment model proposed for Web in-links

A precise analysis of even the simple one link per page preferential
attachment model is technical.
There is a heuristic argument that shows how the power law exponent is
determined by the probability p (of the j th page linking uniformly at
random)

While we often discretize continuous processes, it is often advantageous to
model a sequence of discrete events as a continuous process

23 / 69



An informal analysis for the simplified preferential
attachment model proposed for Web in-links

A precise analysis of even the simple one link per page preferential
attachment model is technical.
There is a heuristic argument that shows how the power law exponent is
determined by the probability p (of the j th page linking uniformly at
random)

While we often discretize continuous processes, it is often advantageous to
model a sequence of discrete events as a continuous process

Specifically, we’ll consider a continuous deterministic variable xℓ(t), that
approximates the discrete random variable Xℓ(t), the number of in-links to
a page ℓ at time t ≥ 0.
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The deterministic continuous model
Let Xℓ(t) is the number of in-links to a page ℓ at time t ≥ 0

▶ Xℓ(t) is a discrete random variable
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▶ Xℓ(t) is a discrete random variable

We will create a continuous deterministic variable xℓ(t), that
approximates Xℓ(t)
Assuming that page ℓ is added at time ℓ, then Xℓ(ℓ) = xℓ(ℓ) = 0.

▶ the soonest a link to ℓ can be added is at ℓ+ 1

In the discrete model, for t ≥ ℓ, the probability that the number of
links to a page ℓ increases at time t + 1 is:

p
1

t
+ q

Xℓ(t)

t

For t ≥ ℓ, and the corresponding continuous model obeys the
differential equation:

dxℓ

dt
= p

1

t
+ q

xℓ(t)

t

From some basic calculus (see Ch 18.7) this leads to a power law
distribution proportional to k−c with c = 1 + 1/q 24 / 69



The deterministic continuous model

[Fig 18-2 in E&K]

As p → 0, the exponent c = 1 + 1/q limits to the observed exponent
c = 2 + ϵ for the observed in-link power law distribution

As p → 1, the exponent limits to ∞ making a large number of
in-links very unlikely.
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Aside: Open Questions
It’s worth noting that although the preferential attachment model
suggests that popularity phenomena lead to power laws, it still cannot
explain all the examples we saw

c = 1+1/q ∈ [2,∞), yet in text and cities the observed exponent is 1
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Aside: Open Questions
It’s worth noting that although the preferential attachment model
suggests that popularity phenomena lead to power laws, it still cannot
explain all the examples we saw

c = 1+1/q ∈ [2,∞), yet in text and cities the observed exponent is 1

[Figure from Piantadosi (2014)]

Piantadosi (2014)’s prompt was “An alien space ship crashes in the
Nevada desert. Eight creatures emerge, a Wug, a Plit, a Blicket, a
Flark, a Warit, a Jupe, a Ralex, and a Timon. In at least 2000 words,
describe what happens next”; observed is c = 0.31
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Sensitivity to unpredictable initial stages in network
dynamics

It is never clear why say some “pop” singers become so popular while
other (perhaps of equal talent) never “make it”

▶ Clearly, the initial stages of a dynamic process are critical and that is
why advertising, promotions, etc. are so important
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dynamics

It is never clear why say some “pop” singers become so popular while
other (perhaps of equal talent) never “make it”

▶ Clearly, the initial stages of a dynamic process are critical and that is
why advertising, promotions, etc. are so important

How can we better understand the impact of the randomness in the
initial stages of a dynamic process?

▶ if we could replay history many times, we would expect the resulting
distribution to be the same

▶ But would the same books, the same movies, the same pop stars, the
same web pages, etc continue to be the most popular?

Intuition suggests there is considerable “luck” in exactly who or what
becomes popular; yet we also believe that “quality” is also important

How can we rewind history”, to try and find out?
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An experiment to “rewind history”

Although we can’t rewind history, Salganik et al perform an interesting
experiment (in fact, two experiments at different times with different
participants) to observe the impact of the initial random stages in a
dynamic process. (the article is available on the course website).
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The Salganik et al experiment
Here is their experiment:

They created 9 copies of a music streaming site with 48 “obscure”
(as determined by some experts) songs of varying “quality”

Approximately 7200 young participants were recruited to listen to the
music, knowing only the name of the band and the song.

