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Today’s agenda

In lecture we've covered Chapter 5 of the textbook looking at Structural
Balance.

Today:
@ Questions from Lecture
@ Recap of Structural Balance
@ Approximately Balanced Networks (Ch 5.5b of E&K)

@ Quercus Quiz

2/15



Questions?
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Recap: Stable Triangles

A complete (i.e. fully connected) graph is stable if all of it's triangles are
stable.
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Recap: Stable Triangles

A complete (i.e. fully connected) graph is stable if all of it's triangles are
stable.
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Recap: Harary Balance Theorem

If a labelled complete graph is balanced, then either everyone is friends, or

the nodes can be partitioned into 2 groups that mutually loath each other
and are internally purely friendly.

friends of A

enemies of A
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Recap: Testing if a graph can be completed into a
balanced graph
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Recap: Testing if a graph can be completed into a
balanced graph

© Find the positive communities (i.e. BFS on only the positive edges to
find the positive connected components)

@ Confirm that these do not contain any negative edges

© Collapse the positive communities into supernodes (and we collapse
the negative edges between these communities accordingly)

@ Check that the graph of supernodes connected by negative edges is
bipartite (via modified BFS)
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Approximately Balanced Networks
Harary Balance Theorem only works when there are exactly no unbalanced

triangles. Can we weaken this result to allow for some imbalanced
triangles?
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Approximately Balanced Networks

Harary Balance Theorem only works when there are exactly no unbalanced
triangles. Can we weaken this result to allow for some imbalanced
triangles?

Theorem

Let € such that 0 < e < é, and § := Je. If at least 1 — € of the triangles in
a complete labeled graph G = (V/, E) are balanced, then either:

Q@ 31V C V such that ||V‘| > 1— 0 and the proportion of hostile pairs in
|V'| is at most ¢
© We can partition V' into X and Y such that:

The proportion of pairs in X that are hostile is at most 0
The proportion of pairs in Y that are hostile is at most §
The proportion of edges between X & Y that are friendly is at most §

7/15



Proof

Can we modify the Proof of the Harary Balance Theorem? What problems
could there be?
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Proof

Can we modify the Proof of the Harary Balance Theorem? What problems
could there be?

The proof from lecture relies on dividing the graph based on the friends &
enemies of a node A. Intuitively, we want to choose a node that is involved
in a small number of violations. How do were formalize this intuition?
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Proof

Let's look at the number of violations that a node is involved in. We know
that the proportion of violating triangles out of all triangles is at most e.
Let N :=|V|. How many triangles do we have?
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Proof

Let's look at the number of violations that a node is involved in. We know
that the proportion of violating triangles out of all triangles is at most e.
Let N :=|V|. How many triangles do we have?

Therefore we have at most ew violating triangles.
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Proof

Let viol : V — N count the number of violations that a node is involved
in. Each triangle will be counted 3 times, therefore:

. NN —1)(N - 2)
‘;/wol(v) <3 xe 5
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Proof

Let viol : V — N count the number of violations that a node is involved
in. Each triangle will be counted 3 times, therefore:

. NN —1)(N - 2)
‘;/wol(v) <3 xe 5

Note that we immediately know that 4A € V such that:

viol(A) < 3 x eN(N_ DV - 2)/|\/| — G(N - (N -

5 2) < eN?/2

Let’s use this node A to partition V into the sets X (A’s friends) and Y
(A's enemies).
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Case 1: |[X| > (1—-0)N
Note § = /e < {/g =1, therefore | X| > IN.
Assuming N is even then [X| > 1N + 1.
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Case 1: |[X| > (1—-0)N

Note § = Ve < {/% =1, therefore | X| > IN.
Assuming N is even then [X| > 1N + 1.

Therefore, the number of edges between nodes in X is

(5) = (%) = BN+ DEN)/2 = GN?/2 = N2/

11/15



Case 1: |[X| > (1—-0)N

Note § = Ve < {/% =1, therefore | X| > IN.
Assuming N is even then [X| > 1N + 1.

Therefore, the number of edges between nodes in X is

(5) = (%) = BN+ DEN)/2 = GN?/2 = N2/

We know that viol(A) < eN?/2, and it's clear that any negative edge
between nodes in X cause a violated triangle with A.
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Case 1: [X| > (1—-9)N

Note § = Ve < {/% =1, therefore | X| > IN.
Assuming N is even then |X| > ZN + 1.

Therefore, the number of edges between nodes in X is

(%) = (%) = AN+ D(EN)/2 = (AN /2 = N2/

We know that viol(A) < eN?/2, and it's clear that any negative edge
between nodes in X cause a violated triangle with A.

Therefore, the proportion of edges between nodes in X causing a violation
is at most:

viol(A) < eN? /2

_ _ 3
(‘)2“) S Njg =4e=46><§

Therefore we satisfy the theorem. Note that the final inequality holds as
§< 3.
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Case 2: |Y|> (1 —-96)N

The same proof as Case 1 applies.
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Case 3: |[X| < (1—-0)N and |Y| < (1 —46)N

As X and Y partition V, we know that |X|+ |Y| = |V| = N, therefore
I X|=N—1]Y|>dN.

Assuming 6N € N then the number of edges within X is:

WERE
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Case 3: |[X| < (1—-0)N and |Y| < (1 —46)N
As X and Y partition V, we know that |X|+ |Y| = |V| = N, therefore
|IX|=N—]Y|>dN.

Assuming 6N € N then the number of edges within X is:
X IN +1
() > (V1) - e

As we showed before, any unfriendly edge within X will cause an unstable

triangle with A, and viol(A) < eN?/2, therefore the proportion of
unfriendly edges in X is at most:

viol(A eN?/2
(|x(|)) = 52/v2//2 =0
2
The same argument holds for unfriendly edges in Y. All that remains is to
show the same bound on the proportion of edges between X and Y that
are friendly.
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Case 3: |X| < (1—-0)N and |Y| < (1—6)N cont’d

The number of edges between X and Y is | X||Y]| = |X|(N — |X]) for
ON < |X| < (1—-0)N.

As this is a concave quadratic function maximized at | X| = 0.5N and
§ < 0.5, it's clear | X|(N — |X|) > §(1 — §)N? > §(1 — 0.5)N? = §N?/2.
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Case 3: |X| < (1—-0)N and |Y| < (1—6)N cont’d

The number of edges between X and Y is |X||Y| = |X|(N — |X]) for
ON < |X| < (1—=9)N.

As this is a concave quadratic function maximized at | X| = 0.5N and
§ < 0.5, it's clear | X|(N — |X|) > §(1 — §)N? > §(1 — 0.5)N? = §N?/2.

Therefore, using the same bound on violations as before we can see that
the proportion of edges between X and Y that are friendly is at most:

viol(A) < eN?/2

2
x|y < ong2 =0 <0

Therefore X and Y satisfy the theorem.
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Quercus Quiz
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