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Wed. Mar 9th: Announcements & Corrections

The midterm is now over! Yay :)

The anonymous mid-term course evaluation is now available on
Quercus! I’m giving you all 7 minutes to fill it out in class, otherwise
the survey closes at end of day Saturday

▶ Please do fill it out, your feedback is invaluable to me, both to tweak
things in the last month of the course, and to further improve the
course for next year!

The critical review project is due March 25th (about 1.5 weeks)

Assignment 2 is due March 28th (2 weeks)
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This week’s agenda

Mitochondrial Eve
▶ Problem setup (Ch 21.7)
▶ Wright-Fisher single-parent ancestry model (Ch 21.7)
▶ Estimation of time to convergence (Ch 21.8B)

Bargaining in a Network Exchange Model
▶ Power in the network exchange social experiment (Ch 12.1-12.3)
▶ Stable outcomes (Ch 12.7)
▶ The Ultimatum Game (Ch 12.6)
▶ Balanced outcomes (Ch 12.5, 12.8)
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Genetic inheritance and networks

Chapter 21 turns its attention to the issue of genetic inheritance, viewed
as a random process taking place on a (directed acyclic) network of
organisms (species, parts of a genome, etc).
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Chapter 21 turns its attention to the issue of genetic inheritance, viewed
as a random process taking place on a (directed acyclic) network of
organisms (species, parts of a genome, etc).

Motivating example: in 1987, Cann, Stoneking and Wilson published
a very striking and to many a very controversial paper

▶ Asserted that if one traces their maternal lineage back in time,
everyone’s lineage traces back to a single woman

▶ This woman is called Mitochondrial Eve
▶ She lived sometime between 100,000 and 200,000 years ago
▶ Probably living in Africa

We’ll ignores the issue of the location of Mitochondrial Eve and
focuses on the basis (i.e. a model based on various assumptions) for
this bold assertion of a common ancestry

Note: I suggest reading the text as to the caveats about the model (see
Ch 21.7)
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Modeling the Mitochondrial Eve assertion

To understand the assertion, we have to make some simplifying
biological and mathematical assumptions (see section 21.8 B)
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Modeling the Mitochondrial Eve assertion

To understand the assertion, we have to make some simplifying
biological and mathematical assumptions (see section 21.8 B)

▶ The biological assumptions are beyond the scope of the course
⋆ We will accept them as they are generally accepted to not

quantitatively change the conclusions

▶ The key biological idea is that “mitochondrial DNA (is to a first
approximation) passed on to children entirely from their mothers”

▶ The mathematical assumptions do not change any of the conclusions
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Mitochondrial Eve continued
Focussing on mitochondrial DNA, and assuming pure inheritance from
the mother, then we can consider a “single parent” ancestry model

s t u v w x y z

[Fig 21.13, E&K]
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Mitochondrial Eve continued
Focussing on mitochondrial DNA, and assuming pure inheritance from
the mother, then we can consider a “single parent” ancestry model

s t u v w x y z

[Fig 21.13, E&K]

The model lets us conclude common mitochondrial DNA ancestry
must have originated with a single female Mitochondrial Eve

The model can also estimate for the time period in which she lived

This does not say that Mitochondrial Eve was the only woman alive at
this time, but that our mitochondrial DNA traces back to one woman

Additionally, our genomic makeup does come from both parents
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The Wright-Fisher single parent ancestry model

The Wright-Fisher model not only applies to mitochondrial lineage,
but also to general asexual reproduction

Additional simplifying assumption for tractability:
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The Wright-Fisher single parent ancestry model

The Wright-Fisher model not only applies to mitochondrial lineage,
but also to general asexual reproduction

Additional simplifying assumption for tractability:
▶ assume generations are synchronized
▶ assume a fixed population of N individuals throughout the entire

period of time

Inconsistent with the fact that world population is growing

Ultimately does not change the nature of the conclusions or even the
nature of the analysis

▶ In fact, once we accept that populations are growing, it is clear that
certain individuals must be having multiple children which is also part
of the model
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Single parent ancestry model continued
Assume that generations are completely synchronized:

▶ the generation of N individuals at time t give rise to the next
generation of N individuals at time t + 1.
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Single parent ancestry model continued
Assume that generations are completely synchronized:

▶ the generation of N individuals at time t give rise to the next
generation of N individuals at time t + 1.

