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Today’s agenda

In lecture we’ve covered Influence maximization under the linear threshold
and independent cascade influence models

Today:

Questions from Lecture

A more general model of influence spread

Non-progressive influence maximization

Quercus Quiz
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Questions?
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Influence Models: Linear Threshold

Each node v ∈ V has a random threshold tv ∼ Unif([0, 1])

Each directed edge (u, v) ∈ E has some fixed weight wuv ∈ [0, 1] such
that:

∀v ∈ V :
∑

u∈V :u→v

wuv ≤ 1

At time step t, node v is infected if the sum of incident edges from
infected nodes exceeds the threshold
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Each node v ∈ V has a random threshold tv ∼ Unif([0, 1])

Each directed edge (u, v) ∈ E has some fixed weight wuv ∈ [0, 1] such
that:

∀v ∈ V :
∑

u∈V :u→v

wuv ≤ 1

At time step t, node v is infected if the sum of incident edges from
infected nodes exceeds the threshold

Example where a and b are infected at t = 0, and v is or is not
infected depending on the random variable tv
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The General Threshold Model
Question: What are the key parts of the linear threshold model? How
may we generalize them?
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may we generalize them?

We retain our random threshold tv ∼ Unif([0, 1])
Instead of weighted edges, for each node v we defined a threshold

function fv : P(V ) → [0, 1]
Let It(v) : V → P(V ) is the function that maps v to v ’s infected
neighbours at time time
An uninfected node v now becomes infected if

fv (It(v)) > tv
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The General Threshold Model
Question: What are the key parts of the linear threshold model? How
may we generalize them?

We retain our random threshold tv ∼ Unif([0, 1])
Instead of weighted edges, for each node v we defined a threshold

function fv : P(V ) → [0, 1]
Let It(v) : V → P(V ) is the function that maps v to v ’s infected
neighbours at time time
An uninfected node v now becomes infected if

fv (It(v)) > tv

Question: How do we represent Linear Threshold model as a General
Threshold Model

◮ fv (S) :=
∑

u∈S
wuv

Question: Is the expected number of eventual adopters, f (S),
submodular? Is it monotone?

◮ No, consider that on a clique we could define fv so that all nodes are
infected for a specific initial set S ⊂ V , and otherwise no new nodes
are infected 5 / 14



The Independent Cascade Model

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors independently with probability puv .
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The Independent Cascade Model

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors independently with probability puv .
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The General Cascade Model

Question: What are the key parts of the general cascade model? How
may we generalize them?
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The General Cascade Model

Question: What are the key parts of the general cascade model? How
may we generalize them?

We retain the idea that nodes infected at time t − 1 attempt to infect
their neighbours with some probability at time t

We let the probability that some node v is infected by a node u as
pv (u,F ) where F ⊂ V is the set of nodes that have already tried and
failed to infect v

pv : V × P(V ) → [0, 1]

Question Is there a problem with this model?
◮ As written thusfar, it could depend on the order in which nodes attempt

to infect v . For this reason, pv is restricted to be order independent
◮ For any set of infected neighbours u1, u2, . . . ul the order in which they

infect v the overall probability of infection must be the same
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Question: What are the key parts of the general cascade model? How
may we generalize them?

We retain the idea that nodes infected at time t − 1 attempt to infect
their neighbours with some probability at time t

We let the probability that some node v is infected by a node u as
pv (u,F ) where F ⊂ V is the set of nodes that have already tried and
failed to infect v

pv : V × P(V ) → [0, 1]

Question Is there a problem with this model?
◮ As written thusfar, it could depend on the order in which nodes attempt

to infect v . For this reason, pv is restricted to be order independent
◮ For any set of infected neighbours u1, u2, . . . ul the order in which they

infect v the overall probability of infection must be the same

Question: How do we represent Independent Cascade model as a
General Cascade Model

◮ pv (u,F ) := p(u, v)
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The General Threshold Model & The General

Cascade Model
General Threshold Model: Node v is infected at time t + 1 if
fv (It(v)) > tv
General Cascade Model: Node u, infected at time t, infects node v

with probability p(u, S) where S is the set of nodes that have failed
to infect u thusfar
Question: Can we represent a general threshold model as a general
cascade model?
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The General Threshold Model & The General

Cascade Model
General Threshold Model: Node v is infected at time t + 1 if
fv (It(v)) > tv
General Cascade Model: Node u, infected at time t, infects node v

with probability p(u, S) where S is the set of nodes that have failed
to infect u thusfar
Question: Can we represent a general threshold model as a general
cascade model?

pv (u, S) = P(u infects v |S didn’t infect v)

=
P(u infects v ∧ S didn’t infect v)

P(S didn’t infect v)

=
P(fv (S ∪ {u}) > tv ≥ fv (S))

P(tv ≥ fv (S))

=
fv (S ∪ {u})− fv (S)

P(1− fv (S))
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The General Threshold Model & The General

Cascade Model
General Threshold Model: Node v is infected at time t + 1 if
fv (It(v)) > tv
General Cascade Model: Node u, infected at time t, infects node v

with probability p(u, S) where S is the set of nodes that have failed
to infect u thusfar
Question: Can we represent a general cascade model as a general
threshold model?
Let S = {s1, s2, . . . sk}, and Si := {s1 . . . si}

fv (S) = P(S infects v)

= 1− P(S doesn’t infect v)

= 1−
k∏

i=1

P(ui doesn’t infect v |Si−1 doesn’t infect v)

= 1−
k∏

i=1

(1− p(ui , Si−1))
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Non-Progressive Influence

Thusfar, all the influence models we’ve seen are progressive, nodes
that become infected never cease being infected

Suppose we’re modeling something like the use of a subscription
service

◮ Users can start or stop any any time
◮ We assume users are more likely to subscribe if people they know are

also subscribed
◮ We want to maximize our revenue, or rather the sum of the number of

people subscribed at each timestep
◮ We can create an initial set of adopters, but these initial adopters can

be at different points in time

How can we model this? How can we pick our initial adopters?
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Reducing Non-Progressive Influence to Progressive

Influence

We can model non-progressive influence as progressive influence using
a layered graph

For our original graph G = (V ,E ), and a time horizon of τ timesteps,
we create G τ by creating τ duplicates of the nodes and edges of G
(e.g. v becomes vt for t = 1, 2, . . . τ)

We add directed edges from ut to vt+1 for all ut such that (u, v) ∈ E

This is the same approach as we saw in class that allowed us to model
a special case of SIS as SIR

We can now analyze this problem or choose initial adopters on G τ as
if it were a progressive influence problem
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Reducing Non-Progressive Influence to Progressive

Influence
G

[Modified from E&K Fig 21.5]
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Reducing Non-Progressive Influence to Progressive

Influence

G 5

[Modified from E&K Fig 21.6a]
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Quercus Quiz
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