In each of the copies, participants sequentially listened to some music
selections, rated the music and then were given the opportunity to
download copies of songs they liked.
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They created 9 copies of a music streaming site with 48 “obscure”
(as determined by some experts) songs of varying “quality”

Approximately 7200 young participants were recruited to listen to the
music, knowing only the name of the band and the song.

In each of the copies, participants sequentially listened to some music
selections, rated the music and then were given the opportunity to
download copies of songs they liked.

In 8 copies of the site (each with 10% of the participants), they were
also given the number of times each song had been previously
downloaded.

In the 9th version, this previous history of downloads was not provided
to the remaining 20% of the participants. The average of the ratings
(from 1 = “I hated it” to 5 = “I loved it”) in this “no influence”
version determined the “true” song “quality”.

The experiment was then repeated, with the 8 site copies displaying
songs sorted by downloads instead of randomly
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The findings in the Salganik experiment

The experiment was designed to measure the extent that social influence
leads to different outcomes in the “success” (i.e. the number of
downloads) of a particular song
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The findings in the Salganik experiment

The experiment was designed to measure the extent that social influence
leads to different outcomes in the “success” (i.e. the number of
downloads) of a particular song
Simply stated, the results show that:

Increasing the strength of social influence (by sorting songs by
downloads) increased both the inequality (i.e. degrees of popularity)
and unpredictability (i.e., relation to quality) of success

However, quality was also a factor: the best rated songs rarely did
poorly and the the worst songs rarely did well.

As I said, this is an interesting study and one where the authors carefully
try to eliminate sources of bias. The article is worth reading.

As the text points out in section 18.6, how recommendation systems are
designed can impact how people make choices, leading to increased “rich
get richer” phenomena, or alternatively exposing people to less popular
items.
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Visualizing the long tail of a power law distribution
Once we accept a power law nature of popularity, it is instructive to
consider the consequences for a given industry

▶ Consider that the nature of the sales curve that would be dictated by a
power law distribution
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Visualizing the long tail of a power law distribution
Once we accept a power law nature of popularity, it is instructive to
consider the consequences for a given industry

▶ Consider that the nature of the sales curve that would be dictated by a
power law distribution

The shape of the long tail in a power distribution raises the question as to
how many sales can be obtained from less popular (e.g. niche items).

j

k

number of books

sales 

volume

The j-th most popular 

book has sold k 

copies.

Figure: [Fig 18-4 in E&K] text; how many copies of the j th most popular items
have been sold.

31 / 69



Recap

Power Laws
▶ Definition
▶ Zipf’s law
▶ Dynamics that often give rise to power laws

Rich-get-richer model

Salganik et al. music popularity experiment
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Wed. Feb 15th: Announcements & Corrections

Taking another look at the Salganik et al. paper, they’re a bit vague,
but I believe ratings were not shared – only downloads were explicitly
stated to be visible

A1 due tomorrow

Critical review groups & paper choices due by March 3rd (email me)

Midterm will be March 10th
▶ Covers up to wherever we finish today

Office hours today after class (Zoom + in person), and at 10 PM
(Zoom only)

Reading week next week
▶ Try and get some rest! I’ve tried to avoid making things due right after

reading week :)
▶ No regularly scheduled office hours in reading week; but I’m available

by appointment – email me :)
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Search and ranking on the Web

Our next topic is to understand how the popularity of a web page is
determined and how that impacts its rank in the responses to a query.

But first, how do search engines find and rank responses to a query?
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The specific algorithms used by search engines such as Bing and Google is
a trade secret. To some extent this has to be kept secret as there is always
a “war” between a search engine and companies that create web sites to
enhance the ranking of a site.

However, we do have a basic idea as to how these search engines rank
sites given a query. In fact, at the most elementary level, the main idea is
an old one.
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Our next topic is to understand how the popularity of a web page is
determined and how that impacts its rank in the responses to a query.

But first, how do search engines find and rank responses to a query?

The specific algorithms used by search engines such as Bing and Google is
a trade secret. To some extent this has to be kept secret as there is always
a “war” between a search engine and companies that create web sites to
enhance the ranking of a site.

However, we do have a basic idea as to how these search engines rank
sites given a query. In fact, at the most elementary level, the main idea is
an old one.

