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This week’s agenda

Stable Marriage Problem
▶ Preferences
▶ Matching market problem
▶ Gale-Shapely algorithm

⋆ Proof of termination
⋆ Proof of stability of produced matchings
⋆ Creation of optimal matchings
⋆ Manipulation

▶ Extensions to the stable matching problem
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New topic: The stable marriage problem

Note: This material is not in the text, but fits in nicely with the focus of
CSC303
Namely, we will be concerned with graph matching but now restricted to
bipartite graphs; this will also be lead us to another important example of
a “coalition equilibrium”
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New topic: The stable marriage problem

Note: This material is not in the text, but fits in nicely with the focus of
CSC303
Namely, we will be concerned with graph matching but now restricted to
bipartite graphs; this will also be lead us to another important example of
a “coalition equilibrium”

The stable marriage problem and the Gale Shapley algorithm, are
interesting for a number of reasons:

Mainly because it has practical application, and it is still actively
considered due to variants arising from applications

The algorithm is elegant and the analysis is interesting
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Preferences vs utilities

[Image from Encyclopedia Britannica]

In game theory and mechanism design, individual valuations are
typically numeric utilities (e.g., money)
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Preferences vs utilities

[Image from Encyclopedia Britannica]

In game theory and mechanism design, individual valuations are
typically numeric utilities (e.g., money)

In social choice theory (the study of the combination of interests, for
example in voting rules) and in the stable marriage problem,
individuals typically have preferences
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Definition (Preference)

A preference over a set A of alternatives (e.g., candidates) is a total or
partial order (also called an ordering or ranking) of the alternatives

In many cases we find that it is difficult to place numeric values on
alternatives, yet we know that we like alternative a1 relative to
alternative a2

▶ e.g., ranking vs. assigning monetary values to the major political
parties in an election

For a set of alternatives A = {a1, a2, . . . , an}, and an individual (say
k), we use ≻k (or ≺k) to denote k ’s preference between alternatives
when k has such a preference

▶ ai ≻k aj (alternatively aj ≺k ai ) if k definitely prefers ai to aj

5 / 36



Total orders vs partial orders

If we’re unsure about our preferences, we can use ai ⪰k aj to indicate
that k likes ai at least as much as aj

It could also the case that there are two alternatives for which we
have no relative opinion
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A total order ≻ on a set of alternatives A = {a1, a2, . . . , an} satisfies
the following:

▶ ≻ is transitive; that is, ai ≻ aj and aj ≻ aℓ implies ai ≻ aℓ.
▶ There is a permutation π such that aπ(1) ≻k aπ(2) . . . ≻k aπ(n).
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Total orders vs partial orders

If we’re unsure about our preferences, we can use ai ⪰k aj to indicate
that k likes ai at least as much as aj

It could also the case that there are two alternatives for which we
have no relative opinion

A total order ≻ on a set of alternatives A = {a1, a2, . . . , an} satisfies
the following:

▶ ≻ is transitive; that is, ai ≻ aj and aj ≻ aℓ implies ai ≻ aℓ.
▶ There is a permutation π such that aπ(1) ≻k aπ(2) . . . ≻k aπ(n).

A partial order ≻ satisfies the following:
▶ ≻ is transitive
▶ There is a way to extend the order (i.e., impose a preference on all

ai , aj such that neither ai ≻ aj nor aj ≻ ai is given) so as to make ≻
into a total order
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Two-sided matching markets
In a two-sided matching market, we are interested in a matching in a
graph/network where :
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Two-sided matching markets
In a two-sided matching market, we are interested in a matching in a
graph/network where :

There are two sets of agents X and Y

The goal is to match agents in X to agents in Y to satisfy some
objective

Agents have the ability to leave unfavourable matches so as to obtain
a more favourable match

Note: X and Y can be the same set in some applications. Possible
Examples? This was the situation in the study of network exchanges under
the 1-exchange rule assumption. It is also the situation in a kidney
exchange market.
Note: As we remarked in our discussion of network exchanges, we are
generally interested in b matchings in many applications where say agents
(and in the bipartite case, maybe only agents on one side of the graph)
can be involved in up to b edges. But for now, let us restrict our attention
to the standard definition of a matching.
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The bipartite case and the stable marriage problem
In the stable marriage problem, we are interested in matchings in a
bipartite graph G = (V ,E ) where V = X ∪ Y . Furthermore, we assume
that every agent X has a total preference order over Y and every Y has a
total preference order over X
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Applications:

