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This week’s agenda

Last week we finished discussing Chapter 4 of the text. We discussed the
probability of triadic closure (resp. focal closure, membership closure) as a
function of the number of common friends (resp. the number of common
interests (foci), the number of friends in a given focus) and the Schelling’s
segregation model. We’ve covered all the material needed for the first
assignment.
This week:

Chapter 5 and structural balance

Strong structural balance and weak structural balance.
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This week’s agenda

Structural Balance
▶ Balanced triangles
▶ Strongly balanced networks
▶ Strong balance theorem
▶ Weak structural balance
▶ The signed Laplacian matrix
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Critical Review

Rubric & two examples are on
the course website

Groups of 3-4

You will be critically reviewing a
paper

The paper must be recent
(i.e. published on or after
January 1st 2019)

The paper must be either
published in a
journal/conference, or have
been accepted to be
published in a
journal/conference

Why no arXiv preprints?
Comic from xkcd
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Critical Review

Email me your group & choice of paper by March 5th (use the email
on Quercus/syllabus/course website)

▶ If I don’t approve your paper, then you’re getting a zero
▶ I’ll confirm receipt once I see it, and I’ll try to write back to approve or

reject your choice within 3 days

The report is due via MarkUs by March 25th

We’ll now review the rubric

You have an upper limit of 5 pages, but you’re free to make it long or
short as you feel is appropriate (the exemplars are around 1000 words,
thereabouts or a bit longer is definitely reasonable)
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Structural balance: positive and negative links

Now for a new topic, who we like and dislike. As previously mentioned so
far we have restricted attention to social networks where all edges reflect
some positive degree of friendship, collaboration, communication, etc.

Chapter 5 now explores some interesting aspects of networks where edges
can be both positive and negative. This is, of course, quite natural in that
people (countries) often have enemies as well as friends (allies). We also
have companies that can be aligned in some way or can be competitors.

Following the development stemming from the distinction between strong
and weak ties, we would like to see what we can infer about a network
given that some edges are positive and some are negative. More
specifically, what can be assumed from certain types of triadic closures?
How can local properties (e.g., how edges of a triangle are labeled) can
have global implications (i.e., provable results about network structure)?
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Some initial assumptions

We start with a strong assumption:
Assume the network is a complete (undirected) graph. That is, as
individuals we either like or dislike someone. Furthermore, this is not
nuanced in the sense that there is no differentiation as to the extent of
attraction/repulsion).

[Image modified from Star Wars: Episode III - Revenge of the Sith. Directed by George Lucas, Lucasfilm, 2005]
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Some initial assumptions

Later in the chapter, the text considers the issue of networks that are not
complete networks. The text also reflects a little on the nature of directed
networks (when discussing the weak balance property) but essentially this
chapter is about undirected networks.

Note: For non-complete networks, we can assume the graph is connected
since otherwise we can consider each connected component separately.
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Types of instability

Thinking of networks as people with likes and dislikes of other people
(rather than some other possible interpretations), we can consider the 4
different types of labelled triangles in the graph, depending on the number
of positive (+) and negative (-) edges. That is, any completely labelled
triangle can have 0,1,2, or 3 positive edges and due to the symmetry of a
triangle that is all the information we have about any particular triangle.

Using a central idea from social psychology, two of the four triangle
labellings are considered relatively stable (called balanced) and the other
two relatively unstable (not balanced).
Here follows the four types of triangles as depicted in Figure 5.1 of the
text:
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A natural stable configuration

A

B C

+ +

+

In this case, A,B ,C are mutual friends and that naturally indicates that
they would likely remain so.
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The second stable configuration

A

B C

+ -

-

This may be a slightly less obvious stable situation where A and B are
friends and if anything that friendship is reinforced by a mutual dislike for
C .
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A natural unstable configuration

A

B C

+ +

-

In this case, A has two friends B and C who unfortunately do not like each
other. The claim here is that the stress of this situation will encourage A

to either try to have B and C become friends or else for A to take sides
with B or C and thus eliminate a friendship so as to move toward the
previous stable configuration.
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A somewhat less obvious unstable configuration

A

B C

- -

-

Why is this called unstable? The instability here is sometimes explained by
the phenomena that “the enemy of my enemy becomes my friend” as we
sometimes see in international relations. This is less convincing than the
other type of instability and we will return to this situation soon.
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The strong structural balance property

The underlying behavioural theory is that these unstable triangles cause
stress and hence the claim that such unbalanced triangles are not common.