Aside: In the 1960s and 70s, there was a basic argument as to whether
online search and ranking was a more or less normal algorithmic search
and optimization problem or one that required “intelligence” (i.e. the
ability to understand natural language). Who won this argument?
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Search and ranking of Web documents; the role of
link popularity

The most basic approach is to treat a document as a bag of words and
then use “normalized” word counts (and pairs,triplets of words) to identify
and rank documents relating to the query. This became enhanced by more
sophisticated contextual aspects of word occurrences, etc and today
machine learning algorithms are also used in classifying a search query.
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Search and ranking of Web documents; the role of
link popularity

The most basic approach is to treat a document as a bag of words and
then use “normalized” word counts (and pairs,triplets of words) to identify
and rank documents relating to the query. This became enhanced by more
sophisticated contextual aspects of word occurrences, etc and today
machine learning algorithms are also used in classifying a search query.

But early in the development of popular search engines, a popularity
aspect was added where the ranking of a document also depended on the
link structure and the popularity of a Web page in the Web network (or at
least in that part that seems relevant to the query).

Two algorithms were independently proposed for determining the
popularity of a Web page, namely Hubs and Authorities developed at IBM,
and Page Rank, developed and integrated into Google’s search engine.
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Link analysis and page popularity

Neither Hubs and Authorities nor Page Rank use link in-degree as the
popularity measure but link analysis is (or at least was) used to determine
page popularity. Currently, it seems clear that popularity also depends on
recent behaviour of users to related queries.
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We will not try to infer more precisely how say Google (or any search
engine) precisely determines the ranking of a document in response to a
query. In particular, we do not know how much page ranking depends on
content vs link analysis. But we do know that this ranking is essential in
determining how often a page will be downloaded. The quality of the
ranking algorithm leads to user activity and thus the resulting advertising.
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Link analysis and page popularity

Neither Hubs and Authorities nor Page Rank use link in-degree as the
popularity measure but link analysis is (or at least was) used to determine
page popularity. Currently, it seems clear that popularity also depends on
recent behaviour of users to related queries.

We will not try to infer more precisely how say Google (or any search
engine) precisely determines the ranking of a document in response to a
query. In particular, we do not know how much page ranking depends on
content vs link analysis. But we do know that this ranking is essential in
determining how often a page will be downloaded. The quality of the
ranking algorithm leads to user activity and thus the resulting advertising.

We will begin with the Hubs and Authorities ranking algorithm and then
the Page Rank algorithm.
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Hubs and Authorities

A simple way to utilize links to rank web pages would be to think of
each link from A to B as an endorsement or vote by A for B .

Question: Assuming it’s tractable, then what’s wrong with just
counting the number of in-links?
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Hubs and Authorities

A simple way to utilize links to rank web pages would be to think of
each link from A to B as an endorsement or vote by A for B .

Question: Assuming it’s tractable, then what’s wrong with just
counting the number of in-links?

If we use the number (or weight) of endorsements to determine rank,
then one would have to adjust such scores coming from say the same
domain name.

Even after adjusting for such “vote fixing”, there are problems
▶ if Wayne Gretzky has a web site with a link suggesting where to buy

hockey equipment, that should be more meaningful than my
recommendation about hockey equipment

Spoiler alert: I don’t play or watch hockey
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Reinforcement of Hubs and Authorities.

This then becomes the motivation (and seemingly circular reasoning)
behind hubs and authorities:

▶ The best “authorities” on a subject (places to buy equipment) are
being endorsed by the best “hubs” (people who know where to buy
equipment)

▶ Similarly, the best hubs are those sites that recommend the best
authorities
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Reinforcement of Hubs and Authorities.

This then becomes the motivation (and seemingly circular reasoning)
behind hubs and authorities:

▶ The best “authorities” on a subject (places to buy equipment) are
being endorsed by the best “hubs” (people who know where to buy
equipment)

▶ Similarly, the best hubs are those sites that recommend the best
authorities

▶ Conceptually the link structure induces a bipartite graph, however the
same web page can be both a hub and an authority

Comment: The word “authority” is not generally an accurate way to
describe high ranking documents. These might better be referred to
(barring other information) as the most relied upon sites. This is also
different from “the most popular” sites which might better be
measured in terms of the number of clicks being received. Hubs then
are the most reliable endorsers.
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Hubs & Authorities procedure

