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Today’s agenda

In lecture we’ve covered Chapter 5 of the textbook looking at Structural
Balance.

Today:

Questions from Lecture

Recap of Structural Balance

Approximately Balanced Networks (Ch 5.5b of E&K)

Quercus Quiz

2 / 15



Questions?
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Recap: Stable Triangles

A complete (i.e. fully connected) graph is stable if all of it’s triangles are
stable.
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Recap: Harary Balance Theorem

If a labelled complete graph is balanced, then either everyone is friends, or
the nodes can be partitioned into 2 groups that mutually loath each other
and are internally purely friendly.
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Recap: Testing if a graph can be completed into a

balanced graph
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Recap: Testing if a graph can be completed into a

balanced graph

1 Find the positive communities (i.e. BFS on only the positive edges to
find the positive connected components)

2 Confirm that these do not contain any negative edges

3 Collapse the positive communities into supernodes (and we collapse
the negative edges between these communities accordingly)

4 Check that the graph of supernodes connected by negative edges is
bipartite (via modified BFS)
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How would we actually complete the graph given the positive communities
if wanted a true labeling?
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Recap: Testing if a graph can be completed into a

balanced graph

1 Find the positive communities (i.e. BFS on only the positive edges to
find the positive connected components)

2 Confirm that these do not contain any negative edges

3 Collapse the positive communities into supernodes (and we collapse
the negative edges between these communities accordingly)

4 Check that the graph of supernodes connected by negative edges is
bipartite (via modified BFS)

How would we actually complete the graph given the positive communities
if wanted a true labeling?

What if we only wanted to complete to a weakly balanced graph?
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Approximately Balanced Networks

Harary Balance Theorem only works when there are exactly no unbalanced
triangles. Can we weaken this result to allow for some imbalanced
triangles?
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Approximately Balanced Networks

Harary Balance Theorem only works when there are exactly no unbalanced
triangles. Can we weaken this result to allow for some imbalanced
triangles?

Theorem

Let ǫ such that 0 ≤ ǫ ≤ 1
8 , and δ := 3

√
ǫ. If at least 1− ǫ of the triangles in

a complete labeled graph G = (V ,E ) are balanced, then either:

1 ∃V ′ ⊆ V such that
|V ′|
|V | ≥ 1− δ and the proportion of hostile pairs in

|V ′| is at most δ
2 We can partition V into X and Y such that:

◮ The proportion of pairs in X that are hostile is at most δ
◮ The proportion of pairs in Y that are hostile is at most δ
◮ The proportion of edges between X & Y that are friendly is at most δ

7 / 15



Proof

Can we modify the Proof of the Harary Balance Theorem? What problems
could there be?
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Proof

Can we modify the Proof of the Harary Balance Theorem? What problems
could there be?

The proof from lecture relies on dividing the graph based on the friends &
enemies of a node A. Intuitively, we want to choose a node that is involved
in a small number of violations. How do were formalize this intuition?
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Proof

Let’s look at the number of violations that a node is involved in. We know
that the proportion of violating triangles out of all triangles is at most ǫ.
Let N := |V |. How many triangles do we have?
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Proof

Let’s look at the number of violations that a node is involved in. We know
that the proportion of violating triangles out of all triangles is at most ǫ.
Let N := |V |. How many triangles do we have?

NC3 =

(

N

3

)

=
N(N − 1)(N − 2)

6

Therefore we have at most ǫN(N−1)(N−2)
6 violating triangles.
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Proof

Let viol : V → N count the number of violations that a node is involved
in. Each triangle will be counted 3 times, therefore:

∑

v∈V

viol(v) ≤ 3× ǫ
N(N − 1)(N − 2)

6
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Proof

Let viol : V → N count the number of violations that a node is involved
in. Each triangle will be counted 3 times, therefore:

∑

v∈V

viol(v) ≤ 3× ǫ
N(N − 1)(N − 2)

6

Note that we immediately know that ∃A ∈ V such that:

viol(A) ≤ 3× ǫ
N(N − 1)(N − 2)

6
/|V | = ǫ

(N − 1)(N − 2)

2
≤ ǫN2/2

Let’s use this node A to partition V into the sets X (A’s friends) and Y

(A’s enemies).
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Case 1: |X | ≥ (1− δ)N

Note δ = 3
√
ǫ < 3

√

1
8 = 1

2 , therefore |X | > 1
2N.