In order to try to understand if this theory tells us anything about the
global structure of the network, we can make the following strong balance
assumption (much as we made the strong triadic closure assumption).

Strong structural balance property: Every triangle in the network is
balanced.

Recall that we started off with the assumption that the network is a
complete graph with every edge labelled so we are assuming a property for
all n choose 3 triangles. Of course, we cannot expect this property to hold
but just as the strong triadic closure property was an extreme assumption,
we can hope that this strong assumption will also suggest or predict useful
information about the network.
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Balance as a form of equilibrium

One way to further justify the distinction between balanced and
unbalanced triangles is to view balance (resp non balance) as a desirable
(undesirable) situation.

In a balanced (resp. unbalanced) configuration, any single change in a
relation (i.e. edge label) will lead to an unbalanced (resp. balanced)
configuration.

That is, balance is a form equilibrium.

Later in the term, we will discuss stable matchings. (How many have seen
this in CSC304 or elsewhere?) We view stable matchings as an
equilibrium. In stable matchings (as in balanced triangles), it is a pair of
“agents” that we consider in a single change. We discuss stable matchings
later in this course.
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Consequence of the strong structural balance
property: A provable characterization of networks
that satisfy the property
One simple (idealistic) way to construct a network satisfying the property
is to assume that that there are no enemies; everyone is a friend. Is this
the only way?

Suppose that we had two communities of active political people (e.g. X =
the “base” for candidate or political party R , and Y and the “base” for
candidate or political party B . In the world of highly politicized politics, it
isn’t too far of a stretch to think that everyone within a community are
friends and everyone dislikes people in the other community. This kind of
network would also clearly satisfy the property.

So far then, we have two possibilities, the network is a clique with all
positive edges, or the network is composed of two positive cliques with a
complete bipartite graph of negative edges between the communities.
Are there other possible ways to have the strong balance property?
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Harary’s Balance Theorem

Are there other possible ways to have the strong balance property?

Perhaps surprisingly, in a complete network, these two types of networks
(no enemies and two opposing communities) are the only possibilities.

This is a theorem and the proof is not difficult as we will show using the
figure 5.4 in the text.

Proof
We assume that the network satisfies the strong balance property. If there
are no enemies, then we are done. So suppose there is at least one
negative edge and for definiteness lets say that edge is adjacent to node A.
Let X be all the friends of A and Y all of its enemies. So every node is in
either X or Y since every edge is labelled.
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Proof of balance theorem continued

Consider the three possible triangles as in the figure. It is easy to see that
in order to maintain structural balance, B and C must be friends as must
D and E , whereas B and D (also C and E ) must be enemies.

A

B

C E

D

+

+

-

-

?

?

?

friends of A enemies of A

18 / 51



Strong structural balance in networks that are not
complete

We will depart from the order of topics in chapter 5, and consider the issue
of networks that are not complete. Is there a meaningful sense in which a
(non-complete) network is or is not structurally balanced?

One possibility is to ask whether or not there is a way to complete the
graph so that it becomes structurally balanced. Of course, if there is
already an unbalanced triangle then there is no way to complete the graph
into one satisfying the strong balance property.

Aside: Of course, this immediately raises the question as to how many
existing edge labels need to be changed so that a complete network is
balanced (or an incomplete network can be made to be balanced)? And
will networks tend to dynamically evolve into balanced networks. But for
now we will assume that all existing labels are permanent.
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How to label missing edges?
Note that when considering the strong triadic property, if all existing
triangles satisfied the strong triadic property, then there was always a
trivial way to assign labels to unlabelled edges by simply making each
unlabelled edge a weak link.