Matching employees to specific positions (or tasks)

Matching medical school graduates to specific residence positions

The “classical” motivating example (i.e. from the early-60s U.S.A.) is
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The bipartite case and the stable marriage problem
In the stable marriage problem, we are interested in matchings in a
bipartite graph G = (V ,E ) where V = X ∪ Y . Furthermore, we assume
that every agent X has a total preference order over Y and every Y has a
total preference order over X
This total order assumption, and the restriction to matchings and not
b-matchings, can be eliminated (say for the basic Gale-Shapley stable
marriage algorithm) but they can present issues in some applications

Applications:

Matching employees to specific positions (or tasks)

Matching medical school graduates to specific residence positions

The “classical” motivating example (i.e. from the early-60s U.S.A.) is
matching men and women in marriages. We will stay with that
terminology for consistency

▶ In 2020, The dating app Hinge claimed to use the Gale-Shapely
algorithm

▶ https://www.vice.com/en/article/z3e3bw/

how-does-the-hinge-algorithm-work
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Stable marriages
Let M be the set of men (with m ∈ M)
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Stable marriages
Let M be the set of men (with m ∈ M)

Let W be the set of women (with w ∈ W )

We assume |W | = |M|
We let the bijection µ : W → M denote a matching

▶ µ(w) is the man matched to w
▶ µ−1(m) is the woman matched to m

Abusing notation, we will pretend µ : M ∪W → M ∪W

Similar to the issue of stability in the network exchange process, the most
basic objective is to find a maximum (in this case perfect since we assume
|M| = |W |) matching between M and W that is stable:

A stable matching in the stable matching problem

A matching µ is unstable if there exists an unstable (also called blocking)
pair (m,w) such that m prefers w to his current match µ(m) and w

prefers m to her current match µ(w). In this case, m and w will leave
their current matches to be with each other. A match is stable if it
contains no unstable (blocking) pairs.
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Some examples of stable and unstable matches

We have to check for the presence or absence of a blocking pair; that is, a
pair (m,w) such that w ≻m µ(m) and m ≻w µ(w).
Here are a set of preferences for the men and women :

Man 1st 2nd 3rd 

x a b c 

y b a c 

z a b c 

Woman 1st 2nd 3rd 

a y x z 

b x y z 

c x y z 

don’t want 

won’t move 

don’t want 

won’t move 

Which of the following matchings are stable/unstable?

Matching 1: a− x , b − y , c − z Stable?

Matching 2: a− y , b − x , c − z Stable?

Matching 3: a− z , b − y , c − x Stable?

10 / 36



Some examples of stable and unstable matches

We have to check for the presence or absence of a blocking pair; that is, a
pair (m,w) such that w ≻m µ(m) and m ≻w µ(w).
Here are a set of preferences for the men and women :

Man 1st 2nd 3rd 

x a b c 

y b a c 

z a b c 

Woman 1st 2nd 3rd 

a y x z 

b x y z 

c x y z 

don’t want 

won’t move 

don’t want 

won’t move 

Which of the following matchings are stable/unstable?

Matching 1: a− x , b − y , c − z Stable? Yes!

Matching 2: a− y , b − x , c − z Stable?

Matching 3: a− z , b − y , c − x Stable?

10 / 36



Some examples of stable and unstable matches

We have to check for the presence or absence of a blocking pair; that is, a
pair (m,w) such that w ≻m µ(m) and m ≻w µ(w).
Here are a set of preferences for the men and women :

Man 1st 2nd 3rd 

x a b c 

y b a c 

z a b c 

Woman 1st 2nd 3rd 

a y x z 

b x y z 

c x y z 

don’t want 

won’t move 

don’t want 

won’t move 

Which of the following matchings are stable/unstable?

Matching 1: a− x , b − y , c − z Stable? Yes!

Matching 2: a− y , b − x , c − z Stable? Yes!

