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Mon. Feb 6: Announcements and Corrections

A1 is due next Thursday (Feb 16th)
▶ If you haven’t gotten started on Q1, please do as it will require some

thought

Quick clarifications for A1:
▶ Q1: I is the identity matrix
▶ Q2b: You can assume that no self-loops are added

This week’s tutorial will be giving you time to work on the practice
questions, and also taking up the solutions

▶ Anything that isn’t covered in tutorial, feel free to ask on Piazza or
Office Hours
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Mon. Feb 6: Announcements and Corrections

Memorizing papers for the midterm?
▶ I won’t ask about a specific paper’s authors/dates/methodology
▶ You should know specific definitions or algorithms

⋆ e.g., Rozenstein algorithm, minSTC problem, dispersion,
neighbourhood overlap, etc...

▶ Try to remember the high-level results; typically align with theory e.g.
⋆ Weaker edges are closer to being local bridges
⋆ We can find strongly balanced subgraphs of considerable size, in signed

networks
⋆ Probability of triadic closure grows linearly, then superlinearly with

number of shared friends
⋆ Dispersion is more useful than embeddedness for detecting romantic

relationships

▶ I may ask questions where some memory of the papers’ methodology,
limitations, or data may be helpful, but is not really necessary. e.g.,

⋆ “If we wanted to determine if X, what kind of data could we use?”
⋆ “If we tried measuring X by Y, what’s a possible limitation?”
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Mon. Feb 6: Announcements and Corrections

Advice for finding papers for the critical review
▶ Use Google Scholar to search for something that interests you!
▶ Choose your favourite paper from class, and take a look at:

⋆ Other works by the same author(s) and lab(s)
⋆ Other works published in the same conference/journal
⋆ Other works that cite the paper
⋆ Connected papers: https://www.connectedpapers.com/

4 / 50
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▶ Choose your favourite paper from class, and take a look at:

⋆ Other works by the same author(s) and lab(s)
⋆ Other works published in the same conference/journal
⋆ Other works that cite the paper
⋆ Connected papers: https://www.connectedpapers.com/

Advice for finding partners for the critical review
▶ Piazza “Search for Teammates!” post

⋆ https://piazza.com/class/lbo3hb8nvt94kp/post/5

▶ Informal Discord
▶ If we’re approaching the deadline and you’ve tried both without any

luck, then email me
▶ Remember that you can start looking at cool papers before you have a

group! :)
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This week’s agenda

Milgram Small World Experiment

Watts-Strogatz model

Efficient decentralized search
▶ in a grid
▶ under non-uniform population density

Empiric studies on the probability distributions of friendship

Practical application of friendship distributions
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The Small World Phenomenon (Chapter 20)

We now move from a study of selection, influence, and balance in
networks, to the issue of focused or targeted search.

▶ Popularized in the famous concept of “six degrees of separation”.
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The Small World Phenomenon (Chapter 20)

We now move from a study of selection, influence, and balance in
networks, to the issue of focused or targeted search.

▶ Popularized in the famous concept of “six degrees of separation”.

At the start of this course, we briefly discussed the original 1960s
Milgram experiment as it was introduced in Chapter 2 of the text.

Milgram asked 296 randomly chosen people in Omaha to forward a
letter to a target person (a stockbroker) living in a Boston suburb.

Of the 64 chains that succeeded the median length of the letter chain
was 6, the motivation for the play and movie that came to popularize
the phenomena.
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Lengths of the successful letter chains

From Milgram (1967), “The Small World Problem,” Psychology Today [297]
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[Fig 20.4, E&K]

Image from Milgram (1967)

Milgram’s diagram showing a “composite” of the successful paths
converging on the target person
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[Fig 20.4, E&K]

Image from Milgram (1967)

Milgram’s diagram showing a “composite” of the successful paths
converging on the target person

▶ Each intermediate step is positioned at the average distance of all
chains that completed that number of steps

8 / 50



[Fig 20.4, E&K]

Image from Milgram (1967)

Milgram’s diagram showing a “composite” of the successful paths
converging on the target person

▶ Each intermediate step is positioned at the average distance of all
chains that completed that number of steps

▶ Anything interesting about the spacing?
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Two remarkable aspects of experiment

