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This week’s agenda

Twitter rumour cascades

Structural virality

Threshold model
▶ Complete cascades
▶ Blocking clusters
▶ A first look at selecting initial adopters
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Chapter 19: Influence spread in a social network

We begin a study of the spread/diffusion of products/influence in an
existing social network (Chapter 19). This is in contrast to the
population wide influence spread that we are passing over in Chapters
16 and 17. Chapter 18 (on power laws) also dealt with population
wide influence phenomena.
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The chapters preceding chapter 19
In Chapters 16 (information cascades), 17 (direct benefit effects), and
18 (rich get richer models) there isn’t a social network per se.

These chapters dealt with population wide effects. Although :
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by which an information network can grow. We also studied in this
chapter, an example (music downloading in the Salganik et al
experiment) where we can identify how the presence of population wide
information will influence an outcome. Like Chapter 16, we can think
of this as taking place in a social network where the i th person knows
some global information about the preceding i − 1 individuals.
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The chapters preceding chapter 19
In Chapters 16 (information cascades), 17 (direct benefit effects), and
18 (rich get richer models) there isn’t a social network per se.

These chapters dealt with population wide effects. Although :
▶ One can construe Chapter 16 as taking place in a network where the

i th individual is connected to all i − 1 previous individuals.
▶ Chapter 17 can be construed as taking place in the complete graph

network. Information about the entire population impacts decisions.
▶ In Chapter 18 we studied studied a random process (e.g., link creation)

by which an information network can grow. We also studied in this
chapter, an example (music downloading in the Salganik et al
experiment) where we can identify how the presence of population wide
information will influence an outcome. Like Chapter 16, we can think
of this as taking place in a social network where the i th person knows
some global information about the preceding i − 1 individuals.

But basically these are population wide effects absent from an existing
social network where influence spreads without any global information.

Aside: It is interesting to contrast the herding effect in chapter 16 with
the impact of influence in the Salganik et al experiment in Chapter 18.
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Social network effects

Now we wish to consider an existing social network where edges (ties)
between individuals represent some sort of friendship/relationship.

This takes us back to concepts introduced in Chapters 3 and 4.

There we saw the contrast between
▶ selection (we tend to be friends with people of similar backgrounds,

geography, interests)
▶ social influence (we join clubs, are influenced) by our friends/relations.
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Now we wish to consider an existing social network where edges (ties)
between individuals represent some sort of friendship/relationship.

This takes us back to concepts introduced in Chapters 3 and 4.

There we saw the contrast between
▶ selection (we tend to be friends with people of similar backgrounds,

geography, interests)
▶ social influence (we join clubs, are influenced) by our friends/relations.

Rather than link creation (e.g., selection), we will now study spread
(e.g., influence)

The goal (as throughout the course) is to qualitatively understand a
process or observed phenomena in a highly stylized (but hopefully still
interesting) setting.

We will (as usual) be interested in what kind of general conclusions
can be inferred from such an understanding.
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Example: Spread of news through Twitter
Consider a graph where nodes are Twitter accounts

▶ The directed edge ⟨A,B⟩ indicates that B follows A
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Example: Spread of news through Twitter

How does this transmission behave? Are there differences between
the transmission of true & false information?
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Example: Spread of news through Twitter

How does this transmission behave? Are there differences between
the transmission of true & false information?

“Falsehood will fly, as it were, on the wings of the wind, and carry its

tales to every corner of the earth; whilst truth lags behind; her steps,

though sure, are slow and solemn, and she has neither vigour nor

activity enough to pursue and overtake her enemy”
– Thomas Francklin, 1787

“A lie can run round the world before the truth has got its boots on”
– Sir Terry Pratchett, The Truth
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Example: Spread of news through Twitter

We’ll be looking at an interesting paper by Vosoughi et al. looking at
the spread of real and fake news through Twitter
(https://science.sciencemag.org/content/sci/359/6380/
1146.full.pdf)
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Example: Spread of news through Twitter