The hubs and authorities procedure is as follows:
▶ Initialize each node’ hub value to some positive number (perhaps

depending on usage or content)
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Hubs & Authorities procedure

The hubs and authorities procedure is as follows:
▶ Initialize each node’ hub value to some positive number (perhaps

depending on usage or content)
▶ For sufficiently large k , repeat the following k times

1 Apply authority update rule to each page, p (i.e., set the authority
value to the sum of the hub values of the nodes endorsing the page p)

2 Apply hub update rule to each page, p (i.e., set the hub value to the
sum of the authority values of the nodes endorsed by the page p)

3 Normalize so that sum of A weights is 1 and sum of H weights is 1.
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The result of applying the authority update rule with all hub values
initially 1: for each page p, auth(p) is the sum of hub values (initially
just the number) of hubs pointing to p.

Wall St. 

Journal

New York 

Times

USA Today

Yahoo!

Amazon

Facebook

2 votes

4 votes

3 votes

1 vote

3 votes

3 votes

SJ Merc 

News 2 votes

[Fig 14.1, E&K]

Figure: Counting in-links to pages for the query “newspapers.”
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Then to recalibrate hub values, we use the hub update rule: for each
page p, hub(p) is the sum of values of all authorities that p points to.

Wall St. 

Journal

New York 

Times

USA Today

Yahoo!

Amazon

Facebook

11

7

3

6

3

3

5

2 votes

4 votes

3 votes

1 vote

3 votes

3 votes

8

SJ Merc 

News

6

2 votes

[Fig 14.2, E&K]

Figure: Finding good lists for the query “newspapers”: each page’s value as a list
is written as a number inside it.
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Applying the authority update rule again we get figure 14.3.

Wall St. 

Journal

New York 

Times

USA Today

Yahoo!

Amazon

Facebook

11

7

3

6

3

3

5

new score: 19

new score: 31

new score: 24

new score: 5

new score: 15

8

SJ Merc 

News

6

new score: 19

new score: 12 [Fig 14.3, E&K]

Figure: Re-weighting votes for the query “newspapers”: each of the labeled
page’s new score is equal to the sum of the values of all lists that point to it.
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Since we only care about the relative values of these numbers, both
authority and hub scores can be normalized to sum to 1 (to allow
convergence and avoid dealing with large numbers).

Wall St. 

Journal

New York 

Times

USA Today

Yahoo!

Amazon

Facebook

11

7

3

6

3

3

5

normalized .152

normalized .248

normalized .192

normalized .040

normalized .120

8

SJ Merc 

News

6

normalized .152

normalized .096 [Fig 14.4, E&K]

Figure: Re-weighting votes after normalizing for the query “newspapers”.
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Keep repeating a good idea
Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

That is, the hubs and authorities procedure is as follows:
▶ Initialize all hub values to some positive vector (perhaps depending on

usage or content)
▶ For sufficiently large k , perform the following k times

1 Apply authority update rule to each page
2 Apply hub update rule to each page
3 Normalize so that sum of A weights and sum of H weights are both 1.

44 / 69



Keep repeating a good idea
Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

That is, the hubs and authorities procedure is as follows:
▶ Initialize all hub values to some positive vector (perhaps depending on

usage or content)
▶ For sufficiently large k , perform the following k times

1 Apply authority update rule to each page
2 Apply hub update rule to each page
3 Normalize so that sum of A weights and sum of H weights are both 1.

Using linear algebra, it can be shown (in Section 14.6) that these A
and H normalized values will converge to a limit as k → ∞ (which
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Keep repeating a good idea
Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

That is, the hubs and authorities procedure is as follows:
▶ Initialize all hub values to some positive vector (perhaps depending on

usage or content)
▶ For sufficiently large k , perform the following k times

1 Apply authority update rule to each page
2 Apply hub update rule to each page
3 Normalize so that sum of A weights and sum of H weights are both 1.

Using linear algebra, it can be shown (in Section 14.6) that these A
and H normalized values will converge to a limit as k → ∞ (which
can be approximated by some sufficiently large k)! The limiting value
is an equilibrium.

Hubs and Authorities can be extended to work for weighted edges
(e,g. weighting links in anchor text, or near a section heading, etc.)
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Wall St. 

Journal

New York 

Times

USA Today

Yahoo!