Each individual at time t+1 has its “single parent” chosen uniformly
at random from the previous generation

▶ A significant assumption given geography, ethnicity, etc...
▶ To reconcile this (with respect to the assertion of a single

Mitochondrial Eve), we need to understand the extent to which
individual communities can be isolated

⋆ Ultimately, the timing for when common ancestry would have taken

place is not impacted by this assumption

current generation

new generation

each offspring comes from 

a single parent chosen 

uniformly at random

Figure: [Fig 21.11, E&K]
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More generations of the model

s t u v w x y z
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Ancestry depicted.

s t u v w x y z

Figure: [Fig 21.13, E&K]
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The analysis for estimating the time that the model
coalesces on Mitochondrial Eve

Section 21.8B provides a mathematical analysis for estimating the time
when a common ancestor (in the single parent model) will be reached.
Along the way, some simplifying mathematical assumptions are made but
these assumptions are easily defended and are not of the same nature as
biological assumptions.

Suppose we have a total population of N and at some point of time t + 1
that we are down to k candidates (lineages) for a common ancestor. We
want to consider the probability that two lineages will collide so that there
be (at most) k − 1 candidates.
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The analysis

Instead of moving time forwards until the current generation shares an
ancestor, we will move time backwards until a common ancestor emerges.
We will start by considering k nodes, and seeing how probable it is that
they do not have the same parent parent.
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The analysis

Instead of moving time forwards until the current generation shares an
ancestor, we will move time backwards until a common ancestor emerges.
We will start by considering k nodes, and seeing how probable it is that
they do not have the same parent parent.

Case: k = 2. Say the active lineage is individuals {a, b}. Then the
probability that b does not share a’s parent is 1− 1

N
.

Case: k > 2. Lets consider the probability that none of the k nodes share
a parent. There will be no collapsing if the second node doesn’t collide
with the first, the third doesn’t collide with the first two, etc, so this
means that the probability of no collapsing is :

(1−
1

N
)(1−

2

N
) · · · (1−

k − 1

N
)
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The analysis continued

The previous product

(1−
1

N
)(1−

2

N
) · · · (1−

k − 1

N
)

is at most:

1−

(

1 + 2 + · · ·+ k − 1

N

)

+
g(k)

N2

where g(k) depends only on k and not on N.
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The analysis continued

The previous product

(1−
1

N
)(1−

2

N
) · · · (1−

k − 1

N
)

is at most:

1−

(

1 + 2 + · · ·+ k − 1

N

)

+
g(k)

N2

where g(k) depends only on k and not on N.

For any fixed k , the latter term is relatively negligible and we can say that
the probability that none of the k share a parent is 1− k(k−1)

2N .
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The analysis continued

Fact: If we have a binary random variable Yk (i.e., a heads coin flip) that
is true with probability p, then the expected number of independent
samples until Yk is true (denoted E [Xk ]) is exactly 1/p

if the probability is at least p, then the expected time can only be
shorter.

Look familiar?
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Fact: If we have a binary random variable Yk (i.e., a heads coin flip) that
is true with probability p, then the expected number of independent
samples until Yk is true (denoted E [Xk ]) is exactly 1/p

if the probability is at least p, then the expected time can only be
shorter.

Look familiar? Remember the geometric distribution, and the decentralized
search tutorial! We’re going to do (basically) the same proof ;)

Therefore, letting Xk denote the time to collapse from k to less than k

lineages, then E [Xk ] is approximated by 2N
k(k−1)

Note: Initially when k is large, the decrease is expected every generation
going back. But when k is a small constant, then the expected number of
generations to show a decrease is proportional to N.
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Depiction of the lineages colliding

From 6 to 5:
waiting for an event

of prob. 15/N

From 5 to 4: 
waiting for an event

of prob. 10/N

From 4 to 3: 
waiting for an event

of prob. 6/N

From 3 to 2: 
waiting for an event 

of prob. 3/N

From 2 to 1: 
waiting for an event 

of prob. 1/N

Figure: Assuming no three lineages collide simultaneously. [Fig 21.1(a), E&K]
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Finishing the analysis

Let X k = Xk + Xk−1 + · · ·+ X2 be the number of generation to reach a
common ancestor starting from a lineage of k individuals.
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Finishing the analysis

Let X k = Xk + Xk−1 + · · ·+ X2 be the number of generation to reach a
common ancestor starting from a lineage of k individuals.

Note: To simplify the analysis we are assuming that k lineages will always
collapse into k − 1 lineages. This assumption is wrong, but provides a
good estimate.