Matching 3: a− z , b − y , c − x Stable?

10 / 36
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We have to check for the presence or absence of a blocking pair; that is, a
pair (m,w) such that w ≻m µ(m) and m ≻w µ(w).
Here are a set of preferences for the men and women :

Man 1st 2nd 3rd 

x a b c 

y b a c 

z a b c 

Woman 1st 2nd 3rd 

a y x z 

b x y z 

c x y z 

don’t want 

won’t move 

don’t want 

won’t move 

Which of the following matchings are stable/unstable?

Matching 1: a− x , b − y , c − z Stable? Yes!

Matching 2: a− y , b − x , c − z Stable? Yes!

Matching 3: a− z , b − y , c − x Stable? No :(

In Matching 3, we can see that (b, x) is a blocking pair. What other
blocking pairs exist?
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Stability as an equilibrium

Stability is an equilibrium concept. But like stability in the network
exchange setting, and unlike Nash equilibrium, it takes two people to
conspire to deviate. In the network exchange setting that was built into
the experiments.

This is a form of coalitional stability
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Stability as an equilibrium

Stability is an equilibrium concept. But like stability in the network
exchange setting, and unlike Nash equilibrium, it takes two people to
conspire to deviate. In the network exchange setting that was built into
the experiments.

This is a form of coalitional stability

In some versions of the stable matching problem, we allow individuals to
remain “unmarried”. This can be incorporated into the problem
formulation by letting each man m (respectively, each woman) to put
themself into their preference ordering ≻m (resp. ≻w ).

For example, if we have m1 ≻w m2 ≻w w ≻w m3 . . . ≻w mn then w would
rather be by herself than with anyone other than m1 and m2.
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Wed. Mar 22: Announcements and Corrections

You can now submit your group’s draft critical review via the Quercus
Assignment tab (through there, you can access PeerScholar)

▶ Your individual peer reviews will be submitted via the same assignment

Assignment 2 is due tomorrow

Your group’s draft of the critical review project is due this Friday

In addition to Hinge, The Aphrodite Project is another dating system
that also claims to use a variant of the “Nobel Prize Winning”
Gale-Shapley algorithm

▶ https://thevarsity.ca/2022/02/12/

aphrodite-project-2022-u-of-t/
▶ https://www.thecrimson.com/article/2021/2/11/

project-aphrodite-2021/
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Do stable matchings always exist and, if so, how do
we find them?
Aside: When there are n men and women, there are n! possible matchings
so we certainly cannot exhaustively check all matchings. And even if we
could for a given instance of the problem (ie., a set of preferences for each
man and woman) that would not determine if there is always a stable
matching.

Fortunately, we have the Gale Shapley algorithm which constructively and
efficiently shows how to compute a stable matching for any instance.
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Aside: When there are n men and women, there are n! possible matchings
so we certainly cannot exhaustively check all matchings. And even if we
could for a given instance of the problem (ie., a set of preferences for each
man and woman) that would not determine if there is always a stable
matching.

Fortunately, we have the Gale Shapley algorithm which constructively and
efficiently shows how to compute a stable matching for any instance.

There are two standard analogous varieties of the Gale Shapley algorithm:

1 Male proposes, woman disposes. Also called Male Proposing Deferred
Acceptance (MPDA)

2 Female proposes, man disposes. Also called Female Proposing
Deferred Acceptance (FPDA)

FPDA and MPDA are completely analogous, but in general they will
produce different matchings.
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The FPDA algorithm
The algorithm will proceed in rounds, at the end of each round, all
women will have a set Pw of people to whom they have previously
proposed. There will also be a set C of current engagements. Both
sets are initially empty
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The FPDA algorithm
The algorithm will proceed in rounds, at the end of each round, all
women will have a set Pw of people to whom they have previously
proposed. There will also be a set C of current engagements. Both
sets are initially empty
In each round t, every unengaged woman w proposes to the man
m /∈ Pw that is highest in her preference ranking ≻w . If every woman
is engaged at the start of a round, the algorithm terminates
After a round of female proposals, every man m will consider his set
Pm,t of current proposals (if any)
We consider what each man m does in this round:

1 Pm,t = ∅, then m does not do anything in this round

So now consider the case that Pm,t ̸= ∅ ,and let w∗ be the most
preferred woman in Pm,t . That is, w

∗ ≻m w ′ for every w ′ ̸= w∗ ∈ Pm,t

2 If m is not currently engaged, he will become engaged to w∗ and C is
updated accordingly

3 If m is currently engaged to w (i.e., (m,w) ∈ C ), then he will break
this engagement if and only if w∗ ≻m w and will then become engaged
to w∗ In this case, C := C \ {(m,w)} ∪ {(m,w∗)}
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A running example for the FPDA algorithm
Women Men

a : x ! y ! z ! w w : d ! b ! a ! c

b : y ! x ! w ! z x : b ! a ! d ! c

c : x ! y ! z ! w y : c ! b ! a ! d

d : y ! w ! x ! z z : d ! b ! c ! a

Proposals: 

a: x 

b: y 

c: x 

d: y 

Round 1 

New Engagements: 

w: − 

x: a 

y: b 

z: − 
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Example: Round 2

Women Men

a : x∗ ! y ! z ! w w : d ! b ! a ! c

b : y∗ ! x ! w ! z x : b ! a ! d ! c

c : x∗ ! y ! z ! w y : c ! b ! a ! d

d : y∗ ! w ! x ! z z : d ! b ! c ! a

A * indicates that the man has already been proposed to by this woman.

Round 2 

Proposals: 

a: − 

b: − 

c: y 

d: w 

New Engagements: 

w: d 

x: a 

   y: b c 

z: − 

Current: 

w: − 

x: a 

y: b 

z: − 

b is “jilted” 
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Example: Round 3

Women Men

a : x∗ ! y ! z ! w w : d ! b ! a ! c

b : y∗ ! x ! w ! z x : b ! a ! d ! c

c : x∗ ! y∗ ! z ! w y : c ! b ! a ! d

d : y∗ ! w∗
! x ! z z : d ! b ! c ! a

A * indicates that the man has already been proposed to by this woman.

Round 3 

Proposals: 

a: − 

b: x 

c: − 

d: − 

New Engagements: 

w: d 

   x: a b 

   y: b c 

z: − 

Current: 

w: d 

x: a 

   y: b c 

z: − 

a is “jilted” 
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Example: Round 4

Women Men

a : x∗ ! y ! z ! w w : d ! b ! a ! c

b : y∗ ! x∗ ! w ! z x : b ! a ! d ! c

c : x∗ ! y∗ ! z ! w y : c ! b ! a ! d

d : y∗ ! w∗
! x ! z z : d ! b ! c ! a

A * indicates that the man has already been proposed to by this woman.

Round 4 

Proposals: 

a: y 

b: − 

c: − 

d: − 

New Engagements: 

w: d 

   x: a b 

   y: b c 

z: − 

Current: 

w: d 

   x: a b 

   y: b c 

z: − 

a’s proposal 
not accepted by y 

(no change) 
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Example: Round 5

Women Men

a : x∗ ! y∗ ! z ! w w : d ! b ! a ! c

b : y∗ ! x∗ ! w ! z x : b ! a ! d ! c

c : x∗ ! y∗ ! z ! w y : c ! b ! a ! d

d : y∗ ! w∗
! x ! z z : d ! b ! c ! a

A * indicates that the man has already been proposed to by this woman.

Round 5 

Proposals: 

a: z 

b: − 

c: − 

d: − 

New Engagements: 

w: d 

   x: a b 

   y: b c 

z: a 

Current: 

w: d 

   x: a b 

   y: b c 

z: − 

Stable: 

a:z 

b:x 

c:y 

d:w 

19 / 36



Recap

Stable Marriage Problem
▶ Preferences
▶ Matching market problem
▶ Gale-Shapely algorithm
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Proof FPDA terminates

Assume |W | = |M| = n

Once engaged, no man is ever “free” (i.e. not engaged to a woman)

21 / 36



Proof FPDA terminates

Assume |W | = |M| = n

Once engaged, no man is ever “free” (i.e. not engaged to a woman)

If a woman has had n − 1 unsuccessful proposals, then all n − 1
previous men are engaged