Amazon

Facebook

.321

.181

.015

.088

.003

.003

.123

limit .199...

limit .304...

limit .205...

limit .043...

limit .042...

.249

SJ Merc 

News

.018

limit .199...

limit .008...

[Fig 14.5, E&K]

Figure: Limiting hub and authority values for the query “newspapers”.
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Page Rank

The motivation behind page rank is a somewhat different view of how
authority is conferred.

▶ Endorsement of authority is conveyed by other authorities
▶ That is, no hub concept
▶ This is how peer review works in the academic and scholarly world.
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Page Rank

The motivation behind page rank is a somewhat different view of how
authority is conferred.

▶ Endorsement of authority is conveyed by other authorities
▶ That is, no hub concept
▶ This is how peer review works in the academic and scholarly world.

Authorities themselves convey authority on those they link to. This
naturally leads to a formulation in terms of two equivalent views of
page rank:

1 Authorities directly conveying authority (without hubs)
2 Authority values resulting from long term behaviour of a random walk

on a graph
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How does Page rank spread authority?
Suppose at any point of time we have relevant authority scores

▶ A page spreads its authority equally amongst all of its out links
▶ If a page has no outlinks then all authority stays there

This redistributes the authority scores. (We are not creating or losing
any authority, only moving it)
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How does Page rank spread authority?
Suppose at any point of time we have relevant authority scores

▶ A page spreads its authority equally amongst all of its out links
▶ If a page has no outlinks then all authority stays there

This redistributes the authority scores. (We are not creating or losing
any authority, only moving it)
We can initially start with every relevant page having authority 1/n
where there are n pages. Then we repeat this process k times for
some sufficiently large k

With the exception of some “degenerate cases” (e.g. the process is
periodic) it can be proven (again using linear algebra) that this
process has a limiting behaviour as k → ∞
The resulting limit values will form an equilibrium
If the network is strongly connected then there is a unique equilibrium.

Remark

In many cases this won’t reflect the desired authority. Namely, if the
network has any sinks which it will surely have, then all of the authority
will pass to such sinks.
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Page rank equilibrium for a network

B

A

C

FD E

H

G

4/13

2/13 2/13

1/13 1/13 1/13 1/13

1/13

[Fig 14.7, E&K]

Figure: Equilibrium PageRank values for the network of eight Web page.
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Where has all the authority gone when we redirect
(F ,A) and (G ,A) edges?

B

A

C

FD E

H

G

[Fig 14.8, E&K]

The same collection of eight pages, but F and G have changed their links
to point to each other instead of to A.
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Where has all the authority gone when we redirect
(F ,A) and (G ,A) edges?

B

A

C

FD E

H

G

[Fig 14.8, E&K]

The same collection of eight pages, but F and G have changed their links
to point to each other instead of to A. Without “scaling”, all the
PageRank would go to F and G .
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How does PageRank spread authority?

If the network is strongly connected then there is a unique
equilibrium, however it may be undesirable

Definition (Sink)

Strict (typically small) subset of the nodes with no outgoing edges that are
reachable from all nodes in the network

Remark

In many cases PageRank won’t reflect the desired authority. Namely, if the
network has any sinks which it will surely have, then all of the authority
will pass to such sinks.
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Scaled page rank

The way around this sink hole of authority is to have a scaled version
of page rank where

▶ only a fraction s of the authority of a page is distributed to its out links
▶ the remaining (1− s) fraction is distributed equally amongst all

relevant pages
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Scaled page rank

The way around this sink hole of authority is to have a scaled version
of page rank where

▶ only a fraction s of the authority of a page is distributed to its out links
▶ the remaining (1− s) fraction is distributed equally amongst all

relevant pages

For any value of s < 1 (which effectively makes the graph strongly
connected), we get convergence to a unique set of scores for each
page and that is its page rank (for that particular value of s). It is
reported that Google used 0.8 ≤ s ≤ 0.9

(See the footnote on page 410 of E&K as to why in the previous
example, nodes F and G will still get most of the authority but that
for realistically large networks, the process works well.
Hint: “bow-tie” structure)
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Some additional remarks

The limiting scores for both the authority and hubs approach and the
page rank approach are equilibrium points for an appropriate algebraic
process