Question: If all existing triangles are balanced, is there always a way to
complete a network so as to form a strongly balanced network?
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How to label missing edges?

It is easy to see that this is not always possible. For example, consider a
network which is a 4 node cycle having 3 positive edges and one negative
edge. Any way to label a “diagonal edge” will lead to an imbalance.

We are then led to the following
Question: Can we determine when there is an efficient algorithm to
complete the network so as to satisfy the strong balance property? And if
there is a completion, how efficiently can one be found?
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Determining when and how to complete a network
to satisfy the strong balance property
Clearly, if the existing edges are all positive links then there is a trivial way
to complete the graph by simply making all missing edges to be positive
edges.

So the interesting case is when there are existing negative edges. In this
case, the characterization of strongly balanced networks tells us that when
the graph is completed, the graph structure must be that of two opposing
communities, with only positive edges within each community and only
negative edges for links between the communities.

The previous example of a 4 node cycle is a clue as to how to proceed.
That example can be stated as follows: if a network contains a 4 node
cycle with one negative edge then it cannot be completed (to be strongly
balanced) . More generally, if a network contains a cycle (of any length)
with one negative edge, it cannot be completed. And even more generally,
if a network contains a cycle having an odd number of negative edges it
cannot be completed. Why?
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Consequence of an odd cycle

1

25

4 3

-

-

+

-

+

X

X

Y
Y

X

label as

X or Y

Figure 5.10: If a signed graph contains a cycle with an odd number of negative edges, then it
is not balanced. Indeed, if we pick one of the nodes and try to place it in X, then following
the set of friend/enemy relations around the cycle will produce a conflict by the time we get
to the starting node.
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The algorithm for determining if a partially labelled
network can be completed to the strongly balanced
Lets call a cycle with an odd number of edges an odd cycle. The desired
algorithm will either find an odd cycle (certifying that the network cannot
be completed) or it will return a bipartiton of the nodes satisfying the
Balance Theorem. This then also determines if a complete network is
balanced.

We proceed as follows:

Suppose G = (V ,E ) is the given connected network and let
G+ = (V ,E+) where E+ = {e ∈ E such that e is a positive link.}

We consider the connected components C = C1, . . . ,Cr of G+.

Note that all edges between any Ci ,Cj must be labelled as negative
edges (or else they would have been merged into a larger connected
component in G+).

For every Ci , we must check if there is a negative edge between two
nodes in Ci . If so then there is a cycle in Ci with one negative edge,
and hence Ci (and thus G ) cannot be completed.
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The algorithm for determining if a partially labelled
network can be completed to the strongly balanced

Connected positive component Ci Negative edge produces an odd cycle
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Completing the algorithm

Otherwise, consider the graph G− = {C,E−} whose nodes are the
components of G+ and whose edges are negative edges in G .

Since G is connected, G− is connected.

if G− has a cycle with an odd number of negative edges, then by
following positive edges in each Ci we have such a cycle in G . We
then again have a witness that G cannot be completed.

Otherwise we are showing that G− is bipartite and this gives us the
bipartition we need for the balance theorem.

A graph has an odd cycle iff the graph is not bipartite. Breadth first
search can be used to determine whether or not a graph is bipartite
(equivalently has a 2-colouring). Hence this development is efficient.

We now return to the assumption that our networks are undirected
complete graphs.
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Friends-enemies vs trust-distrust
There is always an ambiguity in social networks as to how to interpret
links. Is a friend as we might traditionally mean a “good friend”, or is it a
friend as in Facebook friend which is often an acquaintance? And as we
have seen we also use social network links to mean collaboration or
communication rather than friendship.

This is both the power of network modeling (i.e., that results can carry
over to different settings) and also the danger of misinterpreting results for
one type of setting to apply to another.

In chapter 5, we see another instance of the ambiguity where instead of
the friend-enemy relation, one can interpret an edge label as a
trust-distrust relation.

