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Mon. Jan 17th: Announcements & Corrections

Survey results are in, a big thank you to the 101 respondents :)
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Survey: Office Hours
Office hours will be Mondays, 4-5 PM (i.e., Monday after lecture)

▶ If you notify me a day in advance, I will also make myself available
on Wednesdays at 10PM, or Fridays at 10AM

▶ If you can’t attend any of these times, or if it is an urgent matter,
please do email me and I will make myself available by appointment
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Survey: Lecture Delivery
Lecture delivery will continue via Zoom
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Survey: Tutorial Delivery

As the course is in-person, there will always be an in-person tutorial
section. Based on interest, I will also be creating an online tutorial
section

▶ Most likely, only the online section will be recorded
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Survey: Using the lecture hall?
As there is interest, once the University resumes in-person teaching,
please feel free to meet with fellow classmates in the lecture hall

▶ Monday: LM 161
▶ Wednesday: MS 2172

Unfortunately, I believe that the room AV is password protected by
the instructor UTORID+Password

▶ I will get in touch with IT to see what can be done
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Survey: Comments

Thanks for asking!

Recordings are helpful for studying

In-person would be more engaging

An inverted classroom is helpful

Online saves times/money on commute

CSC369 had a really good hybrid delivery method
▶ I assume this was with Karen Reid last term? I will get in touch –

although I won’t be making changes this term, I am interested for next
year. Even if we’re back in person, I’d like to preserve some of the
benefits such as recordings, remote access, and the chat

Online accessible option is desirable due to risk-group

Switching delivery methods mid-course disrupts routines
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Survey: Comments about Concerns

“Online school is really depressing, I crave any opportunities to
connect with other students, TAs, profs, literally anything sentient
(...)”

“If the midterm/exam are take-home, I hope they are not made overly
difficult to compensate for the fact that they are open-book.”

“I do feel regretful that a discussion on responsible computer science
isn’t included in this term, malicious social media use is a keystone
topic in today’s dialectic.”
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Survey: Light-hearted Comments

“Great moustache”

“Is there a mustache
conditioner?”

“I would like to hear your
rendition of the Modern Major
General song”
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Mon. Jan 17th: Announcements & Corrections

Tentative tutorial split:
▶ Online A-Z: Section #1
▶ In-Person A-P: Section #2; (when in-person resumes, HA 401)
▶ In-Person Q-Z: Section #3; (when in-person resumes, HA 410)

Until in-person teaching resumes, Sections 2 and 3 are online
▶ Zoom links will be on Quercus

HA 401 and HA 410 each have a capacity of 50 people, and are in the
same building
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This week’s agenda

The Strength of Weak Ties
▶ Triadic closure

⋆ Definition
⋆ Clustering coefficient
⋆ Driving forces

▶ Granovetter’s Thesis
⋆ Strong & Weak Ties
⋆ Bridges
⋆ Strong Triadic Closure and it’s implications

▶ Social Capital
▶ Determining Strong Edges

⋆ Sintos & Tsaparas algorithm
⋆ Rozenshtein algorithm
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Chapter 3: Strong and Weak Ties

There are two themes that run throughout this chapter.

1 Strong vs. weak ties and “the strength of weak ties” is the specific
defining theme of the chapter. The chapter also starts a discussion of
how networks evolve.

2 The larger theme is in some sense “the scientific method”.
▶ Formalize concepts, construct models of behaviour and relationships,

and test hypotheses.
▶ Models are not meant to be the same as reality but to abstract the

important aspects of a system so that it can be studied and analysed.
▶ See the discussion of the strong triadic closure property in section 3.2

of text (pages 53 and 56 in my online copy).

Informally

strong ties: stronger links, corresponding to friends

weak ties: weaker links, corresponding to acquaintances
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Triadic closure (undirected graphs)
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(a) Before B-C edge forms.
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(b) After B-C edge forms.

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbour A. [E&K Figure 3.1]

Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.

How do we measure the extent to which triadic closure is occurring?

How can we know why a new friendship tie is formed? (Friendship
ties can range from “just knowing someone” to “a true friendship” .)
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Measuring the extent of triadic closure

The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

∣

∣

{

(B ,C ) ∈ E : (B ,A) ∈ E and (C ,A) ∈ E
}∣

∣

∣

∣

{

{B ,C} : (B ,A) ∈ E and (C ,A) ∈ E
}∣

∣

The numerator is the number of all edges (B ,C ) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

The denominator is the total number of all unordered pairs {B ,C}
such that B and C are adjacent to A.
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Example of clustering coefficient
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(a) Before new edges form.
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(b) After new edges form.