That is, if we actually were in the limiting state, we would be in the
equilibrium state. In practice, we can stop the process when the
change in each iteration is sufficiently small
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Some additional remarks

The limiting scores for both the authority and hubs approach and the
page rank approach are equilibrium points for an appropriate algebraic
process

That is, if we actually were in the limiting state, we would be in the
equilibrium state. In practice, we can stop the process when the
change in each iteration is sufficiently small

We can weight the network edges (say according to some concept of
link importance) and apply the same authority and hubs or page rank
approach distributing authority in proportion to these weights
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Mon. Feb 27: Announcements and Corrections

Welcome back from reading week! :)
▶ I hope it was restful
▶ My sympathies to those those working on A1 using the extension – I’ll

see if I can adjust dates next year

Anon feedback: Could the TAs use a digital whiteboard so it’s
recorded?

▶ I 100% agree, unfortunately it’s a hardware problem I couldn’t solve in
time :(

Reminder: Critical review groups & papers due this Friday

At my request, Professor Pitt is joining us today!
▶ Today he’ll be guiding you through an exercise to help us improve the

course :)
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Mon. Feb 27: Announcements and Corrections

Midterm on March 10th
▶ In tutorial
▶ All material covered

before reading week
(i.e., before this slide)

▶ 50 minutes, 5
questions

▶ Handwritten aid-sheet
allowed (letter size)

▶ First page of
midterm, and a
practice midterm, are
on the course website

⋆ See “Tests” tab
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Advanced material (section 14.6): Handwaving
argument why these processes converge
Both the page rank and hubs and authorities processes can be understood
as a linear transformation
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Advanced material (section 14.6): Handwaving
argument why these processes converge
Both the page rank and hubs and authorities processes can be understood
as a linear transformation

Consider a web network of n pages
▶ We can represent the hub, authority or page rank values at any time k

of the process by an n-dimensional (column) vector, denoted
(respectively) by h(k), a(k), r(k).

Boldface v =< v1, . . . , vn > represents a vector whose components
are the vj

▶ e.g., r
(k)
j represents the page rank of the j th web page after k steps of

the page rank process

r(1) =< 0.7, 0.3 >
55 / 69



Advanced material (section 14.6): Handwaving
argument why these processes converge
Both the page rank and hubs and authorities processes can be understood
as a linear transformation

Consider a web network of n pages
▶ We can represent the hub, authority or page rank values at any time k

of the process by an n-dimensional (column) vector, denoted
(respectively) by h(k), a(k), r(k).

Boldface v =< v1, . . . , vn > represents a vector whose components
are the vj

▶ e.g., r
(k)
j represents the page rank of the j th web page after k steps of

the page rank process

r(2) =< 0, 1 >
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Advanced material (section 14.6): Handwaving
argument why these processes converge

Let v be any of the hub, authority or page rank vectors

PageRank & Hubs and Authorities can both be viewed as a linear
transformation v(k+1) = Mv(k)

M is an appropriate n × n matrix, whose entries are non negative real
numbers

▶ Why n × n?
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Advanced material (section 14.6): Handwaving
argument why these processes converge

Let v be any of the hub, authority or page rank vectors

PageRank & Hubs and Authorities can both be viewed as a linear
transformation v(k+1) = Mv(k)

M is an appropriate n × n matrix, whose entries are non negative real
numbers

▶ Why n × n? We have n webpages, each has a value before & after the
update

Furthermore, there are conditions that will guarantee the convergence
of the process

▶ i.e., when there exists v(∗) = limk→∞ v(k) and when this limit vector
v(∗) is unique and independent of the starting vector v(0)
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Advanced material continued: page rank
convergence

Figure 14.3 of the text illustrates a simple directed graph and the
matrix N that defines the unscaled page rank update process. That
is, r(k+1) = NT r(k) where NT is the transpose of matrix N.

node 1
0 1/2 0 1/2

0 0 1/2 1/2

1 0 0 0

0 0 1 0

node 4node 3

node 2

[Fig 14.13, E&K]

Figure: A toy web graph and the associated matrix N describing the
unscaled update process.