We’ll be looking at an interesting paper by Vosoughi et al. looking at
the spread of real and fake news through Twitter
(https://science.sciencemag.org/content/sci/359/6380/
1146.full.pdf)

They defined news to be true (resp. false) if it was verified (resp.
rejected) by one of six independent fact checking organizations

▶ snopes.com, politifact.com, factcheck.org, truthorfiction.com,
hoax-slayer.com, urbanlegends.about.com
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They extracted Rumour Cascades on Twitter (i.e. the subgraph of
the original poster & the retweeting nodes)
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Example: Spread of news through Twitter
They extracted Rumour Cascades on Twitter (i.e. the subgraph of
the original poster & the retweeting nodes)

▶ Looked for some tweet F , that replied to some tweet B with a
fact-checking link. The originating tweet A was identified (either B , or
the original post that B retweeted) and then cascade was extracted by
finding A and A’s retweets

▶ A combination of NLP and manual inspection was used to check that
the original tweet actually related to the fact check link

Their final dataset contained 126, 000 stories, tweeted by 3 million
people more than 4.5 million times.
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Measuring a Rumour Cascade

Question: For a given true or false rumour we can have multiple
cascades. What may we want to measure in a given cascade? How
could this be interesting or of value?
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Measuring a Rumour Cascade

Question: For a given true or false rumour we can have multiple
cascades. What may we want to measure in a given cascade? How
could this be interesting or of value?

Vosoughi et al. looked at the static measures of depth, size, maximum
breadth (the number of users at a given depth), and structural virality

[From Vosoughi et al.]
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Measuring a Rumour Cascade

Question: For a given true or false rumour we can have multiple
cascades. What may we want to measure in a given cascade? How
could this be interesting or of value?

Vosoughi et al. looked at the dynamic measures of depth over time,
users over time, breadth vs. depth, and size vs. depth

[From Vosoughi et al.]
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Wed. Mar 2nd: Announcements & Corrections

Critical review groups & paper choices need to be emailed to me by
end of day, March 5th

The take-home, open book midterm is coming up in 1.5 weeks
(March 11-13); further details Monday

▶ Covers the material up to Week 6, inclusive (i.e., web search)

We’ll be going over the A1 solutions on Friday; I’m hoping to release
the graded assignments by then, but I suspect we won’t be able to

I’ll be releasing A2 early
▶ Expect it soon after lecture; you should be able to answer all but Q6

and Q7
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Structural Virality

Structural virality is a measure meant to distinguish transmission via
broadcast (large burst or bursts) or rapid peer-to-peer spreading
(exponential growth over time)

[From The Structural Virality of Online Diffusion, Goel et al., 2014]
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Structural Virality

[From The Structural Virality of Online Diffusion, Goel et al., 2014]
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How to Measure Structural Virality?

Some desirable properties of a measurement of structural virality:
▶ For a fixed size, structural virality should increase with the average

branching factor
▶ For a fixed average branching factor, structural virality should increase

with depth
▶ All pure broadcast structures should be equally viral, regardless of their

size
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▶ For a fixed average branching factor, structural virality should increase

with depth
▶ All pure broadcast structures should be equally viral, regardless of their

size

Question: How can we try to measure structural virality? Can we
satisfy all these desiderata?

Depth satisfies the last two, but violates the first (e.g. long chains)

Average depth solves chains, but is still problematic
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Structural Virality
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Structural Virality

Some desirable properties of structural virality:
▶ For a fixed size, structural virality should increase with the average

branching factor
▶ For a fixed average branching factor, structural virality should increase

with depth
▶ All pure broadcast structures should be equally viral, regardless of their

size

Structural virality is defined as the average distance between all pairs
of nodes

virality(G ) =
1

|V |(|V | − 1)

∑

u,v∈V

d(u, v)

Equivalently, it can be viewed as the average distance to a node,
averaged over all nodes

It still has pathological cases, but it is empirically useful
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Example: Spread of news through Twitter
Looking at our static measures, we can see that false news cascades
travel deeper, reach more people, and have greater breadth and
structural virality

Looking at our dynamic measures, we can see that, on average, fake
news grows in depth and size faster than real news
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Example: Spread of news through Twitter
Looking at our static measures, we can see that false news cascades
travel deeper, reach more people, and have greater breadth and
structural virality

Looking at our dynamic measures, we can see that, on average, fake
news grows in depth and size faster than real news

All of these features were significantly different, and seem to indicate
that Truth does indeed tarry with it’s boots

Question: What could be possible causes of this?
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Fake vs. Real news spread: Structural Differences?