The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C ,D) among the six pairs of friends:
{B ,C}, {B ,D}, {B ,E}, {C ,D}, {C ,E}, and {D,E})

The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B ,C ), (C ,D), and (D,E )).
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Driving forces behind Triadic Closure

Social psychology suggests: Increased opportunity, incentive, and
trust

It also predicts that having friends (especially good friends with
strong ties) who are not themselves friends causes latent stress
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Interpreting triadic closure

Does a low clustering coefficient suggest anything?

Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
contemplating suicide (compared to those with high clustering
coefficient). Note:The value of the clustering coefficient is also
referred to as the intransitivity coefficient.

They report that “ Social network effects for girls overwhelmed other
variables in the model and appeared to play an unusually significant
role in adolescent female suicidality. These variables did not have a
significant impact on the odds of suicidal ideation among boys. ”

How can we understand these findings?

17 / 61



Bearman and Moody study continued

Triadic closure (or lack thereof) can provide some plausible
explanation.
Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
As far as I can tell, no conclusions are being made about why there is
such a difference in gender results.

The study by Bearman and Moody is quite careful in terms of identifying
many possible factors relating to suicidal thoughts. Clearly there are many
factors involved but the fact that network structure is identified as such an
important factor is striking.
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Bearman and Moody factors relating to suicidal
thoughts

 

TABLE 2—Logistic Regression of Suicidal Ideation on Individual, School, Family, and

Network Characteristics

Suicide Ideation Among Adolescents, OR (95% CI)

Males Females

Demographic

Age 1.031 (0.951, 1.118) 0.885 (0.830, 0.944)

Race/ethnicity

Black 0.864 (0.628, 1.187) 0.873 (0.685, 1.112)

Other 1.079 (0.852, 1.367) 1.190 (0.986, 1.436)

Socioeconomic status 1.017 (0.979, 1.057) 1.000 (0.970, 1.031)

School and community

Junior high school 1.281 (0.938, 1.751) 0.808 (0.637, 1.023)

Relative density 1.061 (0.375, 2.999) 0.333 (0.142, 0.783)

Plays team sport 0.831 (0.685, 1.008) 1.164 (0.999, 1.357)

Attachment to school 0.994 (0.891, 1.109) 0.952 (0.871, 1.041)

Religion

Church attendance 0.822 (0.683, 0.989) 1.008 (0.863, 1.176)

Family and household

Parental distance 1.573 (1.361, 1.818) 1.743 (1.567, 1.939)

Social closure 0.904 (0.805, 1.015) 1.012 (0.921, 1.111)

Stepfamily 1.101 (0.870, 1.394) 0.998 (0.821, 1.212)

Single-parent household 1.212 (0.959, 1.533) 1.119 (0.930, 1.345)

Gun in household 1.329 (1.083, 1.630) 1.542 (1.288, 1.848)

Family member attempted suicide 2.136 (1.476, 3.092) 1.476 (1.120, 1.943)

Network

Isolation 0.665 (0.307, 1.445) 2.010 (1.073, 3.765)

Intransitivity index 0.747 (0.358, 1.558) 2.198 (1.221, 3.956)

Friend attempted suicide 2.725 (2.187, 3.395) 2.374 (2.019, 2.791)

Trouble with people 0.999 (0.912, 1.095) 1.027 (0.953, 1.106)

Personal characteristics

Depression 1.632 (1.510, 1.765) 1.445 (1.348, 1.549)

Self-esteem 0.811 (0.711, 0.925) 0.808 (0.730, 0.894)

Drunkenness frequency 1.112 (1.041, 1.187) 1.114 (1.039, 1.194)

Grade point average 1.061 (0.948, 1.188) 0.993 (0.905, 1.089)

Sexually experienced 1.201 (0.972, 1.484) 0.993 (0.823, 1.198)

Homosexual attraction 1.385 (1.015, 1.891) 1.544 (1.155, 2.063)

Forced sexual relations 1.873 (1.435, 2.445)

No. of fights 1.017 (0.924, 1.120) 1.142 (1.046, 1.246)

Body mass index 1.004 (0.983, 1.026) 1.027 (1.010, 1.044)

Response profile (n = 1/n = 0) 632/5867 1114/5852

F statistic 17.08 (P < .0001) 16.28 (P < .0001)

Note. OR = odds ratio; CI = confidence interval. Logistic regressions; standard errors corrected for sample clustering and

stratification on the basis of region, ethnic mix, and school type and size.
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Granovetter’s thesis: the strength of weak ties
In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?
Upon a little reflection, this intuitively makes sense.