Assuming N is even then |X | ≥ 1
2N + 1.
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Therefore, the number of edges between nodes in X is
(

|X |
2

)

≥
( 1

2
N+1
2

)

= (12N + 1)(12N)/2 ≥ (12N)2/2 = N2/8
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Case 1: |X | ≥ (1− δ)N

Note δ = 3
√
ǫ < 3

√

1
8 = 1

2 , therefore |X | > 1
2N.

Assuming N is even then |X | ≥ 1
2N + 1.

Therefore, the number of edges between nodes in X is
(

|X |
2

)

≥
( 1

2
N+1
2

)

= (12N + 1)(12N)/2 ≥ (12N)2/2 = N2/8

We know that viol(A) ≤ ǫN2/2, and it’s clear that any negative edge
between nodes in X cause a violated triangle with A.

Therefore, the proportion of edges between nodes in X causing a violation
is at most:

viol(A)
(

|X |
2

)
≤ ǫN2/2

N2/8
= 4ǫ = 4δ3 < δ

Therefore we satisfy the theorem. Note that the final inequality holds as
δ < 1

2 .
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Case 2: |Y | ≥ (1− δ)N

The same proof as Case 1 applies.
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Case 3: |X | < (1− δ)N and |Y | < (1− δ)N
As X and Y partition V , we know that |X |+ |Y | = |V | = N, therefore
|X | = N − |Y | > δN.

Assuming δN ∈ N then the number of edges within X is:

(|X |
2

)

≥
(

δN + 1

2

)

> δ2N2/2

13 / 15



Case 3: |X | < (1− δ)N and |Y | < (1− δ)N
As X and Y partition V , we know that |X |+ |Y | = |V | = N, therefore
|X | = N − |Y | > δN.

Assuming δN ∈ N then the number of edges within X is:

(|X |
2

)

≥
(

δN + 1

2

)

> δ2N2/2

As we showed before, any unfriendly edge within X will cause an unstable
triangle with A, and viol(A) ≤ ǫN2/2, therefore the proportion of
unfriendly edges in X is at most:

viol(A)
(

|X |
2

)
≤ ǫN2/2

δ2N2/2
= δ

The same argument holds for unfriendly edges in Y . All that remains is to
show the same bound on the proportion of edges between X and Y that
are friendly.
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Case 3: |X | < (1− δ)N and |Y | < (1− δ)N cont’d

The number of edges between X and Y is |X ||Y | = |X |(N − |X |) for
δN < |X | < (1− δ)N.

As this is a concave quadratic function maximized at |X | = 0.5N and
δ < 0.5, it’s clear |X |(N − |X |) > δ(1− δ)N2 > δ(1− 0.5)N2 = δN2/2.
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Case 3: |X | < (1− δ)N and |Y | < (1− δ)N cont’d

The number of edges between X and Y is |X ||Y | = |X |(N − |X |) for
δN < |X | < (1− δ)N.

As this is a concave quadratic function maximized at |X | = 0.5N and
δ < 0.5, it’s clear |X |(N − |X |) > δ(1− δ)N2 > δ(1− 0.5)N2 = δN2/2.

Therefore, using the same bound on violations as before we can see that
the proportion of edges between X and Y that are friendly is at most:

viol(A)

|X ||Y | ≤
ǫN2/2

δN2/2
= δ2 < δ

Therefore X and Y satisfy the theorem.
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Quercus Quiz
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