Differences in the underlying following-followee network around nodes
prone to spreading falsehood could explain the result

Could these nodes have higher out-degree, or in-degree?
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Fake vs. Real news spread: Structural Differences?

Differences in the underlying following-followee network around nodes
prone to spreading falsehood could explain the result

Could these nodes have higher out-degree, or in-degree?

Vosoughi et al. found that the nodes spreading false information
tended to have significantly fewer followers and followees

Furthermore, at the individual level they were significantly less active,
and on Twitter for significantly less time
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Fake vs. Real news spread: Blame the bots?

Bots in the network could be
encouraging spread

In effect, these nodes would be
selectively more contagious

The authors removed bots from
their data and recalculated

They found that bots increase
spread, however both real and
fake news were amplified equally
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Fake vs. Real news spread
The authors did an analysis of the text of real and fake news, and
found that fake news was consistently more novel under various
metrics
The authors concluded that rather than structural factors or
individual characteristics, the greater spread of misinformation comes
from individuals being more likely to transmit it
In short, a lie really can go around the world before the truth has got
it’s boots on
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The authors did an analysis of the text of real and fake news, and
found that fake news was consistently more novel under various
metrics
The authors concluded that rather than structural factors or
individual characteristics, the greater spread of misinformation comes
from individuals being more likely to transmit it
In short, a lie really can go around the world before the truth has got
it’s boots on
More recent work by Meyers et al.
(https://doi.org/10.1007/978-3-030-61841-4_10) has
attempted to exploit these structural differences in rumour cascades
to identify fake news
Furthermore, Meyers et al. found that although the individual
cascades may be smaller, true stories tend to have a higher number of
cascades, resulting in truth reaching more people overall, and
resulting in truth remaining in circulation for longer on Twitter
So indeed, at least on Twitter, it appears that the steps of truth are
sure, if slow and solemn
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Models of influence spread/diffusion

One of the most important themes of the text (and CSC303) is that
we construct models to gain insight.

▶ Our models are often (maybe always) very simplified given the
complexity of real social and economic networks.

▶ There is always a tradeoff between the adherence to reality and our
ability to analyse and gain insight.
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Models of influence spread/diffusion

One of the most important themes of the text (and CSC303) is that
we construct models to gain insight.

▶ Our models are often (maybe always) very simplified given the
complexity of real social and economic networks.

▶ There is always a tradeoff between the adherence to reality and our
ability to analyse and gain insight.

How we model diffusion in a social network will clearly depend on
what product, idea, membership, etc. we are considering.

There are many assumptions as to how products, ideas, influence are
spread in a social network and what are the set of individual
alternatives.

The main emphasis in Chapter 19 is on a very simple process of
diffusion where each person has 2 alternative decisions:

1 stay with a current “product” B
2 or switch to a (new) product A.
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A simple model of diffusion in a social network

Let’s assume that we are making decisions based on the direct benefit
of being coordinated with our friends beyond any intinsic value
associated with the decision (e.g. when the decision is the purchase
of an item).
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associated with the decision (e.g. when the decision is the purchase
of an item).

A standard example is what messenger application we might choose
to use to the extent that we are mostly influenced by our friends
rather than by general population wide usage: e.g., do you use SMS,
Skype, Zoom, Teamviewer, Jitsi Meet, Microsoft Teams, email,
Pidgin (not a pigeon), Slack, Discord, Element, NeoChat, Quercus
messages, Snapchat, Steam, Telegram (not a telegram), Instagram
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Let’s assume that we are making decisions based on the direct benefit
of being coordinated with our friends beyond any intinsic value
associated with the decision (e.g. when the decision is the purchase
of an item).