1 There are short paths (of friendship) between seemingly very
unrelated people

▶ We’ve seen this phenomena with the Erdos number (amongst
mathematicians or all scientists) and Bacon number (amongst actors)
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Two remarkable aspects of experiment

1 There are short paths (of friendship) between seemingly very
unrelated people

▶ We’ve seen this phenomena with the Erdos number (amongst
mathematicians or all scientists) and Bacon number (amongst actors)

2 The Milgram letter chain succeeded without individuals knowing
anything globally about the network structure

▶ i.e., without any centralized coordination, individuals were reasonably
successful in reaching the target using only geographic and
occupational information

Chapter 20 studies how we can better understand this interesting
phenomena.
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Looking ahead: The punch line of the chapter, text,
course

... we start from an experiment (Milgram’s), build mathematical
models based on this experiment (combining local and long-range
links), make a prediction based on the models (the value of the
exponent controlling the long-rang links), and then validate this
prediction on real data (from LiveJournal and Facebook, after
generalizing the model to use rank-based friendship). This is very
much how one would hope for such an interplay of experiments,
theories, and measurements to play out. But it is also a bit strik-
ing to see the close alignment of theory and measurement in this
particular case, since the predictions come from a highly simplified
model of the underlying social network, yet these predictions are
approximately borne out on data arising from real social networks.

[From E&K Ch.20, p.549]
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Trying to find someone

We could ask all of our friends to tell all of their friends to tell all of
their friends. . . (i.e. a traditional chain letter) that I am looking for
person X .

Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?
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their friends. . . (i.e. a traditional chain letter) that I am looking for
person X .

Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?

▶ It either costs real money/effort to pass a message (e.g. postal mail)
▶ I would prefer to not let everyone know that I am looking for person X
▶ Possible “social cost” in terms of annoyance to people in the network

receiving multiple requests to pass on a message.

Clearly if everyone cooperates, the broadcast method ensures the
shortest path to the intended target X in the leveled tree/graph of
reachable nodes.
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Reachable nodes without triadic closure
If we assume the social network has a tree structure (therefore, no
triadic closure), then it follows that every simple path is a shortest
path to everyone in the network.

Consider the number of people that you could reach by a path of
length at most t if every person has say at least 5 friends.

you

your friends

friends of your friends

Figure: Pure exponential growth produces a small world [Fig 20.1 (a), E&K]
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Reachable nodes with triadic closure

Given that our friends tend to be mostly contained within a few small
communities, the number of people reachable will be much smaller.

you

your friends

friends of your friends

Figure: Triadic closure reduces the growth rate [Fig 20.1 (b), E&K]

13 / 50



The Watts-Strogatz model
Is it possible to have extensive triadic closure and still have short
paths?
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The Watts-Strogatz model
Is it possible to have extensive triadic closure and still have short
paths?

Consider dense communities of strong ties consistent with triadic
closure (possibly homophily?), and different communities attached by
weak ties

▶ Weak ties provide the kind of branching that yields short paths to
many nodes

Watts-Strogatz model: A stylized model with two types of ties:
▶ Nodes lie in a two dimensional grid
▶ Short-range edges connect all nodes within some small distance r

⋆ Why? Short-range edges capture an idealized sense of homophily
▶ A small number of random longer-distance edges to other nodes in the

network
⋆ Very few random edges are needed to achieve the effect of short paths

Aside: This is actually a variant of the Watts-Strogatz model, but the
core idea is the same
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Very few random edges are needed
A 1/k probability that a person has a random weak tie is sufficient to
establish short paths, for a sufficiently large grid

[Fig 20.3, E&K]
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Image subdividing the grid into k by k “towns”, each with
k2 × 1

k
= k long distance edges (on average)
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Very few random edges are needed
A 1/k probability that a person has a random weak tie is sufficient to
establish short paths, for a sufficiently large grid

[Fig 20.3, E&K]

Image subdividing the grid into k by k “towns”, each with
k2 × 1

k
= k long distance edges (on average)

Question: Are short paths enough to explain the Miligram experiment?
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Does this explain the ability to find people in a
decentralized manner?

In the Watts-Strogatz type of model, we can use the random edges
(in addition to the short grid edges) and the geometric location of
nodes to keep trying to reduce the grid distance to a target node

▶ Analogous to the Milgram experiment where individuals seem to use
geographic information to guide the search
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Does this explain the ability to find people in a
decentralized manner?