N is a weighted adjacency matrix
▶ Weights are the proportion of authority that’s transferred along the

edge
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Advanced material continued: page rank
convergence

Note: Nij is the proportion of node i ’s rank, that should go to node j
in the next update

▶ Therefore, NT
ij is the proportion of j ’s rank that i should receive

Let’s focus on node 3

We can see that rk+1
3 = ark1 + brk2 + rk3

N =





∗ ∗ a

∗ ∗ b

∗ ∗ 1




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Advanced material continued: page rank
convergence

Note: Nij is the proportion of node i ’s rank, that should go to node j
in the next update

▶ Therefore, NT
ij is the proportion of j ’s rank that i should receive

Let’s focus on node 3

We can see that rk+1
3 = ark1 + brk2 + rk3

N =





∗ ∗ a

∗ ∗ b

∗ ∗ 1



 NT rk =





∗ ∗ ∗
∗ ∗ ∗
a b 1









rk1
rk2
rk3



 =





∗
∗

ark1 + brk2 + rk3




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Page rank analysis for the scaled update
Similarly Figure 14.4 illustrates the same graph and the matrix Ñ that
defines the scaled page rank update process with scaling factor s = .8.

node 1
.05 .45 .05 .45

.05 .05 .45 .45

.85 .05 .05 .05

.05 .05 .85 .05

node 4node 3

node 2

[Fig 14.14, E&K]

Figure: The same toy web graph and the associated matrix Ñ describing the
scaled update process with s = 0.8.

ÑT = sNT + (1− s)1(1
T )
n
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Figure: The same toy web graph and the associated matrix Ñ describing the
scaled update process with s = 0.8.

ÑT = sNT + (1− s)1(1
T )
n

It follows that r(k) = (ÑT )kr(0)
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Page rank analysis for the scaled update
Similarly Figure 14.4 illustrates the same graph and the matrix Ñ that
defines the scaled page rank update process with scaling factor s = .8.

node 1
.05 .45 .05 .45

.05 .05 .45 .45

.85 .05 .05 .05

.05 .05 .85 .05

node 4node 3

node 2

[Fig 14.14, E&K]

Figure: The same toy web graph and the associated matrix Ñ describing the
scaled update process with s = 0.8.

ÑT = sNT + (1− s)1(1
T )
n

It follows that r(k) = (ÑT )kr(0)

If the process is converging then it would be converging to some r∗

satisfying r∗ = ÑT r∗
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Now comes the necessary linear algebra

Matrices are more than a convenient representation of the process; linear
algebra review time!

Let Mn×n be a full rank matrix. Recall that the matrix-vector
multiplication Mv can rotate and expand/shrink the vector v

▶ Simpler to visualize the meaning of such a linear transformation in
2-space or 3-space
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Now comes the necessary linear algebra

Matrices are more than a convenient representation of the process; linear
algebra review time!

Let Mn×n be a full rank matrix. Recall that the matrix-vector
multiplication Mv can rotate and expand/shrink the vector v

▶ Simpler to visualize the meaning of such a linear transformation in
2-space or 3-space

A vector v is an eigenvector of M with associated eigenvalue λ if
Mv = λv

▶ Note that v is also an eigenvector of Mk with eigenvalue λk

Question: What does this tell us about the equilibrium of the process
(i.e., v s.t. Mv = v)?

When λ = 1, the eigenvector is an equilibrium of the process!
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More linear algebra
For some matrices there is a set of n eigenvectors with (not
necessarily distinct) associated eigenvalues λ1, . . . , λn; these
eigenvectors span the n-dimensional Euclidean space so that any
vector can be expressed as a linear combination of the eigenvectors
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More linear algebra
For some matrices there is a set of n eigenvectors with (not
necessarily distinct) associated eigenvalues λ1, . . . , λn; these
eigenvectors span the n-dimensional Euclidean space so that any
vector can be expressed as a linear combination of the eigenvectors

Perron’s Theorem states that for any matrix which has all positive
entries there is:

▶ A unique positive eigenvector y that corresponds to the largest positive
eigenvalue, λ1

▶ Furthermore λ1 > |λi | for i > 1.

Since λ1 > |λi | for i > 1, and since every vector is a linear
combination of the eigenvectors, it follows that as k → ∞, the
transformation Mk is being dominated by the largest eigenvalue
acting on its associated eigenvector

For the scaled matrix ÑT , all entries are positive and the largest
eigenvalue is 1

▶ Therefore as k → ∞, (ÑT )kv will converge to the eigenvector y
associated with the largest eigenvalue 1
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Aside: Random Walk

Remember that we said that PageRank was equivalent to a random
walk on the graph?
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▶ We can view this as a Markov chain
▶ i.e., a type of probabilistic finite state machine that’s represented as a

graph, where each timestep we follow an edge based on the
corresponding probabilities
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Aside: Random Walk

Remember that we said that PageRank was equivalent to a random
walk on the graph?