A standard example is what messenger application we might choose
to use to the extent that we are mostly influenced by our friends
rather than by general population wide usage: e.g., do you use SMS,
Skype, Zoom, Teamviewer, Jitsi Meet, Microsoft Teams, email,
Pidgin (not a pigeon), Slack, Discord, Element, NeoChat, Quercus
messages, Snapchat, Steam, Telegram (not a telegram), Instagram
Direct, WhatsApp, iMessage, Facebook Messenger, WeChat, Signal,
AOL instant messenger, Google Hangouts . . . . What influences you
most? Friends or general population information?

▶ Choosing between two weekly television shows that occur at the same
time or who to vote for are other examples.
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A simple model of diffusion in a social network

In fact, the model given in this chapter dictates that certain decisions
(i.e. to change from B to A) are irreversible.

▶ The text calls this a “progressive process” in the sense that it
progresses in only one direction. Any good examples of truly (or
essentially) irreversible decisions?
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A simple model of diffusion in a social network

In fact, the model given in this chapter dictates that certain decisions
(i.e. to change from B to A) are irreversible.

▶ The text calls this a “progressive process” in the sense that it
progresses in only one direction. Any good examples of truly (or
essentially) irreversible decisions?

▶ For example, the decision to get a tattoo.

26 / 46



A threshold model for spread

We assume that some number of individuals are enticed (at some
time t = 0) to adopt a new product A.

Outside of these “initial adopters”, we assume all other individuals in
the network are initially using a different product B (or equivalently
this is the first product in a given market).
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A threshold model for spread

We assume that some number of individuals are enticed (at some
time t = 0) to adopt a new product A.

Outside of these “initial adopters”, we assume all other individuals in
the network are initially using a different product B (or equivalently
this is the first product in a given market).

This is not really a competitive influence model as B is not really
competing. (More comments later.)

The first model we consider for diffusion is that every node v has a
threshold q (in absolute or relative terms) for how many of its
neighbors must have adopted product A before v adopts A.
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Threshold model (continued)

For simplicity the text initially assumes that every node v (i.e.
individual) in the network has the same threshold but then later
explains how to deal with individual thresholds.
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If at some time t, the threshold for a node v has been achieved, then
by time time t + 1, v will adopt product A.

If the threshold has not been reached then v decides not to adopt A
at this time.
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Threshold model (continued)

For simplicity the text initially assumes that every node v (i.e.
individual) in the network has the same threshold but then later
explains how to deal with individual thresholds.

If at some time t, the threshold for a node v has been achieved, then
by time time t + 1, v will adopt product A.

If the threshold has not been reached then v decides not to adopt A
at this time.

Note

Although it is not explicitly stated, the initial adopters
never reverse their adoption.

Given these model assumptions, adopting A is irreversible for all
nodes in the network.
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Determining a (relative) threshold
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terms.
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Determining a (relative) threshold

One way (some might say is usually the best way) to reason about a
plausible threshold for a node is to view one’s decision in economic
terms.

Specifically for every edge (v ,w) in the network suppose
▶ There is payoff a to v and w if both v and w have adopted product A.
▶ There is payoff b to v and w if both v and w have adopted product B .
▶ A zero payoff when v and w do not currently utilize the same product.

This determines a simple coordination game.

v

w

A B

A a, a 0, 0
B 0, 0 b, b

Figure: A− B coordination [Fig 19.1, E&K]
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Coordination game induces threshold

Suppose node v has not yet adopted A at time t, but a fraction p of
the d(v) neighbors of v have already adopted A, then:

▶ By switching, the payoff to v is p × d(v)× a.
▶ By staying with B , v has payoff (1− p)× d(v)× b.

Thus node v will switch to A if

p × d(v)× a ≥ (1− p)× d(v)× b

(for simplicity say v switches when payoffs are equal).

This is then equivalent to saying that v will switch whenever p is at
least b

a+b
= q which is then the relative threshold.