Since E[Xj ] =
2N

j(j−1) and 1
j(j−1) =

1
j−1 − 1

j
, by linearity of expectations we

have:
E[X k ] =

∑k
j=1

2N
j(j−1)

= 2N

(

[

1
1 − 1

2

]

+

[

1
2 − 1

3

]

+ · · ·+

[

1
k−1 − 1

k

]

)

= 2N
(

1− 1
k

)

Note: Further more detailed analysis is consistent with the basic analysis
that was presented in the text.
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Recap

Mitochondrial Eve
▶ Problem setup (Ch 21.7)
▶ Wright-Fisher single-parent ancestry model (Ch 21.7)
▶ Estimation of time to convergence (Ch 21.8B)
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Chapter 12: Bargaining and Power in Networks

We begin a subtle and fascinating topic, namely how individuals in a
network come to agreement on an outcome. This chapter is part of a
larger subject called cooperative game theory and to some extent touches
on behavioural game theory. As previously discussed, we have a course
(CSC304) which covers game theory and in our course we will only present
what is necessary regarding game theory. What we need is rather minimal
(e.g., as when we were discussing network coordination in chapter 19).

But perhaps here is a good place to mention some basic game theory
concepts to keep in mind (and again we have at least implicitly seen these
concepts in our discussions to date). The following is a very brief set of
informal comments.
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A few more comments on game theory concepts

Individuals (agents) have strategies or actions and employ a (pure or
mixed/randomized) strategy so as to act in self interest, always trying
to maximize benefit or minimize cost.
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Individuals (agents) have strategies or actions and employ a (pure or
mixed/randomized) strategy so as to act in self interest, always trying
to maximize benefit or minimize cost.

Note: There is a lot of subtlety in benefits and costs
▶ often cannot be explained simply in monetary terms (or one must

assign monetary values to subjective values)

Agents are acting in self interest implies that their actions are
decentralized

▶ Mechanism design concerns how a central agent can introduce
incentives to influence agents

▶ An example of a result in Mechanism Design is Gibbard-Satterthwaite
theorem, which states that any voting rule is either

⋆ Dictatorial
⋆ Only selects the winner from a set of two candidates
⋆ Is susceptible to tactical voting
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Game theory concepts: Equilibrium

Definition (Equilibrium)

A state in which no agent has an incentive to change their strategy
assuming no one else is changing
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Game theory concepts: Equilibrium

Definition (Equilibrium)

A state in which no agent has an incentive to change their strategy
assuming no one else is changing

Appeared in Schelling segregation model in Chapter 4, structural
balance in Chapter 5, and will be important in Chapter 12 and the
study of relative power

▶ we will see them again in stable matchings and traffic equilibria
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Power as a relative relation between people

Power between individuals can come from two distinct sources:
▶ The pivotal position of the person in the network.

⋆ In the first week we mentioned the network of Florentine marriages and

how the centrality of the Medici family was said to have conferred

power to the Medicis
⋆ In the second week of the course we discussed the bridging capital and

the bonding capital of a node

▶ The relative reputation, status, official position, exceptional attributes
(intelligence, finances), etc.
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Power: Bridging and bonding capital of nodes
The early chapters of the text provided some insights about the
importance of centrality and bonding capital and bridging capital with
regard to the flow of information and trust.

B

F

A

E

D

C
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Power arising from asymmetries in pairwise relations

In contrast, Chapter 12 considers power in terms of the relationship
between two individuals that results in different division of value
bargaining network

▶ The imbalance in assigned values corresponds to the imbalance in their
relative power

Note: In this context, centrality can sometimes be misleading.

The above is an informal definition of power, but the study of power
in the context of imbalance is a well studied concept with precise
definitions

We will isolate power due to position in a network, and ignore the
status aspects

For motivation we begin with some illustrative network examples, we
will follow this with a social experiment that will provide insight, and
will in turn lead to precise definitions
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Some illustrative examples
Assume ✩1 is placed on each edge of the network

▶ each node trying to reach an agreement (within a fixed amount of
time) on how to split the dollar

▶ each node can only deal with at most one other adjacent node
⋆ In graph theoretic terms, this pairing of nodes is a matching : a subset

of edges such that no node is adjacent to more than one edge in the

matching
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Some illustrative examples
Assume ✩1 is placed on each edge of the network

▶ each node trying to reach an agreement (within a fixed amount of
time) on how to split the dollar

▶ each node can only deal with at most one other adjacent node
⋆ In graph theoretic terms, this pairing of nodes is a matching : a subset

of edges such that no node is adjacent to more than one edge in the

matching

Who will have relative power (i.e., receive more than half a dollar in
the following networks)?

