Social and Information Networks

Tutorial #8: Influence Spread

University of Toronto CSC303
Winter/Spring 2022
lan Berlot-Attwell

Week 9: Mar 14-19 (2022)

Today's agenda

In lecture we've covered Influence maximization under the linear threshold and independent cascade influence models

Today:

- Questions from Lecture
- A more general model of influence spread
- Non-progressive influence maximization
- Quercus Quiz

Questions?

Influence Models: Linear Threshold

- ullet Each node $v \in V$ has a random threshold $t_v \sim \mathsf{Unif}([0,1])$
- Each directed edge $(u, v) \in E$ has some fixed weight $w_{uv} \in [0, 1]$ such that:

$$\forall v \in V : \sum_{u \in V: u \to v} w_{uv} \le 1$$

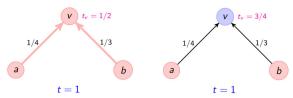
 At time step t, node v is infected if the sum of incident edges from infected nodes exceeds the threshold

Influence Models: Linear Threshold

- ullet Each node $v \in V$ has a random threshold $t_v \sim \mathsf{Unif}([0,1])$
- Each directed edge $(u, v) \in E$ has some fixed weight $w_{uv} \in [0, 1]$ such that:

$$\forall v \in V : \sum_{u \in V: u \to v} w_{uv} \le 1$$

 At time step t, node v is infected if the sum of incident edges from infected nodes exceeds the threshold



• Example where a and b are infected at t = 0, and v is or is not infected depending on the random variable t_v

• Question: What are the key parts of the linear threshold model? How may we generalize them?

- Question: What are the key parts of the linear threshold model? How may we generalize them?
- ullet We retain our random threshold $t_{
 u} \sim {\sf Unif}([0,1])$
- Instead of weighted edges, for each node v we defined a *threshold* function $f_v : \mathcal{P}(V) \to [0,1]$
- Let $\mathcal{I}_t(v):V\to \mathcal{P}(V)$ is the function that maps v to v's infected neighbours at time time
- An uninfected node v now becomes infected if

$$f_{\nu}(\mathcal{I}_t(\nu)) > t_{\nu}$$

- Question: What are the key parts of the linear threshold model? How may we generalize them?
- ullet We retain our random threshold $t_{
 u} \sim {\sf Unif}([0,1])$
- Instead of weighted edges, for each node v we defined a *threshold* function $f_v: \mathcal{P}(V) \to [0,1]$
- Let $\mathcal{I}_t(v):V\to \mathcal{P}(V)$ is the function that maps v to v's infected neighbours at time time
- An uninfected node v now becomes infected if

$$f_{\nu}(\mathcal{I}_t(\nu)) > t_{\nu}$$

 Question: How do we represent Linear Threshold model as a General Threshold Model

- Question: What are the key parts of the linear threshold model? How may we generalize them?
- ullet We retain our random threshold $t_{
 u} \sim \mathsf{Unif}([0,1])$
- Instead of weighted edges, for each node v we defined a *threshold* function $f_v : \mathcal{P}(V) \to [0,1]$
- Let $\mathcal{I}_t(v):V\to \mathcal{P}(V)$ is the function that maps v to v's infected neighbours at time time
- An uninfected node v now becomes infected if

$$f_{\nu}(\mathcal{I}_t(\nu)) > t_{\nu}$$

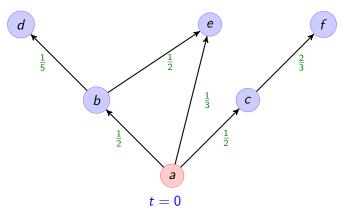
- Question: How do we represent Linear Threshold model as a General Threshold Model
 - $f_v(S) := \sum_{u \in S} w_{uv}$
- Question: Is the expected number of eventual adopters, f(S), submodular? Is it monotone?