That is, whenever there is at least a (threshold) fraction q of the
neighbours of node v that have adopted A, then v will also adopt A.
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The process unfolds (example: a = 3 and b = 2)

[Fig 19.3, E&K]

t = 0

A node adopts A if and only if the threshold q = b

a+b
= 2/5 is

reached.

Two nodes v and w are initial adopters.
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t = 1
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The process unfolds (example: a = 3 and b = 2)

[Fig 19.3, E&K]

t = 2

A node adopts A if and only if the threshold q = b

a+b
= 2/5 is

reached.

Two nodes v and w are initial adopters.
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Complete cascades vs tightly-knit communities
(example: a = 3, b = 2, q = 2/5)

The previous example showed a complete cascade where all nodes
eventually adopt A.

In the next example, “tightly-knit communities” block the spread.

t = 0
[Fig 19.4, E&K]
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Complete cascades vs tightly-knit communities
(example: a = 3, b = 2, q = 2/5)

The previous example showed a complete cascade where all nodes
eventually adopt A.

In the next example, “tightly-knit communities” block the spread.

t = 2
[Fig 19.4, E&K]
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Complete cascades vs tightly-knit communities
(example: a = 3, b = 2, q = 2/5)

The previous example showed a complete cascade where all nodes
eventually adopt A.

In the next example, “tightly-knit communities” block the spread.

t = 3
[Fig 19.4, E&K]
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Factors determining the rate and extent of diffusion
in a social network
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Factors determining the rate and extent of diffusion
in a social network

1 The structure of the network.

2 The relative payoffs vs costs for adopting a new product.
▶ We haven’t spoken of costs yet but we usually do have a cost for

adopting a new product.
▶ We can introduce such a cost into the model by saying that v will not

adopt the new A unless

p × d(v)× a− cost ≥ (1− p)× d(v)× b

▶ We could also add intrinsic values for A and B to both sides of the
above inequality to determine the threshold for v adopting A.
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Factors determining the rate and extent of diffusion
in a social network

1 The structure of the network.

2 The relative payoffs vs costs for adopting a new product.
▶ We haven’t spoken of costs yet but we usually do have a cost for

adopting a new product.
▶ We can introduce such a cost into the model by saying that v will not

adopt the new A unless

p × d(v)× a− cost ≥ (1− p)× d(v)× b

▶ We could also add intrinsic values for A and B to both sides of the
above inequality to determine the threshold for v adopting A.

3 The choice of initial adopters.
▶ This raises an interesting computational question as to how to select

the most influential nodes (within some budgetary constraint).
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Mon. Mar 7th: Announcements & Corrections

Open-book, take-home midterm
is March 11th-March 13th

▶ Beware the daylight savings
hour change!

▶ PDF & .tex will be released
on Quercus

▶ Submit via MarkUs
⋆ CANNOT USE GRACE

TOKENS!!!

▶ Covers up to web rank (i.e.,
week 6 material), inclusive.

▶ Might want to quickly review
the main probability
distributions from your
prerequisites
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Defining a tightly-knit community

We want to show that not only do tightly-knit communities cause a
cascade to be blocked but moreover this is the only thing that can
stop a cascade.
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Defining a tightly-knit community

We want to show that not only do tightly-knit communities cause a
cascade to be blocked but moreover this is the only thing that can
stop a cascade.
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A non-empty subset S of nodes is a blocking cluster of density p if every
node v ∈ S has at least a fraction p of its edges go to nodes in S .
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Defining a tightly-knit community

We want to show that not only do tightly-knit communities cause a
cascade to be blocked but moreover this is the only thing that can
stop a cascade.

To do so, we need a more precise definition.

Definition

A non-empty subset S of nodes is a blocking cluster of density p if every
node v ∈ S has at least a fraction p of its edges go to nodes in S .

Aside

Clustering is a pervasive concept in many fields and contexts (beyond
networks).

It is an intuitive concept that can be defined in many ways.

There does not appear to be any one definition that is always (or
even usually) most preferred.
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Clusters at different levels of granularity

The given definition of a blocking cluster does not imply a unique way
of clustering the nodes.