Therefore, the nth man must be “free” (as |W | = n) and will accept
the proposal

21 / 36



Proof FPDA terminates

Assume |W | = |M| = n

Once engaged, no man is ever “free” (i.e. not engaged to a woman)

If a woman has had n − 1 unsuccessful proposals, then all n − 1
previous men are engaged

Therefore, the nth man must be “free” (as |W | = n) and will accept
the proposal

Therefore the algorithm must terminate once all women have made
all possible proposals

21 / 36



Proof FPDA terminates

Assume |W | = |M| = n

Once engaged, no man is ever “free” (i.e. not engaged to a woman)

If a woman has had n − 1 unsuccessful proposals, then all n − 1
previous men are engaged

Therefore, the nth man must be “free” (as |W | = n) and will accept
the proposal

Therefore the algorithm must terminate once all women have made
all possible proposals

As each round results in at least one new proposal, and no woman
can propose to the same man twice, it follows that since there are n

women and n men there can be at most n2 rounds

Why is this matching stable?
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Proof FPDA produces a stable matching

Let µ be the matching produced by the FPDA. Assume for contradiction
that (m,w) is a blocking pair for some man m and woman w .
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Proof FPDA produces a stable matching

Let µ be the matching produced by the FPDA. Assume for contradiction
that (m,w) is a blocking pair for some man m and woman w .

Therefore w prefers m to µ(w), and hence must have proposed to m

before proposing to µ(w).

By the assumption that (m,w) is a blocking pair, m prefers w to µ(m).
Therefore:

1 Case 1: if w proposed to m after µ(m) then m would have jilted µ(m)

2 Case 2: if w proposed before µ(m) then m would not have accepted
the proposal from µ(m) as m would already be engaged to either w
or someone even more preferred than w

It follows that µ is stable since there cannot be a blocking pair.
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Recap

Stable Marriage Problem
▶ Preferences
▶ Matching market problem
▶ Gale-Shapely algorithm

⋆ Proof of termination
⋆ Proof of stability of produced matchings
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Properties of the FPDA (MPDA) algorithm

From the analysis of the FPDA stability, we know that FPDA always
terminates within n2 rounds.

And we know that there exists (n, n) instances on which FPDA will use
Ω(n2) rounds. Can you construct such an instance?
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From the analysis of the FPDA stability, we know that FPDA always
terminates within n2 rounds.

And we know that there exists (n, n) instances on which FPDA will use
Ω(n2) rounds. Can you construct such an instance?

Additionally, the order in which women propose in a given round does not
change the result. Since the same woman cannot propose to more than
one man in a round, it also doesn’t matter in what order the men accept
or refuse new proposals. That is, the same woman w∗ cannot be the
reason for canceling more than one engagement. Thus the matching of
FPDA is completely determined no matter what order the woman propose
or the order that the men make or break engagements.
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Note that depending on the instance, the number of stable matchings
can vary from exponentially many to a unique stable matching
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can vary from exponentially many to a unique stable matching

In algorithm design (without any self interest by agents), we would be
interested in finding an “optimal” solution

▶ e.g. a maximum matching or (in the edge or vertex weighted cases) a
maximum weight matching

Do we have a sense of how “good” a given stable matching is?
▶ With only preferences, it may not be clear at first why we would prefer

one stable matching to another
▶ There are many ways that we can define a numeric social welfare of a

stable matching, but we will study an alternative approach
⋆ It is always possible (e.g., use the Borda scoring rule) to transform a

preference ranking to a utility for the agents based on the match they
receive
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Female-optimal and male-optimal stable matchings

Ignoring social welfare, we can ask how satisfied will either the men or
women be in a stable matching produced by the FPDA and MPDA
algorithms.
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Female-optimal and male-optimal stable matchings

Ignoring social welfare, we can ask how satisfied will either the men or
women be in a stable matching produced by the FPDA and MPDA
algorithms.

Define OPT (w) (resp. Pess(w)) to be the most (resp. least) preferred
man she could be matched with in a stable matching. This is a well defined
concept since there can only be a finite number of stable matchings.
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A matching is female-optimal if every woman w is match to OPT (w). Is
such a matching possible?
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Female-optimal and male-optimal stable matchings

A matching is female-optimal if every woman w is match to OPT (w). Is
such a matching possible?