- Question: What are the key parts of the linear threshold model? How may we generalize them?
- ullet We retain our random threshold $t_{
 u} \sim {\sf Unif}([0,1])$
- Instead of weighted edges, for each node v we defined a *threshold* function $f_v : \mathcal{P}(V) \to [0,1]$
- Let $\mathcal{I}_t(v): V \to \mathcal{P}(V)$ is the function that maps v to v's infected neighbours at time time
- An uninfected node v now becomes infected if

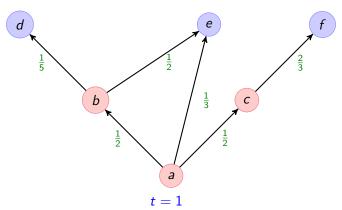
$$f_{v}(\mathcal{I}_{t}(v)) > t_{v}$$

- Question: How do we represent Linear Threshold model as a General Threshold Model
 - $f_v(S) := \sum_{u \in S} w_{uv}$
- Question: Is the expected number of eventual adopters, f(S), submodular? Is it monotone?
 - No, consider that on a clique we could define f_v so that all nodes are infected for a specific initial set S ⊂ V, and otherwise no new nodes are infected

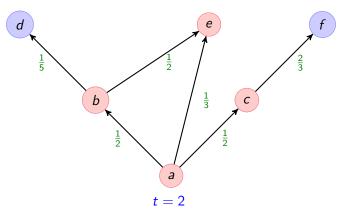
- Each edge (u, v) has an associated probability p_{uv} .
- In each step t, nodes that adopted technology at step t-1 "infect" each of their uninfected neighbors independently with probability p_{uv} .



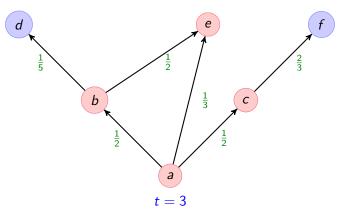
- Each edge (u, v) has an associated probability p_{uv} .
- In each step t, nodes that adopted technology at step t-1 "infect" each of their uninfected neighbors independently with probability p_{uv} .



- Each edge (u, v) has an associated probability p_{uv} .
- In each step t, nodes that adopted technology at step t-1 "infect" each of their uninfected neighbors independently with probability p_{uv} .



- Each edge (u, v) has an associated probability p_{uv} .
- In each step t, nodes that adopted technology at step t-1 "infect" each of their uninfected neighbors independently with probability p_{uv} .



• Question: What are the key parts of the general cascade model? How may we generalize them?

- Question: What are the key parts of the general cascade model? How may we generalize them?
- ullet We retain the idea that nodes infected at time t-1 attempt to infect their neighbours with some probability at time t
- We let the probability that some node v is infected by a node u as $p_v(u,F)$ where $F\subset V$ is the set of nodes that have already tried and failed to infect v
- $p_{v}: V \times \mathcal{P}(V) \rightarrow [0,1]$
- Question Is there a problem with this model?
 - As written thusfar, it could depend on the order in which nodes attempt to infect v. For this reason, p_v is restricted to be order independent
 - For any set of infected neighbours $u_1, u_2, \dots u_l$ the order in which they infect v the overall probability of infection must be the same

- Question: What are the key parts of the general cascade model? How may we generalize them?
- ullet We retain the idea that nodes infected at time t-1 attempt to infect their neighbours with some probability at time t
- We let the probability that some node v is infected by a node u as $p_v(u,F)$ where $F\subset V$ is the set of nodes that have already tried and failed to infect v
- $p_{V}: V \times \mathcal{P}(V) \rightarrow [0,1]$
- Question Is there a problem with this model?
 - As written thusfar, it could depend on the order in which nodes attempt to infect v. For this reason, p_v is restricted to be order independent
 - For any set of infected neighbours $u_1, u_2, \dots u_l$ the order in which they infect v the overall probability of infection must be the same
- Question: How do we represent Independent Cascade model as a General Cascade Model

- Question: What are the key parts of the general cascade model? How may we generalize them?
- ullet We retain the idea that nodes infected at time t-1 attempt to infect their neighbours with some probability at time t
- We let the probability that some node v is infected by a node u as $p_v(u, F)$ where $F \subset V$ is the set of nodes that have already tried and failed to infect v
- $p_{v}: V \times \mathcal{P}(V) \rightarrow [0,1]$
- Question Is there a problem with this model?
 - As written thusfar, it could depend on the order in which nodes attempt to infect v. For this reason, p_v is restricted to be order independent
 - ▶ For any set of infected neighbours $u_1, u_2, \dots u_l$ the order in which they infect v the overall probability of infection must be the same
- Question: How do we represent Independent Cascade model as a General Cascade Model

- General Threshold Model: Node v is infected at time t+1 if $f_v(\mathcal{I}_t(v)) > t_v$
- General Cascade Model: Node u, infected at time t, infects node v with probability p(u, S) where S is the set of nodes that have failed to infect u thusfar
- Question: Can we represent a general threshold model as a general cascade model?