A B

(a) 2-Node Path

Does either party have an advantage?
No; a 1

2 − 1
2 split is a reasonable predicted split that is observed in the

experiments.
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A three node path

A B C

(b) 3-Node Path

What matching might occur and who each holds power?

✩

✩

✩

25 / 45



A three node path

A B C

(b) 3-Node Path

What matching might occur and who each holds power?

Clearly since we need a matching, either A and C will have to be left out.
Intuitively then, node B holds much more power than A or C . The basic
theory and experiments support this intuition.
What fraction of the ✩ would you expect B to obtain in negotiating
between A and C?

✩

✩
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A three node path

A B C

(b) 3-Node Path

What matching might occur and who each holds power?

Clearly since we need a matching, either A and C will have to be left out.
Intuitively then, node B holds much more power than A or C . The basic
theory and experiments support this intuition.
What fraction of the ✩ would you expect B to obtain in negotiating
between A and C?

There is a difference between the basic theory and the social experiments.
In the experiments , B gets a (56)

th fraction of the ✩. The basic theory
would predict that B gets all almost all of the ✩. Why the difference?
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A four node path

A B C D

(c) 4-Node Path

What matching might occur and how might the money be split? Would B

get more or less in this four node network than in the previous three node
path?

✩
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A four node path

A B C D

(c) 4-Node Path

What matching might occur and how might the money be split? Would B

get more or less in this four node network than in the previous three node
path?

Here the experiments show that B gets a fraction of between 7
12

th
and 2

3

rd

of the ✩, less than what we obtained in the three node network. Why?
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The stem graph in figure 12.3

A B

C

D

What matching might occur and how might the money be split? Would B

get more or less in this stem network than in the previous three and four
node paths?
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The stem graph in figure 12.3

A B

C

D

What matching might occur and how might the money be split? Would B

get more or less in this stem network than in the previous three and four
node paths?

Experiments show that B in the stem graph makes slightly more money
than B in the four node path (but less than in the three node path). Why?
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A five node path

A B C D E

(d) 5-Node Path

Does C have any power (i.e. fraction of money obtained) compared to
other nodes?
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A five node path
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(d) 5-Node Path

Does C have any power (i.e. fraction of money obtained) compared to
other nodes?

Intuitively B and D have most of the power in the five node path network.
The text states that in experiments, C has slightly more power than A or
E .
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A five node path

A B C D E

(d) 5-Node Path

Does C have any power (i.e. fraction of money obtained) compared to
other nodes?

Intuitively B and D have most of the power in the five node path network.
The text states that in experiments, C has slightly more power than A or
E .

Note that C is the most central node in terms of being on all shortest
paths. However, this has not translated into substantial batgaining power.
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Another graph to consider

The previous examples may help us reason about the following example
from the text.

A B C

D

E
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The network exchange social experiment
The following network exchange social experiment (and variants) is
repeated a number of rounds so that some form of learning is taking place.
There are many variants and the text presents one particular setting.

Individuals (not knowing each other since we want to focus on the
network aspects and not on the status, etc. of individuals) are placed
at computer terminals and can interact with certain other individuals.

In a complete information setting, one might see the entire network.
The text considers the setting where an individual only knows and
negotiates with their neighbouring nodes.

For some known duration on time for a given round, negotiations take
place for sharing say one ✩ on each edge. (We could allow larger and
different sums for each edge). Once a pair have decided how to share
the ✩, they leave the game.

There is one more important condition on the experiment; namely in
any given round, the outcome has to be a matching. This is called
the 1-exchange rule.
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How much do these experimental findings depend
on the exact setting.
We would, of course, like to have results that are robust and do not differ
that much in the exact “details”.

Results are reasonably robust with regard to how much network
information is available

Results are consistent across different countries and different cultures
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How much do these experimental findings depend
on the exact setting.
We would, of course, like to have results that are robust and do not differ
that much in the exact “details”.

Results are reasonably robust with regard to how much network
information is available

Results are consistent across different countries and different cultures

Question: What are we not robust to?

The 1-exchange rule is a definite factor impacting the results
▶ In certain networks, substantially different findings result if individuals

can negotiate two or more exchanges in a round
▶ In graph theory terms this is a b-matching; nodes can be adjacent to

up to b edges in the matching

Anonymity is important
▶ Higher status individuals tend to inflate their “options”, and those of

lower status tend to underplay their options
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Do all experiments converge in a consistent manner?
In simple networks, each round tends to come to consistent outcomes
within the specified time limits.

