
Social and Information Networks
Tutorial #4: Approximately Balanced Networks

University of Toronto CSC303
Winter/Spring 2022

Ian Berlot-Attwell

Week 5: Feb 7-11 (2022)

1 / 15



Today’s agenda

In lecture we’ve covered Chapter 5 of the textbook looking at Structural
Balance.

Today:

Questions from Lecture

Recap of Structural Balance

Approximately Balanced Networks (Ch 5.5b of E&K)

Quercus Quiz
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Questions?
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Recap: Stable Triangles

A complete (i.e. fully connected) graph is stable if all of it’s triangles are
stable.

5.1. STRUCTURAL BALANCE 121

A

B C

+ +

+

(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than
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Recap: Harary Balance Theorem

If a labelled complete graph is balanced, then either everyone is friends, or
the nodes can be partitioned into 2 groups that mutually loath each other
and are internally purely friendly.5.2. CHARACTERIZING THE STRUCTURE OF BALANCED NETWORKS 125

A

B

C E

D

+

+

-

-

?

?

?

friends of A enemies of A

Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
other nodes not illustrated here.)

(iii) Every node in X is an enemy of every node in Y .

Let’s argue that each of these conditions is in fact true for our choice of X and Y . This will

mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The

rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other

nodes in X (let’s call them B and C) — must they be friends? We know that A is friends

with both B and C, so if B and C were enemies of each other, then A, B, and C would

form a triangle with two + labels — a violation of the balance condition. Since we know

the network is balanced, this can’t happen, so it must be that B and C in fact are friends.

Since B and C were the names of any two nodes in X, we have concluded that every two

nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them

D and E) — must they be friends? We know that A is enemies with both D and E, so if D

and E were enemies of each other, then A, D, and E would form a triangle with no + labels

— a violation of the balance condition. Since we know the network is balanced, this can’t

happen, so it must be that D and E in fact are friends. Since D and E were the names of

any two nodes in Y , we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),

consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We

know A is friends with B and enemies with D, so if B and D were friends, then a, B, and
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Recap: Testing if a graph can be completed into a
balanced graph

1 Find the positive communities (i.e. BFS on only the positive edges to
find the positive connected components)

2 Confirm that these do not contain any negative edges

3 Collapse the positive communities into supernodes (and we collapse
the negative edges between these communities accordingly)

4 Check that the graph of supernodes connected by negative edges is
bipartite (via modified BFS)
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Approximately Balanced Networks

Harary Balance Theorem only works when there are exactly no unbalanced
triangles. Can we weaken this result to allow for some imbalanced
triangles?

Theorem

Let ϵ such that 0 ≤ ϵ ≤ 1
8 , and δ := 3

√
ϵ. If at least 1− ϵ of the triangles in

a complete labeled graph G = (V ,E ) are balanced, then either:

1 ∃V ′ ⊆ V such that |V ′|
|V | ≥ 1− δ and the proportion of hostile pairs in

|V ′| is at most δ
2 We can partition V into X and Y such that:

▶ The proportion of pairs in X that are hostile is at most δ
▶ The proportion of pairs in Y that are hostile is at most δ
▶ The proportion of edges between X & Y that are friendly is at most δ
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Proof

Can we modify the Proof of the Harary Balance Theorem? What problems
could there be?

The proof from lecture relies on dividing the graph based on the friends &
enemies of a node A. Intuitively, we want to choose a node that is involved
in a small number of violations. How do were formalize this intuition?
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Proof

Let’s look at the number of violations that a node is involved in. We know
that the proportion of violating triangles out of all triangles is at most ϵ.
Let N := |V |. How many triangles do we have?

NC3 =

(
N

3

)
=

N(N − 1)(N − 2)

6

Therefore we have at most ϵN(N−1)(N−2)
6 violating triangles.
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Proof
Let viol : V → N count the number of violations that a node is involved
in. Each triangle will be counted 3 times, therefore:∑

v∈V
viol(v) ≤ 3× ϵ

N(N − 1)(N − 2)

6

Note that we immediately know that ∃A ∈ V such that:

viol(A) ≤ 3× ϵ
N(N − 1)(N − 2)

6
/|V | = ϵ

(N − 1)(N − 2)

2
≤ ϵN2/2

Let’s use this node A to partition V into the sets X (A’s friends) and Y
(A’s enemies).
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Case 1: |X | ≥ (1− δ)N

Note δ = 3
√
ϵ < 3

√
1
8 = 1

2 , therefore |X | > 1
2N.

Assuming N is even then |X | ≥ 1
2N + 1.

Therefore, the number of edges between nodes in X is(|X |
2

)
≥

( 1
2
N+1
2

)
= (12N + 1)(12N)/2 ≥ (12N)2/2 = N2/8

We know that viol(A) ≤ ϵN2/2, and it’s clear that any negative edge
between nodes in X cause a violated triangle with A.

Therefore, the proportion of edges between nodes in X causing a violation
is at most:

viol(A)(|X |
2

) ≤ ϵN2/2

N2/8
= 4ϵ = 4δ3 < δ

Therefore we satisfy the theorem. Note that the final inequality holds as
δ < 1

2 .
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Case 2: |Y | ≥ (1− δ)N

The same proof as Case 1 applies.
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Case 3: |X | < (1− δ)N and |Y | < (1− δ)N
As X and Y partition V , we know that |X |+ |Y | = |V | = N, therefore
|X | = N − |Y | > δN.

Assuming δN ∈ N then the number of edges within X is:(|X |
2

)
≥

(
δN + 1

2

)
> δ2N2/2

As we showed before, any unfriendly edge within X will cause an unstable
triangle with A, and viol(A) ≤ ϵN2/2, therefore the proportion of
unfriendly edges in X is at most:

viol(A)(|X |
2

) ≤ ϵN2/2

δ2N2/2
= δ

The same argument holds for unfriendly edges in Y . All that remains is to
show the same bound on the proportion of edges between X and Y that
are friendly.
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Case 3: |X | < (1− δ)N and |Y | < (1− δ)N cont’d

The number of edges between X and Y is |X ||Y | = |X |(N − |X |) for
δN < |X | < (1− δ)N.

As this is a concave quadratic function maximized at |X | = 0.5N and
δ < 0.5, it’s clear |X |(N − |X |) > δ(1− δ)N2 > δ(1− 0.5)N2 = δN2/2.

Therefore, using the same bound on violations as before we can see that
the proportion of edges between X and Y that are friendly is at most:

viol(A)

|X ||Y | ≤
ϵN2/2

δN2/2
= δ2 < δ

Therefore X and Y satisfy the theorem.
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Quercus Quiz
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