- General Threshold Model: Node v is infected at time t+1 if $f_v(\mathcal{I}_t(v)) > t_v$
- General Cascade Model: Node u, infected at time t, infects node v with probability p(u, S) where S is the set of nodes that have failed to infect u thusfar
- Question: Can we represent a general threshold model as a general cascade model?

$$\begin{aligned} p_v(u,S) &= P(u \text{ infects } v|S \text{ didn't infect } v) \\ &= \frac{P(u \text{ infects } v \land S \text{ didn't infect } v)}{P(S \text{ didn't infect } v)} \\ &= \frac{P(f_v(S \cup \{u\}) > t_v \ge f_v(S))}{P(t_v \ge f_v(S))} \\ &= \frac{f_v(S \cup \{u\}) - f_v(S)}{1 - f_v(S)} \end{aligned}$$

- General Threshold Model: Node v is infected at time t+1 if $f_v(\mathcal{I}_t(v)) > t_v$
- General Cascade Model: Node u, infected at time t, infects node v with probability p(u, S) where S is the set of nodes that have failed to infect u thusfar
- Question: Can we represent a general cascade model as a general threshold model?

- ullet General Threshold Model: Node v is infected at time t+1 if $f_{v}(\mathcal{I}_{t}(v))>t_{v}$
- General Cascade Model: Node u, infected at time t, infects node v with probability p(u, S) where S is the set of nodes that have failed to infect u thusfar
- Question: Can we represent a general cascade model as a general threshold model?
- Let $S = \{s_1, s_2, \dots s_k\}$, and $S_i := \{s_1 \dots s_i\}$

$$f_v(S) = P(S \text{ infects } v)$$

$$= 1 - P(S \text{ doesn't infect } v)$$

$$= 1 - \prod_{i=1}^k P(u_i \text{ doesn't infect } v | S_{i-1} \text{ doesn't infect } v)$$

$$= 1 - \prod_{i=1}^k (1 - p(u_i, S_{i-1}))$$

Non-Progressive Influence

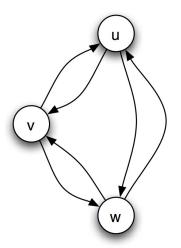
- Thusfar, all the influence models we've seen are progressive, nodes that become infected never cease being infected
- Suppose we're modeling something like the use of a subscription service
 - Users can start or stop any any time
 - We assume users are more likely to subscribe if people they know are also subscribed
 - We want to maximize our revenue, or rather the sum of the number of people subscribed at each timestep
 - ▶ We can create an initial set of adopters, but these initial adopters can be at different points in time
- How can we model this? How can we pick our initial adopters?

Reducing Non-Progressive Influence to Progressive Influence

- We can model non-progressive influence as progressive influence using a layered graph
- For our original graph G=(V,E), and a time horizon of τ timesteps, we create G^{τ} by creating τ duplicates of the nodes and edges of G (e.g. v becomes v_t for $t=1,2,\ldots \tau$)
- ullet We add directed edges from u_t to v_{t+1} for all u_t such that $(u,v)\in E$
- This is the same approach as we saw in class that allowed us to model a special case of SIS as SIR
- ullet We can now analyze this problem or choose initial adopters on $G^{ au}$ as if it were a progressive influence problem

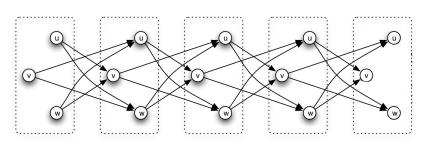
Reducing Non-Progressive Influence to Progressive Influence

G



Reducing Non-Progressive Influence to Progressive Influence

 G^5



[Modified from E&K Fig 21.6a]

Quercus Quiz