In the Watts-Strogatz type of model, we can use the random edges
(in addition to the short grid edges) and the geometric location of
nodes to keep trying to reduce the grid distance to a target node

▶ Analogous to the Milgram experiment where individuals seem to use
geographic information to guide the search

▶ However, completely random edges does not reflect real social
networks!

Having uniformly random edges will not work in general as:
▶ Completely random edges (i.e. going to a random node anywhere in

the network) are too random.
▶ A random edge in an n × n grid is likely to have grid distance Θ(n).
▶ Without some central guidance, such random edges will essentially just

have us bounce around the network causing a substantially longer path
to the target than the shortest path.
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A modification of the model

Random edges outside of ones “close community” represent weak
ties, thus it seems like they should reflect some relation to closeness.
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Random edges outside of ones “close community” represent weak
ties, thus it seems like they should reflect some relation to closeness.

As in the Watts-Strogatz model, from every node v we have edges to
all nodes x within some grid distance r from v .

However, the random edges are instead generated as follows:
▶ We independently create an edge from v to w with probability

proportional to d(v ,w)−q

▶ d(v ,w) is the grid distance from v to w
▶ q ≥ 0 is called the clustering exponent

The smaller q ≥ 0 is, the more completely random is the edge
whereas large q ≥ 0 leads to edges which are not sufficiently random
and basically keeps edges within or very close to ones community.

What is the best choice of q ≥ 0?
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So what is a good or the best choice of the
clustering exponent q?

It turns out that in this 2-dimensional grid model decentralized search works best
when q = 2

▶ Provably optimal, in the limit as the network size increases
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7.0
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5.0

0.0 1.0 2.0

ln T

exponent q
[Fig 20.6, E&K]

▶ Simulation of decentralized search in the grid-based model with clustering exponent q
▶ Each point is the average of 1000 runs on (a slight variant of) a grid with 400 million

nodes
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clustering exponent q?

It turns out that in this 2-dimensional grid model decentralized search works best
when q = 2

▶ Provably optimal, in the limit as the network size increases
▶ What about in practice where the network is finite?

7.0

6.0

5.0

0.0 1.0 2.0

ln T

exponent q
[Fig 20.6, E&K]

▶ Simulation of decentralized search in the grid-based model with clustering exponent q
▶ Each point is the average of 1000 runs on (a slight variant of) a grid with 400 million

nodes
▶ The delivery time is best in the vicinity of exponent q = 2, as expected
▶ But even with this number of nodes, the delivery time is comparable over the range

between 1.5 and 2
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More precise statements of Kleinberg’s results on
navigation in small worlds
The Milgram-like experiment

Consider a grid network and construct (local contact) directed edges
from each node u to all nodes v within grid distance d(u, v) = k > 1.

For each node u we also probabilistically construct m > 0 (long
distance) directed edges where each such edge is chosen with
probability proportional to d(v ,w)−q for q ≥ 0.

We think of k and m as constants and consider the impact of the
clustering exponent q as the network size n increases.

We assume that each node knows its location and the location of its
adjacent edges and its distance to the location of a target node t.

The Milgram-like experiment is to produce a path to node t from
node s, where each node on the path is followed by it’s neighbouring
node v that is closest to t (in grid distance).
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Example for m = 1

Note: Numbers are numbered with grid distance (optimal distance)
Although normally not allowed, for legibility k = 1
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Example: Shortest Path

Note: Numbers are numbered with grid distance (optimal distance)
Although normally not allowed, for legibility k = 1
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Example: Decentralized Search

Note: When multiple neighbours have the same grid distance, tie breaking
is random
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Reflection on the Kleinberg-Milgram model

As we said at the start of this topic, the real surprise is that a “short” (but
not shortest) path is (probably w.r.t. to the randomly generated network)
being found by a decentralized search.

It is true that each node will pursue a “greedy strategy” but this is
different than say Dijkstra’s least cost/distance algorithm which entails a
centralized search.
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Navigation in small worlds results

Theorem

(J. Kleinberg 2000)

(a) For 0 ≤ q < 2, the (expected) delivery time T of any “decentralized

algorithm” in the n × n grid-based model is Ω
(

n
2−q

3

)

.

(b) For q = 2, there is a decentralized algorithm with delivery time
O(log n).