Good news for women

Theorem: FPDA results in a female-optimal stable matching for all input
instances.

We can also define a male-optimal stable matching in the same way.

Good news for men

Theorem: MPDA results in a male-optimal stable matching for all input
instances.

Bad news for society?

FPDA (resp. MPDA) results in a male-pessimal (resp. female-pessimal)
stable matching for all instances.

Remember that Hinge claims they use Gale-Shapley for dating?
27 / 36



Mon. Mar 27: Announcements and Corrections

Your individual peer reviews are due this Friday (March 31)will be
submitted via the same assignment

▶ Access via the Quercus Assignment tab (through there, you can get to
PeerScholar); it’s the same assignment where your group submitted it’s
draft

▶ Please do let me know if you aren’t in a group, and accordingly can’t
do the peer review

⋆ The PeerScholar support team should know how to change groups after
the deadline
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Sketch of proof that FPDA is female-optimal

Suppose that there is some instance in which the FPDA result is not
female-optimal.
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Sketch of proof that FPDA is female-optimal

Suppose that there is some instance in which the FPDA result is not
female-optimal.

Let w be the first woman rejected (either due to a failed proposal or
jilting) by their optimal partner during FPDA’s execution.

Let w∗ be the woman that caused OPT (w) to reject w . Therefore
w∗ ≻OPT (w) w .

As w∗ has not yet been rejected by their optimal partner (by assumption),
this means that OPT (w) ⪰w∗ OPT (w∗).

Now, consider any stable matching µ where w and OPT (w) are matched.
We know that µ must exist by the definition of OPT . Also, we know that:

w∗ ≻OPT (w) w

OPT (w) ⪰w∗ OPT (w∗) ⪰w∗ µ(w∗), by cases we can show
OPT (w) ≻w∗ µ(w∗)

Therefore (OPT (w),w∗) are a blocking pair of µ. Contradiction.
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Should you be truthful about your preferences?

It does seem reasonable for women to propose in order of their preferences
and men to accept their best offer. So why should anyone manipulate and
not be truthful about their preferences?
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Should you be truthful about your preferences?

It does seem reasonable for women to propose in order of their preferences
and men to accept their best offer. So why should anyone manipulate and
not be truthful about their preferences?

However, the Gale-Shapley algorithm can be manipulated. That is, there
are instances where someone can wind up better off by not stating their
true preferences. Here is an example:

First, consider the truthful set of preferences:
m1 ≻w1 m2 ≻w1 m3 w2 ≻m1 w1 ≻m1 w3

m2 ≻w2 m1 ≻w2 m3 w1 ≻m2 w2 ≻m2 w3

m1 ≻w3 m2 ≻w3 m3 w1 ≻m3 w2 ≻m3 w3

FPDA will compute the following stable matching:
(w1,m1), (w2,m2), (w3,m3)
You should check this by running FPDA.
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But what if m1 is not always truthful?

Suppose that m1 lies in round 1 and rejects the proposal from w1 (instead
being engaged to w3) even though w1 ≻m1 w3.
This will result in the following matching: (w1,m2), (w2,m1), (w3,m3)
where now m1 is matched to w2, an improvement for him.
You should check this by running FPDA with m1 deviating as indicated.
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But what if m1 is not always truthful?

Suppose that m1 lies in round 1 and rejects the proposal from w1 (instead
being engaged to w3) even though w1 ≻m1 w3.
This will result in the following matching: (w1,m2), (w2,m1), (w3,m3)
where now m1 is matched to w2, an improvement for him.
You should check this by running FPDA with m1 deviating as indicated.

NOTE: It is not easy to prove but in FPDA, women can never benefit by
being untruthful. That is, women should always propose in the order of
their preferences when using the FPDA.

Of course, it is just the opposite when using MPDA: Men cannot benefit
from lying but women can sometimes gain by an untruthful rejection.
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Lots of extensions of deferred acceptance (DA) and
other considerations

Many applications are many-to-one and not 1-1 as in the basic
formulation. For example, a University accepts many students. This
extension is not difficult to handle.