To what extent should we expect intuition for friendship to carry over to
trust? As discussed in the text, one distinction between these settings is
that trust may be more of a directed edge concept relative to friendship.
(Of course, even for friendship the relation may not be symmetric which is
why maybe we should reserve the term of “friend” for a good friend.)
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The ambiguity in the trust-distrust relation

Ignoring the fact that trust might not be at all symmetric, there is an
additional ambiguity in the trust-distrust terminology. Namely, the text
considers two possible interpretations that are meaningful even in the
context of a simple setting as in the online product rating site Epinions.

1 If trust is aligned with agreement on polarized political issues, then
the four cases of balanced and unbalanced triangles still seem to
apply. In particular, if A distrusts B and B distrusts C , it is
reasonable to assume that A trusts C and hence a triangle having
three negative labels is not stable.

2 However, if A distrusts B is aligned with A believing that he/she is
more knowledgeable than B about a certain product, then a triangle
having three negative labels is stable.

This suggests that it is reasonable to study a weaker form of structural
balance.
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A weaker form of structural balance
It is then interesting to consider a weaker form of structural balance where
the only unstable triangles are those having two positive labels.

Definition (Weak Structural Balance)

A network satisfies the weak structural balance property if it does not
contain any triangles with exactly two positive edges.

Question: Is there a characterization of which (complete) networks satisfy
the weak structural balance property?

Since every network that satisfies the strong balance property must also
satisfy the weak balance property, the characterization of strongly
balanced networks must be a special case of weakly balanced networks.
Indeed we have the following characterization:

Theorem: A network G = (V ,E ) satisfies the weak structural balance
property iff V = V1 ∪ V2 . . .Vr such that all edges within any Vi are
positive edges and all edges between Vi and Vj (i ̸= j) are negative edges.
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Proof of the characterization of weak structural
balance

Clearly if the network G = (V ,E ) has the network structure specified in
the Theorem, then the network satisfies the weak balance property. The
converse (that the weak balance property implies the network structure) is
a reasonably simple inductive argument (say with respect to the number of
nodes).

Consider any node A and let X be all the friends of A.
The following two claims are easy to verify:

Any B ,C ∈ X are friends

If B ∈ X and D /∈ X , then B and D are enemies.

Upon removing the nodes in X , the induced network G ′ of the remaining
nodes still must satisfy the weak structure balance property and hence by
the induction hypothesis must have the stated network structure.
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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Example: Partitioning a weakly balanced graph
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The evolution of European alliances preceding WWI

GB

Fr

Ru

AH

Ge

It

(a) Three Emperors’ League 1872–

81

GB

Fr

Ru

AH

Ge

It

(b) Triple Alliance 1882

GB

Fr

Ru

AH

Ge

It

(c) German-Russian Lapse 1890

GB

Fr

Ru

AH

Ge

It

(d) French-Russian Alliance 1891–

94

GB

Fr

Ru

AH

Ge

It

(e) Entente Cordiale 1904

GB

Fr

Ru

AH

Ge

It

(f) British Russian Alliance 1907

Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respec-
tively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note
how the network slides into a balanced labeling — and into World War I. This figure and
example are from Antal, Krapivsky, and Redner [20].
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Efficiently finding balanced subgraphs
Real social networks are unlikely to be strongly balanced

What if we want to find the largest balanced subnetwork?

Question: Why might we want to do this?
▶ Identify opposing blocs in geopolitics
▶ Identify polarized communities on social media

Definition (MBS)

Given a signed graph G = (V ,E ,w), MBS is the problem of finding the
maximum balanced subgraph. i.e. finding the largest V ′ ⊆ V such that
G ′ = (V ′, {(v1, v2) ∈ E |v1, v2 ∈ V ′},w) is strongly balanced.