The idea is that weak ties link together “tightly knit communities”,
each containing a large number of strong ties.

Can we say anything more quantitative about such phenomena?

To gain some understanding of this phenomena, we need some
additional concepts relating to structural properties of a graph.

Recall

strong ties: stronger links, corresponding to friends

weak ties: weaker links, corresponding to acquaintances
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Bridges and local bridges
One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

We expect that large social networks will have a “giant component”
and few bridges.

A local bridge is an edge (A,B) whose removal would cause A and B

to have graph distance (called the span of this edge) greater than
two.

▶ Note: Span can be used to define dispersion measures (see the
Backstrom and Kleinberg article regarding Facebook relations).
Specifically, we can use the span between mutual friends of A and B

when the nodes A and B are removed from the graph.

A local bridges (A,B) plays a role similar to bridges providing access
for A and B to parts of the network that would otherwise be (in a
useful sense) inaccessible.
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Local bridge (A,B)

BA

ED

C

F H

GJ K

Figure: The edge (A,B) is a local bridge of span 4, since the removal of this
edge would increase the distance between A and B to 4. [E&K Figure 3.4]

22 / 61



Strong triadic closure property: connecting tie
strength and local bridges

Strong triadic closure property

Whenever (A,B) and (A,C ) are strong ties, then there will be a tie
(possibly only a weak tie) between B and C .

Such a strong property is not likely true in a large social network
(that is, holding for every node A)

However, it is an abstraction that may lend insight.

Theorem

Assuming the strong triadic closure property, for a node involved in at
least two strong ties, any local bridge it is part of must be a weak tie.

Informally, local bridges must be weak ties since otherwise strong triadic
closure would produce shorter paths between the end points.
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Triadic closure and local bridges

Let A by any node involved in at least two strong edges and a local
bridge. Let (A,B) be a local bridge.
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Triadic closure and local bridges

Let’s assume for contradiction that (A,B) is strong
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Triadic closure and local bridges

Let’s assume for contradiction that (A,B) is strong
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Triadic closure and local bridges

Let’s assume for contradiction that (A,B) is strong
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Triadic closure and local bridges

Let’s assume for contradiction that (A,B) is strong
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Strong triadic closure property continued
Again we emphasize (as the text states) that “Clearly the strong
triadic closure property is too extreme to expect to hold across all
nodes ... But it is a useful step as an abstraction to reality, ...”

Sintos and Tsaparas give evidence that assuming the strong triadic
closure (STC) property can help in determining whether a link is a
strong or weak tie.
www.cs.uoi.gr/~tsap/publications/frp0625-sintos.pdf

We will discuss this paper later in the lecture.

Later we’ll discuss Rozenshtein et al [2019]. They assume the
existence of known communities, and then their goal is to label all
edges so as minimize the number of open triangles violating the STC
property subject to all communities being connected using only strong
edges.

▶ This work is inspired by the Sintos and Tsaparas [2014] results for
inferring the strength of ties, and an earlier [2013] paper by Angluin et
al for minimizing the number of edges needed to maintain
“communities”
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Embeddedness of an edge

Just as there are many specific ways to define the dispersion of an edge,
there are different ways to define the embeddedness of an edge.

The general idea is that embeddedness of an edge (u, v) should capture
how much the social circles of u and v “overlap”. The next slide will use a
particular definition for embeddedness.