▶ We can view this as a Markov chain
▶ i.e., a type of probabilistic finite state machine that’s represented as a

graph, where each timestep we follow an edge based on the
corresponding probabilities

Similarly, scaled page rank can be viewed as the same Markov chain
but with added low probability edges between every pair of nodes
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Aside: Random Walk

node 1
0 1/2 0 1/2

0 0 1/2 1/2

1 0 0 0

0 0 1 0

node 4node 3

node 2

[Fig 14.13, E&K]

Specifically, the transition matrices of these Markov chains are N and
Ñ respectively (Nij is the probability of transitioning from state i to
state j)
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[Fig 14.13, E&K]

Specifically, the transition matrices of these Markov chains are N and
Ñ respectively (Nij is the probability of transitioning from state i to
state j)
Under the assumption that the chain is irreducible (we can reach
state j from all states i and vice versa), and aperiodic (there is no
state i such that if you leave i , you can only return on timesteps that
are multiples of some p > 1) then there is a unique stationary

distribution π that the chain converges to
This is the distribution that we found
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Aside: Random Walk

node 1
0 1/2 0 1/2

0 0 1/2 1/2

1 0 0 0

0 0 1 0

node 4node 3

node 2

[Fig 14.13, E&K]

Specifically, the transition matrices of these Markov chains are N and
Ñ respectively (Nij is the probability of transitioning from state i to
state j)
Under the assumption that the chain is irreducible (we can reach
state j from all states i and vice versa), and aperiodic (there is no
state i such that if you leave i , you can only return on timesteps that
are multiples of some p > 1) then there is a unique stationary

distribution π that the chain converges to
This is the distribution that we found
When π exists, then all initial probability distributions over the nodes
converges to π
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Similar analysis for hubs and authorities

If M is the adjacency matrix of the web graph, then the
(unnormalized) process can be described by h = Ma and a = MTh.

Exercise: Convince yourself this is true!
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Similar analysis for hubs and authorities

If M is the adjacency matrix of the web graph, then the
(unnormalized) process can be described by h = Ma and a = MTh.

Exercise: Convince yourself this is true!

Then
1 a(1) = MTh(0)

2 h(1) = Ma(1) = MMTh(0)

It follows that
1 a(k) = (MTM)k−1MTh(0)

2 h(k) = (MMT )kh(0)
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Hubs and authorities analysis continued

The matrices (MMT ) and (MTM) are symmetric and have
non-negative entries

Any n × n symmetric matrix S with non negative entries has an
orthonormal set of n eigenvectors all of whose associated eigenvalues
are real

▶ By normalizing the scores, we assume that the largest eigenvalue
λ1 = 1
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Hubs and authorities analysis continued

The matrices (MMT ) and (MTM) are symmetric and have
non-negative entries

Any n × n symmetric matrix S with non negative entries has an
orthonormal set of n eigenvectors all of whose associated eigenvalues
are real

▶ By normalizing the scores, we assume that the largest eigenvalue
λ1 = 1

If the largest eigenvalue is unique (which is what would happen in a
real web graph), then the same analysis for page rank applies
(assuming that the starting hub scores are all positive).

67 / 69



Returning to the issue of influence

In some sense or another we are often talking about social influence in this
course. Even in web ranking (Ch 14), we can view hubs as influencing
which Web pages will be ranked highly.

In chapter 18, we observed two sequential processes where previous
individual decisions had a significant impact:
1) The evolution of links on the Web, and
2) The evolution of opinions in evaluating music.

The music evaluation experiment is closer to reality in the sense that it
explicitly integrates a measure of quality (a simplification of selection?)
into the decision making process.
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Recap

Power Laws
▶ Definition
▶ Zipf’s law
▶ Dynamics that often give rise to power laws

Rich get Richer model

Salganik et al. music popularity experiment

Ranking web results
▶ Hubs and Authorities
▶ (Scaled) Page Rank
▶ Proof-sketches of convergence
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