However, there are networks where this is not the case. Consider the
following triangle graph:

A

B C

Question: Notice anything?
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Do all experiments converge in a consistent manner?
In simple networks, each round tends to come to consistent outcomes
within the specified time limits.

However, there are networks where this is not the case. Consider the
following triangle graph:

A

B C

Question: Notice anything?
Any two of the nodes can wind up excluding the other. Hence we would
expect that the final outcome in any round will be determined by the two
nodes who get to settle just before the time deadline.
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A mathematical perspective: The Nash Bargaining
Solution

We would like to model the pure 1-exchange experiments (with
anonymous participants)

First, we would like to understand which outcomes will be stable. Without
having a stable outcome, we cannot hope for participants to converge in
any consistent way.

Conversely, we would expect that over enough rounds, participants would
learn to converge to a stable outcome. Stable outcomes are equilibria and
like most games, there can be many stable outcomes for a network
exchange process.

John Nash (the same Nash who showed that all finite games have mixed
equilibria) introduced a specific stable outcome, the Nash Bargaining

Solution.
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Outcomes

We first define an outcome for the network exchange social experiment
where every edge is worth 1✩.
An outcome in a network exchange process on a graph G = (V ,E ) is a
pair (M, v) where M ⊆ E is a matching and the value function
v : V → [0, 1] satisfies:

For every edge e = (x , y) ∈ M, vx + vy = 1.
If a node x ∈ V is not part of the matching M (i.e. does not appear
as a vertex in any edge (x , y) ∈ M), then vx = 0.
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Stable outcomes

In a stable outcome, no agent (i.e. node) x can propose to an adjacent
agent y , an offer that would improve both of their current outcomes.

✩
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Stable outcomes

In a stable outcome, no agent (i.e. node) x can propose to an adjacent
agent y , an offer that would improve both of their current outcomes.

Stable Outcomes

An outcome (M, v) for a network exchange process is stable if for every
edge e = (x ′, y ′) ∈ E \M, vx ′ + vy ′ ≥ 1.

Since we are assuming that each edge has exactly one ✩ on each edge,
clearly vx + vy = 1 for each edge (x , y) ∈ M, the matching.

Suppose vx ′ + vy ′ < 1 for an edge (x ′, y ′) /∈ M. Then the matching is
unstable as there is a surplus of s = 1− vx ′ − vy ′ that can be shared
between x ′ and y ′ and there is no reason for them not to share this surplus
and increase both their values.
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Which stable outcome?

Stable solutions are necessary but there can be many stable solutions and
some are more natural (in the sense of corresponding to real behaviour)
than others.
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Which stable outcome?

Suppose (x , y) ∈ M. What if x and y have other options other than to be
in a given matching? Suppose that x (respectively, y) has an “outside
option” of ox (resp. oy ). Then ox + oy ≤ 1 or else (x , y) could not be in a
stable matching as either x or y would be better off taking their outside
option.

The Nash bargaining solution would be to keep (x , y) in the matching and
equally divide up any surplus from the outside options. That is, if
s = 1− ox − oy , then set vx = ox +

s
2 =

ox+1−oy
2 and

vy = oy +
s
2 =

oy+1−ox
2 . And hence we get:

vx + vy = 1 with (x , y) in the matching.
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Why extreme outcomes are not real outcomes

As stated earlier in this chapter, in the three node path example, the
theory thus far would predict that B will obtain the entire ✩. But we are
told that in experiments, more typically B gets a fraction 5

6 and one other
node gets a fraction 1

6 .

This can be explained once we understand that individuals (i.e., real
people) are not driven solely by monetary payments. The “real value” to
an individual may include some notion of fairness, pride, etc. When we
consider these factors, we can see why in these experiments, extreme
solutions (which sometimes are the only theoretically stable solutions) are
not the actual outcome.

In the following ultimatum game, we can perhaps better understand why
participants tend to think beyond monetary rewards.
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Another network exchange game: the so-called
“Ultimatum Game”
We again are considering how two individuals divide a ✩. But now we have
the following experiment:

One person (say A) is given one ✩ and is told to propose a division of
it to person B .

Person B is then given the option of accepting the share offered or
rejecting the offer.

If B accepts, the game is over with the division as given by A. If B
refuses then each person gets nothing.
Aside: This is a little like the “I cut-you choose 2-person cake cutting
algorithm” which insure “fairness”.

This is a one-shot experiment between people who do not know each
other. What do we expect to happen?