Why might dispersion be a better discriminator of a romantic relationship
(especially for marriage) than embeddedness?
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Large scale experiment relating tie strength and
bridges

Onnela et al. [2007] study of who-talks-to-whom network maintained
by a cell phone provider. Large network of cell users where an edge
exists if there existed calls in both directions in 18 weeks.
First observation: a giant component with 84% of nodes.
Need to quantify the tie strength and the closeness to being a local
bridge.
Tie strength is measured in terms of the total number of minutes
spent on phone calls between the two end of an edge.
Closeness to being a local bridge is measured by the neighbourhood
overlap of an edge (A,B) defined as the ratio

number of nodes adjacent to both A and B

number of nodes adjacent to at least one of A or B (excluding A & B)

Question: What does a neighbourhood overlap of zero mean? Local
bridge!
Question: What relationship would we expect between tie-strength &
neighbourhood overlap?
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Onnela et al. experiment

Figure: A plot of the neighbourhood overlap of edges as a function of their
percentile in the sorted order of all edges by tie strength. [E&K Fig 3.7]

The figure shows the relation between tie strength and overlap.

Quantitative evidence supporting the theorem: as tie strength
decreases, the overlap decreases; that is, weak ties are becoming
“almost local bridges” having overlap almost equal to 0.
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Onnela et al. study continued

To support the hypothesis that weak ties tend to link together more
tightly knit communities, Onnela et al. perform two simulations:

1 Removing edges in decreasing order of tie strength, the giant
component shrank gradually.

2 Removing edges in increasing order of tie strength, the giant
component shrank more rapidly and at some point then started
fragmenting into several components.
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Word of caution in text regarding such studies

Easley and Kleinberg (end of Section 3.3):

Given the size and complexity of the (who calls whom) network,
we cannot simply look at the structure. . . Indirect measures must
generally be used and, because one knows relatively little about the
meaning or significance of any particular node or edge, it remains
an ongoing research challenge to draw richer and more detailed
conclusions. . .
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Strong vs. weak ties in large online social networks
(Facebook and Twitter)

The meaning of “friend” as in Facebook is not the same as one might
have traditionally interpreted the word “friend”.

Online social networks give us the ability to qualify the strength of
ties in a useful way.

For an observation period of one month, Marlow et al. (2009)
consider Facebook networks defined by 4 criteria (increasing order of
strength): all friends, maintained (passive) relations of following a
user, one-way communication, and reciprocal communication.

1 These networks thin out when links represent stronger ties.
2 As the number of total friends increases, the number of reciprocal

communication links levels out at slightly more than 10.
3 How many Facebook friends did you have for which you had a

reciprocal communication in the last month?
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Different Types of Friendships: The neighbourhood
network of a sample Facebook individual

All Friends

One-way Communication Mutual Communication

Maintained Relationships
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A limit to the number of strong ties

Figure: The number of links corresponding to maintained relationships, one-way
communication, and reciprocal communication as a function of the total
neighbourhood size for users on Facebook. [Figure 3.9, textbook]
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Twitter:Limited Strong Ties vs Followers

Figure: The total number of a user’s strong ties (defined by multiple directed
messages) as a function of the number of followees he or she has on Twitter.
[Figure 3.10, textbook]
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Information spread in a passive network

The maintained or passive relation network (as in the Facebook
network on slide 24) is said to occupy a middle ground between

1 strong tie network (in which individuals actively communicate), and
2 very weak tie networks (all “friends”) with many old (and inactive)

relations.

“Moving to an environment where everyone is passively engaged with
each other, some event, such as a new baby or engagement can
propagate very quickly through this highly connect neighbourhood.”

We can add that an event might be a political demonstration.

36 / 61



Social capital (as discussed in section 3.5 of EK
text)
Social capital is a term in increasingly widespread use, but it is a famously
difficult one to define.

The term “social capital” is designed to suggest its role as part of an array
of different forms of capital (e.g. economic, cultural, physical etc...) all of
which serve as tangible or intangible resources that can be mobilized to
accomplish tasks.
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Social capital (as discussed in section 3.5 of EK
text)

A source of terminological variation is based on whether social capital is a
property that is purely intrinsic to a group — based only on the social
interactions among the group’s members — or whether it is also based on
the interactions of the group with the outside world.

A person can have more or less social capital depending on his or her
position in the underlying social structure or network.
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“Tightly knit communities” connected by weak ties

The intuitive concept of tightly knit communities occurs several times
in Chapter 3 but is deliberately left undefined.

In a small network we can sometimes visualize the tightly knit
communities but one cannot expect to do this is a large network.
That is, we need algorithms and this is the topic of the advanced
material in Section 3.6.