(c) For q > 2, the delivery time of any decentralized algorithm in the

grid-based model is Ω
(

n
q−2
q−1

)

.

(The lower bounds in (a) and (c) hold even if each node has an arbitrary
constant number of long-range contacts, rather than just one.)
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Wed. Feb 8: Announcements and Corrections

Assignment 1 is due next Thursday, before reading week
▶ Office hours in-person today after class (also accessible via Zoom)
▶ Zoom office hours today at 10PM
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Aside: Clustering coefficient

NOTE: It is no accident that the exponent in the Strogatz-Kleinberg
model is called the “clustering exponent”.
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NOTE: It is no accident that the exponent in the Strogatz-Kleinberg
model is called the “clustering exponent”.

Recall (from chapter 2) the definition of the clustering coefficient of a
node which is the ratio:
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∣
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∣
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∣

∣
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Recall (from chapter 2) the definition of the clustering coefficient of a
node which is the ratio:

∣

∣

{

(B ,C ) ∈ E : (B ,A) ∈ E and (C ,A) ∈ E
}∣

∣

∣

∣

{

{B ,C} : (B ,A) ∈ E and (C ,A) ∈ E
}
∣

∣

As the the clustering exponent increases, ones friends are all close and
therefore (in this geometric model), ones friends are mutual friends
which means the clustering coefficient goes to 1

And when the clustering exponent goes to 0, friends are randomly
scattered and unlikely to be mutual friends so that the clustering
coefficient goes to zero
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Intuition as to why q = 2 is best for the grid
It is instructive to see why this choice of q provides links at the
different “scales of resolution” seen in the Milgram experiment.
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Intuition as to why q = 2 is best for the grid
It is instructive to see why this choice of q provides links at the
different “scales of resolution” seen in the Milgram experiment.

If D is the maximum distance to be travelled, then we would like links
with distances between d and 2d for all d < logD

▶ You’ll be seeing why in tutorial

Given that we have a 2-dimensional grid, the number of points with
distance say d from a given node v will be ≈ d2.

We are choosing such a node with probability proportional to 1/d2

and hence we expect to have a link to some node whose distance
from v is between d and 2d for all d .

[Fig 20.7, E&K]

v

number of nodes is 

proportional to d
2

probability of linking to 

each is proportional to d
-2

2d
d
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Recap

Milgram Small World Experiment

Watts-Strogatz model

Efficient decentralized search
▶ in a grid
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More realistic population (non-uniform density)
In the grid model, the population density is completely uniform which
is not what one would expect in real data.

How can this 1/d2 (inverse-square) distribution be modified to
account for population densities that are very non-uniform?
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More realistic population (non-uniform density)
In the grid model, the population density is completely uniform which
is not what one would expect in real data.

How can this 1/d2 (inverse-square) distribution be modified to
account for population densities that are very non-uniform?

The idea is to replace distance d(v ,w) from v to w by the rank of w
relative to v .

▶ For a fixed v , define the rank(w) to be the number of nodes closer to
v than w is to v .

▶ In the 2D grid case, when d(v ,w) ∼ d , then rank(w) ∼ d2.

v

w

rank 7

distance d

rank ~ d
2

[Fig 20.9, E&K]
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More realistic geographic data continued

We can then restate the inverse-square distribution by saying that the
probability that v links to w is proportional to 1/rank(w).
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More realistic geographic data continued

We can then restate the inverse-square distribution by saying that the
probability that v links to w is proportional to 1/rank(w).

Using zip code information, for every pair of nodes (500,000 users on
the blogging site LiveJournal) one can assign ranks.

Liben-Nowell et al did such a study in 2005, and then for different
rank values examined the fraction f of edges that are actually friends.

The theory tells us that this fraction f should be a decreasing
function proportional to 1/rank .

That is, f ∼ rank−1. Taking logarithms, log f ∼ (−1) log rank .
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More realistic (LiveJournal) friendship data

(a) Rank-based friendship on LiveJournal (b) Rank-based friendship: East and West coasts

[Fig 20.10, E&K]

In Figure 20.10 (a), the Lower (upper) line is exponent = −1.15
(resp. -1.12).