Indeed if S and T are both clusters of density p, then the union of S
and T is a cluster of density p.

▶ Note: this is not generally true of the intersection of S and T .

This clustering definition also implies that the set of all nodes is a
cluster of density 1.
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Clusters vs complete cascades

Suppose we have a network threshold spread model with threshold q,
an initial set of A adopters I and V ′ = V − I is the set of nodes that
are not initial adopters.

Then we have the following (provable) intuitive result that
characterizes when complete cascades will or will not occur:
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Clusters vs complete cascades

Suppose we have a network threshold spread model with threshold q,
an initial set of A adopters I and V ′ = V − I is the set of nodes that
are not initial adopters.

Then we have the following (provable) intuitive result that
characterizes when complete cascades will or will not occur:

▶ If V ′ contains a cluster C of density greater than 1− q, then the initial
adopters will not cause a complete cascade. Furthermore, no node in C will
adopt A.

▶ If in a network with threshold q and an initial set I of adopters does not
cause a complete cascade, then the non initial adopters nodes V ′ = V − I

must contain a cluster of density greater than 1− q.
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When nodes have different thresholds
As remarked before the assumption that all nodes have the same
threshold is not essential.
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Consider a node v . Suppose now that for every adjacent edge (v ,w),
node v has payoff a(v) (resp. b(v)) if both v and w have adopted
product A (resp. B) and a zero payoff if v and w currently utilize
different products.
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When nodes have different thresholds
As remarked before the assumption that all nodes have the same
threshold is not essential.

Consider a node v . Suppose now that for every adjacent edge (v ,w),
node v has payoff a(v) (resp. b(v)) if both v and w have adopted
product A (resp. B) and a zero payoff if v and w currently utilize
different products.
If node v has not yet adopted A at time t, but a fraction p of the
d(v) neighbours of v have already adopted A, then:

▶ By switching, v has payoff p × d(v)× a(v).
▶ By staying with B , v has payoff (1− p)× d(v)× b(v).
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When nodes have different thresholds
As remarked before the assumption that all nodes have the same
threshold is not essential.

Consider a node v . Suppose now that for every adjacent edge (v ,w),
node v has payoff a(v) (resp. b(v)) if both v and w have adopted
product A (resp. B) and a zero payoff if v and w currently utilize
different products.
If node v has not yet adopted A at time t, but a fraction p of the
d(v) neighbours of v have already adopted A, then:

▶ By switching, v has payoff p × d(v)× a(v).
▶ By staying with B , v has payoff (1− p)× d(v)× b(v).

Thus node v will switch to A if

p × d(v)× a(v) ≥ (1− p)× d(v)× b(v).

This is then equivalent to saying that v will switch whenever

p ≥
b(v)

a(v) + b(v)
= q(v)

which is then the threshold for node v .
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Redefining blocking clusters
A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

▶ Equivalently, every v ∈ C has less than a fraction q(v) of its adjacent
nodes out of C

It follows (as in the case of homogeneous threshold nodes) that a
given set of adopters I in a network will not cause a complete cascade
iff V − I contains a blocking cluster C .

t = 0
[Fig 19.13, E&K]
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v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

▶ Equivalently, every v ∈ C has less than a fraction q(v) of its adjacent
nodes out of C

It follows (as in the case of homogeneous threshold nodes) that a
given set of adopters I in a network will not cause a complete cascade
iff V − I contains a blocking cluster C .

t = 1
[Fig 19.13, E&K]
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Redefining blocking clusters
A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

▶ Equivalently, every v ∈ C has less than a fraction q(v) of its adjacent
nodes out of C

It follows (as in the case of homogeneous threshold nodes) that a
given set of adopters I in a network will not cause a complete cascade
iff V − I contains a blocking cluster C .

t = 2
[Fig 19.13, E&K]
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Redefining blocking clusters
A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

▶ Equivalently, every v ∈ C has less than a fraction q(v) of its adjacent
nodes out of C

It follows (as in the case of homogeneous threshold nodes) that a
given set of adopters I in a network will not cause a complete cascade
iff V − I contains a blocking cluster C .

t = 3
[Fig 19.13, E&K]
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Redefining blocking clusters
A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

▶ Equivalently, every v ∈ C has less than a fraction q(v) of its adjacent
nodes out of C

It follows (as in the case of homogeneous threshold nodes) that a
given set of adopters I in a network will not cause a complete cascade
iff V − I contains a blocking cluster C .

t = 4
[Fig 19.13, E&K]
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Further considerations: the “bilingual option”
In the advanced material (Section 19.7C), the possibility of a third
option is considered.