Problem is NP-Hard, so we have to approximate

We’re going to do this, by studying the properties of the Laplacian
matrix
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Signed Laplacian Matrix of a Signed Graph
For our signed graph G = (V ,E ,w) with n nodes, the Signed
Laplacian is:

L(G ) := D − A

D is the degree matrix:

Dij =

{

|{a : (vi , a) ∈ E}|, i = j

0, else

A is the signed adjacency matrix:

Aij =







1, (vi , vj) ∈ E & w((vi , vj)) = 1
−1, (vi , vj) ∈ E & w((vi , vj)) = −1
0, else

Aside: The Laplacian matrix of general edge weighted undirected
graphs is L = D − A where D and A are the weighted degree and
adjacency matrices respectively. This is a similar but fundamentally
different definition than the Signed Laplacian
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Signed Laplacian Matrix of a Signed Graph
Consider the following graph G :

D =





2
1

1



 A =





0 1 −1
1 0 0
−1 0 0



 L(G ) = D−A =





2 −1 1
−1 1 0
1 0 1





44 / 51



Properties of the Signed Laplacian

L = D − A, therefore L is a real symmetric matrix

By Spectral Theorem we therefore have an orthonormal eigenbasis
b1,b2, . . .bn with corresponding eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

▶ Lbi = λibi
▶ ⟨bi ,bi ⟩ = 1
▶ ⟨bi ,bj⟩ = 0 for i ̸= j

It can also be shown that the signed Laplacian is also positive
semi-definite

▶ ∀x : xTLx ≥ 0
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Properties of the Signed Laplacian

From positive semi-definiteness, we know that λ1 ≥ 0 (Exercise: Prove
this!). But why do we care about the eigenvalues of the signed Laplacian?

Theorem

For a signed graph G , let λ1 be the smallest eigenvalue of the

corresponding signed Laplacian, L(G ). Then G is strongly balanced iff

λ1 = 0.

Furthermore, it can be shown that signed graphs that are “close” to
being balanced have “small” values of λ1
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Finding large balanced subgraphs

We can show that for the Signed Laplacian L(G ) with smallest
eigenvalue λ1, then λ1 = 0 iff G is strongly balanced

There is a result indicating that graphs which are “close” to being
balanced have “small’ values of λ1

Question: Assuming that we can compute λ1 easily, how could we
use this to find a large balanced subgraph?

Greedy approach: Repeatedly remove the nodes that cause the
greatest decrease in λ1 until the graph becomes strongly balanced

This is the approach used by Ordozgoiti et al. (see
https://arxiv.org/abs/2002.00775)
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Finding large balanced subgraphs

Let λ1(M) denote the smallest eigenvalue of the matrix M

As calculating λ1 is too expensive to be done |V | times per removed
node. Ordozgoiti et al. instead calculate λ1(L(G )), and approximate
λ1 when choosing which node to remove from G

Through a simple (but a bit long) derivation, the authors show that:

λ1(L
(i)) ≤

λ1(L) + (b1)
2
i (d(i)− 2λ1(L(G )))−

∑

j∈N (i)(b1)
2
j

1− (b1)2i

In the above: L(i) is the signed Laplacian after the removal of the
node vi , b1 is the first eigenvector of L(G ), N (i) are the neighbours
of the node vi , and d(i) is the degree of the node vi .

The derivation is straightforwards but a bit long, the details can be
found in the paper
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Finding large balanced subgraphs

The author’s algorithm uses this bound to greedily remove nodes until
a balanced subgraph is found

After a balanced subgraph is found, we check if the removed nodes
can be re-introduced
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Finding large balanced subgraphs

Algorithm 1 TIMBAL Algorithm

Input: signed graph G

R ← ∅

while G is not balanced do
Compute L(G ), λ1(L(G )), and corresponding b1

k ← argmini
λ1(L)+(b1)

2
i
(d(i)−2λ1(L(G)))−

∑
j∈N (i)(b1)

2
j

1−(b1)2i
G ← largest connected component in G \ {vk}
R ← R ∪ {vk}

end while
for v ∈ R do
if G ∪ {v} is balanced then

G ← G ∪ {v}
end if

end for
return G
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Finding large balanced subgraphs

[Table from Ordozgoiti]

Under various optimizations, the algorithm is able to process the
Epinions dataset (containing 1 millions nodes and 12 million edges) in
1.5 hours
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