In Figure 20.10 (b), the Lower (upper) line is exponent = −1.05
(resp. -1). The red data is East Coast data and the blue data is West
Coast data.
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Liben-Nowell: practice closely matches theory
Liben-Nowell prove that for “essentially” any population density (i.e. no
matter where people are located) if links are randomly constructed so that
the probability of a friendship is proportional to rank−1, then the resulting
network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg’s result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d−2 to rank−1 is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?
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network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg’s result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d−2 to rank−1 is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?

The text refers to a 2008 article by Oscar Sandberg who analyzes a
network model where decentralized search takes place which in turn causes
links to “re-wire” so as to fascilitate more efficient decentralized search.

It remains an intriguing question as to the extent this does happen in
social networks and the implicit mechanisms that would cause networks to
evolve this way. 36 / 50



The punch line (again) of text, course

The plots in Figure 20.10, and their follow-ups, are thus the con-
clusion of a sequence of steps in which we start from an experiment
(Milgram’s), build mathematical models based on this experiment
(combining local and long-range links), make a prediction based
on the models (the value of the exponent controlling the long-
rang links), and then validate this prediction on real data (from
LiveJournal and Facebook, after generalizing the model to use
rank-based friendship). This is very much how one would hope
for such an interplay of experiments, theories, and measurements
to play out. But it is also a bit striking to see the close align-
ment of theory and measurement in this particular case, since the
predictions come from a highly simplified model of the underlying
social network, yet these predictions are approximately borne out
on data arising from real social networks.

And not clear why real friendships are so arranged.
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The Backstrom et al rank-based study
Backstrom et al study US Facebook 2010 geographic user data.

1 Roughly 100 million users
2 About 6% of which enter home address info and of that population

about 60% can be parsed into longitude and latitude information.
3 This gave a set of 3.5 million users and 30.6 million edges

⋆ 2.9 million had at least one friend with a well specified address (these
averaged 10 friends with a known address)

4 Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficiently large and representative for experimental study.
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The Backstrom et al rank-based study
Backstrom et al study US Facebook 2010 geographic user data.

1 Roughly 100 million users
2 About 6% of which enter home address info and of that population

about 60% can be parsed into longitude and latitude information.
3 This gave a set of 3.5 million users and 30.6 million edges

⋆ 2.9 million had at least one friend with a well specified address (these
averaged 10 friends with a known address)

4 Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficiently large and representative for experimental study.

Studied probability of friendships vs distance and rank and how those
probabilities depend on population densities for where people live

▶ This study provides more evidence as to the approximately inverse
relation between distance/rank and probability of friendship
(≈ rank−.95)

▶ This relation is known as a power law

Question: What can we do with this knowledge?
They utilize this relationship between friends and distance to create
an algorithm that will predict the location of an individual from a
small set of users with known locations. They claim their algorithm
can predict geographic locations better than using IP information!
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Some statistics for geolocated data

Table 1: Demographic Statistics of Geolocated
Users

Located All US Users

% Male 57.51% 44.81%
% Female 42.49% 55.19%
Age, Median 30 30
Age, Mean 33.89 33.44
Account Age (days), Median 413 325
Account Age (days), Mean 558.9 453
Friend Count, Median 105 47
Friend Count, Mean 189.4 129.5

[Table 1 from Backstrom et al]

What is noticeable about this data?
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Probability of friendship wrt. distance
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Figure 7: Probability of friendship as a function of

distance. By computing the number of pairs of indi-

viduals at varying distances, along with the number

of friends at those distances, we are able to compute

the probability of two people at distance d knowing

each other. We see here that it is a reasonably good

fit to a power-law with exponent near −1.

[Figure 7 from Backstrom et al]

Interestingly, w.r.t. distance we still get a power law relation!
▶ The exponent is -1 instead of -2, but this is not surprising given the

non-uniform population
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Probability of friendship wrt. distance relative to
population density
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Figure 8: Looking at the people living in low,
medium and high density regions separately, we see
that if you live in a high density region (a city), you
are less likely to know a nearby individual, since
there are so many of them. However, you are more
likely to have contact with someone far away.
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Number of friends wrt. rank
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[Figure 9 from Backstrom et al]

With respect to rank, the exponent very close to the optimal -1
predicted by Liben-Nowell
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Predicting locations
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Figure 11: Location Prediction Performance. This

figure compares external predictions from an IP

geolocation service, the same service constrained

to users who have recently updated their address,

a baseline of randomly choosing the location of a

friend, along with three predictions: our algorithm

with all links, for users with 16+ friends, and finally

for users with 16+ friends constraining to only those

with whom they have communicated recently.