Recalling the relation to weak ties, the text calls attention to how
nodes at the end of one (or especially more) local bridges can play a
pivotal role in a social network.

These “gatekeeper nodes” between communities stand in contrast to
nodes which sit at the center of a tightly knit community.
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Central nodes vs. gatekeepers

B

F

A

E

D

C

Figure: The contrast between densely-knit groups and boundary-spanning links is
reflected in the different positions of central node A and gatekeeper node B in
the underlying social network. [Fig 3.11, textbook]
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Social capital of nodes A and B

The edges adjacent to node A all have high embeddedness. Visually
one sees node A as a central node in a tightly-knit cluster. As such,
the social capital that A enjoys is its “bonding capital” in that the
actions of A can (for example) induce norms of behaviour because of
the trust in A.

In contrast, node B is a bridge to other parts of the network. As
such, its social capital is in the form of “brokerage” or “bridging
capital” as B can play the role of a “gatekeeper” (of information and
ideas) between different parts of the network. Furthermore, being
such a gatekeeper can lead to creativity stemming from the synthesis
of ideas.

Some nodes can have both bonding capital and bridging capital.
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Florentine marriages: Bridging capital of the Medici
The Medici are connected to more families, but not by much.
More importantly: Four of the six edges adjacent to the Medici are
bridges or local bridges and the Medici lie on the shortest paths
between most pairs of families.

Figure: see [Jackson, Ch 1]
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A Balanced Min Cut in Graph: Bonding capital of
nodes 1 and 34

Note that node 34 also seems to have bridging capital.

Wayne Zachary’s Ph.D. work (1970-72): observed social ties and
rivalries in a university karate club.

During his observation, conflicts intensified and group split.

Could the club boundaries be predicted from the network structure?

Split could almost be explained by minimum cut in social network.
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The Sintos and Tsaparas Study

In their study of the strong triadic closure (STC) property, Sintos and
Tsaparas study 5 small networks. They give evidence as to how the STC
assumption can help determine weak vs strong ties, and how weak ties act
as bridges to different communities.

More specifically, for a social network where the edges are not labelled
they define the following two computational problems: Label the graph
edges (by strong and weak) so as to satisfy the strong triadic closure
property and

1 Either maximize the number of strong edges, or equivalently

2 minimize the number of weak edges
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The computational problem in identifying strong vs
weak ties

For computational reasons (i.e., assuming P ̸= NP and showing NP

hardness by reducing the max clique problem to the above
maximization problem), it is not possible to efficiently optimize and
hence they settle for approximations.

Note that even for the small Karate Club network having only m = 78
edges, a brute force search would require trying 278 solutions. Of
course, there may be better methods for any specific network.

The reduction preserves the approximation ratio, so it is also NP-hard
to approximate the maximization problem with a factor of n1−ϵ.
However, the minimization problem can be reduced (preserving
approximations) to the vertex cover problem which can be
approximated within a factor of 2.

Their computational results are validated against the 5 networks
where the strength of ties is known from the given data. Notably
their worst case approximation algorithm (via the reduction) lead to
reasonably good results achieved for the 5 real data networks.
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The vertex cover algorithms and the 5 data sets
While there are uncovered edges, the (vertex) greedy algorithm selects a
vertex for the vertex cover with maximum current degree. It has worst
case O(log n) approximation ratio. The maximal matching algorithm is a
2-approximation online algorithm that finds an uncovered edge and takes
both endpoints of that edge.

Table 1: Datasets Statistics.

Dataset Nodes Edges Weights
Community
structure

Actors 1,986 103,121 Yes No
Authors 3,418 9,908 Yes No

Les Miserables 77 254 Yes No
Karate Club 34 78 No Yes

Amazon Books 105 441 No Yes

Figure: Weights (respectively, community structure) indicates when explicit edge
weights (resp. a community structure) are known.
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Tie strength results in detecting strong and weak
ties

Table 2: Number of strong and weak edges for Greedy

and MaximalMatching algorithms.

Greedy MaximalMatching

Strong Weak Strong Weak
Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

Figure: The number of labelled links.

Although the Greedy algorithm has an inferior (worst case) approximation
ratio, here the greedy algorithm has better performance than Maximal
Matching. (Recall, the goal is to maximize the number of strong ties, or
equivalently minimize the number of weak ties.)
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Results for detecting strong and weak ties

Table 3: Mean count weight for strong and weak

edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching

S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

Figure: The average link weight.