✩

✩
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Another network exchange game: the so-called
“Ultimatum Game”
We again are considering how two individuals divide a ✩. But now we have
the following experiment:

One person (say A) is given one ✩ and is told to propose a division of
it to person B .

Person B is then given the option of accepting the share offered or
rejecting the offer.

If B accepts, the game is over with the division as given by A. If B
refuses then each person gets nothing.
Aside: This is a little like the “I cut-you choose 2-person cake cutting
algorithm” which insure “fairness”.

This is a one-shot experiment between people who do not know each
other. What do we expect to happen?

Now in strictly monetary terms, person B should accept any offer (even a
✩.01). But this is not what happens in experiments. In experiments, A
tends to offer B about one third of the ✩. Why?
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Not all stable outcomes are “natural”
As we stated, there can be many stable outcomes for a given network. But
some do not appear as natural as others and, in particular, stable
outcomes can be “extreme solutions” that do not represent what we
believe to be more realistic. Which of the following stable outcomes might
be more expected “in practice”?

A B C D

1/2 1/2 1/2 1/2

outside
option
0

outside
option
1/2

outside
option
1/2

outside
option
0

A B C D

1/3 2/3 2/3 1/3

outside
option
0

outside
option
1/3

outside
option
1/3

outside
option
0

A B C D

1/4 3/4 3/4 1/4

outside
option
0

outside
option
1/4

outside
option
1/4

outside
option
0
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Balanced outcomes

It turns out that the 1
3 ,

2
3 split between A and B and also between C and

D is what happens more in experiments and can be considered “more
natural” in the following way.

The equal 1
2 split amongst all parties does not reflect the relative much

better bargaining position of B and C . In contrast, the 1
4 ,

3
4 split between

A and B and also between C and D, seems to be giving B and C too
much power given what we have been saying about how humans behave
when taking say fairness, pride, etc into account.

Can we give a mathematical explanation for why the 1
3 ,

2
3 split should be a

likely outcome?

It turns out that the 1
3 ,

2
3 split is the Nash Bargaining solution which we

argued seemed like a fair way to divide up surpluses.
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What is a balanced outcome?

Balanced outcomes

An outcome (M, v) is balanced if for every edge in the matching M, the
split of money {vx} is the Nash bargaining solution for each node x , given
the (best) outside options for each node.

Fact: For every exchange network with a stable outcome, there exists a
balanced outcome.
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Balanced and unbalanced outcomes for the four
node path

A B C D

1/2 1/2 1/2 1/2

outside
option
0

outside
option
1/2

outside
option
1/2

outside
option
0

(a) Not a balanced outcome

A B C D

1/3 2/3 2/3 1/3

outside
option
0

outside
option
1/3

outside
option
1/3

outside
option
0

(b) A balanced outcome

A B C D

1/4 3/4 3/4 1/4

outside
option
0

outside
option
1/4

outside
option
1/4

outside
option
0

(c) Not a balanced outcome
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Checking that the balanced outcome is the Nash
Bargaining solution
Let’s check that the balanced outcome is indeed the Nash Bargaining
solution.

A B C D

1/3 2/3 2/3 1/3

outside
option
0

outside
option
1/3

outside
option
1/3

outside
option
0

Why is the best outside option for B (and similarly for C ) equal to 1
3?
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Checking that the balanced outcome is the Nash
Bargaining solution
Let’s check that the balanced outcome is indeed the Nash Bargaining
solution.

A B C D

1/3 2/3 2/3 1/3

outside
option
0

outside
option
1/3

outside
option
1/3

outside
option
0

Why is the best outside option for B (and similarly for C ) equal to 1
3?

B has the option of offering 2
3 (or maybe 2

3 + ϵ for some small ϵ > 0) to
entice C to leave its current match with D. Therefore, B can receive at
most 1

3 − ϵ. Of course, A has no outside option so we we can calculate
that surplus for the matched edge (A,B) is s = 1− oA − oB = 2

3 and
hence the Nash bargaining solution would be:

vA = oA + s
2 = 0 + 1

3 = 1
3

vB = oB + s
2 = 1

3 + 1
3 = 2

3
which is consistent with the balanced outcome.

Similarly, C and D follow the Nash Bargaining solution. 44 / 45



Recap

Bargaining in a Network Exchange Model
▶ Power in the network exchange social experiment (Ch 12.1-12.3)
▶ Stable outcomes (Ch 12.7)
▶ The Ultimatum Game (Ch 12.6)
▶ Balanced outcomes (Ch 12.5, 12.8)
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