[Figure 11 from Backstrom et al]
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From geographic distance to social distance
What if there is no (reliable) distance information in a social network?
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What if there is no (reliable) distance information in a social network?

It is, of course, natural that we tend to have more common interests
with people who live closer to us (e.g. based on ethnicity, economic
status, etc), but clearly there are other notions of social distance that
should be considered.

Early in the course we considered social foci (clubs, shared interests,
language, etc.) we tend to share a number of focal interests with the
same person.

But, of course, belonging to a small group of people in a course, is
different than attending the same University, and speaking Mandarin
is different than being interested in Esperanto.

So the suggestion is made that we define social distance s(v ,w)
between individuals v ,w to be the minimum size of a common focus.
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Smallest size shared focus as a distance measure

Kleinberg (2001) gives theoretical results indicating that when
friendships follow a distribution proportional to 1/s(v ,w) then the
resulting social network will support efficient decentralized search.
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Smallest size shared focus as a distance measure

Kleinberg (2001) gives theoretical results indicating that when
friendships follow a distribution proportional to 1/s(v ,w) then the
resulting social network will support efficient decentralized search.

This is somewhat verified in a study (by Adamic and Adar) of ‘who
talks to whom’ friendship data (based on frequency of email
exchanges) amongst a small group of HP employees.

The focal groups are defined by the organizational hierarchy of the
company.

The Adamic and Adar 2005 study shows that the distribution for this
friendship relationship is proportional to the inverse of s(v ,w)−3/4 so
that it doesn’t match as closely with the previous geographical rank
based results but still observes a power law relation governing how
social ties decrease with “distance”.
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Probability of email exchanges vs social distance
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Figure 5: Probability of two individuals corresponding by email as a function of the size of the
smallest organizational unit they both belong to. The optimum relationship derived in [7]is
p ⇠ g

−1, g being the group size. The observed relationship is p ⇠ g
−3/4.

[Figure 5 from Adamic and Adar]
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Probability of email exchanges vs distance in the
organizational hierarchy

Fig. 4. Probability of linking as a function of the separation in the organizational hierarchy. The exponential

parameter α = 0.94, is in the searchable range of the Watts model (Watts et al., 2002).

[Figure 4 from Adamic and Adar]
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Final observations in chapter
The text suggests viewing the Milgram experiment as an example of
decentralized problem solving (in this case solving a shortest path
problem).

The text asks what other problem solving tasks might be amenable to
such decentralized problem solving and how to analyze what can be
done especially in large online networks.
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Final observations in chapter
The text suggests viewing the Milgram experiment as an example of
decentralized problem solving (in this case solving a shortest path
problem).

The text asks what other problem solving tasks might be amenable to
such decentralized problem solving and how to analyze what can be
done especially in large online networks.

Finally the text briefly suggests the role of social status in determining
the effectiveness of reaching a given target.

▶ An email forwarding Milgram type 2003 study by Dodds et al shows
that completion rates to all targets were low but were highest for “high
status” targets and particularly small for “low status” targets.

In section 12.6, the text speculates on structural reasons for the
impact of status, however, we are far from having a comprehensive
understanding of such phenomena.
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Redux: The punch line of the chapter, text, course

The plots in Figure 20.10, and their follow-ups, are thus the con-
clusion of a sequence of steps in which we start from an experiment
(Milgram’s), build mathematical models based on this experiment
(combining local and long-range links), make a prediction based
on the models (the value of the exponent controlling the long-
rang links), and then validate this prediction on real data (from
LiveJournal and Facebook, after generalizing the model to use
rank-based friendship). This is very much how one would hope for
such an interplay of experiments, theories, and measurements to
play out. But it is also a bit striking to see the close alignment of
theory and measurement in this particular case, since the predict
predictions come from a highly simplified model of the underlying
social network, yet these predictions are approximately borne out
on data arising from real social networks.

[From E&K Ch.20, p.549]
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Recap

Milgram Small World Experiment

Watts-Strogatz model

Efficient decentralized search
▶ in a grid
▶ under non-uniform population density

Empiric studies on the probability distributions of friendship

Geolocation from friendship
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