Question: Is there a problem with average edge strength? Easy to skew
average if weights have high variance
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Tie strength results in detecting strong and weak
ties normalized by amount of activity

Table 4: Mean Jaccard similarity for strong and

weak edges for Greedy and MaximalMatching algo-

rithms.
Greedy MaximalMatching

S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Figure: Using a normalized edge weight based on activity

w((a, b)) =
works(a) ∩ works(b)

works(a) ∪ works(b)
∈ [0, 1]
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Results for strong and weak ties with respect to
known communities

Table 5: Precision and Recall for strong and weak

edges for Greedy and MaximalMatching algorithms.

Greedy

PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching

PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Figure: Precision and recall with respect to the known communities.
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The meaning of the precision-recall table

The precision and recall for the weak edges are defined as follows:

PW =
|W∩Einter|

|W | and RW =
|W∩Einter|

|Einter |

PS =
|S∩Eintra|

|S | and RS =
|S∩Eintra|

|Eintra|

Ideally, we want RW = 1 indicating that all edges between
communities are weak; and we want PS = 1 indicating that strong
edges are all within a community.

For the Karate Club data set, all the strong links are within one of the
two known communities and hence all links between the communities
are all weak links.

For the Amazon Books data set, edges are co-purchases, and there
are three communities corresponding to liberal, neutral, conservative
viewpoints. Of the strong edges predicted, only 22 cross communities:

▶ 20 cross-community strong edges have one node labelled as neutral.
▶ the rest are between books dealing with the same issue.
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Strong and weak ties in the karate club network

Figure 1: Karate Club graph. Blue light edges rep-

resent the weak edges, while red thick edges repre-

sent the strong edges.

Note that all the strong links are within one of the two known
communities and hence all links between the communities are weak
links.
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The Rozenshtein et al study

As stated last week. Rozenshtein et al approach assumes a known set of
communities (in addition to the unlabelled network) and hence it is not
directly comparable to Sintos-Tsaparas study. Informally, they want to
provide a good labelling while preserving communities – i.e. communities
being strongly connected using strong ties.

They provide experimental results for 10 different data sets (where they
can naturally define communities). Their goal is to provide a compromise
between preventing STC violations (as in the goal of Sintos and Tsaparas)
and only preserving strong connectivity within communities (which is the
goal of Angluin et al.).

53 / 61



The Karate club figure in Rozenshtein et al

coming denser.

very high

acquaintances to

social ties is

interaction of users

Furthermore,

cial science,

the strength

motivated by a

triadic closure

chology [13].

the network

tight com-

to be con-

in di�erent

implies a

Figure 1: Strong edges in the Karate-club dataset in-

ferred by the algorithmof Sintos andTsaparas [27] (left)

and our method (right) using two teams. The colors of

the edges and the vertices depict the two teams.

Note: the vertices are coloured according to the two known communities.
Sintos and Tsaparas do not know about the communities. We expect that
the Rozenshtein et al greedy algorithm would “usually” have more strong
edges (to insure the community connectivity constraint).
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Rozenshtein et al objective and a greedy algorithm
The objective in Rozenshtein et al is to minimize the number of STC
violations subject to the constraint that every user-specified community
remains connected using only strong ties. This is an NP-hard problem.
This is equivalent to maximizing the number of open triangles in the graph
that satisfy STC under the community constraint. The maximization
problem can be approximated to within a multiplicative factor of k + 1 by
their greedy algorithm below, where k is the number of communities.
Their greedy algorithm works as follows:

************************************
Start with all edges labelled as strong.
Find an edge e ∈ E that is causing the most STC violations (that is,
whose removal would minimize the number of STC violations). If there are
no violations then we’re done. Otherwise, if that edge’s removal would
violate the community constraint then the edge stays strong and we never
again consider this edge.
Otherwise the edge becomes weak and E := E \ {e}
**********************************
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Rozenshtein et al objective and a greedy algorithm
More rigorous pseudo-code can be found below, where
vio : P(E )→ N is the number of open triangles in the original graph
that violate the STC if the input edges are labelled as strong

The code returns S , the edges that should be made strong

Algorithm 1 Greedy Rozenshtein Algorithm

S ← E ;A← E ;
while A ̸= ∅ and vio(S) ̸= 0 do
e = argmine∈A vio(S \ {e});
if e is part of an open triangle that violates STC and S \ {e} satisfies
strong connectivity constraints then
S ← S \ {e}

end if
A← A \ {e}

end while
return S
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Comparative statistics in Rozenshtein et al paper
Table 2: Characteristics of edges selected as strong byGreedy and the two baselines. b: number of violated triangles in

the solution divided by the number of open triangles (all possible violations); s: number of strong edges in the solution

divided by the number of all edges; c: average number of connected components per community. A corresponds to

Angluin; S corresponds to Sintos.