One way would be to replicate a University K times if it had a quota of K
students. Is this a good solution?
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Lots of extensions of deferred acceptance (DA) and
other considerations

Many applications are many-to-one and not 1-1 as in the basic
formulation. For example, a University accepts many students. This
extension is not difficult to handle.

One way would be to replicate a University K times if it had a quota of K
students. Is this a good solution?

This is inefficient (especially if K is big and it imposes an artificial ranking
amongst the copies.

Instead, we can extend Gale-Shapley by having each University have a
quota and while that quota is not filled, they keep admitting students.
When the quota is filled and the get another request, they can reject it or
take it and remove the least desirable student. (Of course, they don’t
announce any decisions until the end of the admission process and
hopefully have a reliable way to rank students.) Now Universities (the men
in FPDA) can also manipulate by misreporting their quota.
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Other important considerations in stable matching

Partial preferences. In general, our preference relation is usually
partial. More specifically, our preferences are often a weak ordering
(that is, we may be indifferent between various choices). Now there
can be different ways to define a blocking pair and stability:

1 Weak stability: (m,w) is a blocking pair iff both m and w are strictly
better.

2 Strong stability: (m,w) is a blocking pair iff at least one of m and w is
strictly better, and the other is at least indifferent

3 Super strong stability: (m,w) is a blocking pair if neither m nor w is
worse off.
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Other important considerations in stable matching

Partial preferences. In general, our preference relation is usually
partial. More specifically, our preferences are often a weak ordering
(that is, we may be indifferent between various choices). Now there
can be different ways to define a blocking pair and stability:

1 Weak stability: (m,w) is a blocking pair iff both m and w are strictly
better.

2 Strong stability: (m,w) is a blocking pair iff at least one of m and w is
strictly better, and the other is at least indifferent

3 Super strong stability: (m,w) is a blocking pair if neither m nor w is
worse off.

Gale-Shapley is easily extended to handle weak stability (i.e., break
ties arbitrarily), but strong and super strong stability require
modifications.
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Partial preferences and couples

Partial preferences raises the issue as to how to possibly resolve some
preferences, for instance by interviews.

▶ However, this can be costly w.r.t. time (e.g., for both employers and
candidates)

▶ Given some (say probabilistic) belief about preferences, who should you
choose for your interviews or where to apply?

▶ Do you only go for the positions that you can most likely get, or should
you try for some of your most desired choices?

▶ These are called “reach and safety strategies” in contrast to just
interviewing “within your tier”.

Did you have a a strategy in applying to University or if you are
applying to graduate school, do you have a strategy where to apply?

34 / 36



Partial preferences and couples

As mentioned before, variants of Gale-Shapely have been used to
great success in matching medical school students to residence
positions
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Partial preferences and couples

As mentioned before, variants of Gale-Shapely have been used to
great success in matching medical school students to residence
positions

However, the number of couples graduating medical school has been
increasing. (In 2015, 6% of resident applications were coupled.)

▶ Couples rank residency positions, but want to remain together
▶ This additional wrinkle makes it an NP-complete problem to determine

if there is a stable matching
▶ Various ways of approaching problem in practice (e.g. using SAT

solvers as advocated by Drummond, Perrault and Bacchus).
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Concluding stable matching

Very important and still an active topic as stable matching is used in a
number of applications. In the kidney exchange application (stable
matching in a non-bipartite graph whose nodes are donor-recipient pairs),
it can literally be a matter of life and death. Here edges represent a
compatible match. Here we can also have weights on the edges (to
represent how good a match is) and weights on the nodes (to perhaps
represent how urgent is the match).

As another indication of the importance of stable matching, the 2012
Nobel Prize in Economics was awarded to Lloyd Shapley and Alvin Roth
for their work in the theory (Shapley) and application (Roth) of stable
matching algorithms.
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Recap

Stable Marriage Problem
▶ Preferences
▶ Matching market problem
▶ Gale-Shapely algorithm

⋆ Proof of termination
⋆ Proof of stability of produced matchings
⋆ Creation of male or female optimal matchings
⋆ Manipulation

▶ Extensions to the stable matching problem
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