Here the model allows an individual to maintain both technologies
(languages, ideologies, cultural practices) but at a cost c .

Every individual now can choose to be unilingual (adopting just A or
just B) or to be bilingual adopting both (denoted AB).

The coordination benefit (for each edge) is represented in Figure
19.18. The cost is subtracted from the total benefit over all edges

v

w

A B AB

A a, a 0, 0 a, a

B 0, 0 b, b b, b

AB a, a b, b (a, b)+, (a, b)+

Figure: A Coordination Game with a bilingual option. Here the notation (a, b)+

denotes the larger of a and b. [Fig 19.18, E&K]
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Choosing influential adopters

Suppose we wish to spread a new technology and to do so we have
money to influence some “small” set of initial adopters (e.g. by giving
away the product or even paying people to adopt it).
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Choosing influential adopters

Suppose we wish to spread a new technology and to do so we have
money to influence some “small” set of initial adopters (e.g. by giving
away the product or even paying people to adopt it).

Even in this simple model of (non-competitive) influence spread, and
even if we have complete knowledge of the social network, it is not at
all clear how to chose an initial set of adopters so as to achieve the
largest spread.

Furthermore the spread process could be much more sophisticated.
▶ For example, adoption by a node might be a more random process (say

adopting with some probability relative to the nodes threshold) and
maybe the influence of neighbors first increases and then decreases
over time.
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Choosing influential adopters continued

Suppose we have funds/ability to influence k nodes to become initial
adopters.

▶ We can try all possible subsets of the entire n = |V | nodes and for
each such subset simulate the spread process.

▶ But clearly as k gets larger, this “brute force” becomes prohibitive for
large (and not even massive) networks.

It turns out that the problem of the optimum set of initial adopters in
many settings is an NP-hard problem.
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Can we determine a “good” set of initial adopters?

For even simple models of information spread similar to those being
discussed here, it can be computationally difficult (NP-Hard) to
obtain an approximation within a factor nc for any c < 1.
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Instead we will identify properties of a spread process that will allow a
good approximation: a good set of initial adopters that will do
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Can we determine a “good” set of initial adopters?

For even simple models of information spread similar to those being
discussed here, it can be computationally difficult (NP-Hard) to
obtain an approximation within a factor nc for any c < 1.

Instead we will identify properties of a spread process that will allow a
good approximation: a good set of initial adopters that will do
“almost as well” as the best set.

Note: What follows is a discussion as to how to choose a set of initial
adopters by a relatively efficient approximation algorithm when making
some assumptions on the spread process. However, we would need much
more efficient methods for massive networks.
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Influence maximization models; monotone
submodular set functions

Some spread models have the following nice properties.

For any initial set of adopters, S , let f (S) be size (or more generally a real
value benefit since some nodes may be more valuable) of the final set of
adopters. Furthermore, let f satisfy:

1 Monotonicity: f (S) ≤ f (T ) if S is a subset of T

2 Submodularity: f (S + v)− f (S) ≥ f (T + v)− f (T ) if S is a subset of T

We also usually assume that f (∅) = 0. Such normalized, monotone,
submodular functions arise in many applications.

The simple threshold examples considered thus far are monotone
processes but are not submodular in general. Are these contrived
worst case network examples?

Some variants of the threshold model and related models do satisfy
these properties. Next week, we consider two such stochastic models.
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Recap

Twitter rumour cascades

Structural virality

Threshold model
▶ Complete cascades
▶ Blocking clusters
▶ A first look at selecting initial adopters
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