Greedy Angluin Sintos

Dataset b s c bA/b sA/s cA bS/b sS/s cS

DBLP 0.07 0.47 1 2.77 0.77 1 0.0 1.08 3.53

Youtube 0.01 0.16 1 1.21 0.98 1 0.0 0.49 3.30

KDD 0.08 0.35 1 1.09 0.63 1 0.0 0.81 1.93

ICDM 0.07 0.38 1 1.06 0.57 1 0.0 0.83 1.84

FB-circles 0.002 0.15 1 61.05 0.20 1 0.0 1.05 8.76

FB-features 0.003 0.12 1 0.36 0.22 1 0.0 1.35 2.41

lastFM-artists 0.02 0.15 1 1.11 0.78 1 0.0 0.67 2.58

lastFM-tags 0.008 0.12 1 1.17 0.68 1 0.0 0.83 2.98

DB-bookmarks 0.01 0.35 1 1.01 0.35 1 0.0 1.04 1.61

DB-tags 0.10 0.45 1 1.02 0.66 1 0.0 0.80 1.74

Greedy is the algorithm from the previous slide (minimize STC
violations while strongly connecting communities).

Angluin seeks to make all communities internally strongly connected
using the minimal number of strong edges (STC is ignored).

Sintos is the algorithm discussed last week (maximize strong edges
while satisfying STC).
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Understanding the table of results in Rozenshtein

By design, Angluin et al. and Rozenshtein et al. ensure that the given
communities remain connected by strong edges and hence c = cA = 1
whereas cS can be large (namely 8.76 for the FB-circles date set),
indicating how disconnected the communities become wrt. strong
edges.

By design, Sintos and Tsaparas insures no STC violations and hence
bS = 0 whereas b is not 0 but is perhaps surprisingly small.

The column that does seem surprising is the reporting of sS
s
which is

the ratio
strong edges in Sinitos

strong edges in Rozenstein
. As we said when looking at the

Karate figure, we would expect that “usually” the Rozenshtein et al
algorithm would produce more strong edges. But note that for some
data sets, the ratio is great than 1. How can this happen?
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A comment about computational complexity and
efficient algorithms

The studies by Sintos and Tsaparas, and that of Rozenshtein et al
demonstrate some not uncommon phenomena:

1 While two optimization problem may be equivalent from the
viewpoint of optimality, they can be dramatically different from the
viewpoint of approximation.

2 Often a simple greedy algorithm will provide a good approximation,
sometime theoretically but more often “in practice”.
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Comments on tightly knit communities

As we mentioned and as the EK text emphasizes (see section 3.6) , it is an
interesting question as to how to define and efficiently find tightly knit
communities.

Section 3.6 argues why cannot rely on the existence of a local bridge to
help identify a community. Rather, a notion “betweeness” of an edge is
defined which is based on the amount of traffic or flow through that edge.
(Recall the Florentine marriages and centrality.) Edges of high betweeness
are used to partition the graph into smaller components and eventually
communities. They describe the Givan-Newman algorithm for identifying
edges of high betweeness.

Other approaches to finding communities include finding dense subgraphs,
subgraphs connected via strong edges (when the strength of edges is
known to some extent), and subgraphs where vertices have high
similarities (where a similarity function is known).
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Recap

The Strength of Weak Ties
▶ Triadic closure

⋆ Definition
⋆ Clustering coefficient
⋆ Driving forces

▶ Granovetter’s Thesis
⋆ Strong & Weak Ties
⋆ Bridges
⋆ Strong Triadic Closure and it’s implications

▶ Social Capital
▶ Determining Strong Edges

⋆ Sintos & Tsaparas algorithm
⋆ Rozenshtein algorithm
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